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ABSTRACT 

 

 One of the most promising topics of research in the field of artificial intelligence is the 

 application of data captured from human motion using sensors processed with various 

algorithms to achieve successful data analysis. This project aims to design and develop a 

method to judge human motion and  allows the users to see the score while they are 

performing motion. The Neural Network is trained to follow human expert scores on all players' 

motion profiles as compared with master player. This Neural Network is trained for its best 

performance by changing the number of iterations and the dataset passes through the 

network. Its sets the time period to train the  Neural Network and sets the gradient so that 

error generated is a minimal or changing mean square error. The user data derived from a Yoga 

performance or any other motion was  collected from Kinect sensors' data reports. The data 

collected contained X, Y and Z rotational and positional points. Kinect sensors captures  20 

joints. The master data and user data were used as input to the Dynamic Time Warping 

algorithm. It compensated for the speed and time between the master and user data and gave 

a value that suggests the relative similarity of both motion profiles. The output of this algorithm 

was fed to Neural Network that was trained with a human judgment expert's data on motion 

profiles. This project is an attempt to train a Neural Network that will eventually judge like an 

expert and determine the success level that a user's motion profile exhibits. 
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Introduction 

 Recently, several papers have been published on motion learning and how to improve it. 

The main goal of this motion learning research was to achieve a very accurate motion judgment 

as close to human judge as possible. Today, the number of people using various motion sensors 

for daily use is increasing.  

 There are several other studies that support that human motion collected from sensor 

data can be used to study motion learning patterns, artificial intelligence and to predict future 

motion.  

 An artificial Neural Network is a computational model derived from a biological concept 

of a Neural network. The network is formed of neurons that are interconnected to solve a  

specific network. The artificial neural network is configured for a specific application, data 

classification, motion learning, pattern recognition through a learning process. Training is done 

by various Neural Network algorithms and the adjustments of the training parameters. 

 Motion learning is a basic operation in the selection of significant segments of video  

signals. In this project, an efficient neural network system is proposed for motion detection 

from the static background. This method mainly consists of three parts: Collecting Motion Data 

using Kinect; processing data to remove speed and time variants using Dynamic Time Warping  

algorithm; feeding the data obtained from DTW to the Neural Network Backpropagation  

algorithm to the trained network; and finally, using this trained Network to judge human 

motion. 

 The goal of the project is motion learning and the application of the Neural Network 

algorithm to better judge  human motion. Motion learning is implemented by using a forward 

Neural Network that has been trained accordingly. During training, the network is trained to 

associate output with input patterns. When the network is used, it identifies the input pattern 

and tries to output the associated output pattern. The power of neural networks comes to life 

when a pattern that has no output associated with it, is given as an input. In this case, the 

network gives the output that corresponds to a taught input pattern that is least different from 

the given pattern. The input data is taken from Kinect sensors. The captured data is taken as 

input to the Dynamic Time Warping algorithm, the output of which is fed to Backpropagation 
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Neural Network. With the help of this trained Network, a person is judged in real time, which 

accordingly can be used to improve the motion. In this project, the trained Network gives score 

as a person actions or movements, such as Yoga. The scored judgment can help a person 

improve future movements. 
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2. Literature Review  

In this section we discuss various concepts like the Dynamic Time Warping algorithm, the 

Backpropagation algorithm, the parameters to train Neural Network and the Matlab Toolbox. 

 

Dynamic Time Warping 

Dynamic time warping (DTW) is used for measuring two sequences which may vary in time and 

speed. The DTW algorithm is kind of dynamic programming approach. It forms a matrix and 

takes minimum path so that two wave forms match the original wave form [11]. 

The DTW algorithm [11] 

int DTWDistance(char s[1..n], char t[1..m]) { 

    declare int DTW[0..n, 0..m] 

    declare int i, j, cost 

 

    for i := 1 to m 

        DTW[0, i] := infinity 

    for i := 1 to n 

        DTW[i, 0] := infinity 

    DTW[0, 0] := 0 

 

    for i := 1 to n 

        for j := 1 to m 

            cost:= d(s[i], t[j]) 



 

  Page 
12 

 
  

            DTW[i, j] := cost + minimum(DTW[i-1, j  ],    // insertion 

                                        DTW[i  , j-1],    // deletion 

                                        DTW[i-1, j-1])    // match 

 

    return DTW[n, m] 

} 

 

Specifications of algorithms 

Char s[1...n]   ,  char t[1...m] --  input data for the DTW algorithm.  

Here i and j are taken as row and column. 

 

Initial conditions  

In the initial condition i from 1 to m are specified as infinity similarly, j from 1 to m are specified 

as infinity. Also, most importantly, DTW [0, 0] is taken (0, 0). Cost d(s[i], t[j]) is d(x, y) is a 

distance between symbols, i.e. d(x, y) = | x - y |. Now DTW is calculated as cost plus minimum 

value from (i-1,j) (i, j-1),(i-1,j-1) . The algorithm forms a matrix. Once a matrix is formed, it uses 

a backtracking algorithm to form the points and plot the graph. 

