
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

VIDEO IN THE CLOUD TCP CONGESTION CONTROL VIDEO IN THE CLOUD TCP CONGESTION CONTROL

OPTIMIZATION FOR CLOUD COMPUTING OPTIMIZATION FOR CLOUD COMPUTING

Rafael Alvarez-Horine
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alvarez-Horine, Rafael, "VIDEO IN THE CLOUD TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD
COMPUTING" (2012). Master's Projects. 284.
DOI: https://doi.org/10.31979/etd.mwak-8awt
https://scholarworks.sjsu.edu/etd_projects/284

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/284?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

VIDEO IN THE CLOUD

TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Rafael Alvarez-Horine

November 2012

ii

© 2012

Rafael Alvarez-Horine

ALL RIGHTS RESERVED

iii

VIDEO IN THE CLOUD

TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING

by

Rafael Alvarez-Horine

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

November 2012

Dr. Melody Moh Department of Computer Science

Dr. Sami Khuri Department of Computer Science

Dr. Chris Pollett Department of Computer Science

iv

ABSTRACT

VIDEO IN THE CLOUD

TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING

by Rafael Alvarez-Horine

With the popularity of video streaming, a new type of media player has been

created called the adaptive video player that adjusts video quality based on available

network bandwidth. Merging this technology with cloud computing will change the

online video landscape by allowing providers to dynamically create media servers that

take advantage of all the benefits of cloud computing.

This however is not a straightforward endeavor as unlike a traditional data center;

a cloud-based infrastructure is subject to a greater amount of performance variability.

While the adaptive video player is designed to cope with variability in general, a video

server in the cloud will be less optimal compared to one running on dedicated hardware.

 In this paper, we research maximizing the video streaming experience in the

cloud from the adaptive video server perspective through TCP congestion control

algorithms. Five major TCP congestion control variants are evaluated: Cubic, Bic, Vegas,

H-TCP, and HighSpeed TCP. Additionally both private and public cloud environments

are tested with the final evaluation based on video streaming performance as well as TCP

friendliness.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Melody Moh for her kindness, encouragement, and

above all belief in me that made this project possible.

I would also like to thank the San José State Department of Computer Science for

all their support specifically, Dr. Khuri, Dr. Pollett, Dr. Chun, Dr. Araya, and Dr. Pearce

for giving me a chance to work with some of the most dedicated educators I’ve had the

privilege of knowing.

Above all, I would like to thank my wife Sarah for her ongoing support and

patience throughout my academic journey.

vi

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION ... 1	

2. BACKGROUND ... 3	

2.1	 Video Streaming over the Internet ... 3	

2.2	 Cloud Computing ... 4	

2.3	 TCP Congestion Control .. 4	

3. RELATED WORKS ... 7	

4. ADAPTIVE VIDEO .. 9	

4.1	 Player .. 9	

4.2	 Server ... 10	

4.3	 Protocols ... 11	

5. TCP CONGESTION CONTROL ALGORITHMS .. 12	

5. 1	 CUBIC TCP (cubic) .. 12	

5.2	 BIC TCP (bic) .. 12	

5.3	 TCP Vegas (vegas) ... 13	

5.4	 H-TCP (htcp) .. 13	

5.5	 HSTCP - HighSpeed TCP (highspeed) .. 13	

vii

6. EXPERIMENTAL SETUP .. 15	

6.1	 Private Cloud .. 15	

6.2	 Public Cloud ... 16	

6.3	 Software ... 17	

6.4	 Media .. 18	

7. RESULTS .. 20	

7.1	 Private Cloud .. 20	

7.2	 Public Cloud ... 22	

7.3	 Throughput and Total Amount of Video Streaming .. 24	

7.4	 Effectiveness of Video Streaming – Percentage of Video Played 26	

7.5	 Number of Concurrent TCP Connections .. 28	

7.6	 Smoothness – TCP Congestion Control Window .. 31	

7.7	 Summary .. 32	

8. CONCLUSION ... 34	

9. FUTURE WORK .. 36	

LIST OF REFERENCES ... 37	

viii

LIST OF ACRONYMS

AVG Average

AIMD Additive Increase Multiplicative Decrease

AZ (Amazon) Availability Zone

BDP Bandwidth Delay Product

CDN Content Delivery Network

EC2 (Amazon) Elastic Compute Cluster

IaaS Infrastructure-as-a-Service

LFN Long Fat Network

OSMF Open Source Media Framework

RTSP Real Time Streaming Protocol

SD Standard Deviation

VM Virtual Machine

ix

LIST OF FIGURES

Figure Page

Figure 1: Sample Congestion Window Size fluctuation during an active session. 6	

Figure 2: Adaptive Video Streaming Example Session .. 10	

Figure 3: Avg and SD of Kbytes/Sec adaptive video download in private cloud. 20	

Figure 4: Average and SD of Kbytes/Second adaptive video download in private cloud

with 5% packet loss. ... 22	

Figure 5: Average and SD of number of Kbytes/Second Downloaded 24	

Figure 6: Total Amount of Megabytes Downloaded .. 26	

Figure 7: Percentage of Video Played .. 27	

Figure 8: Total Number of TCP Connections. .. 29	

Figure 9: Congestion Windows for EUWest AZ .. 31	

x

LIST OF TABLES

Table Page

Table 1: Video bitrates used for media encoding. .. 19	

Table 2: Performance Summary (EUWest) .. 32	

1

1. INTRODUCTION

The proliferation of video streaming on the Internet has resulted in a concerted

effort to find the fastest, cheapest, and most reliable way to push video from a server to a

media player. With analysts predicting that by 2014 upwards of 66% of mobile traffic

will be streaming video [1], this is currently a popular area of research both in academia

as well as industry. Increased video demand means additional computing resources will

be needed to store and serve video online. With the unique challenges inherent in

streaming media content, we propose the creation of a streaming video server that is

optimized to run in a cloud-computing environment.

