
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

An Evaluation of the X10 Programming Language An Evaluation of the X10 Programming Language

Xiu Guo
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Guo, Xiu, "An Evaluation of the X10 Programming Language" (2012). Master's Projects. 278.
DOI: https://doi.org/10.31979/etd.w547-7zuf
https://scholarworks.sjsu.edu/etd_projects/278

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/278?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

An Evaluation of the X10 Programming Language

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Masters of Science

By

Xiu Guo

Fall 2012

2

Copyright © 2011

Xiu Guo

All Rights Reserved

3

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

_______________________________ _____________

Dr. Robert Chun Date

_______________________________ _____________

Dr. Sami Khuri Date

_______________________________ _____________

Dr. Mark Stamp Date

4

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my advisor, Dr. Robert Chun, for providing

his constant guidance and support throughout this project. I appreciate my committee

members Dr. Sami Khuri and Dr. Mark Stamp for their time and suggestions.

Also, I would like to thank and offer my regards to all of those who supported me in any

way for completing my Master’s project in Computer Science at San Jose State

University.

5

Abstract

As predicted by Moore's law, the number of transistors on a chip has been doubled

approximately every two years. As miraculous as it sounds, for many years, the extra

transistors have massively benefited the whole computer industry, by using the extra

transistors to increase CPU clock speed, thus boosting performance.

However, due to heat wall and power constraints, the clock speed cannot be increased

limitlessly. Hardware vendors now have to take another path other than increasing clock

speed, which is to utilize the transistors to increase the number of processor cores on each

chip.

This hardware structural change presents inevitable challenges to software structure,

where single thread targeted software will not benefit from newer chips or may even

suffer from lower clock speed.

The two fundamental challenges are:

1. How to deal with the stagnation of single core clock speed and cache memory.

2. How to utilize the additional power generated from more cores on a chip.

Most software programming languages nowadays have distributed computing support,

such as C and Java [1]. Meanwhile, some new programming languages were invented

from scratch just to take advantage of the more distributed hardware structures. The X10

Programming Language is one of them.

The goal of this project is to evaluate X10 in terms of performance, programmability and

tool support.

6

Table of Contents

1. Introduction ..……………………………………………………………....…. 9

1.1 What is X10? …………………………………………………………….…... 9

1.2 Project Goal ……………………………………………………………….…. 9

2. Algorithms and Platforms …………………………………………………… 11

2.1 Divide-and-conquer algorithms …….……………………………….…… 11

2.2 Why divide-and-conquer algorithms……………………………………... 11

2.3 Parallel Processing Platforms …..…………………………………………11

2.3.1 Java Virtual Machine Threading Models ………………………… 11

2.3.2 X10 Performance Model …………….…………………………… 12

2.3.3 X10 Type System ……………………………………………….... 13

2.3.4 Struct in X10 …………………………………………………...… 13

2.3.5 Distribution in X10 ………………………………………………. 14

2.3.6 X10’s Race-Condition Prevention Mechanism ………………….. 15

3. Performance Comparisons …………………………………………………... 16

3.1 Presentation Format …………………………………………………..…. 16

3.2 MergeSort ……………………………………………………………….. .16

3.2.1 Algorithm Description …………………………………………… 16

3.2.2 Input and Output …………………………………………………. 17

3.2.3 Java Multi-Threaded Implementation …………………………… 17

3.2.4 X10 Implementation ……………………………………………... 18

3.2.5 Result Comparison ………………………………………………. 19

3.2.6 Optimizing X10 Implementation ………………………………… 20

3.3 QuickSort ………………………………………………………………… 23

3.3.1 Algorithm Description …………………………………………… 23

3.3.2 Input and Output …………………………………………………. 24

3.3.3 Java Multi-Threaded Implementation …………………………… 24

7

3.3.4 X10 Implementation ………………………………………………. 25

3.3.5 Result Comparison …………………………………………..……. 26

3.4 Strassen Matrix Multiplication ……………………………………..……... 29

3.4.1 Algorithm Description ……………………………………..……… 29

3.4.2 Java Multi-Threaded Implementation …………………….………. 30

3.4.3 X10 Implementation ……………………………………….……… 31

3.4.4 Result Comparison ………………………………………….……... 33

3.5 π Calculation ………………………………………………………………. 33

3.5.1 Monte Carlo Method ………………………………………………. 33

3.5.2 Java Multi-Threaded Implementation ……………………………... 35

3.5.3 X10 Implementation ……………………………………………….. 36

3.5.4 Result Comparison ………………………………………………… 36

4. Programmability Comparison …………………………………………………. 39

4.1 Spawning and Synchronizing Threads …………………………………….. 39

4.2 Functions …………………………………………………………………... 41

4.2.1 Function as an Object ……………………………………………… 42

4.3 Array ……………………………………………………………………..... 43

4.4 Comparison based on lines of code ……………………………………...… 45

5. Tool Support …………………………………………………………………… 46

6. Conclusion ……………………………………………………………………... 48

Reference …………………………………………………………………………... 50

8

Index of Figures, Charts and Tables

Table 1: Result on MergeSort using Java/X10 ……………………………………….. 20

Table 2: Result of MergeSort using Java ……………………………………………... 21

Table 3: Optimized Result of MergeSort using X10 …………………………………. 22

Table 4: Result of QuickSort based on Different Sizes using Java …………………… 26

Table 5: Result of QuickSort based on Different Sizes using X10 …………………… 27

Table 6: Result Comparison of Strassen’s Matrix Multiplication ……………………. 33

Table 7: Result Comparison of π calculation …………………………………………. 37

Table 8: Result Comparison of π calculation on input size of 1,000,000 …………….. 38

