
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

Motion Learning Using The Neural Network Motion Learning Using The Neural Network

Priyank Shah
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shah, Priyank, "Motion Learning Using The Neural Network" (2012). Master's Projects. 263.
DOI: https://doi.org/10.31979/etd.tp4b-v3sk
https://scholarworks.sjsu.edu/etd_projects/263

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/263?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Page 1

 Motion Learning Using The Neural Network

A Thesis
Presented to

The Faculty of the Department of Computer Science
San José State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
by

Priyank K Shah
September 2012

Page 2

 © 2012
 Priyank K Shah
 ALL RIGHTS RESERVED

Page 3

SAN JOSE STATE UNIVERSITY

The Designated Thesis Committee Approves the Thesis Titled

Motion Learning Using The Neural Network

by
Priyank K Shah

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

October 2012

__
Dr. Chris Tseng, Department of Computer Science Date

__
Dr. Soon Tee Teoh, Department of Computer Science Date

__
Mr. Grinish Engineer, Software Engineer(Cisco Systems) Date

Page 4

Acknowledgement

I would like to express my sincere gratitude to my project advisor Dr. Tseng for guidance,

 cooperation and time in making my project a success. I would also like to thank my committee

members Dr. Teoh and Mr. Grinish Engineer for their support and patience. Also, sincere

thanks to my family and friends for constant moral support.

Page 5

ABSTRACT

 One of the most promising topics of research in the field of artificial intelligence is the

 application of data captured from human motion using sensors processed with various

algorithms to achieve successful data analysis. This project aims to design and develop a

method to judge human motion and allows the users to see the score while they are

performing motion. The Neural Network is trained to follow human expert scores on all players'

motion profiles as compared with master player. This Neural Network is trained for its best

performance by changing the number of iterations and the dataset passes through the

network. Its sets the time period to train the Neural Network and sets the gradient so that

error generated is a minimal or changing mean square error. The user data derived from a Yoga

performance or any other motion was collected from Kinect sensors' data reports. The data

collected contained X, Y and Z rotational and positional points. Kinect sensors captures 20

joints. The master data and user data were used as input to the Dynamic Time Warping

algorithm. It compensated for the speed and time between the master and user data and gave

a value that suggests the relative similarity of both motion profiles. The output of this algorithm

was fed to Neural Network that was trained with a human judgment expert's data on motion

profiles. This project is an attempt to train a Neural Network that will eventually judge like an

expert and determine the success level that a user's motion profile exhibits.

Page 6

Table of Contents

1. Introduction .. 9

2. Literature Review .. 11

 2.1 Dynamic Time Warping algorithm ... 11

 2.2 Kinect Data .. 14

 2.3 Neural Network .. 16

 2.4 Backpropagation algorithm .. 17

 2.5 Matlab Neural Network Toolbox .. 18

 2.6 Training function of Neural Network .. 19

3. Implementation ... 20

4. Tables .. 23

5.Charts ... 45

6. Technical Analysis .. 54

7. Limitation .. 55

8. Future Work .. 55

9. Conclusion ... 56

10. Reference .. 57

Page 7

List of Tables

Table 1: Result of Untrained data for goal 0.0003 ... 24

Table 2: Result of Untrained data for goal 0.00003 ... 25

Table 3: Result of Untrained data for goal 0.000003 ... 26

Table 4: Result of Untrained data for goal 0.000006 ... 27

Table 5: Result of Untrained data for 35 hidden layer neurons ... 28

Table 6: Result of Untrained data for 55 hidden layer neurons ... 29

Table 7: Result of Untrained data for purelin as sigmoid function ... 30

Table 8: Result of Untrained data for logsig as sigmoid function ... 31

Table 9: Results of Untrained data for logsig function and 35 hidden layer neurons 32

Table 10: : Results of Untrained data for logsig function and 55 hidden layer neurons 33

Table 11: : Results of Untrained data for purelin function and 35 hidden layer neurons 34

Table 12: : Results of Untrained data for purelin function and 35 hidden layer neurons 35

Table 13: Result of trained data for goal 0.003 .. 36

Table 14: Result of trained data for goal 0.00003 .. 37

Table 15: Result of trained data for goal 0.000003 .. 38

Table 16: Result of trained data for goal 0.000006 .. 39

Table 17: Results of trained data for 35 hidden layer neurons ... 40

Table 18: Results of trained data for 55 hidden layer neurons ... 41

Table 19: Results of trained data for purelin as sigmoid function .. 42

Table 20: Results of trained data for logsig as sigmoid function .. 43

Table 21: Cumulative output of untrained data .. 44

Table 22: Cumulative output of trained data .. 44

Page 8

List of Figures

Figure 1: Kinect Captured Joints...14

Figure 2: Neural Network Layers..16

Figure 3: Simple Neuron..18

Figure 3: Log sigmoid function...21

Figure 4: Linear sigmoid function...21

Figure 5: Tansigmoid function..21

Figure 4: Flow Diagram of data..22

Page 9

Introduction

 Recently, several papers have been published on motion learning and how to improve it.

The main goal of this motion learning research was to achieve a very accurate motion judgment

as close to human judge as possible. Today, the number of people using various motion sensors

for daily use is increasing.

 There are several other studies that support that human motion collected from sensor

data can be used to study motion learning patterns, artificial intelligence and to predict future

motion.