Moving video servers to a cloud computing infrastructure would realize numerous

advantages specific to the cloud, features such as automated server scaling for viral

videos, instantaneous global presence for international viewers, and built in redundancy

for site availability.

While this may appear to be an ideal pairing, a cloud-based video server is also

subject to the limitations of cloud computing, chief among them being the instability

inherent in a public cloud. This is due, among other things, to the shared tenancy effect

whereby every action a cloud user takes can impact other clients in the same segment of

the cloud. Streaming video is especially sensitive to changes in resource availability,

where a problematic network can result in unwatchable videos.

2

To work around these inconsistencies, we combined our proposed cloud-based

video server with the adaptive video player. As the name implies, the adaptive video

player dynamically adjusts how it plays a video according to the prevailing network

conditions allowing for a customized viewing experience. This technology has become

more popular recently with large video providers like Netflix [2] and Hulu [3] integrating

it into their media players.

However this solution is suboptimal as the adaptive video player alone may not

provide the best viewing experience when streaming from a cloud-based server. To that

end we propose a further optimization via an analysis of TCP congestion control

algorithms on adaptive video streaming in the cloud. While the adaptive video player

seeks to bypass TCP congestion control altogether and provide a fully realized solution to

network congestion, we believe a combination of the two technologies creates the

optimal solution for streaming videos.

3

2. BACKGROUND

2.1 Video Streaming over the Internet

Historically streaming video over the Internet meant clicking a link and waiting

for the video to start downloading until the local cache was full. The video would start

playing and during playback the rest of the video would be downloaded in the

background by the player. As long as the video bitrate did not exceed available

bandwidth, the video would reliably play.

If available bandwidth changed suddenly, the end user experience would suffer as

the video performance degraded. Problems such as stuttering video (video that stops and

starts suddenly), dropped frames (lost portions of video) or video that stops playing

altogether are familiar to longtime Internet users. Several techniques have been used by

video sites to address these issues. One common one is providing lower quality videos

that do not require as much bandwidth and are more likely to play reliably when available

bandwidth is low. While practical, the resulting experience watching the video is poor

with blurry video and hard to understand sound. While this may be acceptable for a short

clip, it is not desirable for watching an entire television show or movie. Content

Distribution Networks (CDNs) are also employed by sites to host multiple copies of

videos closer to the client. This allows the end user to stream content from a server that is

closer geographically which results in fewer network hops (minimizing the chance of

congestion) and a shorter network delay. While this is a good best practice, it also adds an

4

additional layer of complexity to the environment and does not address potential last mile

network fluctuations between the CDN and the end user.

2.2 Cloud Computing

The use of a cloud-based service for video streaming would seem to be a good fit

as the dependency on network bandwidth can be addressed by the cloud. A computing

cloud is by definition a pool of unlimited resources, which can be dynamically scaled up

and down to meet computing demand. Assuming that underlying network deficiencies

can be ameliorated by adding additional computing resources, a cloud based video

solution would make sense.

The cloud however introduces its own set of challenges. While a cloud is

theoretically an unlimited computing resource, its performance is inherently not as

reliable compared to dedicated hardware. Because a cloud by definition is a shared

resource in which the various cloud tenants can impact each other, a cloud-based video

service must be architected to create a reliable service out of unreliable components.

While some video sites have opted to go this route, the last mile question is still not

addressed as unlimited bandwidth will not alleviate a bad network connection between

the user’s device and their network provider.

2.3 TCP Congestion Control

 The TCP protocol is responsible for ensuring reliable host-to-host communication

irrespective of the media being transmitted. One of the features of TCP is congestion

5

control which serves to limit the number of packets transmitted on the network in

response to the perceived amount of congestion.

The theory behind TCP congestion control is that if there is a large amount of

network traffic sufficient to cause degradation in overall network performance, then the

TCP host should send fewer packets while the network is compromised to allow it to

stabilize. This is implemented via the additive-increase/multiplicative-decrease (AIMD)

algorithm which dictates that data transmission rates should increase at a linear rate but

decrease at a geometric one. AIMD controls the size of the TCP congestion window that

dictates how much data can be sent at a time with a large congestion window resulting in

more data being sent. This means that it takes a relatively long time to increase the

amount of network traffic sent, but a short time to decrease it. Ideally once the network

has returned to functioning normally, the amount of data transmitted can be ramped up to

make optimal use of network resources. This is generally a reasonable course of action to

take in most cases. However there are several scenarios where this will result in a

suboptimal experience for video streaming.

A network event that causes a disruption in available bandwidth will result in a

decrease in the amount of data that a TCP host will send via a reduction in the size of the

congestion window. This reduction in data will continue until there have been several

successful data transmissions after which the congestion window size will slowly

increase. This behavior results in the familiar saw tooth pattern for TCP congestion

window size as seen in Figure 1.

6

Figure 1: Sample Congestion Window Size fluctuation during an active session.