Table 9: Comparison of Syntax Complexity ………………………………………….. 45

Chart 1: Comparison of X10 Performance Before and After Optimization …………... 22

Chart 2: Comparison of performance between Java and X10 ………………………… 23

Chart 3: Comparison of performance between Java and X10 ………………………… 28

Chart 4: Comparison of performance of X10 with Smaller Input Size ……………….. 28

Chart 5: Comparison of performance of π calculation ………………………………... 37

Figure 1: Strassen’s Matrix Multiplication Algorithm ………………………………... 29

Figure 2: Monte Carlo method on π calculation ………………………………………. 34

9

An Evaluation of the X10 Programming Language

By Xiu Guo

1. Introduction

1.1 What is X10?

X10 is an open-source programming language developed to address the architectural

challenge of multiple cores, hardware accelerators, clusters, and supercomputers by

providing scalable performance in a productive manner. It is being developed by IBM

Research, which roots X10 on a type-safe, class-based, object-oriented foundation.

The philosophy behind the new programming language, X10, is to make parallel

programming easier to code and less-prone to deadlock and race condition. To achieve

that, X10 embraces three principles: asynchrony, locality and atomicity [2]. Most of the

other major programming languages now achieve their parallelism goal by adding

additional libraries and APIs. However, because X10 was built from ground up with

parallelism in mind, its native mode is to support asynchrony, locality and atomicity.

Therefore, X10 might become a more effective alternative on distributed-computing due

to its clearer goal. Its legitimacy as a useful alternative needs extensive experiments and

evaluations.

1.2 Project Goal

The project will focus on whether X10 can utilize the divide-and-conquer concept well

enough to serve as a pragmatic solution to parallelize certain algorithms and determine

whether X10 is programmer-friendly enough to ease the difficulty when developing

distributed software.

The performance evaluation will be based on a three-step process:

10

1. The collection of different divide-and-conquer problems.

2. Their implementation using Java threads and X10 (Java back-end) separately.

3. A comparison of the performance of above approaches.

From the results above, one can draw a conclusion on whether X10 can offer a speedup

in divide-and-conquer problems over Java or at least ease the difficulty of programming

parallel programs with little or no performance lost.

With quantitative evaluation results, this project can serve as a guide for developers on

finding an optimal approach in terms of a balance of performance and ease of

programmability.

11

2. Algorithms and Platforms

2.1 Divide-and-conquer algorithms

Divide-and-conquer algorithms are widely known and used to speed up computation by

reducing a complex problem into a collection of smaller sub-problems in a recursive

fashion. By combining results from sub-problems, the outcome of the original master

problem can be produced. [3]

2.2 Why divide-and-conquer algorithms

Because of the nature of divide-and-conquer algorithms, they are well suited for running

in parallel. When a problem is divided into smaller sub-problems, each sub-problem can

be assigned to a single thread which will send the result back to the main thread upon

completion.

Evaluating the use of divide-and-conquer algorithms can lead to a better understanding of

the efficiency to spawn threads, the ability to prevent race condition and deadlock, and

the cost involved due to overhead.

2.3 Parallel Processing Platforms

In reality, the hardware available and the algorithm used are usually restricted by

financial and research resources. A better execution language platform sometimes will

noticeably boost productivity even when the above resources stay the same. It is the exact

goal of this project to find out whether X10 is a better execution platform. However, first,

the comparison language platform needs to be described.

2.3.1 Java Virtual Machine Threading Models

Java is known as platform-independent; however, it is somehow platform-dependent if

the Virtual Machine performance is taken into consideration. Although Java's operations

are consistent to users among different platforms, the underlying platforms usually handle

12

the implementation differently, especially for features like concurrency and multi-

threading. For scheduling multiple threads, Java utilizes two models: cooperative and

preemptive threading.

For the cooperative threading model, threads can decide whether to give up their

processor resources to other queued threads. This model is safe and easy to use for

programmers. A programmer can access variables without having to worry about them

changing between lines of code. However, performance of this model relies highly on

how well written the code is. Poorly written code may have certain threads occupy some

processor resources all the time which starve other threads.

For the preemptive threading model, threads run independently from each other. Only

one thread at a time has focus, but focus can change from one line of code to the next.

The switching between threads is under the control of the operating system [4]. This

model is considered a better approach because no threads can monopolize the CPU

resources. On the other hand, this model sometimes introduces unnecessary switches by

the operating system, which is out of the programmer's control. That creates a

nondeterministic environment where the programmer has no knowledge beforehand of

which scheduling the threads will follow.

While both models have their pros and cons, it is generally a good idea to adapt to both

models when designing a Java multi-thread program.

2.3.2 X10 Performance Model

X10 is an object-oriented language designed specifically to enable the productive

programming of multi-core and multi-node computers. In addition to the expected core

language features of any modern object-oriented language, it contains additional

constructs of expressing fine grained concurrency and distributed computation. [5]

13

The design of X10's syntax has significant overlap with Java's type system, though

differences do exist. For example, instead of using “int i” for declaring an integer in Java,

X10 uses “i:Int”. In X10, variables are declared using either the keyword “val” or “var”.

