
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

An approach to solve job shop scheduling problem An approach to solve job shop scheduling problem

Shashidhar Reddy Karnati
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Karnati, Shashidhar Reddy, "An approach to solve job shop scheduling problem" (2012). Master's Projects.
277.
DOI: https://doi.org/10.31979/etd.t8zb-2wda
https://scholarworks.sjsu.edu/etd_projects/277

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/277?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

An approach to solve job shop scheduling problem

A Writing Project

Presented to

The Faculty of the department of Computer

Science San Jose State University

In Partial Fulfillment

Of the Requirements for the

Degree Master of Computer Science

By

Shashidhar Reddy Karnati

Dec 2012

2	

	

 © 2012

Shashidhar Reddy Karnati

ALL RIGHT RESERVED

3	

	

SAN JOSE STATE UNIVERSITY

The Undersigned Writing Project Committee Approves the Writing Project Titled

An approach to solve job shop scheduling problem

By

ShashidharKarnati

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Soon Tee Teoh, Department of Computer Science 12/13 /2012

__

Dr. Chris Tseng, Department of Computer Science 12/13/2012

Mr. Keerthi Vardhan Gouni, Fuzebox corporaton 12/ 13/2012

4	

	

ABSTRACT

“A biotechnology device manufacturer needs to devise effective scheduling algorithms for

its testing devices. A device is a configuration of machines, each of which performs a

specific task, such as washing, reading and cleaning. These devices are used to test human

samples to diagnose diseases like cholera, malaria etc. Each test is a job, which is to be

processed on these machines for a specific amount of time. Every job has its own pre

defined sequence. These samples are to be processed simultaneously on machines owing to

constraint that as soon as one machine completes processing a sample, it should be

immediately processed by another machine. This constraint is significantly known as no-

wait constraint. Given a set of jobs the web application assigns an optimal start time for

each job owing to no-wait constraint. This results in reducing the overall time taken to

process the jobs, which is formally known as makespan. The main objective of the project is

to minimize the makespan.

The application is specific to laboratory platform, which helps them to test the samples in

optimal time. The heuristic, which I have implemented, is designed with future

advancements in mind. The application can be extended to test different heuristic

procedures by keeping the time tabling intact. The development environment to be used in

this project will require Microsoft Visual Studio, C#, ASP.NET, and other real time chart

tools like Microsoft Silverlight.”

5	

	

Table of Contents

ABSTRACT 4

1.0 Introduction and Background 6

1.1. Objective 8

1.2. Scope 8

1.3. Software development model: 8

2.0 Literature Review 9

3.0 Problem Description: 11

3.1 Terminology 11

3.2 Problem Statement: 11

3.3 Mathematical Representation: 11

4.0 Project Requirements: 12

5.0 Solution approaches: 13

5.1 Why the TABU Search: 13

5.2 Algorithm: 14

6.0 Software Requirements: 16

7.0 Design and Implementation: 17

7.1 Flow Chart 17

7.2 Architecture Diagram 18

8.0 Evaluation: 25

9.0 Implementation Issues: 31

10.0 Lessons Learned: 32

11.0 Conclusion and Future Work: 33

12.0 References: 34

13.0 Appendices: 35

13.1 Appendix A: Terminology 35

13.2 Appendix B: Mathematical representation 37

13.3 Appendix C: Complete Local Search with Limited Memory (CLLM): 39

6	

	

1.0 Introduction and Background

A biotechnology device manufacturer needs to devise an algorithm to test their devices.

These devices are used to test blood samples to diagnose diseases like Malaria etc. A device

is a configuration of machines, which performs a particular task such as adding reagent,

washing and cleaning. These samples are collected in microplate. A microplate is a

collection of 96 samples of the same kind of disease to be diagnosed. A test on the sample is

called a job. Jobs contain operations such as cleaning and washing to be performed on a

particular machine for a given processing time. These jobs are currently being processed

sequentially, which is very time consuming, as the machines are being idle. As soon as one

machine completes a job the next machine should immediately start processing the job.