A relatively small number of network hiccups can play havoc with the congestion

window size, which will result in less available bandwidth and a degraded end user

experience. If the amount of bandwidth reaches a critical point, the video will begin to

stutter as the cache is depleted. Once the cache is empty, the player will then stop

altogether. The adaptive video player works around this limitation by independently

monitoring available bandwidth and making decisions on what size of data to request in

order to make sure that the bitrate of the video being played never exceeds available

bandwidth. Ideally, the adaptive video player can ensure that the video bitrate being

played is always within the available bandwidth so the end user maintains a continuous

video stream with the assumption that the end user may occasionally see low quality

video if there is a sudden drop in bandwidth.

7

3. RELATED WORKS

Using the TCP/IP protocol layers as an analogy, the adaptive video player

provides an application layer workaround for the limitations of the network layer. This is

not a new concept as other optimizations at this level have been proposed such as using

multiple TCP streams [4] [6]. Multiple TCP streams provide additional pathways for

video data to come through to the client without requiring additional network

configuration, which is effective for artificially increasing bandwidth. This strategy

however increases the chances of poor TCP-fairness with respect to other network traffic

and runs the risk of saturating the network with traffic, effectively cancelling out the

benefits of congestion control. In addition, limitations inherent in TCP such as send

buffer size cannot be worked around easily from the application layer and are more

efficiently dealt with at the network layer [7].

Several new strategies have been proposed for video streaming, such as TCP-

Friendly Rate-based Control (TFRC) [8] and TCP Libra [9]. Other more radical ideas,

such as implementing a form of congestion control for UDP, have also been proposed to

allow the use of a protocol with less overhead while keeping the bandwidth management

ability of TCP for long lived sessions [10].

There have been many studies done on improving TCP for high-speed networks

in general through various methods such as sending “dummy” network packets to

artificially maintain large TCP congestion windows [11], to creating newer, more highly

8

optimized congestion control algorithms such as Yet Another Highspeed TCP (YeAH-

TCP) [12]. Still we have not found any formal publication that focused specifically on

TCP performance for cloud computing (there are however some preliminary, informal

works, for example, Zhu et al [13]).

9

4. ADAPTIVE VIDEO

4.1 Player

The adaptive video player addresses an inconsistent network by optimizing the

video watching experience with the assumption that an uninterrupted video free of

stutters and dropped frames is more desirable than a high quality one.

As video content is being streamed, the player is continuously requesting different

parts of the video, referred to as segments [1]. Each segment has time duration and a

bitrate, so it knows the size of the segment as well as a time index, which specifies when

it should be played.

As the end user is watching the video, the adaptive video player continuously

checks the available network bandwidth. If the bandwidth is decreasing, the player will

request a lower quality segment. By requesting a smaller, lower quality portion of the

video the player is confident that the amount of bandwidth available will be sufficient to

retrieve the segment in a timely manner. In this way, the player prioritizes uninterrupted

playback over video quality, as it is more likely that a smaller file will be transferred

quickly compared to a larger one. If it sees that bandwidth is increasing (such as after a

network event) it will request a higher quality segment and provide the user with a better

viewing experience.

10

4.2 Server

 The corresponding adaptive media server hosts multiple copies of the available

videos each encoded at a different bitrate. The media itself is further categorized into

segments with each segment corresponding to a particular time index.

As the video is being watched, the player will request a segment by bitrate and

time so at any point in time any of the available segments may be played. This is

illustrated in Figure 2 where a three second video file is shown on the corresponding

server.

Segment	 #1

Segment	 #2

Segment	 #3

200	 kilobits/second

0	 seconds

1	 second

2	 seconds

3	 seconds

Segment	 #1

Segment	 #2

Segment	 #3

400	 kilobits/second

0	 seconds

1	 second

2	 seconds

3	 seconds

Segment	 #1

Segment	 #2

Segment	 #3

800	 kilobits/second

0	 seconds

1	 second

2	 seconds

3	 seconds

Segment	 #1 Segment	 #2 Segment	 #3

Adaptive	 Media	 Server

Streamed	 Video

200kbps 800kbps 800kbps

Figure 2: Adaptive Video Streaming Example Session

11

 Note that there are several copies of the video each at a different bitrate and as

the video is being played, a different segment is requested during each time period. In

Figure 2, the first segment played is the lowest bitrate (200kbps) and the remaining two

segments have the highest bitrate (800kbps). We can surmise that a transient network

event during the beginning of the streaming session caused a decline in available

bandwidth. In response, the adaptive video player requested a lower bitrate segment

which was played. After the network recovered and bandwidth was plentiful again, the

remaining portion of the video was played using the larger high quality segments.

4.3 Protocols

The adaptive video player uses HTTP exclusively as opposed to other more

lightweight protocols such as UDP or video optimized ones such as Real-Time Streaming

Protocol (RTSP) [5]. By using HTTP for streaming, content providers are able to realize

several advantages enjoyed by normal web traffic such as the ability to seamlessly travel

in network configurations that may otherwise restrict or interfere with traditional media

streaming protocols such as firewalls or NAT routers. It also allows the use of existing

HTTP optimization infrastructures such as CDNs to further improve video performance

without having to make changes to how the video is streamed.

12

5. TCP CONGESTION CONTROL ALGORITHMS

For this paper the following five major TCP congestion control algorithms were

considered. Each algorithm is included in the base install of the Ubuntu 12.04 x64 Linux

distribution.