 

 

 

 

 

Example of DTW algorithm 
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Here cost is considered as 1. 

 i/j B C A D B C 

 0 1 2 3 4 5 6 

A 1 1 2 3 4 5 6 

C 2 2 2 3 4 5 6 

B 3 3 3 3 4 5 6 

D 4 4 4 4 4 5 6 

A 5 5 5 5 5 5 6 

C 6 6 6 6 6 6 6 

 

AS shown from the arrows, we can back trace and form the graph. Here the matrix is formed 

starting from the left hand corner, if the alphabet matched 1 is added to cell (i-1)(j-1). If they 

are not equal than greater of cell (i-1)(j) or (i)(j-1) is taken to fill the next cell. 
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Kinect Data 

Joints captured by Kinect motion sensor 

 

Fig 1: Kinect captured points [16] 

Kinect gives 6 data points for a particular joint with X, Y and Z rotation and position. In this 

project, we only captured the X, Y and Z rotation, because taking position into consideration for 

calculating the  Neural Network is potentially inaccurate as X , Y and Z position varies as it is 

based on the height of a person. So, for the training data the X, Y and Z rotation details were 
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taken. The problem of a person having different height was  eliminated since the  rotation does 

not come into picture if person is having different height. 

                  In this project, one study is of master yoga posture data files and the other is data file 

for student data. They were fed into the DTW algorithm to get 9 points of 3 joints of a right 

shoulder. The collected data from Kinect was fed to the DTW before inputing to the Neural 

Network. It was fed into the  DTW to get around 150 points of frame data into a  single point 

(since the Neural Network can't handle too many inputs). In our case, we considered 3 joints, 

therefore a total of  9 data points were used to feed the Neural Network. 

  
Sample 1 frame data from Kinect  

AnkleRight: 0.09563106 -0.6953287 3.490368 

AnkleLeft: -0.07453345 -0.7462188 3.511517 

KneeRight: 0.1040133 -0.4055198 3.463443 

KneeLeft: -0.1025893 -0.4003633 3.476388 

HipRight: 0.08443671 0.03220186 3.538582 

HipLeft: -0.07134762 0.03197961 3.537938 

ShoulderRight: 0.1783416 0.429853 3.630216 

ShoulderLeft: -0.1617673 0.4396111 3.647002 

ElbowRight: 0.422052 0.4634577 3.648444 

ElbowLeft: -0.4061069 0.4651955 3.662422 

WristRight: 0.6802884 0.4880981 3.60269 

WristLeft: -0.62367 0.4694732 3.643325 

This data is the X, Y and Z rotation.  
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Neural Network 

The Neural Network refers to a network or circuit of biological neurons. An  artificial Neural 

Network is composed of interconnecting neurons that are used to solve real biological neural 

problems or an artificial intelligence problem [9]. 

 

                                       

         Fig 2: Neural Network Layers[9] 

An artificial Neural Network is an adaptive system which adapts to changes based on external 

and internal information that flows through the network [2]. In a Neural Network, simple nodes 

are connected together to form network nodes. There can be any number of inputs, hidden and 

output layers in the network. The Neural Network is trained to predict what the behavior will 

be if  similar or different information is fed to the Network [2]. 
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Backpropagation algorithm 

Backpropagation is a method of training an artificial neural network so as to minimize the 

objective function [10]. It is a machine learning method. It requires a dataset to train the 

network to a desired output. There are two ways to train the Neural Network using 

Backpropagation, incremental and batch learning. The weight update is followed immediately 

after each propagation for incremental learning. However, the batch learning weight update 

occurs after many propagations. 

Backpropagation involves two phases:  

Phase 1: Propagation 
 
Each propagation involves a forward propagation of a training pattern's input through the 

Neural Network and backward propagation of the propagation's output activations through the 

Neural Network using the training pattern’s target [15]. 

 

Phase 2: Weight update 
 
For each weight-synapse: follow the multiplication of its output delta and input activation to 

get the gradient of the weight and bring the weight in the opposite direction of the gradient by  

subtracting a ratio of it from the weight [15]. 

 

 

 

 
 
 
 
 
 

http://en.wikipedia.org/wiki/Supervised_learning
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Matlab Neural Network Toolbox 
 
The work flow of the Neural Network design process contains steps of collecting data, creating 

the network, configuring the network, initializing weights, training and  validating the network.  

The Neural Network toolbox uses a network object to store all the information that the user 

defines while training the network. There are many algorithms that are built in the toolbox like 

Levenberg-Marquardt, Bayesian Regularization and Resilient backpropagation. The training of  

Neural Network is limited based on various parameters: the like Minimum Gradient Magnitude, 

Maximum Training Time, the Minimum Performance Value, and the Maximum number of 

epoch among others. The trained Network can be analyzed by a graph generated by a toolbox 

like Performance, Training state, Error Histogram and Regression.  