 An artificial Neural Network is a computational model derived from a biological concept

of a Neural network. The network is formed of neurons that are interconnected to solve a

specific network. The artificial neural network is configured for a specific application, data

classification, motion learning, pattern recognition through a learning process. Training is done

by various Neural Network algorithms and the adjustments of the training parameters.

 Motion learning is a basic operation in the selection of significant segments of video

signals. In this project, an efficient neural network system is proposed for motion detection

from the static background. This method mainly consists of three parts: Collecting Motion Data

using Kinect; processing data to remove speed and time variants using Dynamic Time Warping

algorithm; feeding the data obtained from DTW to the Neural Network Backpropagation

algorithm to the trained network; and finally, using this trained Network to judge human

motion.

 The goal of the project is motion learning and the application of the Neural Network

algorithm to better judge human motion. Motion learning is implemented by using a forward

Neural Network that has been trained accordingly. During training, the network is trained to

associate output with input patterns. When the network is used, it identifies the input pattern

and tries to output the associated output pattern. The power of neural networks comes to life

when a pattern that has no output associated with it, is given as an input. In this case, the

network gives the output that corresponds to a taught input pattern that is least different from

the given pattern. The input data is taken from Kinect sensors. The captured data is taken as

input to the Dynamic Time Warping algorithm, the output of which is fed to Backpropagation

 Page
10

Neural Network. With the help of this trained Network, a person is judged in real time, which

accordingly can be used to improve the motion. In this project, the trained Network gives score

as a person actions or movements, such as Yoga. The scored judgment can help a person

improve future movements.

 Page
11

2. Literature Review

In this section we discuss various concepts like the Dynamic Time Warping algorithm, the

Backpropagation algorithm, the parameters to train Neural Network and the Matlab Toolbox.

Dynamic Time Warping

Dynamic time warping (DTW) is used for measuring two sequences which may vary in time and

speed. The DTW algorithm is kind of dynamic programming approach. It forms a matrix and

takes minimum path so that two wave forms match the original wave form [11].

The DTW algorithm [11]

int DTWDistance(char s[1..n], char t[1..m]) {

 declare int DTW[0..n, 0..m]

 declare int i, j, cost

 for i := 1 to m

 DTW[0, i] := infinity

 for i := 1 to n

 DTW[i, 0] := infinity

 DTW[0, 0] := 0

 for i := 1 to n

 for j := 1 to m

 cost:= d(s[i], t[j])

 Page
12

 DTW[i, j] := cost + minimum(DTW[i-1, j], // insertion

 DTW[i , j-1], // deletion

 DTW[i-1, j-1]) // match

 return DTW[n, m]

}

Specifications of algorithms

Char s[1...n] , char t[1...m] -- input data for the DTW algorithm.

Here i and j are taken as row and column.

Initial conditions

In the initial condition i from 1 to m are specified as infinity similarly, j from 1 to m are specified

as infinity. Also, most importantly, DTW [0, 0] is taken (0, 0). Cost d(s[i], t[j]) is d(x, y) is a

distance between symbols, i.e. d(x, y) = | x - y |. Now DTW is calculated as cost plus minimum

value from (i-1,j) (i, j-1),(i-1,j-1) . The algorithm forms a matrix. Once a matrix is formed, it uses

a backtracking algorithm to form the points and plot the graph.

Example of DTW algorithm

 Page
13

Here cost is considered as 1.

 i/j B C A D B C

 0 1 2 3 4 5 6

A 1 1 2 3 4 5 6

C 2 2 2 3 4 5 6

B 3 3 3 3 4 5 6

D 4 4 4 4 4 5 6

A 5 5 5 5 5 5 6

C 6 6 6 6 6 6 6

AS shown from the arrows, we can back trace and form the graph. Here the matrix is formed

starting from the left hand corner, if the alphabet matched 1 is added to cell (i-1)(j-1). If they

are not equal than greater of cell (i-1)(j) or (i)(j-1) is taken to fill the next cell.

 Page
14

Kinect Data

Joints captured by Kinect motion sensor

Fig 1: Kinect captured points [16]

Kinect gives 6 data points for a particular joint with X, Y and Z rotation and position. In this

project, we only captured the X, Y and Z rotation, because taking position into consideration for

calculating the Neural Network is potentially inaccurate as X , Y and Z position varies as it is

based on the height of a person. So, for the training data the X, Y and Z rotation details were

 Page
15

taken. The problem of a person having different height was eliminated since the rotation does

not come into picture if person is having different height.

 In this project, one study is of master yoga posture data files and the other is data file

for student data. They were fed into the DTW algorithm to get 9 points of 3 joints of a right

shoulder. The collected data from Kinect was fed to the DTW before inputing to the Neural

Network. It was fed into the DTW to get around 150 points of frame data into a single point

(since the Neural Network can't handle too many inputs). In our case, we considered 3 joints,

therefore a total of 9 data points were used to feed the Neural Network.

Sample 1 frame data from Kinect

AnkleRight: 0.09563106 -0.6953287 3.490368

AnkleLeft: -0.07453345 -0.7462188 3.511517

KneeRight: 0.1040133 -0.4055198 3.463443

KneeLeft: -0.1025893 -0.4003633 3.476388

HipRight: 0.08443671 0.03220186 3.538582

HipLeft: -0.07134762 0.03197961 3.537938

ShoulderRight: 0.1783416 0.429853 3.630216

ShoulderLeft: -0.1617673 0.4396111 3.647002

ElbowRight: 0.422052 0.4634577 3.648444

ElbowLeft: -0.4061069 0.4651955 3.662422

WristRight: 0.6802884 0.4880981 3.60269

WristLeft: -0.62367 0.4694732 3.643325

This data is the X, Y and Z rotation.