There should be no wait between two consecutive operations of a job, which is significantly

referred to as job scheduling with no wait constraint. I need to implement an algorithm such

that given a set of jobs to be processed on a set of machines; I need to output the schedule of

jobs with optimal start times assigned to each job, satisfying the no wait constraint. A job

shop problem with no wait constraint is an NP-hard problem, which cannot be solved, in

polynomial time. There are no exact algorithms to solve these kinds of problems in a given

time. It is very difficult to calculate the optimal schedule even for two jobs and two machine

problems; hence, we look for heuristics to solve the job shop problem with no-wait

constraint. The heuristic gives us a feasible schedule of jobs with start times assigned to

each job, guaranteeing the efficient use of resources.

7	

	

Fig 1: A microplate

I have studied different heuristics and implemented the Tabu search heuristic. I compared

and contrasted the Tabu search with other heuristics based on space and time complexity.

The Tabu search is easy to understand and can be extendible. I have also implemented the

Exhaustive enumeration technique to compare it with the results of the Tabu search. The

web application is developed particularly for a laboratory platform. This web application

can be used by laboratories to make efficient use of the resources. The application can also

be used in other manufacturing and production environments with slight modifications to

the problem. The user interface requirements are that user should have the flexibility to

input jobs, machines and their processing times. The output should be a schedule of jobs

with their respective start times, which the laboratories use to schedule their jobs to

minimize the overall processing time to complete all the jobs.

8	

	

1.1. Objective

The first objective of the project is to implement a job scheduling heuristic algorithm to

address a resource allocation and job scheduling in the biotechnology automation

platform. Secondly to implement to implement a web application, which accepts set of

jobs as input and displays the sequence of jobs with their optimal start times.

1.2. Scope

The scope of the project is limited to automated laboratory platform to make efficient

use of resources and to minimize the processing time. The scope of the project is

limited to single instance of each machine and can be extended to multiple instances of

each machine in the future.

1.3. Software development model:

I have followed the Rapid Application Development model, which allows us to change

the requirements and created environment for faster development of software. After

each stage, I have tested the prototype with requirements. Rapid application

development allows me to have minimal planning. After working with rapid application

prototype development, I feel that it is extremely suitable for small teams and faster

software development.

9	

	

2.0 Literature Review

 Tabu Search is used widely on machine scheduling and job-shop scheduling problems.

In his study Glover (1990)[7], stated that Widmer & Hertz’s (1990)[8] applications of tabu

search to flow shop sequencing problems succeeded in obtaining solutions superior to the best

previously found by applying a range of methods in about 90% of the cases. Tabu search has

shown superior results in other recent applications as well. Blazewicz et al. (2008)[9] presented

two meta-heuristics Tabu search, and variable neighborhood search (VNS) for the two-machine

flow-shop problem with weighted late work criterion and common due date. Initial solutions

were generated by Johnson’s algorithm (1954)[10] or also called as list scheduling algorithm

which is a constructive method, that builds a solution by executing jobs selected according to a

given priority dispatching rule.

 There are many other application fields and problems in which tabu search is used. For

example: Cell planning with capacity expansion in mobile communications (Lee & Kang,

2000[]), application-level synthesis methodology for multidimensional embedded processing

systems (Alippi et al. 2003[11]). Cogotti et al. (2000)[12] performed a comparison of

optimization techniques for Loney’s Solenoids Design and proposed an alternative tabu search

algorithm. Emmert et al. (2003)[13] have shown an effective way of bi-partitioning electrical

circuits using tabu serach. It was stated that tabu search offered quick convergence to good

partitioning solutions for circuits in the range of their application. Their algorithms show

dramatic improvement in execution time with good solution quality as compared to a random

move SA approach. They also mention that their placement method is suitable for quickly

initializing the inputs to other nondeterministic placement algorithms. Rajan et al. (2003)[14]

10	

	

proposed a neural-based tabu search method for solving unit commitment problem. Blazewicz

et al. (2000) [15] proposed a tabu search-based algorithm for DNA sequencing in the presence

of false negatives and false positives. Corberan et al. (2000)[16] studied a mixed rural postman

problem in which tabu search was used. Ahr &Reinelt (2005)[17] presented a tabu search

algorithm for the min-max Chinese postman problem.

11	

	

3.0 Problem Description:

3.1 Terminology

For terminology please refer to appendix A

3.2 Problem Statement:

In my problem there are set of jobs and set of machines. Each job has a sequence of

operations that are to be processed on machines for a given duration. These jobs are

to be scheduled in such a way that the makespan is minimized. Jobs are subjected to

the following constraints:

• No-Wait constraint.