“val” is similar to a constant in Java, but it does not need to have a value when declared.

It only has to be assigned some value at some point. Once it has a value, the value cannot

be changed. “var” is like a normal variable where the values it holds are updated as

needed.

These are examples that show the differences but do not indicate any performance

consideration in the design of the language. Researchers of X10 did put significant

thought into the design of the language so that it would be suitable for distributed

computing.

2.3.3 X10 Type System

The type systems between Java and X10 differ in three ways, which are well intended to

achieve X10's parallelism goal.

1. In addition to classes, X10 adds two additional kinds of fundamental structure: functions

and structs.

2. X10's generic type systems do not have the same erasure semantics as Java's generic

types do. [5]

3. X10 includes constrained types, which enhances the ability to more precisely specify the

acceptable values of a type by boolean expression.

2.3.4 Struct in X10

In X10, struct is a different concept from that in C, though they share the same name.

Struct is mainly designed to improve run time performance of X10 programs. First a

simple example will demonstrate the necessity of struct.

Assuming class Point2D is a subclass of class Point, a method call is defined as:

14

 public def doSomething(p:Point){...}

which takes in a Point as argument. Like Java, Point2D can be taken in where Point is

expected because Point2D is one kind of Point. However, the cost of this inheritance

approach is not minimized.

The value passed to doSomething() for p might be the subclass Point2D of Point, or it

may be some other subclasses. One only knows for sure during runtime when the value

actually gets passed. It is more costly because the class Point2D may have its own

implementation of some methods, for instance toString(). Specific class information has

to be determined before the right method gets called.

If there were no inheritance hierarchy, the compiler itself could already determine the

correct code to call, which would completely eliminate the lookup cost during runtime.

That is exactly where struct comes in to play.

However, using struct requires some care:

1. No new keyword is required when initializing a struct (unlike class).

2. For struct, s1==s2 means all their fields are equal, whereas for classes, c1==c2 means

they reference the exact same piece of storage. In that sense, the "equal" sign is less

contingent for struct.

3. There are no references to instances of a struct, because a struct contains all the fields

within itself. It is neither a reference, nor does it require a reference.

2.3.5 Distribution in X10

X10 is a language designed for distributed computing, so the ability to scale computation

into distributed systems is essential. X10 provides several necessary concepts to ensure

that heavy-duty concurrency can be achieved.

1. Place: an address space in which activities (like threads in Java) may run.

15

- No two Places have any storage in common.

- An activity at one Place may refer directly to storage at another. [6]

2. At: to designate the Place for execution by 'at(p)' where p is a Place.

- For instance:

 val result = at(p) doSomething();

will cause the runtime to pause the calling activity and go to Place p. Then it will call

doSomething() and send the output back to this Place and assign it to the final result.

After that, the paused activity will continue.

3. Async: used to spawn another activity without the need to wait for current activity to

finish.

4. Finish: enclose a block of code to ensure that all activities inside such a block have

finished before continuing outside the block.

2.3.6 X10's Race-Condition Prevention Mechanism

Besides having types like Double and Lon, X10 also has distributed computing specific

types like atomic. For example:

 atomic count += 1;

As self-explanatory as the declaration statement already is, the variable count can only be

updated atomically, which means if one thread is updating the variable, all other threads

will be locked out until the first thread finishes updating and releases the lock.

A better way to do it is using AtomicLong:

val count = new AtomicLong(0);

In this case, the count is declared as an AtomicLong type, which is more specific than

atomic. Even though the runtime system can figure out the specific type of the variable

count eventually in the first example, it always takes time to infer that information.

16

3. Performance Comparisons

X10 is in a stage where it borrows the runtime mechanism from either C++ or Java. That

means X10 can be compiled into either Java byte codes or C++ binaries. Its higher level

nature may indicate a possibility of performance loss. Whether X10's design concept is

actually helping the performance should be tested with real world performance

observations.

As of June 2011, X10's Java-backend is still significantly faster than the C++ -backend.

[7] Therefore, the comparison will be X10's best performance that comes out of its Java-

backend implementation versus its counterpart in original Java code. The X10 experiment

is based on X10 version 2.2 specifications [8]. Due to constant modifications between

X10 versions, programs written under version 2.2 are not compatible with compilers of

early versions.

3.1 Presentation Format

The same presentation format will be applied on every implementation to ensure a clear

comparison:

1. Algorithm description: a brief description of the nature of the algorithm and its run time

characteristics.

2. Input and output: defines the type of input and expected type of output.

3. Java multi-threaded implementation with specified samples of input and corresponding

output collected.

4. X10 implementation with same set of samples of input and corresponding output

collected.

17

3.2 MergeSort

3.2.1 Algorithm Description

MergeSort is a well-known algorithm based on the divide-and-conquer concept. It divides

the unsorted list into n sub-lists, each containing 1 element. Then it repeatedly merges

sub-lists to produce new sub-lists until there is only 1 sub-list remaining. [9]

3.2.2 Input and Output

Input: an array of size n of unsorted elements

Output: a sorted array and the time spent sorting

3.2.3 Java Multi-Threaded Implementation

The multi-threaded implementation will adopt the same merge() operation when merging

two sequences of sorted numbers. The difference from the sequential approach though is

that more than one thread will be responsible for the sub-sequences, so that they can be

executed at the same time.