 

                                        

Figure 3: Simple Neuron [12] 
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Neural Network training parameters 
 
Epoch - An epoch is a single pass through the entire data set. It iterates through the process by  

providing the network with input and updating the weights.  The Linear network can be trained  

to perform a linear classification with the function train. The train function takes a set of input 

vectors and calculates the network bias increments and weight due to each of the inputs 

according to learnp.  Based on the sum of all these corrections the network is adjusted [12].   

Either train or adapt is used to give epoch. 

example:  net.trainParam.epochs = 100; 

 
Mean squared error (MSE) – MSE gives the average of squares of errors. Error is the difference  

between the value implied by an estimator from the quantity to be estimated. MSE is a risk 

function, corresponding to the expected value of the squared error loss or quadratic loss [17].  

The output layer of the Network learns to match the associated target vectors with a minimal 

mean squared error [12]. Either train of epoch is used to set the mean squared error. 

example: net.trainParam.goal = 0.003;  

 
Sigmoid function - A sigmoid function is an 'S' shaped curve produced by a mathematical 

function. The Sigmoid function includes tansig, logsig and purelin and many others. A sigmoid 

function is real- valued and differentiable, having either a non-negative or non-positive first 

derivative [18].The Sigmoid function is required for both the hidden layer and output layers. 

 

 

 

 
 
 
 

 
 
 

http://en.wikipedia.org/wiki/Risk_function
http://en.wikipedia.org/wiki/Risk_function


 

  Page 
20 

 
  

Implementation 
 
 The human motion data was collected using Microsoft Kinect. The Single joint data 

contained 6 points representing the X, Y and Z positional and rotational axis. We only 

considered the X, Y and Z rotational axis, since different users will have different heights; and  

comparing the master profile with user profile in terms of positional axis would give inaccurate 

results. The three joints of user's motion profile were taken into account. The Dynamic Time 

Warping Algorithm and the Neural Network code were implemented in Matlab.   

 

 First, the data was collected from the human expert to train the Neural Network by 

using the Feedforward Backpropagation algorithm. This trained Network was used to predict 

scores of the user's motion profiles' as compared to those of the master player. The User's 

motion profiles were captured via Kinect Sensors. The data collected from Kinect contained 

over 100 frames that represented each joint positions for just 5 seconds of motion. Since the  

Neural Network couldn't handle this huge amount of data, the Dynamic Time Warping 

algorithm was used. The Master data and User data were used as input to the Dynamic Time 

Warping algorithm. It  compensated for the speed and time between the Master and User's 

data. The value as closer to zero suggests the closeness of  both the motion profiles. The value 

was close to zero suggested that both motion profile were similar. The output of the Dynamic 

Time Warping algorithm contained three values for each joint pertaining to X, Y and Z rotational 

axis. The output of this algorithm was fed to the Neural Network that was trained with  

human judgment expert data on motion profiles. It  eventually gave scores that depended on  

how close a user was compared to the master.  A transfer function, like the  tansig, logsig and 

purelin function, was taken as input for hidden layer of Neurons. The natural finite bounds for 

tansig, logsig and purelin are [-1,1], [0,1] and [-infinity, + infinity] respectively.  
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Below are the curves of these three functions: 
 

             
 
Figure 3: logsig                      Figure 4: purelin                   Figure 5: tansig 
 
A different number of hidden layers of Neurons were considered and  coupled with a different 

transfer function for training. To complete the training of the Network mainly the performance 

(goal) and epoch were taken into account. The trained Neural Network was tested with both 

untrained data means, data not taken into account for training and trained data means. data 

used in training the Neural Network.  

 
 In this project the  feed - forward backpropagation network was used to train the 

Network. The command to create the backpropagation network is: 

net = newff ( PR, [S1 S2..... SN1], {TF1 TF2...TFN1},BTF,BLF, PF) 

where net = newff creates a new network, PR is R*2 matrix of minimum and maximum values  

for R input elements, Si is size of ith layer for N1 layers, TFi is transfer function of the ith layer,  

BTF is backpropagation network training function, BLF is backpropagation weight/bias learning  

function and PF is performance function [19]. 

Example net = newff( [0 10], [5 1], {'tansig' ' purelin'}); 

In this case, the two layer feed-forward network was created. There were five hidden layer 

neurons with tansig as a transfer function and one output layer neuron with purelin as sigmoid 

function. The network input layer ranged from [0 to 10]. 
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Flow Diagram of Project 
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Results 

Tables Description  

This tables represents different scenarios taken into consideration to test the Neural Network.  

The applied parameters considered to stop Neural Network training once the best 

performances was achieved were: Sigmoid function, Mean Square Error, Gradient and number 

of neurons used. The  Master and user profile were compared for three joints. 