• No two jobs must be processed by a machine at a time.

• No two machines should perform on a job at a given time.

The problem is divided into two sub problems:

Sequencing: A processing sequence of an optimal schedule is found for a given no-

wait job shop problem.

Timetabling: A feasible set of start times of the jobs is found in order to minimize

the makespan for the processing sequence. These feasible set of start times obtained

from the sequencing problem.

3.3 Mathematical Representation:

 For mathematical representations of the problem please refer to Appendix B.

12	

	

4.0 Project Requirements:

The primary goal of the project is to develop a web application that takes number of jobs,

and machines as input from user .The output will be a feasible schedule with set of start

times assigned to jobs. In order to accomplish this, there are two major tasks: Selecting an

appropriate algorithm which best suits the problem and developing a web application.

13	

	

5.0 Solution approaches:

The primary goal of project is to select an algorithm. There are many instances of a job shop

problem, no wait constraint being most important of them. There are only a few algorithms,

which talk about no-wait constraint in job shop problems; most of the job shop problems are

addressed using heuristic approaches, such as genetic algorithms and the Tabu search. The

two algorithms that address the no-wait constraint in most efficient way are The Complete

local search with limited memory and job shop scheduling with the Tabu search. I have

studied both these algorithms and implemented tabu search because of its simplicity and

ease of implementation. After implementation of the Tabu search heuristic I wanted to

check the correctness of algorithm by testing it with different test cases. Initially I tested the

efficiency of the algorithm with my own test cases; I started with simple test cases and later

increased the complexity to check the correctness, later I tested the prototype with standard

test cases from the Operations and Research library. These test cases are standard test cases,

which are documented and used to as a bench mark to test efficiency of different job shop

algorithms. The results are briefly explained in the evaluation section.

5.1 Why the TABU Search:

I compared and contrasted tabu search with complete local search based on cost

factors such as time complexity and space complexity. In terms of space, the Tabu

search fares well, as the complete local search needs three segments of memory to be

allocated. I wanted my application to be scalable and easily maintainable; tabu

14	

	

search supports the above stated criteria. Tabu search supports a flexible frame,

which allows the future users to improve upon the algorithm.

For Complete local search with limited memory refer to Appendix C.

5.2 Algorithm:

Tabu search is a well-known algorithm for solving the combinatorial optimization

problems. The algorithm searches the space ‘S’ of all possible sequences of a given

problem. Using the cost function, a sequence within the space is evaluated, and a

feasible solution is found. The parameters used in the algorithm are:

Initial solution: The initial sequence is generated using well known heuristic

approaches. Some of the heuristic methods are: shortest processing time (SPT),

longest processing time (LPT), shortest machine time (SMT), longest machine time

(LMT) and Random.

Neighborhoods:

The Neighbor of a given sequence is the sequence which is derived from the original

sequence by extracting ‘k’ consecutive jobs from the sequence and inserting in the

same order at different positions in the rest of the sequence. This is referred as the

‘k’ insertion neighborhood. The concept of tightly intertwined jobs is used as the

criteria for selecting the ‘k’ consecutive jobs. I have used two insertion

neighborhoods for finding the next neighbor. I selected two jobs, which are tightly

packed with each other, and took the combination of these two jobs. These tightly

15	

	

packed jobs are inserted between all the positions to calculate the make span. If I

have a 6x6 problem then I have five iterations for finding neighbors. The steps of the

algorithm are explained below for better understanding.

Steps in Algorithm:

1. Define number of loops (L), a counter (V), a TABU list of length (T), a memory

slot B for the best solution so far and a neighborhood (N).

2. Choose an initial solution i ∈ S, set B = i andV= 0.

3. Search the neighborhood N (i) for the best solution i1= N (i)that is not in TABU

list and set V= V +1. Enter i1 into the TABU list and over-write an element by

FIFO if necessary.

If no such solution i1 exists, then stop.

4. If f (i1) < f (B), if the makespan of i1 is less than the value which is in TABU list,

then set B= i1, V=0, i= i1 and go to step 3.

5. If V=L, then stop.

6. Set i=i1 and go to step 3.

 The function “f” computes the makespan for the sequence from step 3.