A MergeRunnable class is defined to make sure each MergeRunnable is responsible for a

certain sub-sequence.

 class MergeRunnable implements Runnable{

 public void run(){

 // Do this runnable’s share of merge sort

}

}

By creating threads with different runnables, a sequence can be sorted after each thread

has finished its task and merged together. A two threaded implementation with its

running time being recorded is as follows:

18

For the above implementation, sequences of random numbers will be the input and the

resulting running time elapsed will be recorded. The result is shown in Table 1 along with

the result of X10 implementation.

3.2.4 X10 Implementation

X10 has its own way of declaring arrays, which will be evaluated more in later sections:

The algorithmic execution stays the same with its Java implementation counterpart to

ensure the comparison is fair. The same timing mechanism is utilized to record its

execution time as well.

19

3.2.5 Result Comparison

Table 1 is the result based on different input sizes as well as both Java and X10

implementations:

SIZE Java Sequential Java Parallel x2 X10 Sequential X10 Parallel x2

2500 6 6 135 40

5000 14 4 168 15

10000 23 9 178 21

20000 20 4 194 50

40000 20 10 239 92

80000 27 14 317 167

160000 43 28 528 349

320000 90 36 881 668

640000 153 82 1567 1320

1280000 273 136 2949 2511

2560000 629 260 5661 5322

5120000 1019 496 11446 10969

Table 1: Result on MergeSort using Java/X10 (In Milliseconds)

It is shown clearly, that in this case, X10 takes almost 10 times the amount of time to

finish the same task, which is disappointing. However, some additional tweaks may be

applied to better take advantage of X10’s nature. A little tweak will reveal a subtle but

crucial point when programming in the X10 language.

20

3.2.6 Optimizing X10 Implementation

The above comparison is disappointing on X10’s part. The reasons can be listed after

some investigation:

1. X10’s Array class is more general than Java’s. Array in X10 supports multi-dimensional

arrays over arbitrary regions. It is very important to tell the X10 compiler statically that

the Array is a 1-dimensional, dense, zero-based array in the above experiment.

2. When X10 code with tight loops over arrays is compiled, the ‘-O’ option is very helpful

in enhancing the performance of the loop.

With the above issues being taken care of, the X10 implementation of MergeSort is

modified to the following:

//Create an array to be sorted.

 val arraySize = Int.parse(args(0));

 var Array1:Rail[Int] = new Rail[Int](arraySize);

 var Array2:Rail[Int] = new Rail[Int](arraySize);

Rail[T] is a typedef for Array[T]{rank==1, zeroBased, rect}, where the rank of the array

is 1 (one dimensional) and the base is 0 (first index starts from 0). Accordingly, all the

indexes in the above implementation are updated to adapt that.

The result is shown in Table 2 and Table 3. In addition to the optimized X10 code, the

thread number is scaled up to 8 this time.

21

Testing Machine: CPU: AMD FX-8120 Eight-Core RAM: 8GB

L2 Cache: 8MB L3 Cache: 8GB

SIZE Java Sequential Java Parallel x2 Java Parallel x4 Java Parallel x8

2500 6 6 7 6

5000 14 4 2 2

10000 23 9 12 10

20000 20 4 2 4

40000 20 10 7 6

80000 27 14 13 6

160000 43 28 12 18

320000 90 36 32 27

640000 153 82 52 57

1280000 273 136 91 95

2560000 629 260 166 125

5120000 1019 496 496 271

Table 2: Result of MergeSort using Java (In Milliseconds)

SIZE X10 Sequential X10 Parallel x2 X10 Parallel x4 X10 Parallel x8

2500 53 41 14 2

5000 94 16 6 4

10000 98 6 19 6

20000 110 18 25 21

40000 133 42 41 28

80000 170 70 77 54

160000 255 140 151 110

320000 397 274 271 314

640000 727 582 461 407

1280000 1301 970 990 965

2560000 2342 2006 2102 2066

5120000 4582 4365 4261 4200

Table 3: Optimized Result of MergeSort using X10 (In Milliseconds)

22

(Vertical Axis in miliseconds; Horizontal Axis represents number of input)

Chart 1: Comparison of X10 Performance Before and After Optimization

In comparison to non-optimized X10 code, the optimized code does have a significantly

better result with 4365 milliseconds as opposed to 10969 milliseconds on the same size of

5,120,000 elements when using two threads.

However, it is still significantly slower than Java’s implementation, both sequential and

parallel. Also, the parallel X10 code is noticeably faster than its sequential counterpart

only until a certain size. With a 40000 elements array, the eight-thread parallel

implementation takes 21.05% of what the sequential implementation takes to finish,

while with a 5,120,000 input size, the number is 91.66%. With Java’s 26.59% on the

exact same input size, X10’s parallel performance still has a long way to improve.

23

(Vertical Axis in miliseconds; Horizontal Axis represents number of input)

Chart 2: Comparison of performance between Java and X10

3.3 QuickSort

3.3.1 Algorithm Description

QuickSort, also known as “partition-exchange sort”, is a comparison sort that requires

O(nlog n) comparisons on average and, in efficient implementations, is not a stable sort.