 Page
16

Neural Network

The Neural Network refers to a network or circuit of biological neurons. An artificial Neural

Network is composed of interconnecting neurons that are used to solve real biological neural

problems or an artificial intelligence problem [9].

 Fig 2: Neural Network Layers[9]

An artificial Neural Network is an adaptive system which adapts to changes based on external

and internal information that flows through the network [2]. In a Neural Network, simple nodes

are connected together to form network nodes. There can be any number of inputs, hidden and

output layers in the network. The Neural Network is trained to predict what the behavior will

be if similar or different information is fed to the Network [2].

 Page
17

Backpropagation algorithm

Backpropagation is a method of training an artificial neural network so as to minimize the

objective function [10]. It is a machine learning method. It requires a dataset to train the

network to a desired output. There are two ways to train the Neural Network using

Backpropagation, incremental and batch learning. The weight update is followed immediately

after each propagation for incremental learning. However, the batch learning weight update

occurs after many propagations.

Backpropagation involves two phases:

Phase 1: Propagation

Each propagation involves a forward propagation of a training pattern's input through the

Neural Network and backward propagation of the propagation's output activations through the

Neural Network using the training pattern’s target [15].

Phase 2: Weight update

For each weight-synapse: follow the multiplication of its output delta and input activation to

get the gradient of the weight and bring the weight in the opposite direction of the gradient by

subtracting a ratio of it from the weight [15].

http://en.wikipedia.org/wiki/Supervised_learning

 Page
18

Matlab Neural Network Toolbox

The work flow of the Neural Network design process contains steps of collecting data, creating

the network, configuring the network, initializing weights, training and validating the network.

The Neural Network toolbox uses a network object to store all the information that the user

defines while training the network. There are many algorithms that are built in the toolbox like

Levenberg-Marquardt, Bayesian Regularization and Resilient backpropagation. The training of

Neural Network is limited based on various parameters: the like Minimum Gradient Magnitude,

Maximum Training Time, the Minimum Performance Value, and the Maximum number of

epoch among others. The trained Network can be analyzed by a graph generated by a toolbox

like Performance, Training state, Error Histogram and Regression.

Figure 3: Simple Neuron [12]

 Page
19

Neural Network training parameters

Epoch - An epoch is a single pass through the entire data set. It iterates through the process by

providing the network with input and updating the weights. The Linear network can be trained

to perform a linear classification with the function train. The train function takes a set of input

vectors and calculates the network bias increments and weight due to each of the inputs

according to learnp. Based on the sum of all these corrections the network is adjusted [12].

Either train or adapt is used to give epoch.

example: net.trainParam.epochs = 100;

Mean squared error (MSE) – MSE gives the average of squares of errors. Error is the difference

between the value implied by an estimator from the quantity to be estimated. MSE is a risk

function, corresponding to the expected value of the squared error loss or quadratic loss [17].

The output layer of the Network learns to match the associated target vectors with a minimal

mean squared error [12]. Either train of epoch is used to set the mean squared error.

example: net.trainParam.goal = 0.003;

Sigmoid function - A sigmoid function is an 'S' shaped curve produced by a mathematical

function. The Sigmoid function includes tansig, logsig and purelin and many others. A sigmoid

function is real- valued and differentiable, having either a non-negative or non-positive first

derivative [18].The Sigmoid function is required for both the hidden layer and output layers.

http://en.wikipedia.org/wiki/Risk_function
http://en.wikipedia.org/wiki/Risk_function

 Page
20

Implementation

 The human motion data was collected using Microsoft Kinect. The Single joint data

contained 6 points representing the X, Y and Z positional and rotational axis. We only

considered the X, Y and Z rotational axis, since different users will have different heights; and

comparing the master profile with user profile in terms of positional axis would give inaccurate

results. The three joints of user's motion profile were taken into account. The Dynamic Time

Warping Algorithm and the Neural Network code were implemented in Matlab.

 First, the data was collected from the human expert to train the Neural Network by

using the Feedforward Backpropagation algorithm. This trained Network was used to predict

scores of the user's motion profiles' as compared to those of the master player. The User's

motion profiles were captured via Kinect Sensors. The data collected from Kinect contained

over 100 frames that represented each joint positions for just 5 seconds of motion. Since the

Neural Network couldn't handle this huge amount of data, the Dynamic Time Warping

algorithm was used. The Master data and User data were used as input to the Dynamic Time

Warping algorithm. It compensated for the speed and time between the Master and User's

data. The value as closer to zero suggests the closeness of both the motion profiles. The value

was close to zero suggested that both motion profile were similar. The output of the Dynamic

Time Warping algorithm contained three values for each joint pertaining to X, Y and Z rotational

axis. The output of this algorithm was fed to the Neural Network that was trained with

human judgment expert data on motion profiles. It eventually gave scores that depended on

how close a user was compared to the master. A transfer function, like the tansig, logsig and

purelin function, was taken as input for hidden layer of Neurons. The natural finite bounds for

tansig, logsig and purelin are [-1,1], [0,1] and [-infinity, + infinity] respectively.