5. 1 CUBIC TCP (cubic)

Designed for high bandwidth and high delay networks (also known as long fat

networks or LFN) cubic is one of the most recent and widely used modern congestion

control algorithms. The name comes from the calculation of the congestion window

which is a cubic function of time since the last time congestion occurred. The end result

is less aggressive, more TCP friendly congestion control. Cubic is the current (as of

version 12.04) default congestion control algorithm in Ubuntu Linux succeeding the

previous default of bic (see below) and is representative of default TCP behavior [15].

5.2 BIC TCP (bic)

Bic (Binary Increase Congestion control) is also meant for use in LFN. It manages

the congestion window by using a binary search algorithm to find the maximum

congestion window value and maintain is as long as possible. It is seen as a high

performance algorithm. It is also a more aggressive congestion control scheme which is

less fair to other TCP traffic [16] [17]. It was succeeded as the default TCP congestion

control algorithm in Ubuntu Linux by cubic.

13

5.3 TCP Vegas (vegas)

Created as a TCP congestion avoidance algorithm at the University of Arizona,

vegas measures packet delay (as opposed to packet loss) to determine the congestion

window. The goal of vegas is to use increases in packet delay as an indicator of

impending network congestion. By doing so, it is able to detect congestion early and

compensate before packet loss takes place [16] [18]. This is generally the smoothest TCP

congestion control algorithm with the most consistent performance followed by cubic

[19].

5.4 H-TCP (htcp)

Created by the Hamilton Institute in Ireland, htcp is also optimized for LFN. It

works by increasing aggressiveness in high bandwidth delay product (BDP) paths by

increasing the congestion window at a relatively higher rate while there is no observed

packet loss. The net result is available bandwidth is more effectively used, and for

smaller data flows it maintains TCP friendliness. However if there are multiple TCP

flows and a competing one loses a packet, then htcp has the potential to use an unfair

amount of resources [20].

5.5 HSTCP - HighSpeed TCP (highspeed)

Like htcp, highspeed is also optimized for LFN. When the congestion window

reaches a certain threshold, highspeed continues to increase it as a function of the current

window size; the larger the window, the greater the increase. As a result, the congestion

window will grow at a faster rate and recover more quickly when losses occur [21]. For

14

slower networks or networks with lower latency, highspeed behaves much like other TCP

variants and is TCP friendly.

15

6. EXPERIMENTAL SETUP

The experimental implementation was performed in two stages. The first

consisted of the creation of a private cloud that was used to create a baseline optimal

system with locally managed hardware and networking resources. After being deployed

in the private test cloud, the virtual appliances were uploaded to a public cloud and

additional data was collected and analyzed.

6.1 Private Cloud

The private cloud was built using the Eucalyptus Infrastructure-As-A-Service

(IaaS) cloud computing platform [22]. It was used to provide a baseline set of

measurements to determine how a streaming media server would perform in an optimal

cloud computing environment with a large amount of available network bandwidth, no

competing network traffic, and exclusive use of existing hardware.

The private cloud was built using two computers, a Hewlett Packard ProBook

8430s and a Dell XPS 17. Both computers were connected using Gigabit Ethernet

network cards to a Gigabit Ethernet switch. The network was private and not connected

to the Internet, so all traffic was limited to what was generated locally. The 64-bit version

of Ubuntu Server 11.0.4 and Eucalyptus Version 2.0, bundled with Ubuntu Server, were

installed and configured on both computers.

A virtual appliance consisting of a 64-bit Ubuntu Linux Server 12.0.4 was

deployed on this infrastructure configured with 2.0 Gigabytes of RAM, 20 Gigabytes of

16

storage and allocated one Intel i7 2.3 GHz CPU. It was the only virtual machine (VM)

running in the private cloud to ensure no competition for physical resources. Ubuntu

Linux was chosen for its high compatibility with cloud computing platforms and its

extensive use on the Internet, which facilitated its deployment to both the private and

public clouds. The measurements taken from the running instance were used as the

baseline for comparing the average data download rate (AVG) as well as the standard

deviation (SD).

Finally, as an added test scenario, a simulation of an unreliable network with 5%

packet loss was enabled on the client using the DummyNet network emulator [23].

6.2 Public Cloud

The virtual appliance used in the public cloud was also deployed on the public

Amazon Elastic Compute Cloud (EC2) [24]. EC2 has 8 locations (known as Amazon

Availability Zones or AZ) all over the world where VMs can be run [24]. For this study,

the following four Amazon EC2 AZ were used; USWest (Northern California), USEast

(Northern Virginia), EUWest (Europe, Ireland), and Asia Pacific (Japan, Tokyo). In each

zone, the smallest available 64-bit VM was used which was configured with 1.7

Gigabytes of RAM, 160 Gigabytes of storage and 1 EC2 Compute Unit of processing

power (equivalent to an early 2006 1.7 GHz Xeon processor).

For both the private and public cloud environments only a single server was

created in each environment for a total of 5 VMs (1 server in the private cloud and 1

server in each of the Amazon AZ). A static IP address was assigned to each instance

17

along with a standard firewall allowing only secure shell (SSH) and HTTP web traffic

through. All configuration was done using standard server cloud deployment tools

provided by Eucalyptus and Amazon respectively.