QuickSort can be implemented with an in-place partitioning algorithm, so the entire sort

can be done with only O(log n) additional space [10].

3.3.2 Input and Output

Input: an array of size n of unsorted elements

Output: a sorted array and the time spent sorting

24

3.3.3 Java Multi-Threaded Implementation

Similar to the implementation of MergeSort, each thread is responsible for a certain

portion of the sequence, except that for QuickSort, no merging is required.

In QuickSorter.java, the actual quickSort method is defined:

QuickRunnable.java is created for Java’s multi-thread implementation (X10

implementation can spare those lines of code because it does not need any Runnables):

When the program is running, same timing mechanism is used:

25

The result is shown in Table 4 along with the result of the X10 implementation.

3.3.4 X10 Implementation

With exactly the same algorithm, the X10 implementation will use async to spawn out

threads. This time Rail[T], along with other optimizing techniques, are used:

3.3.5 Result Comparison

Table 4 is the comparison results based on different input sizes on multiple runs:

26

Table 4: Result of QuickSort based on Different Sizes using Java (In Milliseconds)

Table 5: Result of QuickSort based on Different Sizes using X10 (In Milliseconds)

SIZE Java Sequential Java Parallel x2 Java Parallel x4 Java Parallel x8

2500 9 6 3 4

5000 13 11 6 7

10000 22 9 7 6

20000 28 7 2 2

40000 42 3 4 4

80000 41 6 5 7

160000 46 22 24 18

320000 88 42 46 32

640000 181 111 79 69

1280000 695 342 303 288

2560000 1982 1349 1212 1016

5120000 9241 5077 3449 2659

SIZE X10 Sequential X10 Parallel x2 X10 Parallel x4 X10 Parallel x8

2500 18 4 8 5

5000 25 7 20 3

10000 84 7 11 5

20000 86 10 17 8

40000 83 35 21 43

80000 110 69 57 70

160000 238 169 199 148

320000 638 535 575 454

640000 1848 1470 1499 1456

1280000 5869 5603 5655 5602

2560000 22193 22135 22033 22465

5120000 84469 84281 84753 85005

27

X10 has a similar performance as in the merge sort test case, which is one tenth of Java's

performance. One interesting observation is that both programs’ optimal input size for

performance is between 80000 and 160000. This is due to the machine's CPU cache and

memory where the AMD FX8120 has eight cores with 8MB L2 cache and 8MB L3 cache

for each core. After the cache is filled up when taking in a large size of input, the speed

will be noticeably slower when RAM kicks in.

Chart 3 and Chart 4 illustrate this difference clearly. With a 5,120,000-element array,

X10's sequential and parallel implementations yield almost no different outcome; on the

other hand, with fewer than 80,000 elements, the parallel version is truly faster.

(Vertical Axis in miliseconds; Horizontal Axis represents number of input)

Chart 3: Comparison of performance between Java and X10

28

(Vertical Axis in miliseconds; Horizontal Axis represents number of input)

Chart 4: Comparison of performance of X10 with Smaller Input Size

Even with faster parallel performance, which is expected, X10's performance on shared

memory is still not comparable to Java's.

29

3.4 Strassen Matrix Multiplication

3.4.1 Algorithm Description

Strassen introduced an algorithm in 1969 to multiply M x M matrices, which has a lower

complexity than the traditional O (M
3
) [11]. The algorithm is presented in Figure 1. It

demonstrates the scheme for the product of two 2 x 2 matrices. This scheme involves

seven multiplications and 18 additions instead of the usual eight multiplications and four

additions for two 2 x 2 matrices.

Figure 1: Strassen’s Matrix Multiplication Algorithm

From a parallel processing point of view, the above calculations can be parallelized

whenever no dependency of execution exists. For example, T1 = A11 + A22 and T6 = B11 +

B22 are two executions that have no dependency upon one another. However, any

calculations from different phases are subject to the dependency barrier. Q1 = T1 * T6 has

to wait until T1 and T6 get their values after Phase 1.

30

With that in mind, programs that parallelize the calculation of the product of two 16 x 16

matrices are written to compare between Java and X10.

3.4.2 Java Multi-Threaded Implementation

With Java, Threads and Runnables are used again for consistency throughout the

experiment. For an eight-thread implementation, eight Runnables have to be constructed

to get the job done.

Each thread is doing its own share of calculation in each phase of the Strassen Matrix

Multiplication.

The result of Java’s performance is shown in Table 6 along with X10’s performance

result.

3.4.3 X10 Implementation

Again, X10 implementation adapts the same algorithm with specific X10 programming

language optimization:

31

Since the thread-spawning has to happen several times through the program. X10’s

“Runnable Free” syntax saves quite a few lines of code.

3.4.4 Result Comparison

Table 6 is the comparison results based on random generated matrices on multiple runs:

Run # Java Sequential Java x8 X10 Sequential X10 x8

1 231 158 377 294

2 198 131 396 309

3 207 146 298 265

4 232 143 325 287

5 209 142 366 298

6 204 179 372 291

7 208 152 309 259

8 223 142 361 278

9 233 135 332 266

10 202 155 351 284

Average 214.7 148.3 348.7 283.1

Table 6: Result Comparison of Strassen’s Matrix Multiplication (In Milliseconds)

With 16 x 16 matrices multiplication, the eight-thread parallel implementation of Java

takes 69.07% of what the sequential implementation takes to finish, while X10 takes

81.19%. The parallel implementation is not significantly faster because only part of the

algorithm is parallelizable; however, X10 still shows less impressive results compared to

Java.