 Page
21

Below are the curves of these three functions:

Figure 3: logsig Figure 4: purelin Figure 5: tansig

A different number of hidden layers of Neurons were considered and coupled with a different

transfer function for training. To complete the training of the Network mainly the performance

(goal) and epoch were taken into account. The trained Neural Network was tested with both

untrained data means, data not taken into account for training and trained data means. data

used in training the Neural Network.

 In this project the feed - forward backpropagation network was used to train the

Network. The command to create the backpropagation network is:

net = newff (PR, [S1 S2..... SN1], {TF1 TF2...TFN1},BTF,BLF, PF)

where net = newff creates a new network, PR is R*2 matrix of minimum and maximum values

for R input elements, Si is size of ith layer for N1 layers, TFi is transfer function of the ith layer,

BTF is backpropagation network training function, BLF is backpropagation weight/bias learning

function and PF is performance function [19].

Example net = newff([0 10], [5 1], {'tansig' ' purelin'});

In this case, the two layer feed-forward network was created. There were five hidden layer

neurons with tansig as a transfer function and one output layer neuron with purelin as sigmoid

function. The network input layer ranged from [0 to 10].

 Page
22

Flow Diagram of Project

 Page
23

Results

Tables Description

This tables represents different scenarios taken into consideration to test the Neural Network.

The applied parameters considered to stop Neural Network training once the best

performances was achieved were: Sigmoid function, Mean Square Error, Gradient and number

of neurons used. The Master and user profile were compared for three joints.

 Here, the first column represents a human judge score that is given by an expert. The

second column represents the output of application. The third column represent difference

between human judge score and the application output that shows the similarity of the output

of the Neural Network. The fourth column represents the number of neurons used in the

training application. The Neural Network sigmoid function represents the functions that are

used to train the Network. The goal column represents the mean square error. The epoch tells

the number of times the data is passed to the network. The gradient column represents the

value set, so that the error generated is a minimum or acceptable value. The last column's

average difference represents the sum of the difference between a human judge and the

Neural Network output divide by the total number of motion profiles.

 Here, each table represents different kind of criteria that can be used to stop training

after a certain expected performance is reached. Parameters are taken into consideration, as

well as the average difference of error generated when these parameters were taken to train

the network. The Lower the average difference indicates that network has been trained

properly enough to give the closest possible score of user's motion profile to that of the human

judge.

 Page
24

Scenario 1: Data not used in Neural Network training

1) Here, the goal is kept 0.003, the tansig is used as a sigmoid function and the number of

neurons is kept as 19 for training the Neural Network. The average difference of errors got was

0.0832.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
Difference

0.7 0.746 0.046 19 tansig 0.003 750 0.0832

0.8 0.664 0.136

0.7 0.723 0.023

0.8 0.548 0.252

0.9 0.887 0.013

0.7 0.8399 0.139

0.7 0.642 0.058

0.7 0.742 0.058

0.5 0.468 0.032

0.5 0.458 0.042

0.4 0.433 0.033

0.6 0.489 0.111

0.5 0.592 0.092

0.8 0.767 0.033

0.7 0.724 0.024

0.7 0.687 0.013

0.7 0.731 0.031

0.5 0.498 0.002

Table 1: Result of untrained data for goal 0.0003

 Page
25

2) Here, the goal is increased 0.00003 to try to decrease the average difference of errors, tansig

is used as the sigmoid function and the number of neurons is kept as 19.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
Difference
of errors

0.7 0.740 0.040 19 tansig 0.00003 750 0.0376

0.8 0.714 0.086

0.7 0.706 0.006

0.8 0.684 0.016

0.9 0.912 0.012

0.7 0.699 0.001

0.7 0.686 0.014

0.7 0.696 0.004

0.5 0.459 0.041

0.5 0.534 0.034

0.4 0.417 0.017

0.6 0.571 0.029

0.5 0.564 0.036

0.8 0.686 0.114

0.7 0.695 0.005

0.7 0.704 0.004

0.7 0.672 0.028

0.5 0.566 0.066

Table 2: Result of untrained data for goal 0.00003

 Page
26

3) Here, the goal is decreased by an additional 0.000003 to improve output of neural network,

tansig is used as a sigmoid function and number of neurons is kept as 19.

Human
Judge
Score

NN
output

Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
Difference
Of errors

0.7 0.744 0.044 19 tansig 0.000003 750 0.0252

0.8 0.793 0.006

0.7 0.692 0.008

0.8 0.818 0.018

0.9 0.966 0.036

0.7 0.702 0.002

0.7 0.675 0.025

0.7 0.706 0.006

0.5 0.518 0.018

0.5 0.507 0.007

0.4 0.394 0.006

0.6 0.549 0.051

0.5 0.514 0.014

0.8 0.747 0.053

0.7 0.654 0.046

0.7 0.736 0.064

0.7 0.685 0.015

0.5 0.533 0.067

Table 3: Result of untrained data for goal 0.000003

 Page
27

4) Here, we still have decreased further to 0.000006 , tansig is used as sigmoid function and

number of neurons is kept as 19. Here we can see the average difference of error is increased

compared to 0.000003. So we stopped here decreasing the goal.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function
used

goal epoch Average
difference
of errors

0.7 0.749 0.049 19 tansig 0.000006 750 0.0928

0.8 0.773 0.027

0.7 0.705 0.005

0.8 0.754 0.046

0.9 0.884 0.016

0.7 0.747 0.047

0.7 0.705 0.05

0.7 0.680 0.020

0.5 0.682 0.182

0.5 0.694 0.194

0.4 0.721 0.321

0.6 0.868 0.268

0.5 0.588 0.088

0.8 0.709 0.090

0.7 0.720 0.020

0.7 0.744 0.044

0.7 0.609 0.090

0.5 0.614 0.114

Table 4: Result of untrained data for goal 0.000006

 Page
28

5) Here, the goal is kept 0.000003, tansig is used as the sigmoid function and the number of

neurons is increased to 35. But, we can see that by increasing the number of neurons the

average difference of errors increased.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
difference
of errors