 Here, the first column represents a human judge score that is given by an expert. The 

second column represents the output of application. The third column represent difference 

between human judge score and the application output that shows the similarity of the  output 

of the Neural Network. The fourth column represents the number of neurons used in the 

training application. The Neural Network sigmoid function represents the functions that are 

used to train the Network. The goal column represents the mean square error. The epoch tells 

the number of times the data is passed to the network. The gradient column represents the 

value set, so that the error generated is a minimum or acceptable value. The  last column's 

average difference represents the sum of the difference between a human judge and the 

Neural Network output divide by the total number of motion profiles. 

 Here, each table represents different kind of criteria that can be used to stop training 

after a certain expected performance is reached. Parameters are taken into consideration, as 

well as the average difference of error generated when these parameters were taken to train 

the network. The Lower the average difference indicates that network has been  trained 

properly enough  to give the closest possible score of user's motion profile to that of the human 

judge. 
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Scenario 1: Data not used in Neural Network training 

1)  Here, the  goal is kept 0.003, the tansig is used as a sigmoid function and the number of 

neurons is kept as 19 for training the Neural Network. The average difference of errors got was 

0.0832. 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average 
Difference 

0.7 0.746  0.046 19 tansig   0.003 750 0.0832 

0.8 0.664 0.136 

0.7 0.723 0.023 

0.8 0.548 0.252 

0.9 0.887 0.013 

0.7 0.8399 0.139 

0.7 0.642 0.058 

0.7 0.742 0.058 

0.5 0.468 0.032 

0.5 0.458 0.042 

0.4 0.433 0.033 

0.6 0.489 0.111 

0.5 0.592 0.092 

0.8 0.767 0.033 

0.7 0.724 0.024 

0.7 0.687 0.013 

0.7 0.731 0.031 

0.5 0.498 0.002 

Table 1: Result of untrained data for goal 0.0003 
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2) Here, the goal is increased 0.00003 to try to decrease the average difference of errors, tansig 

is used as the sigmoid function and the number of neurons is kept as 19. 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average 
Difference 
of errors 

0.7 0.740  0.040 19 tansig   0.00003 750 0.0376 

0.8 0.714 0.086 

0.7 0.706 0.006 

0.8 0.684 0.016 

0.9 0.912 0.012 

0.7 0.699 0.001 

0.7 0.686 0.014 

0.7 0.696 0.004 

0.5 0.459 0.041 

0.5 0.534 0.034 

0.4 0.417 0.017 

0.6 0.571 0.029 

0.5 0.564 0.036 

0.8 0.686 0.114 

0.7 0.695 0.005 

0.7 0.704 0.004 

0.7 0.672 0.028 

0.5 0.566 0.066 

Table 2: Result of untrained data for goal 0.00003 
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3)  Here, the goal is decreased by an additional 0.000003 to improve output of neural network, 

tansig is used as a sigmoid function and number of neurons is kept as 19.  

 

 

Human 
Judge 
Score 

NN 
output 

Difference NN 
neurons 
used 

NN 
sigmoid 
function 

goal epoch Average  
Difference 
Of errors 

0.7 0.744  0.044 19 tansig   0.000003 750 0.0252 

0.8 0.793 0.006 

0.7 0.692 0.008 

0.8 0.818 0.018 

0.9 0.966 0.036 

0.7 0.702 0.002 

0.7 0.675 0.025 

0.7 0.706 0.006 

0.5 0.518 0.018 

0.5 0.507 0.007 

0.4 0.394 0.006 

0.6 0.549 0.051 

0.5 0.514 0.014 

0.8 0.747 0.053 

0.7 0.654 0.046 

0.7 0.736 0.064 

0.7 0.685 0.015 

0.5 0.533 0.067 

Table 3: Result of untrained data for goal 0.000003 
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4) Here, we still have  decreased further to  0.000006 , tansig is used as sigmoid function and 

number of neurons is kept as 19.  Here we can see the average difference of error is increased 

compared to 0.000003. So we stopped here decreasing the goal. 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 
used 

goal epoch Average  
difference 
of errors 

0.7 0.749 0.049 19 tansig  0.000006 750 0.0928 

0.8 0.773 0.027 

0.7 0.705 0.005 

0.8 0.754 0.046 

0.9 0.884 0.016 

0.7 0.747 0.047 

0.7 0.705 0.05 

0.7 0.680 0.020 

0.5 0.682 0.182 

0.5 0.694 0.194 

0.4 0.721 0.321 

0.6 0.868 0.268 

0.5 0.588 0.088 

0.8 0.709 0.090 

0.7 0.720 0.020 

0.7 0.744 0.044 

0.7 0.609 0.090 

0.5 0.614  0.114 

Table 4: Result of untrained data for goal 0.000006 
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5) Here, the goal is kept 0.000003, tansig is used as the sigmoid function and the number of 

neurons is increased to 35. But, we can see that by increasing the number of neurons the  

average difference of errors increased. 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 