For the client, a 2011 MacBook Pro running the most recent version of the

Firefox web browser and Adobe Flash was used. During the private cloud testing, the

client was connected to the Gigabit Ethernet switch using a Gigabit Ethernet Network

card. For the public cloud tests, the client was connected to the Internet via 1.5 Mbps

ADSL.

6.3 Software

The client and server software chosen for this study come from the Open Source

Media Framework (OSMF) sponsored by Adobe Systems [25]. It is a free, open source

development framework used for creating and distributing video on the web. The OSMF

server software consists of a set of Apache web server plugins collectively known as the

Origin HTTP modules. The video stored on the media server is accessed via a custom

media player contained in an Adobe Flash (swf) file that is configured to dynamically call

the different video segments. For this study, the OSMF Sample Player for HTTP

Dynamic Streaming was used without any modification [26].

The adaptive video server was built using the 64-bit version of the Ubuntu 12.04

server with kernel 3.2.0 customized to run on cloud-computing platforms mentioned

previously [27]. The configuration steps included downloading the latest operating

18

system security patches and software updates in addition to the following additional

packages that were manually installed from the standard Ubuntu software repositories:

• apache2
• openssl
• expat
• libnspr4-0d

6.4 Media

The video used for streaming was “Big Buck Bunny” from the Peach open movie

project [28]. The movie was chosen for its open licensing (Creative Commons), relatively

long run time (almost 10 minutes), and availability of a High Definition (900 Megabyte

MP4) video.

Prior to being placed on the server for streaming, the video was converted to

make it suitable for adaptive streaming by taking the original high definition video and

creating multiple copies with each copy having a slightly different bitrate as shown in

Table 1. The resulting videos were then packaged using Adobe’s f4f file packager

software to make it suitable for adaptive video streaming.

.

19

Table 1: Video bitrates used for media encoding.

2750 kbps
2040 kbps
1520 kbps
1130 kbps
845 kbps
630 kbps
470 kbps
350 kbps

The bitrates used are the same as those used by Microsoft in demonstrating their

implementation of adaptive video streaming [29].

20

7. RESULTS

7.1 Private Cloud

In this section the experimental results are presented using the private cloud

setting as described in Section 6.1.

Figure 3 shows the average (Avg) and standard deviation (SD) of the throughput

in kilobytes/sec (Kbytes/Sec) of the adaptive video download for all five TCP variants.

Figure 3: Avg and SD of Kbytes/Sec adaptive video download in private cloud.

-‐600	

-‐400	

-‐200	

0	

200	

400	

600	

800	

1000	

1200	

cubic	 bic	 vegas	 htcp	 highspeed	

21

In this ideal scenario (very high available bandwidth with no congestion or

competition), all of the algorithms were able to deliver a consistently good download and

video viewing experience with the video played in its entirety, at the highest quality with

no discernible problems. The measured Avg throughput was 270-350 Kbytes/sec with a

relatively high SD with values ranging from 550-770 Kbytes/sec.

For all five congestion control algorithms, the highest average throughput was

observed using the cubic congestion control algorithm followed by highspeed, htcp, bic,

and vegas. As expected vegas had the lowest SD. Cubic however had the highest SD

contrary to its expected performance.

When a 5% packet loss was introduced in the private cloud, the observed behavior

changed significantly as all 5 congestion control algorithms used additional network

resources to compensate for the loss. Figure 4 shows the results as Avg throughput

doubled to 560-730 Kbytes/sec. We believe this to be due to data retransmissions that

occurred to compensate for the 5% packet loss. The SD however dropped to 350-370

Kbytes/sec, with no significant difference among the five variants.

22

Figure 4: Average and SD of Kbytes/Second adaptive video download in private cloud
with 5% packet loss.

Despite the relatively high network congestion, each test run again resulted in a

consistent viewing experience with the video played in its entirety at the highest

resolution with no stutter or dropouts.

7.2 Public Cloud

In this section, we present the experimental results using the public cloud

environment as described in Section 6.2.

During the deployment of the video server to the public Amazon EC2 cloud, an

inconsistency was discovered with the sample OSMF adaptive video player. While the

player is designed to adjust video bitrate based on the available bandwidth, it became

apparent that regardless of bandwidth, the player consistently attempted to play the

0	

200	

400	

600	

800	

1000	

1200	

cubic	 bic	 vegas	 htcp	 highspeed	

23

highest bitrate file. This behavior was also observed by Akhshabi, Begen, and Dovrolis

who theorized that the sample player was built to smooth out short variations in

bandwidth as opposed to automatically adjust for optimal playback [30].

Based on the purpose of the experiment, which was to observe the effect of TCP

variants in the cloud for video streaming rather than optimizing adaptive video player

settings, it was decided to use the sample video player as is and instead modify the

configuration on the server by removing the higher bitrate versions of the video. The files

removed were those whose bitrate exceeded the last-mile bandwidth of 1.5 Mbps (or

187.5 Kbytes/sec). As a result, instead of streaming media with eight different bitrates,

the main configuration file was modified to use only those bitrates lower than 1.5 Mbps;

i.e. media encoded with the following five different bitrates: 1130 kbps, 845 kbps, 630

kbps, 470 kbps and 350 kbps (refer to Section 6.4.)

Even though this may somewhat disagree with the general video setting rule that

the optimal video bitrate should be half of the available bandwidth [1], we felt that having

a video stream at a bitrate close to network capacity was better suited for observing

differences between TCP variants.