0.7 0.744 0.044 35 tansig 0.000003 750 0.042

0.8 0.803 0.003

0.7 0.698 0.002

0.8 0.564 0.236

0.9 0.915 0.015

0.7 0.754 0.054

0.7 0.696 0.004

0.7 0.692 0.008

0.5 0.491 0.011

0.5 0.470 0.030

0.4 0.396 0.004

0.6 0.506 0.090

0.5 0.534 0.066

0.8 0.689 0.111

0.7 0.717 0.017

0.7 0.679 0.021

0.7 0.708 0.008

0.5 0.532 0.032

Table 5: Result of untrained data for 35 hidden layer neurons

 Page
29

6) Here, the goal is kept 0.000003, tansig is used as a sigmoid function and number of neurons

is increased to 55. But, we can see that increasing the number of neurons averages the

difference of errors increased.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
difference
of errors

0.7 0.742 0.042 55 tansig 0.000003 750 0.056944

0.8 0.781 0.019

0.7 0.697 0.003

0.8 0.477 0.323

0.9 0.934 0.034

0.7 0.640 0.060

0.7 0.711 0.011

0.7 0.707 0.007

0.5 0.527 0.027

0.5 0.534 0.034

0.4 0.510 0.110

0.6 0.545 0.055

0.5 0.555 0.055

0.8 0.720 0.080

0.7 0.738 0.038

0.7 0.632 0.070

0.7 0.674 0.025

0.5 0.532 0.032

Table 6: Result of untrained data for 55 hidden layer neurons

 Page
30

7) Here, the goal is kept 0.000003, the number of neurons is 19 and purelin is used as a sigmoid

function. Here the error increases compared to the tansig function.

Human
Judge
Score

NN output difference NN
neurons
used

NN
sigmoid
function
used

goal epoch Average
difference
of errors

0.7 0.698 0.002 19 purelin 0.000003 750 0.074722

0.8 0.521 0.270

0.7 0.758 0.058

0.8 0.724 0.070

0.9 0.838 0.062

0.7 0.822 0.122

0.7 0.694 0.006

0.7 0.759 0.059

0.5 0.382 0.118

0.5 0.513 0.013

0.4 0.487 0.013

0.6 0.446 0.154

0.5 0.684 0.184

0.8 0.845 0.045

0.7 0.809 0.109

0.7 0.729 0.029

0.7 0.710 0.010

0.5 0.534 0.034

Table 7: Result of untrained data for purelin as the sigmoid function

 Page
31

8) Here, the goal is kept 0.000003, the number of neurons is 19 and logsig is used as sigmoid

function. Here, the error increases compared to the tansig function.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
difference
of errors

0.7 0.738 0.038 19 logsig 0.000003 750 0.056833

0.8 0.824 0.024

0.7 0.695 0.005

0.8 0.619 0.180

0.9 0.918 0.018

0.7 0.621 0.070

0.7 0.702 0.002

0.7 0.644 0.046

0.5 0.401 0.099

0.5 0.422 0.078

0.4 0.514 0.114

0.6 0.602 0.002

0.5 0.464 0.036

0.8 0.629 0.170

0.7 0.621 0.070

0.7 0.671 0.030

0.7 0.695 0.005

0.5 0.564 0.036

Table 8: Result of untrained data for logsig as a sigmoid function

 Page
32

9) Here, the goal is kept 0.000003,the number of neurons is increased to 35 and logsig is used

 as a hidden layer sigmoid function. Here error increases compared to the tansig function.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
Difference
of errors

0.7 0.735 0.035 35 logsig 0.000003 750 0.0733

0.8 0.757 0.043

0.7 0.707 0.007

0.8 0.469 0.330

0.9 0.906 0.006

0.7 0.587 0.113

0.7 0.722 0.078

0.7 0.664 0.036

0.5 0.380 0.120

0.5 0.462 0.038

0.4 0.400 0

0.6 0.377 0.233

0.5 0.533 0.033

0.8 0.653 0.147

0.7 0.699 0.001

0.7 0.632 0.068

0.7 0.723 0.023

0.5 0.516 0.016

Table 9: Result of untrained data for logsig as a sigmoid function and 35 as hidden layer

neurons

 Page
33

10) Here, the goal is kept 0.000003,the number of neurons is increased to 55 and logsig is used

as a hidden layer sigmoid function. Here, the error increases compared to the tansig function.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
Difference

0.7 0.743 0.043 55 logsig 0.000003 750 0.039

0.8 0.766 0.034

0.7 0.701 0.001

0.8 0.598 0.102

0.9 0.934 0.066

0.7 0.632 0.068

0.7 0.683 0.017

0.7 0.691 0.009

0.5 0.470 0.030

0.5 0.467 0.033

0.4 0.461 0.039

0.6 0.550 0.050

0.5 0.525 0.025

0.8 0.699 0.101

0.7 0.675 0.025

0.7 0.689 0.011

0.7 0.710 0.010

0.5 0.540 0.040

Table 10: Result of Untrained data for logsig as a sigmoid function and 55 as hidden layer

neurons

 Page
34

11) Here, the goal is kept 0.000003, the number of neurons is increased to 35 and purelin is

used as a hidden layer sigmoid function. Here, the error increases compared to the tansig

function.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
difference
of errors