goal epoch Average 
difference 
of errors 

0.7 0.744  0.044 35 tansig   0.000003 750 0.042 

0.8 0.803 0.003 

0.7 0.698 0.002 

0.8 0.564 0.236 

0.9 0.915 0.015 

0.7 0.754 0.054 

0.7 0.696 0.004 

0.7 0.692 0.008 

0.5 0.491 0.011 

0.5 0.470 0.030 

0.4 0.396 0.004 

0.6 0.506 0.090 

0.5 0.534 0.066 

0.8 0.689 0.111 

0.7 0.717 0.017 

0.7 0.679 0.021 

0.7 0.708 0.008 

0.5 0.532 0.032 

Table 5: Result of untrained data for 35 hidden layer neurons 
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6) Here, the  goal is kept 0.000003, tansig is used as a sigmoid function and number of neurons 

is increased to 55. But, we can see that increasing the number of neurons averages the 

difference of errors increased. 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average  
difference 
of errors 

0.7 0.742  0.042 55 tansig   0.000003 750 0.056944 

0.8 0.781 0.019 

0.7 0.697 0.003 

0.8 0.477 0.323 

0.9 0.934 0.034 

0.7 0.640 0.060 

0.7 0.711 0.011 

0.7 0.707 0.007 

0.5 0.527 0.027 

0.5 0.534 0.034 

0.4 0.510 0.110 

0.6 0.545 0.055 

0.5 0.555 0.055 

0.8 0.720 0.080 

0.7 0.738 0.038 

0.7 0.632 0.070 

0.7 0.674 0.025 

0.5 0.532 0.032 

Table 6: Result of untrained data for 55 hidden layer neurons 

 



 

  Page 
30 

 
  

7)  Here, the goal is kept 0.000003, the number of neurons is 19 and purelin is used as a sigmoid 

function. Here the error increases compared to the tansig function. 

 

 

Human 
Judge 
Score 

NN output difference NN 
neurons 
used 

NN 
sigmoid 
function 
used 

goal epoch Average  
difference 
of errors 

0.7 0.698  0.002 19 purelin  0.000003 750 0.074722 

0.8 0.521 0.270 

0.7 0.758 0.058 

0.8 0.724 0.070 

0.9 0.838 0.062 

0.7 0.822 0.122 

0.7 0.694 0.006 

0.7 0.759 0.059 

0.5 0.382 0.118 

0.5 0.513 0.013 

0.4 0.487 0.013 

0.6 0.446 0.154 

0.5 0.684 0.184 

0.8 0.845 0.045 

0.7 0.809 0.109 

0.7 0.729 0.029 

0.7 0.710 0.010 

0.5 0.534 0.034 

Table 7: Result of untrained data for purelin as the sigmoid function 
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8) Here, the goal is kept 0.000003, the number of neurons is 19 and logsig is used as sigmoid 

function. Here, the  error increases compared to the tansig function. 

 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average  
difference 
of errors 

0.7 0.738  0.038 19 logsig 0.000003 750 0.056833 

0.8 0.824 0.024 

0.7 0.695 0.005 

0.8 0.619 0.180 

0.9 0.918 0.018 

0.7 0.621 0.070 

0.7 0.702 0.002 

0.7 0.644 0.046 

0.5 0.401 0.099 

0.5 0.422 0.078 

0.4 0.514 0.114 

0.6 0.602 0.002 

0.5 0.464 0.036 

0.8 0.629 0.170 

0.7 0.621 0.070 

0.7 0.671 0.030 

0.7 0.695 0.005 

0.5 0.564 0.036 

Table 8: Result of untrained data for logsig as a sigmoid function 
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9) Here, the  goal is kept 0.000003,the  number of neurons is increased to 35 and logsig is used 

 as a hidden layer sigmoid function. Here error increases compared to the  tansig function. 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average  
Difference 
of errors 

0.7 0.735 0.035 35 logsig 0.000003 750 0.0733 

0.8 0.757 0.043 

0.7 0.707 0.007 

0.8 0.469 0.330 

0.9 0.906 0.006 

0.7 0.587 0.113 

0.7 0.722 0.078 

0.7 0.664 0.036 

0.5 0.380 0.120 

0.5 0.462 0.038 

0.4 0.400 0 

0.6 0.377 0.233 

0.5 0.533 0.033 

0.8 0.653 0.147 

0.7 0.699 0.001 

0.7 0.632 0.068 

0.7 0.723 0.023 

0.5 0.516 0.016 

Table 9: Result of untrained data for logsig as a sigmoid function and 35 as hidden layer 

neurons 
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10)  Here, the goal is kept 0.000003,the  number of neurons is increased to 55 and logsig is used 

as a hidden layer sigmoid function. Here, the  error increases compared to the tansig function. 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average  
Difference 