32

3.5 π Calculation

Another performance criterion is how efficiently each thread accesses shared atomic

variables. [12] A comparison is conducted using the algorithm to compute π.

3.5.1 Monte Carlo Method

The Monte Carlo method was introduced in the 1940s. [13] It uses probability

distribution as the means to compute π. For example, given a square of 1.0 x 1.0, one

quarter of a circle is inscribed within, as shown in Figure 2. If objects are uniformly

scattered within the square, the ratio of the number of objects in blue (inside the circle)

and the number of objects in white (outside the circle) should equal π/4.

Figure 2: Monte Carlo method on π calculation

Because the Monte Carlo method is essentially about the count of objects, programs can

be written to test the performance of the efficiency of how the count is updated. With that

in mind, both Java and X10 implementations do not use local counts; instead, every

33

update of the shared count happens after one thread determines whether or not the object

is inside the circle.

3.5.2 Java Multi-Threaded Implementation

Java’s implementation creates four threads, each being forced to access the shared

variable count:

The result is shown in Table 7 along with X10’s performance result.

3.5.3 X10 Implementation

X10 adopts the exact same implementation to coerce each thread to compete for one

shared variable:

34

3.5.4 Result comparison

Table 7 is the comparison results based on different input sizes on multiple runs:

Size of Domain Java X10

2500 8 16

5000 9 23

10000 18 35

20000 23 49

40000 30 53

80000 38 91

160000 58 95

320000 98 182

640000 154 238

1280000 349 405

2560000 724 862

5120000 1523 1329

Table 7: Result Comparison of π calculation (In Milliseconds)

35

X10’s performance shows a slight edge this time when the input size is very large.

(Vertical Axis in miliseconds; Horizontal Axis represents size of domain)

Chart 5: Comparison of performance of π calculation

36

On an input size of 1,000,000, where the atomic variable count gets updated for hundreds

of thousands of time, X10’s performance is significantly better:

Run # Java X10

1 4179 1960

2 3879 2123

3 4221 2052

4 4087 2050

5 4107 2037

6 3703 2005

7 4371 1923

8 4186 1988

9 3922 2068

10 4108 2000

Average 4076.3 2020.6

Table 8: Result Comparison of π calculation on input size of 1,000,000 (In Milliseconds)

As shown in Table 8, X10 takes 50.43% less time than Java to calculate π. Given the fact

that X10 did poorly on almost all previous experiments, the better efficiency of updating

the atomic value is very likely the reason X10 does well with π calculation in this case.

37

4. Programmability Comparison

Some of X10's programming and syntax differences were mentioned in earlier sections to

illustrate X10's idealism towards distributed computing. This section will focus solely on

the ease of programmability of Java and X10 in its present format.

4.1 Spawning and Synchronizing Threads

For concurrency programming, spawning and synchronizing threads is the portion of

code most frequently written to support the distributed-computing purpose.

For Java, there are two ways to do this:

1. Use a Runnable object:

The Runnable interface defines a single method, run(), meant to contain the code

executed in the thread. [14] With this approach, the runnable object has to be passed in as

an argument to construct a Thread object. For example:

 public class SampleRunnable implements Runnable{

 public void run(){

 //Do the task

 }

 }

 Thread t = new Thread(SampleRunnable);

 t.start();

2. Subclass Thread:

The Thread class itself implements Runnable, though its run() method does nothing. An

application can subclass the Thread class, providing its own implementation of run(). For

example:

 public class SampleThread extends Thread{

38

 public void run(){

 //Override default behavior and do the task

 }

 }

 (new SampleThread).start();

For Java, synchronizing threads would come after spawning and finishing the tasks:

 try{

 thread1.join();

 thread2.join();

 }

 catch(InterruptedException ie){

 System.err.println(ie.toString());

 }

Those few lines of code usually cannot be spared if one wants to create threads as a way

to finish some tasks concurrently in Java.

For X10, spawning and synchronizing happens altogether with the following syntax:

 finish{

 async{

 //Thread 1 execution

 }

 async{

 //Thread 2 execution

 }

 async{

 //Thread 3 execution

 }

 }

 // All threads are synced and joined, main thread ready to go....

39

It is clear that X10's syntax is much simpler. No Threads or Runnables need to be

explicitly created, and no method needs to be overridden like in Java. Inside each async

block, all the lines are normal statements as if they are from a sequential program. After

all threads finish their execution, no try{} catch{} blocks are needed. With finish{}

enclosing the parallel portion, all the threads will be synchronized after they exit the

finish{} block.

4.2 Functions

Functions are used extensively in many programming languages. A function takes a set of

inputs; does some calculations on the inputs; and then returns a set of results.

In Java, a function is declared as following:

 public int calculateAnswer(int arg1, String arg2, double arg3){

 //do the calculation here

}

The only required elements of a method declaration are the method's return type, name, a

pair of parentheses, and a body between braces.