It was also discovered that the prevailing network connectivity between the public

cloud providers and the test client was insufficient to provide a consistent streaming

session as the time to stream the entire 10 minute video successfully was sometimes in

excess of 30 minutes. Due to this limitation, it was decided that rather than streaming the

entire video as was done in the private cloud, we would stream 8 minutes of video in each

24

experiment and take measurements during that time period. This interval was chosen to

allow enough time to obtain useful data that would not be affected by short-term

variations in available bandwidth.

7.3 Throughput and Total Amount of Video Streaming

The results are shown in Figure 5, with the five TCP variants in each of the four

AZ.

Figure 5: Average and SD of number of Kbytes/Second Downloaded

With the exception of EUWest (which was the AZ furthest away geographically

from the test client) the algorithms in the other 3 AZ (USWest, USEast, and Japan) all

25

achieved similar throughput in terms of both Avg (approximately 120 Kbytes/sec) and

SD (approximately 60 Kbytes/sec).

By contrast, EUWest showed a throughput performance between 63-83

Kbytes/sec, significantly lower compared to the other three regions. Within EUWest the

highest overall throughput was achieved by cubic, followed by htcp, highspeed, bic, and

finally vegas. The highest observed SD in EUWest was also cubic followed by vegas,

highspeed, htcp, and bic. These results were unexpected as cubic is optimized for both

performance and TCP friendliness which under heavy congestion, as we believe was

occurring when these measurements were taken, we would have expected the other LFN

optimized congestion control algorithms to have shown the best network performance. In

addition both cubic and vegas are architected to be the most consistent congestion control

algorithms with the least amount of variation. Yet both had the highest observed SD

compared to the other more aggressive congestion control algorithms.

Shown in Figure 6 is the total amount of data downloaded during the 8 minute

time period. For EUWest these results generally agree with the throughput results in

Figure 5 with cubic showing the highest amount of overall data downloaded followed

again by: htcp, highspeed, bic, and vegas.

26

Figure 6: Total Amount of Megabytes Downloaded

7.4 Effectiveness of Video Streaming – Percentage of Video Played

The video watching experience for the client was also measured as we wanted to

see if there was a correlation between network throughput and the end user video

watching experience. To that end, the overall percentage of the sample movie that

successfully played during the 8-minute time interval was recorded and is shown in

Figure 7.

25000000	

30000000	

35000000	

40000000	

45000000	

50000000	

55000000	

60000000	

65000000	

USWest	 USEast	 EUWest	 Japan	

cubic	

bic	

vegas	

htcp	

highspeed	

27

Figure 7: Percentage of Video Played

Again except for the EUWest, the other three regions show similar results for all

five TCP variants with both US based AZ for all intents identical and Japan having the

highest single overall percentage with bic and EUWest having the lowest overall

percentage with vegas. EUWest also had the greatest observed performance variation

with over 20% less of the video played using vegas compared to cubic.

An interesting distinction appears when comparing percentage of video played

with overall amount of data downloaded. When comparing the two it was found that a

higher throughput or download amount does not necessarily imply a higher percentage of

video played.

50.00%	

55.00%	

60.00%	

65.00%	

70.00%	

75.00%	

80.00%	

85.00%	

90.00%	

95.00%	

100.00%	

USWest	 USEast	 EUWest	 Japan	

cubic	

bic	

vegas	

htcp	

highspeed	

28

Taking Japan as an example, the congestion control algorithm with the highest

percentage of video played was bic followed by highspeed. In terms of absolute amount

of data downloaded however bic had the highest amount (which would seem to make

sense) followed by vegas which had the lowest overall percentage of video played in

Japan.

 In EUWest where there was the most variability in performance, and which we

feel had the most meaningful results, htcp had the highest percentage of video played

followed by cubic. In contrast cubic had the largest amount of data downloaded followed

by htcp.

7.5 Number of Concurrent TCP Connections

Originally the number of TCP connections was not measured as it was not

thought that the adaptive media player employed multiple TCP streams for enhancing

network performance. During the study though, it was discovered that there was a

significant difference in the number of TCP connections used when different congestion

control algorithms were enabled. As a result, the number of TCP connections was

recorded and analyzed as an additional data point.

It was observed that the OSMF adaptive video player used multiple TCP

connections extensively when streaming in both the public and private cloud. This was

surprising as the practice of using multiple TCP connections for video streaming is seen

as a separate TCP unfriendly optimization method used instead of dynamic streaming.

29

For streaming video from the US based public cloud, the number of TCP

connections were similar among the five congestion control algorithms. When streaming

from both the international clouds, they varied much more averaging slightly less than 20

as shown in Figure 8. The lowest number of TCP streams was 9 and the highest was 28;

both of these values occurred in EUWest.

Figure 8: Total Number of TCP Connections.

Focusing again on EUWest, where the network condition was the worst, htcp used

the most TCP connections followed by cubic. Both also streamed the highest percentage

of video which would indicate a correlation between number of connections and

streaming video experience. This however is confounded by highspeed, which used the

0	

5	

10	

15	

20	

25	

30	

USWest	 USEast	 EUWest	 Japan	

cubic	

bic	

vegas	

htcp	

highspeed	

30

fewest number of TCP connections in EUWest, yet had the third best percentage of video

played.

Comparing Figure 7 and Figure 8 we see that highspeed played almost 20% more

of the sample video using 9 TCP streams compared to vegas which used 11 TCP streams.