0.7 0.743 0.043 55 logsig 0.000003 750 0.039 

0.8 0.766 0.034 

0.7 0.701 0.001 

0.8 0.598 0.102 

0.9 0.934 0.066 

0.7 0.632 0.068 

0.7 0.683 0.017 

0.7 0.691 0.009 

0.5 0.470 0.030 

0.5 0.467 0.033 

0.4 0.461 0.039 

0.6 0.550 0.050 

0.5 0.525 0.025 

0.8 0.699 0.101 

0.7 0.675 0.025 

0.7 0.689 0.011 

0.7 0.710 0.010 

0.5 0.540 0.040 

Table 10: Result of Untrained data for logsig as a sigmoid function and 55 as hidden layer 

neurons 
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11) Here, the goal is kept 0.000003, the number of neurons is increased to 35 and purelin is 

used as a hidden layer sigmoid function. Here, the  error increases compared to the tansig 

function. 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average  
difference 
of errors 

0.7 0.698 0.002 35 purelin 0.000003 750 0.087 

0.8 0.466 0.334 

0.7 0.759 0.041 

0.8 0.735 0.065 

0.9 0.833 0.067 

0.7 0.855 0.155 

0.7 0.713 0.013 

0.7 0.766 0.034 

0.5 0.343 0.157 

0.5 0.499 0.001 

0.4 0.502 0.102 

0.6 0.427 0.167 

0.5 0.693 0.193 

0.8 0.848 0.048 

0.7 0.807 0.107 

0.7 0.746 0.046 

0.7 0.721 0.021 

0.5 0.513 0.013 

Table 11: Result of Untrained data for purelin as a sigmoid function and 35 as hidden layer 

neurons 
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12) Here, the  goal is kept 0.000003, the number of neurons is increased to 55 and logsig is used 

as a hidden layer sigmoid function. Here, the  error increases as compared to the tansig 

function. 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average  
difference 
of errors 

0.7 0.698 0.002 55 purelin 0.000003 750 0.0901 

0.8 0.466 0.334 

0.7 0.759 0.059 

0.8 0.735 0.065 

0.9 0.833 0.067 

0.7 0.855 0.155 

0.7 0.713 0.013 

0.7 0.766 0.066 

0.5 0.343 0.157 

0.5 0.499 0.001 

0.4 0.502 0.102 

0.6 0.427 0.173 

0.5 0.693 0.193 

0.8 0.848 0.048 

0.7 0.807 0.107 

0.7 0.746 0.046 

0.7 0.721 0.021 

0.5 0.513 0.013 

Table 12: Result of Untrained data for purelin as a sigmoid function and 55 as hidden layer 

neurons 
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Testing with data used in training 

These tables represent the changing goal , the number of neurons and sigmoid function to 

trained neural networks until the best result is achieved. The tables represents different 

parameters used to stop the training of Neural Network, until best result was not achieved. 

Here, the data is taken that was already used in training.  

Scenario 2 : The data of user's motion profile was used in training the Network  

1)  Here, the  goal is kept 0.003, tansig is used as the sigmoid function and the number of 

neurons is kept as 19.  The  NN output is compared to a human judge score. The network 

training is stopped as the performance is reached. Here, the  network performed better 

compared to the untrained data. 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function  

goal epoch Average 
difference 
of errors 

0.7 0.740 0.040 19 tansig   0.003 750 0.0256 

0.7 0.703 0.003 

0.9 0.900 0.000 

0.8 0.783 0.017 

0.7 0.787 0.013 

0.8 0.779 0.020 

0.6 0.526 0.074 

0.4 0.461 0.061 

0.5 0.497 0.003 

Table 13: Result of trained data for goal for goal 0.003 
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2) Here, the goal is increased 0.00003 to try to decrease an average difference of errors, tansig 

is used as the sigmoid function and the number of neurons is kept as 19. We can see that the 

average difference in errors between the human judge and NN output is decreased.

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 

goal epoch Average 
difference 
of errors 

0.7 0.700 0.0 19 tansig   0.00003 750 0.00144 

0.7 0.701 0.001 

0.9 0.897 0.003 

0.8 0.802 0.002 

0.7 0.700 0.0 

0.8 0.801 0.001 

0.6 0.602 0.002 

0.4 0.401 0.001 

0.5 0.503 0.003 

Table 14: Result of trained data for goal 0.00003 
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3)  Here, the  goal is decreased more than 0.000003 to improve the output of the neural 

network, tansig is used a as sigmoid function and the number of neurons is kept as 19. Here, 

the average difference of errors reached is at its lowest. But compared to untrained data, the  

trained data error is less. 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 
used 

goal epoch Average 
difference 
of errors 

0.7 0.700 0.0 19 tansig   0.000003 750 0.00033 

0.7 0.700 0.0 

0.9 0.898 0.002 

0.8 0.799 0.001 

0.7 0.700 0.0 

0.8 0.800 0.0 

0.6 0.600 0.0 

0.4 0.400 0.0 

0.5 0.500 0.0 

Table 15: Result of trained data for goal 0.000003 
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4)  Here, we still further decreased  the goal to  0.000006 , tansig is used as a sigmoid function 

and the number of neurons is kept as 19.  Here, we can see the average difference of errors is 

increased compared to 0.000003. So, here we stop here decreasing the goal.  