In X10, the basic syntax for functions is:

(arg1Type, arg2Type, ...) => returnType

For example:

 var computeSum: (a:Array[Float](1)) => Float;

The value of the variable of computeSum -- or in other words, the body of the function

computeSum -- will be a method that takes a singly-indexed array of Floats and returns a

Float.

40

The function body may be a block like Java's function body. For instance, to compute an

integer's square value, one can use addition repeatedly:

 val square: (Int) => Int

 = (n:Int) => {

 var result: Int = 0;

 for (var i=0; i<n; i++)

 result += n;

 return result;

 }

The declaration alone, (Int)=>Int, is neat; however, a definition of an X10's function has

redundant syntax as both (Int)=>Int in the first line and (n:Int)=>{} in the rest of the lines

are present.

The redundant syntax may have special purposes, one of them is to make sure that the

function can be taken as an object.

4.2.1 Function as an Object

It is sometimes possible to need a function as an argument for another function's

parameter list.

In Java, a common pattern would be to wrap a function body within an interface. For

example, the interface Callable can achieve that purpose. Any class that implements

Callable will have to override its call():

 public T funcToBePassed(){

 //do something

 }

 public void funcTakesAnotherFunc(Callable<T> func){

 //do something

 }

41

When calling the funcTakeAnotherFunc(), using an anonymous class will achieve the

goal:

 funcTakesAnotherFunc(new Callable<T>(){

 public T call(){

 return funcToBePassed();

 }

 });

In X10, because a function has already been assigned to a named variable, the above task,

which requires more care for Java, would be trivial for X10:

 val r = new Random();

 val rand = ()=>r.nextDouble();

 val calculationUsingRandomNumber = calculateSomething(rand);

where rand in the above example is a function that takes no argument and returns a

random number each time it is called.

4.3 Array

In Java, a one-dimensional array's declaration and assignment is as trivial as possible:

 int[] anArray = new int[10];

 anArray[0] = 100;

 ...

The case for two-dimensional arrays is not too much more complicated than that for one-

dimensional arrays:

 int[][] rank2Array = new int[10][15];

 rank2Array[0][0] = 100;

 ...

42

or if the assignment has some rules, then the syntax should be as follows:

 for(int i=0; i<10; i++){

 for(int j=0; j<15; j++)

 //assignment

 }

However, 3-tuples, 4-tuples and even more tupled arrays will be complicated to initialize

and present.

In X10, the array system introduces the concept of Points and Regions. A Point

corresponds to an element in the array that is of the rank of n (n-tuples), while Regions

are the domains within which the Point can define.

For one-dimensional arrays, the syntax of X10 is a bit cumbersome to use considering the

simple nature of such arrays.

 val region = 1...15; //assume an array of size 15

 var anArray:Array[Int](1) = new Array[Int](1)(region, (Point)=>0);

For two dimensional arrays, the scale of the matrix is defined with Region:

 var region = (1...10)*(1...15);

 var anArray = new Array[Int](region, (Point)=>0);

A for loop can also be used for the assignment of the array.

 for(int i=0; i<10; i++){

 for(int j=0; j<15; j++)

 //assignment

 }

43

In fact, the syntax of both languages is similar in terms of complexity for Arrays. X10

proposes the Region and Point approach for performance consideration. However, as

shown in the MergeSort example, the Point implementation right now is still quite slow,

especially for dense arrays. For dense arrays, better written code in terms of performance

is as follows:

 var anArray = new Rail[Int](15);

This is essentially a declaration of a Java-like array.

4.4 Comparison based on lines of code

To have a quantitative comparison of the syntax complexity between Java and X10, it is

helpful to count the lines of code each programming language needs to accomplish the

same task. It needs to be noted that the comparison is merely based on a few examples, so

it is more of an evaluation than a definitive answer as to which language is more

simplistic in syntax.

Table 9 shows the comparison based on the examples in section 3:

Program Java (Full) X10 (Full)
Java (Exclude

Declaration)

X10 (Exclude

Declaration)

Mergesort 161 99 116 71

Quicksort 173 110 130 82

Strassen 256 160 173 127

π Calculation 56 34 29 15

Table 9: Comparison of Syntax Complexity (In Number of Lines of Code)

It is shown that X10 needs fewer lines of code to execute the same task in all the test

cases above. It certainly indicates the simplicity of X10’s distributed-computing syntax to

some degree.

44

5. Tool Support

As a programming language that has been around since 1995 [15], Java is one of the most

popular programming languages in the software industry. Therefore, the tool support for

Java is state of the art. Many major IDEs support Java in their native mode, for example

Eclipse, NetBeans and IntelliJ. They provide editors for writing and editing programs, a

syntax checker to statically check the program before compilation, and debuggers for

locating logic errors [16].

On the other hand, as a newer programming language, X10 has a less-evolved tool

support system [17]. As of now, X10DT is the only comprehensive development tool that

supports X10’s syntax and runtime debugging.

X10DT is built on top of Eclipse similar to JDT for Java. It allows programmers to edit,

build, and launch the program. Help pages are also integrated into X10DT for X10

language help and X10DT usage help.

The IBM Parallel Debugger for X10 Programming [18] is integrated with X10DT for

debugging purposes. It can assist the programmers to display X10 variables during

runtime; set breakpoints and enable operations, such as step into, step over, pause, and

resume. Although it sounds quite similar to what JDT debugger does for Java

programming, the X10 debugger is much more rough-edged.