0.7 0.698 0.002 35 purelin 0.000003 750 0.087

0.8 0.466 0.334

0.7 0.759 0.041

0.8 0.735 0.065

0.9 0.833 0.067

0.7 0.855 0.155

0.7 0.713 0.013

0.7 0.766 0.034

0.5 0.343 0.157

0.5 0.499 0.001

0.4 0.502 0.102

0.6 0.427 0.167

0.5 0.693 0.193

0.8 0.848 0.048

0.7 0.807 0.107

0.7 0.746 0.046

0.7 0.721 0.021

0.5 0.513 0.013

Table 11: Result of Untrained data for purelin as a sigmoid function and 35 as hidden layer

neurons

 Page
35

12) Here, the goal is kept 0.000003, the number of neurons is increased to 55 and logsig is used

as a hidden layer sigmoid function. Here, the error increases as compared to the tansig

function.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
difference
of errors

0.7 0.698 0.002 55 purelin 0.000003 750 0.0901

0.8 0.466 0.334

0.7 0.759 0.059

0.8 0.735 0.065

0.9 0.833 0.067

0.7 0.855 0.155

0.7 0.713 0.013

0.7 0.766 0.066

0.5 0.343 0.157

0.5 0.499 0.001

0.4 0.502 0.102

0.6 0.427 0.173

0.5 0.693 0.193

0.8 0.848 0.048

0.7 0.807 0.107

0.7 0.746 0.046

0.7 0.721 0.021

0.5 0.513 0.013

Table 12: Result of Untrained data for purelin as a sigmoid function and 55 as hidden layer

neurons

 Page
36

Testing with data used in training

These tables represent the changing goal , the number of neurons and sigmoid function to

trained neural networks until the best result is achieved. The tables represents different

parameters used to stop the training of Neural Network, until best result was not achieved.

Here, the data is taken that was already used in training.

Scenario 2 : The data of user's motion profile was used in training the Network

1) Here, the goal is kept 0.003, tansig is used as the sigmoid function and the number of

neurons is kept as 19. The NN output is compared to a human judge score. The network

training is stopped as the performance is reached. Here, the network performed better

compared to the untrained data.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
difference
of errors

0.7 0.740 0.040 19 tansig 0.003 750 0.0256

0.7 0.703 0.003

0.9 0.900 0.000

0.8 0.783 0.017

0.7 0.787 0.013

0.8 0.779 0.020

0.6 0.526 0.074

0.4 0.461 0.061

0.5 0.497 0.003

Table 13: Result of trained data for goal for goal 0.003

 Page
37

2) Here, the goal is increased 0.00003 to try to decrease an average difference of errors, tansig

is used as the sigmoid function and the number of neurons is kept as 19. We can see that the

average difference in errors between the human judge and NN output is decreased.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function

goal epoch Average
difference
of errors

0.7 0.700 0.0 19 tansig 0.00003 750 0.00144

0.7 0.701 0.001

0.9 0.897 0.003

0.8 0.802 0.002

0.7 0.700 0.0

0.8 0.801 0.001

0.6 0.602 0.002

0.4 0.401 0.001

0.5 0.503 0.003

Table 14: Result of trained data for goal 0.00003

 Page
38

3) Here, the goal is decreased more than 0.000003 to improve the output of the neural

network, tansig is used a as sigmoid function and the number of neurons is kept as 19. Here,

the average difference of errors reached is at its lowest. But compared to untrained data, the

trained data error is less.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function
used

goal epoch Average
difference
of errors

0.7 0.700 0.0 19 tansig 0.000003 750 0.00033

0.7 0.700 0.0

0.9 0.898 0.002

0.8 0.799 0.001

0.7 0.700 0.0

0.8 0.800 0.0

0.6 0.600 0.0

0.4 0.400 0.0

0.5 0.500 0.0

Table 15: Result of trained data for goal 0.000003

 Page
39

4) Here, we still further decreased the goal to 0.000006 , tansig is used as a sigmoid function

and the number of neurons is kept as 19. Here, we can see the average difference of errors is

increased compared to 0.000003. So, here we stop here decreasing the goal.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function
used

goal epoch Average
difference
of errors

0.7 0.699 0.001 19 tansig 0.000006 750 0.00077

0.7 0.701 0.001

0.9 0.899 0.001

0.8 0.801 0.001

0.7 0.701 0.001

0.8 0.800 0.0

0.6 0.599 0.001

0.4 0.399 0.001

0.5 0.500 0.00

Table 16: Result of trained data for goal 0.000006

 Page
40

5) Here, we still further try to decrease the average difference by changing the goal and keeping

the training function same. However, we can see the average difference in error has decreased

and has factored at zero.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function
used

goal epoch Average
difference
of errors

0.7 0.700 0.0 35 tansig 0.000003 750 0

0.7 0.700 0.0

0.9 0.900 0.0

0.8 0.800 0.0

0.7 0.700 0.0

0.8 0.800 0.0

0.6 0.600 0.0

0.4 0.400 0.0

0.5 0.500 0.0

Table 17: Result of Untrained data for 35 hidden layer neurons

 Page
41

6) Here, we still try to decrease the average difference by changing the goal and keeping the