 

 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 
used 

goal epoch Average 
difference 
of errors 

0.7 0.699 0.001 19 tansig   0.000006 750 0.00077 

0.7 0.701 0.001 

0.9 0.899 0.001 

0.8 0.801 0.001 

0.7 0.701 0.001 

0.8 0.800 0.0 

0.6 0.599 0.001 

0.4 0.399 0.001 

0.5 0.500 0.00 

Table 16: Result of trained data for goal 0.000006 
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5) Here, we still further try to decrease the average difference by changing the goal and keeping 

the training function same. However, we can see the average difference in error has decreased 

and has factored at zero. 

 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 
used 

goal epoch Average 
difference 
of errors 

0.7 0.700 0.0 35 tansig   0.000003 750 0 

0.7 0.700 0.0 

0.9 0.900 0.0 

0.8 0.800 0.0 

0.7 0.700 0.0 

0.8 0.800 0.0 

0.6 0.600 0.0 

0.4 0.400 0.0 

0.5 0.500 0.0 

Table 17: Result of Untrained data for 35 hidden layer neurons 
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6)  Here, we still try to decrease the average difference by changing the goal and keeping the 

training function same. However, we can see the average difference in errors is increased,  so 

we stopped changing goal, here. 

 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 
used 

goal epoch Average 
difference 
of errors 

0.7 0.701 0.001 55 tansig   0.000003 750 0.00066 

0.7 0.701 0.001 

0.9 0.900 0.0002 

0.8 0.801 0.001 

0.7 0.701 0.0013 

0.8 0.801 0.001 

0.6 0.600 0.0004 

0.4 0.400 0.0006 

0.5 0.499 0.001 

Table 18: Result of untrained data for 55 hidden layer neurons 
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7)  Here, the goal is kept 0.000003, the number of neurons is 19 and purelin is used as the 

sigmoid function. Here, the error increased  compared to tansig function, but decreases 

compared to untrained data. 

 

 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 
used 

goal epoch Average 
difference 
of errors 

0.7 0.717 0.017 19 purelin   0.000003 750 0.02955 

0.7 0.709 0.009 

0.9 0.898 0.002 

0.8 0.754 0.046 

0.7 0.750 0.050 

0.8 0.759 0.041 

0.6 0.565 0.035 

0.4 0.431 0.031 

0.5 0.465 0.035 

Table 19 : Result of Untrained data for purelin as sigmoid function 
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8)  Here, the goal is kept 0.000003, the number of neurons is 19 and logsig is used as the 

sigmoid function. Here, the  error increased compared to the tansig function,  but it is low 

compared to the untrained data. 

 

 

 

 

Human 
Judge 
Score 

NN output Difference NN 
neurons 
used 

NN 
sigmoid 
function 
used 

goal epoch Average 
difference 
of errors 

0.7 0.700 0.00 19 logsig  0.000003 750 0.00044 

0.7 0.700 0.00 

0.9 0.899 0.001 

0.8 0.799 0.001 

0.7 0.700 0.0 

0.8 0.800 0.0 

0.6 0.599 0.001 

0.4 0.399 0.001 

0.5 0.500 0.0 

Table 20 : Result of untrained data for logsig as sigmoid function 
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Combined output of all tests 

Scenario 1 : Data not used in the Neural Network training 

Number of 

Neurons used  

Sigmoid function 

used  

Mean Square Error  Epoch  Average difference 

of errors  

19  tansig  0.003  750  0.0832  

19  tansig  0.00003  750  0.0376  

19  tansig  0.000003  750  0.0252  

19  tansig  0.000006  750  0.0928  

35  tansig  0.000003  750  0.042  

55  tansig  0.000003  750  0.056944  

19  purelin  0.000003  750  0.074722  

35 purelin 0.000003 759 0.087 

55 purelin 0.000003 750 0.0901 

19  logsig  0.000003  750  0.056833  

35 logsig 0.000003 750 0.0733 

55 logsig 0.000003 750 0.039 

 

 

Scenario 2 : Data of the user's motion profile that was used in training the Network  

Number of 

Neurons used  

Sigmoid function 

used  

Mean Square 

Error  

Epoch  Average 

difference of 

errors 

19  tansig  0.003  750  0.0256  

19  tansig  0.00003  750  0.00144  

19  tansig  0.000003  750  0.00033  

19  tansig  0.000006  750  0.00077  

35  tansig  0.000003  750  0  

55  tansig  0.000006  750  0.00066  

19  purelin  0.000003  750  0.02955  

19  logsig  0.000003  750  0.00044  

35 logsig 0.000003 750 0.00088 

55 logsig 0.000003 750 0.001 

35 purelin 0.000003 750 0.02733 

55 purelin 0.000003 750 0.02733 
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Charts 

These charts represent the average differnce of errors versus different criteria  that were used 

to stop network training after a certain expected performance is reached. The parameters used 

were: the Mean Square Error (goal), the gradient, the number of neurons and the sigmoid 

function.Here, the charts generated are from data not used in training the Neural Network.  