Even with X10DT, of which the primary goal is to support X10 development, some X10

specific functionalities are still missing. For example, “autocomplete” is a popular and,

arguably, a must-have feature in Java development, but it is not in X10DT yet. Also, with

X10DT’s debugging tool, it is hard to navigate to the erroneous lines with its less detailed

console information.

45

These limitations do affect the productivity when developing X10 programs. However, it

is reasonable to expect the tool support of X10 to improve over time to solve all these

issues.

46

6. Conclusion

X10 is a well thought-out programming language aiming to be at least a distributed-

computing alternative to Java. Overall, its syntax is traditional with its object-oriented

feature. Programmers with Java or C++ programming background will find the syntax

familiar and easy to acquire. Beyond that, X10 has a very simplistic distributed

computing syntax, which serves its purpose as a concurrent language very well.

Furthermore, X10 introduces some original features and concepts in order to define and

handle the new problems encountered with distributed computing. The idea might be

good, but the execution is not there yet.

To sum it up, X10, as a new language aiming at being a distributed-computing alternative,

has the following advantages and disadvantages:

Advantages:

1. It builds from the ground up with the distributed-computing concept in mind.

2. It is well designed to get rid of some complexity related to distributed-computing

programming.

3. It can be compiled into both Java bytecode and C++ binaries, which gives itself a

broader platform.

4. Its syntax is similar to the most popular programming languages like Java and

C++, so it will be relatively easy to adopt once it is matured.

Disadvantages:

1. Its performance in most aspects is still very poor compared to a sophisticated

language like Java.

2. Its tool support is very poor with a minimum static syntax checker available and

few debugging tools.

47

3. X10 had been changed back and forth quite a bit between version 1.x and 2.x. The

same code from version 1.x does not run when adopting a 2.x version compiler.

It can be noted that all of X10’s disadvantages are due to the fact that it is a very new

programming language. After it matures with time, it should have no problem to be

adopted considering its programmer friendly nature and structural distributed computing

emphasis.

48

Reference

[1] Programming languages for Distributed Computing Systems. By Henri E. Bal,

Jennifer G. Steiner and Andrew S. Tanenbaum. ACM Computing Surveys, Vol 21, No. 3,

September 1989.

[2] X10: Performance and Productivity at Scale. x10-lang.org, October 2012.

[3] Evaluating Skandium’s Divide-and-Conquer Skeleton. By Panagiotis Tsogkas. School

of Informatics, University of Edinburgh.

[4] Preemptive and Cooperative Thread Models. SoftVelocity Inc., 2007.

[5] A Performance Model for X10 application. By David Grove, Olivier Tardieu, David

Cunningham, Ben Herta, Igor Peshansky and Vijay Saraswat. IBM Research.

[6] An Introduction To Programming With X10. By Jonathan Brezin, Stephen J. Fink,

Bard Bloom and Cal Swart. IBM Research, December 2010.

[7]Compiling X10 to Java. by Mikio Takeuchi, Yuki Makino, Kiyokuni Kawachiya,

Hiroshi Horii, Toyotaro Suzumura, Toshio Suganuma, and Tamiya Onodera. ACM

SIGPLAN 2011 X10 Workshop, June 2011.

[8] X10 Language Specification Version 2.2. By Vijay Saraswat, Bard Bloom, Igor

Peshansky, Olivier Tardieu, and David Grove, July 2012.

[9]Merge sort Wikipedia. http://en.wikipedia.org/wiki/Merge_sort, Retrieved October 25,

2012.

[10]Quicksort Wikipedia. http://en.wikipedia.org/wiki/Quick_sort, Retrieved October 25,

2012.

[11] Gaussian Elimination is not Optimal. By V. Strassen. Numerische Mathematik 1969,

14(3):354.

 [12] Automatic Skeleton-Driven Performance Optimizations for Transactional Memory.

By Luis Fabricio Wanderley Goes. Institute of Computing Systems Architecture, School

of Informatics, University of Edinburgh, 2012.

 [13] Monte Carlo method Wikipedia. http://en.wikipedia.org/wiki/Monte_Carlo_method,

Retrieved October 26, 2012.

http://en.wikipedia.org/wiki/Merge_sort
http://en.wikipedia.org/wiki/Quick_sort
http://en.wikipedia.org/wiki/Monte_Carlo_method

49

[14] The Java Tutorials. By Oracle.

http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html, Retrieved

October 11, 2012.

[15] The History of Java Technology.

http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html,

Retrieved October 26, 2012.

[16] Java for Programmers: Deitel Developer Series. By Paul Deitel. Deitel & Associates,

Inc., April 18, 2011.

[17] An Overview of the X10 Programming Language and X10 Development Tools. By

Evelyn Duesterwald, Emmanuel Geay, Vijay Saraswat and David Grove. IBM Research.

[18] IBM Parallel Debugger for X10 Programming. IBM Developer Works.

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/

communityview?communityUuid=e3fb8100-3ee3-4402-bf67-bf66b29797ea,

Retrieved November 2, 2012.

http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=e3fb8100-3ee3-4402-bf67-bf66b29797ea
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=e3fb8100-3ee3-4402-bf67-bf66b29797ea

	An Evaluation of the X10 Programming Language
	Recommended Citation

	tmp.1356193196.pdf.Rz4dW