training function same. However, we can see the average difference in errors is increased, so

we stopped changing goal, here.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function
used

goal epoch Average
difference
of errors

0.7 0.701 0.001 55 tansig 0.000003 750 0.00066

0.7 0.701 0.001

0.9 0.900 0.0002

0.8 0.801 0.001

0.7 0.701 0.0013

0.8 0.801 0.001

0.6 0.600 0.0004

0.4 0.400 0.0006

0.5 0.499 0.001

Table 18: Result of untrained data for 55 hidden layer neurons

 Page
42

7) Here, the goal is kept 0.000003, the number of neurons is 19 and purelin is used as the

sigmoid function. Here, the error increased compared to tansig function, but decreases

compared to untrained data.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function
used

goal epoch Average
difference
of errors

0.7 0.717 0.017 19 purelin 0.000003 750 0.02955

0.7 0.709 0.009

0.9 0.898 0.002

0.8 0.754 0.046

0.7 0.750 0.050

0.8 0.759 0.041

0.6 0.565 0.035

0.4 0.431 0.031

0.5 0.465 0.035

Table 19 : Result of Untrained data for purelin as sigmoid function

 Page
43

8) Here, the goal is kept 0.000003, the number of neurons is 19 and logsig is used as the

sigmoid function. Here, the error increased compared to the tansig function, but it is low

compared to the untrained data.

Human
Judge
Score

NN output Difference NN
neurons
used

NN
sigmoid
function
used

goal epoch Average
difference
of errors

0.7 0.700 0.00 19 logsig 0.000003 750 0.00044

0.7 0.700 0.00

0.9 0.899 0.001

0.8 0.799 0.001

0.7 0.700 0.0

0.8 0.800 0.0

0.6 0.599 0.001

0.4 0.399 0.001

0.5 0.500 0.0

Table 20 : Result of untrained data for logsig as sigmoid function

 Page
44

Combined output of all tests

Scenario 1 : Data not used in the Neural Network training

Number of

Neurons used

Sigmoid function

used

Mean Square Error Epoch Average difference

of errors

19 tansig 0.003 750 0.0832

19 tansig 0.00003 750 0.0376

19 tansig 0.000003 750 0.0252

19 tansig 0.000006 750 0.0928

35 tansig 0.000003 750 0.042

55 tansig 0.000003 750 0.056944

19 purelin 0.000003 750 0.074722

35 purelin 0.000003 759 0.087

55 purelin 0.000003 750 0.0901

19 logsig 0.000003 750 0.056833

35 logsig 0.000003 750 0.0733

55 logsig 0.000003 750 0.039

Scenario 2 : Data of the user's motion profile that was used in training the Network

Number of

Neurons used

Sigmoid function

used

Mean Square

Error

Epoch Average

difference of

errors

19 tansig 0.003 750 0.0256

19 tansig 0.00003 750 0.00144

19 tansig 0.000003 750 0.00033

19 tansig 0.000006 750 0.00077

35 tansig 0.000003 750 0

55 tansig 0.000006 750 0.00066

19 purelin 0.000003 750 0.02955

19 logsig 0.000003 750 0.00044

35 logsig 0.000003 750 0.00088

55 logsig 0.000003 750 0.001

35 purelin 0.000003 750 0.02733

55 purelin 0.000003 750 0.02733

 Page
45

Charts

These charts represent the average differnce of errors versus different criteria that were used

to stop network training after a certain expected performance is reached. The parameters used

were: the Mean Square Error (goal), the gradient, the number of neurons and the sigmoid

function.Here, the charts generated are from data not used in training the Neural Network.

1) This chart is of an average difference of errors versus mean square error. This graph suggests

that we achieved the best performance when the goal is 0.000003. Here, the average

difference of error increases after goal of 0.000003 is reached. Here, the average difference is

high when goal is 0.003, but decreased when we reduced the mean square error to 0.000003

and after that it starts increase.

 Page
46

2) This graph is of the number of neurons used in training the Network versus the average

difference of errors. The graph suggests that as the number of neurons is increased from 19,

the average difference of errors will increase. It indicates that the best performance happens

when the number of hidden neurons is 19.

 Page
47

3) Here, the graph is of the function used to trained the network versus the average difference

of errors in all the readings. The graph suggests that the tansig function is best to use as the

average error is the lowest as compared to the purelin function and the logsig function.

 Page
48

Trained Data

Here the neural network is tested with the data used in training.

1) The chart below is of the goal versus the average difference of errors. It shows that when the

goal is 0.000003, the neural network is at its best.

 Page
49

2) This chart is the number of neurons versus the average difference errors. Here, the error

decreases as we increase the number of neurons beyond 35. So the best number of hidden

neurons to be used is 35.

 Page
50

3) This graph is of the function used to trained the network versus the average difference

errors in of all readings of data used in training the network. The graph suggests that the tansig

function is best the to use since the error is low.

 Page
51

Comparing trained and untrained data

The charts below compare the Neural Network performance of trained data versus untrained

data.

1) The chart represents the mean square error considered during training the Network versus

the average difference of errors obtained while testing this Network with trained and untrained

data. The Neural Network performed better in the case of data that is used in training the

network.

Red line - Untrained Data

Green Line - Trained Data

 Page
52

2) The chart below represents the number of neurons considered during training the Network

against the average difference of errors obtained while testing this trained Network with

trained and untrained data. Here, we can conclude that the average difference of errors was

low with trained data compared to that of untrained data.