1) This chart is of an average difference of errors versus mean square error. This graph suggests 

that we achieved the best performance when the goal is 0.000003. Here, the  average 

difference of error increases after goal of 0.000003 is reached. Here, the  average difference is 

high when goal is 0.003, but decreased when we reduced the mean square error to  0.000003 

and after that it starts increase.  
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2) This graph is of the number of neurons used in training the Network versus the average 

difference of errors. The graph suggests that as the number of neurons is increased from 19, 

the average difference of errors will increase. It indicates that the  best performance happens 

when the number of hidden neurons is 19.  
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3) Here, the graph is of the function used to trained the network versus the average difference 

of errors in  all the readings. The graph suggests that the tansig function is best to use as the 

average  error is the lowest as compared to the purelin function and the logsig function. 
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Trained Data 

Here the neural network is tested with the data used in training. 

1) The chart below is of the goal versus the average difference of errors. It shows that when the   

goal is 0.000003, the neural network is at its best. 
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2)  This chart is the number of neurons versus the average difference errors. Here, the error  

decreases as we increase the number of neurons beyond 35. So the best number of hidden  

neurons to be used is 35. 
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3)  This graph is of the function used to trained the network versus the average difference 

errors in of all readings of data used in training the network. The graph suggests that the tansig 

function is best the to use since the error is low. 
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Comparing trained and untrained data 

The charts below compare the Neural Network performance of trained data versus untrained 

data. 

1)  The chart represents the mean square error considered during training the Network versus 

the average difference of errors obtained while testing this Network with trained and untrained 

data. The Neural Network performed better in the case of data that is used in training the 

network. 

Red line - Untrained Data 

Green Line - Trained Data 
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2)  The chart below represents the number of neurons considered during training the Network 

against the average difference of errors obtained  while testing this trained Network with 

trained and untrained data. Here, we can conclude that the average difference of errors was 

low with trained data compared to that of untrained data. 

Red line - Untrained Data 

Green Line - Trained Data 
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3) The chart below represents the various sigmoid functions used during training the Neural 

Network versus the  average difference of errors obtained while testing this Neural Network 

with trained and untrained data.  Here, we can conclude that the average difference of errors 

was low with trained data compared to that of untrained data. 

Red line - Untrained Data 

Green Line - Trained Data 
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Technical Analysis 

The Neural Network's best output is achieved when the sigmoid function is set to tansig. This is  

because tansig  has a range from -1 to 1, while purelin has a range from negative infinity to 

positive infinity. Our input to the Neural Network's hidden layer neuron is in a range from [-

1,1]. Similarly, tansig gives better results compared to logsig, since logsig has natural finite 

bounds of [0,1] and the logsig sigmoid function has slower rate of learning compared to the 

tansig sigmoid function. The table shows this as logsig takes 59 iterations to reach performance 

goal of 0.000003, while tansig takes only 26 iterations to reach the same performance goal. 

Additionally, when the number of neurons is set to 19 as one of the stopping parameters, the 

average difference of errors in the user's motion profile is minimal. Also, the output of the 

application is close to human judgment on the user's motion profiles when Neural Network is 

tested with data used in training the Network compared to untrained data. 
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Limitation 

There are certain limitations in my proposed method. The neural network does not behave as 

needed if all the joints are taken into consideration. Also, this method is used if speed is not the 

measure to consider in giving a score. 

 

Future Work   

There is room for additional research on an  algorithm better than Dynamic Time Warping for 

comparing two motion files. More joints can be taken into account for a better comparison of 

motion profiles. Moreover, an algorithm could be developed which tells the user the amount of 

degrees to bend a joint for better motion. Human motion sensors could be placed on a user. 

This would allow for more accurate data and joints that could be considered in measuring the 

closeness of user's motion profile. 
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Conclusion 

In this project, I have presented a method to judge human motion. It allows the users to  

see the score while they are performing motion. User data performing motion was collected  

using Kinect sensors which contained  X, Y and Z rotational axis for each joint. Only rotational 

axis were taken into account as different profile have different height due to which considering 

positional axis points for joints can generate inaccurate results. Master data and user data was 

used as input to the Dynamic Time Warping algorithm. It compensated for the speed and time 

between master and user data and gave a value suggested the similarity of  both motion 

profiles. The output of Dynamic Time Warping algorithm is single value suggesting how close 

are both the motion profile. The value as close to zero suggest that they are similar. The output 

of this algorithm was fed to Neural Network that was trained with human judgment expert's 

data on motion profiles. For training the Network FeedForward Backpropagation algorithm was 

used. The Network gave the best output when tansig was used as the sigmoid function with the 

number of hidden layer neurons was 19. This trained network eventually behaved like an 

expert by commenting on how good or bad a user's motion profile exhibited.  
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