31

7.6 Smoothness – TCP Congestion Control Window

The behavior of the congestion window is an indication of the “smoothness” of

TCP and the algorithm’s friendliness towards other network streams. The size of the

congestion window for all five TCP congestion windows while the video was streaming

in EUWest is shown in Figure 9. Only EUWest is shown as similar behaviors were

observed for the other three AZ.

Figure 9: Congestion Windows for EUWest AZ

32

Vegas and highspeed had the smoothest TCP behavior of the 5 congestion control

algorithms followed by bic, cubic, and htcp. It was expected that vegas would have the

least variability and be the smoothest followed closely by cubic. However it is seen that

cubic actually has a significant amount of variability (second to htcp) which leads us to

believe that under congestion cubic’s TCP friendliness may be compromised for the sake

of performance.

7.7 Summary

The results from EUWest which presented the most problematic network path and

is most indicative of the congestion control algorithm’s behavior under severe real world

congestion are summarized below in Table 2.

Table 2: Performance Summary (EUWest)
 1st 2nd 3rd 4th 5th
Percentage
Played htcp cubic highspeed bic vegas

Throughput cubic htcp highspeed bic vegas

Amount
Downloaded cubic htcp highspeed bic vegas

of TCP
connections

highspeed
vegas bic cubic

htcp

(least) (most)

Smoothness vegas highspeed bic cubic htcp

33

In terms of video streaming performance, the first three criteria are the most

important with the percentage of video successfully played being the most important to

the end user.

For TCP friendliness and fairness, the bottom two are the most relevant as they

define how much of the available network resources are being used (sometimes unfairly)

by the player.

34

8. CONCLUSION

Extensive experimental studies were conducted to evaluate TCP performance in

supporting cloud-based adaptive video streaming. Five major TCP variants that are part

of the base Ubuntu Linux server distribution (including the default) were included in

these experiments. A private cloud was first used to create a baseline measurement

followed by four geographically different public cloud deployments.

To evaluate streaming video quality, the following network metrics were

evaluated: TCP throughput, total amount of data downloaded, and TCP congestion

window behavior. An additional metric of total percentage of video played was also

measured to factor in the end user experience as a separate metric altogether. In addition,

an unexpected fifth metric of concurrent TCP connections was discovered and evaluated

after its importance in adaptive video streaming was discovered.

In a private cloud and a domestic public cloud, it was found that the choice of

congestion control algorithm was not as impactful on the overall video streaming

experience. By contrast, the choice of algorithm when streaming from an international

cloud provider had a significant impact when using an adaptive video player.

It was found that htcp and cubic were the two best performing congestion control

algorithms for streaming video providing the highest percentage of video playback

coupled with the highest throughput and absolute amount of data downloaded. Showing

35

lower overall video streaming performance were highspeed and vegas which, by contrast,

were more TCP friendly and had smoother network behavior in the cloud.

Amongst all five available algorithms, highspeed had the best balance between

video quality and TCP friendliness.

It is believed that this work contributes significantly to the network and cloud

computing communities towards optimizing TCP or choosing a good alternative for

cloud computing [14].

36

9. FUTURE WORK

Future work may include designing an improved TCP variant or TCP alternative

for the cloud that may be optimized for video streaming instead of LFN. It would also be

of interest to use different streaming clients such as smartphones or tablets and see if

there is a difference in video streaming quality when video is accessed by relatively low

power device over a cellular service.

The use of other public clouds would also be useful as the bandwidth limitations

may be addressed by using a smaller niche provider such as GoGrid [31] or even a

different technology base altogether such as Microsoft Azure [32].

In addition, similar experiments may be carried out using other adaptive video

players for a broader understanding of the effect of TCP congestion control algorithms on

adaptive video streaming over the cloud in general. This may be further elaborated by

using different adaptive video streaming algorithms on the video player itself as the

OSMF player used in this study is an open source project which allows the modification

of the adaptive video streaming algorithm.

This study also focused on the streaming characteristics using one server per

client which is not a realistic real world scenario. Examining the streaming video

performance using several simultaneous clients would be of great interest as the TCP

friendliness of a congestion control algorithm would become a factor.

37

LIST OF REFERENCES

[1] Stefan Lederer, Christopher Müller, and Christian Timmerer. 2012. Dynamic
adaptive streaming over HTTP dataset. In Proc. of the 3rd Multimedia Systems Conf.
(MMSys '12). ACM, New York, NY, USA, 89-94.

[2] C. Kaiser. (2010, December 22). HTML 5 and Video Streaming. [Web log comment].
Retrieved from http://techblog.netflix.com/2010/12/html5-and-video-streaming.html

[3] http://www.hulu.com/about/video_quality

[4] Sunand Tullimas, Thinh Nguyen, Rich Edgecomb, and Sen-ching Cheung.
Multimedia streaming using multiple TCP connections. ACM Trans. Multimedia
Comput. Commun. Appl. 4, 2, Article 12 (May 2008).

[5] Chia Jung Chen, Rong Guey Chang, Chih Wen Hsueh, "Wireless Smooth Data
Streaming on Application Layer," in Proc. of 2011 IFIP 9th Int. Conf. on Embedded
and Ubiquitous Computing, pp. 384-389.