Red line - Untrained Data

Green Line - Trained Data

 Page
53

3) The chart below represents the various sigmoid functions used during training the Neural

Network versus the average difference of errors obtained while testing this Neural Network

with trained and untrained data. Here, we can conclude that the average difference of errors

was low with trained data compared to that of untrained data.

Red line - Untrained Data

Green Line - Trained Data

 Page
54

Technical Analysis

The Neural Network's best output is achieved when the sigmoid function is set to tansig. This is

because tansig has a range from -1 to 1, while purelin has a range from negative infinity to

positive infinity. Our input to the Neural Network's hidden layer neuron is in a range from [-

1,1]. Similarly, tansig gives better results compared to logsig, since logsig has natural finite

bounds of [0,1] and the logsig sigmoid function has slower rate of learning compared to the

tansig sigmoid function. The table shows this as logsig takes 59 iterations to reach performance

goal of 0.000003, while tansig takes only 26 iterations to reach the same performance goal.

Additionally, when the number of neurons is set to 19 as one of the stopping parameters, the

average difference of errors in the user's motion profile is minimal. Also, the output of the

application is close to human judgment on the user's motion profiles when Neural Network is

tested with data used in training the Network compared to untrained data.

 Page
55

Limitation

There are certain limitations in my proposed method. The neural network does not behave as

needed if all the joints are taken into consideration. Also, this method is used if speed is not the

measure to consider in giving a score.

Future Work

There is room for additional research on an algorithm better than Dynamic Time Warping for

comparing two motion files. More joints can be taken into account for a better comparison of

motion profiles. Moreover, an algorithm could be developed which tells the user the amount of

degrees to bend a joint for better motion. Human motion sensors could be placed on a user.

This would allow for more accurate data and joints that could be considered in measuring the

closeness of user's motion profile.

 Page
56

Conclusion

In this project, I have presented a method to judge human motion. It allows the users to

see the score while they are performing motion. User data performing motion was collected

using Kinect sensors which contained X, Y and Z rotational axis for each joint. Only rotational

axis were taken into account as different profile have different height due to which considering

positional axis points for joints can generate inaccurate results. Master data and user data was

used as input to the Dynamic Time Warping algorithm. It compensated for the speed and time

between master and user data and gave a value suggested the similarity of both motion

profiles. The output of Dynamic Time Warping algorithm is single value suggesting how close

are both the motion profile. The value as close to zero suggest that they are similar. The output

of this algorithm was fed to Neural Network that was trained with human judgment expert's

data on motion profiles. For training the Network FeedForward Backpropagation algorithm was

used. The Network gave the best output when tansig was used as the sigmoid function with the

number of hidden layer neurons was 19. This trained network eventually behaved like an

expert by commenting on how good or bad a user's motion profile exhibited.

 Page
57

References

[1] P. Latha, L. Ganesan, N. Ramaraj, and P. V. Hari Venkatesh, "Detection of moving images

 using the neural network."

[2] Christos Stergiou and Dimitrios Siganos, "Neural networks."

[3] Felty Timothy, Dynamic Time Warping retrieved from "http://www.mathworks.com/

 matlabcentral /fileexchange/6516-dynamic-time-warping"

[4] ByungRae Cha, Binod Vaidya, Young Kim, "Improvement of Neural Network Learning

 for Gesture Recognition of Game Contents using BPN, BPNX, and LM Algorithms."

[5] Roska, T; Boros, T; Thiran,P. ; Chua,L.O., "Detecting simple motion using cellular neural

 network"

[6] Christopher M.Bishop, Neural Networks for Pattern Recognition.

[7] Laurene V.Fausett, Fundamentals of Neural Network.

[8] Brian D. Ripley, Pattern recognition and neural networks.

[9] Neural Network retrieved from "http://en.wikipedia.org/wiki/Neural_network"

[10] Backpropagation retrieved from "http://en.wikipedia.org/wiki/Backpropagation"

[11] Dynamic Time Warping algorithm retrieved from "http://en.wikipedia.org/wiki/

 Dynamic time_warping"

[12] M.Beale, M.Hagan, H.Demuth, "neural Network Toolbox User's Guide"

[13] P.Senin, "Dynamic Time Warping Algorithm Review"

[14] Motion Karaoke retrieved from "https://sites.google.com/site/motionkaraoke/"

[15] Backpropagation retrieved from

 "http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html"

[16] BVH retrieved from "http://www.mindfiresolutions.com/BVH-biovision-hierarchy.htm"

[17] MSE retrieved from "http://en.wikipedia.org/wiki/Mean_squared_error"

[18] Sigmoid function from "http://en.wikipedia.org/wiki/Sigmoid_function"

[19] Neural Network Toolbox retrieved from "http://radio.feld.cvut.cz/matlab/toolbox/

 mmet/newff.html"

http://www.mathworks.com/matlabcentral/fileexchange/6516-dynamic-time-warping
http://www.mathworks.com/matlabcentral/fileexchange/6516-dynamic-time-warping
http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/%20%09Dynamic%20time_warping
http://en.wikipedia.org/wiki/%20%09Dynamic%20time_warping
https://sites.google.com/site/motionkaraoke/
http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
http://www.mindfiresolutions.com/BVH-biovision-hierarchy.htm
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Sigmoid_function

	Motion Learning Using The Neural Network
	Recommended Citation

	tmp.1351008863.pdf.qCXeJ