[6] Kuschnig, I. Kofler, and H. Hellwagner. Improving InternetVideo Streaming

Performance by Parallel TCP-basedRequest-Response Streams. In Proc. of the 7th
AnnualIEEE Consumer Communications and Networking Conference (IEEE CCNC
2010), January 2010

[7] Ashvin Goel, Charles Krasic, and Jonathan Walpole. 2008. Low-latency adaptive
streaming over tcp. ACM Trans. Multimedia Comput. Commun. Appl. 4, 3, Article
20 (September 2008)

[8] Soo Hyun Choi and Mark Handley. 2007. Fairer TCP-friendly congestion control
protocol for multimedia streaming applications. In Proc. of the 2007 ACM CoNEXT
Conf. (CoNEXT '07). ACM, New York, NY, USA.

[9] Gustavo Marfia, Claudio E. Palazzi, Giovanni Pau, Mario Gerla, Medy Y. Sanadidi,
and Marco Roccetti. 2007. Balancing video on demand flows over links with
heterogeneous delays. In Prof. of the 3rd ICST Int. Conf. on Mobile Multimedia
Communications (MobiMedia '07). Brussels, Belgium.

[10] Eddie Kohler, Mark Handley, and Sally Floyd. 2006. Designing DCCP:

congestion control without reliability. ACM SIGCOMM Comput. Commun. Review,
36, 4 (August 2006), 27-38.

38

[11] Amit Mondal and Aleksandar Kuzmanovic. 2010. Upgrading mice to elephants:
effects and end-point solutions. IEEE/ACM Trans. Netw. 18, 2 (April 2010), 367-
378. DOI=10.1109/TN

[12] F. Vacirca, A. Baiocchi, and A. Castellani. Yeah-TCP: yet another highspeed

TCP. In International Workshop on Protocols for Fast Long-Distance Networks
(PFLDNet), pages 37--42, 2007.

[13] Jiang Zhu, et al., presentation “TCP in a World of Cloud Services,”
http://yuba.stanford.edu/trainwreck/train-wreck-presentation-Zhu.pdf

[14] FASP (Fast and Secure Protocol) Technology, Aspera Inc.,

http://www.asperasoft.com/en/technology/fasp_overview_1/fasp_technology_overvie
w_1

[15] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems Review, 42, 5 (July
2008), 64-74.

[16] Callegari, C.; Giordano, S.; Pagano, M.; Pepe, T.; , "Behavior analysis of TCP

Linux variants," Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), 2010 International Symposium on , vol., no., pp.218-225, 11-14
July 2010

[17] M. Escheikh and K. Barkaoui. 2007. Performance analysis of high-speed TCP

protocols BIC and CUBIC with AQM in lossy networks. In Proceedings of the
IASTED International Conference on Communication Systems, Networks, and
Applications (CSNA '07), Pingyi Fan and Jie Li (Eds.). ACTA Press, Anaheim, CA,
USA, 31-35.

[18] K. N. Srijith, Lillykutty Jacob, and A. L. Ananda. 2005. TCP Vegas-A: Improving

the Performance of TCP Vegas. Computer Communications, 28, 4 (March 2005),
429-440.

[19] H. Jamal, K. Sultan, Performance Analysis of TCP Congestion Control
Algorithms, Internation Journal of Computers and Communication, Issue 1, V2, 2008

[20] Grenville Armitage, Lawrence Stewart, Michael Welzl, and James Healy. 2008.

An independent H-TCP implementation under FreeBSD 7.0: description and
observed behaviour. ACM SIGCOMM Comput. Commun. Review, 38, 3 (July 2008),
27-38.

39

[21] Sally Floyd. Highspeed TCP for Large Congestion Windows. RFC 3649, Interent

Engineering Task Force, Dec. 2003.

[22] Open Source Private and Hybrid Clouds from Eucalyptus. Eucalyptus Systems
Incorporated. Web. 25 February. 2012. http://www.eucalyptus.com/,

[23] Luigi Rizzo. The dummynet project. Web. 1 April. 2012.
http://info.iet.unipi.it/~luigi/dummynet/

[24] Amazon Elastic Compute Cloud (Amazon EC2) Amazon Web Services LLC 2012.
Web. 1 April 2012. http://aws.amazon.com/ec2/

[25] Open Source Media Framework. Adobe Systems Incorporated 2010. Web. 25
February 2012. http://www.osmf.org

[26] Open Source Media Framework Developers. Adobe Systems Incorporated 2010.
Web. 25 February 2012. http://www.osmf.org/developers.html

[27] Ubuntu Cloud Images. Canonical Ltd 2012. Web. 1 February 2012. http://cloud-
images.ubuntu.com

[28] Big Buck Bunny. Blender Foundation. Web. 1 February 2012.
http://www.bigbuckbunny.org/

[29] Experience IIS Smooth Streaming. Microsoft 2012. Web. 26 February 2012.
http://www.iis.net/media/experiencesmoothstreaming

[30] S. Akhshabi, A. Begen, and C. Dovrolis. An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP. In Proc. of the 2nd Annual
ACM Conf. on Multimedia Systems (MMSys '11). ACM New York, NY, USA, 157-168.
2011

[31] Welcome to GoGrid. GoGrid 2012. Web. 10 June 2012. http://gogrid.com

[32] Windows Azure: Microsoft's Cloud Platform. Microsoft 2012. Web. 26 February
2012. http://www.windowsazure.com

	VIDEO IN THE CLOUD TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING
	Recommended Citation

	Microsoft Word - alvarez_rafael.docx