16	

	

6.0 Software Requirements:

Microsoft Visual Studio: Microsoft visual studio is an integrated development environment

from Microsoft. It can be used to develop a console and graphical user interface

applications, windows form applications etc.

Microsoft ASP.NET: ASP.net allows programmers to build dynamic websites web

applications and web sites. ASP.NET is built on the common language runtime. It allows

programmers ASP.NET code using any supported .NET language.

Microsoft C#: C# is a type-safe, objected-oriented language. It allows creation of windows

applications, web services and controls etc.

CSS, Java script, Ajax: CSSis used to style web pages written in HTML and XHTML, we

used java script to provide enhanced user interface. Ajax uses a combination of HTML and

CSS to mark up and style information.

17	

	

7.0 Design and Implementation:

7.1 Flow Chart

Initial
solution

Create a candidate
list of solutions

Evaluate solutions

Choose the best
admissible solution

Stopping
conditions

met ?
Update Tabu list &

Conditions

Final
solution

No

Yes

18	

	

7.2 Architecture Diagram:

The client is a web browser and the server is running the job shop scheduling web application.

The job shop scheduling web application contains modules that receive the input, process the

input and send the response back to the client.

19	

	

7.3 Class Diagram:

The class diagram illustrates the classes used to implement the job shop web application. Each

class is described below.

JOB- This class stores the properties of each job like job name, job I.D etc..,

Operation – It stores the operations of a job.

KL – this class stores indices of matching operations from the pair of jobs.

20	

	

Combination, Variations - this is used for different permutation, combinations of jobs.

Schedule- it holds the makespan and start time of each sequence.

Machinetype- this class is used to get the machine type of the machine.

21	

	

7.4 Gantt Chart

Scheduling of jobs with no wait constraint.

22	

	

7.5 Implementation:

7.5.1 Heuristic Function:

 The application calls Heuristic function in order to calculate the initial sequence. The

processing times of each job is the total time of the every operation in the job, the function then

sorts the jobs based on their processing times.

23	

	

7.5.2 Tabu Function:

The tabu function then computes candidate list of solutions based on the make spans. The

sequence generated by the tabu function is then processed by another function to check for

conditions computed by the tabu function.

	

24	

	

7.5.3 Process Tabu Function:

The Process tabu fuction is the main part of the application that checks if the sequences met

the conditions and then rearranges the sequence to compute the final sequence.

25	

	

8.0 Evaluation:

Evaluation is the most important section of the project. I have implemented both

exhaustive enumeration and tabu search algorithms as part of my prototype. I started testing

these prototypes using simple test cases that can be solved manually. I compared the results

of the prototype with manual calculations, and the results were accurate. Later I tested these

prototypes with standard test cases, which are used in the tabu search paper. These standard

test cases are job shop problems, which have been documented in the Operations Research

library and are used for testing different job shop algorithms in the industry. The exhaustive

enumeration results for these standard test cases were accurate, and there was a minimal

variation in the heuristic results when compared to that of the paper. The minimal variation

is due to the initial sequence I randomly generate to start the neighborhood search. I have

prepared some test cases particular to the job shop problem with no wait constraint. I also

compared and contrasted exhaustive enumeration with tabu search heuristic using different

parameters, such as time and size of the problem. I recommend using exhaustive

enumeration when there are a less number of jobs, because as the number of jobs increases,

the number of permutations that the algorithm has to calculate increases, which results in

degraded performance. The Tabu search heuristic works well if there are more jobs. After

evaluation of the prototype, I was able to deliver a job shop scheduling web application.

26	

	

The user interface of the web application is very user friendly. I have spent a

considerable amount of time on user interface, so that the user has the flexibility to input the

problem using a text file or manually. Input using a text file allows the user to modify the

problem in the text file. Hence, I have an optimized input format. I measured the time taken

for executing each test case for both exhaustive enumeration and tabu search. For a given

standard 6x6 job shop problem, exhaustive enumeration takes 6.37 Msec where as the tabu

search heuristic takes 2 Msec. the output is a sequence of jobs with their staring times

currently, I am displaying the best sequence with the minimum make span. Provided the

results of the test cases in Appendix E.

8.1 Test Cases:

The input test cases below consist of a matrix looking sequence of numbers. The

complete line represents a job. Each operation is separated by a “,”, of the pair, first number

represents the machine type and the second represents the duration of operation on that

particular machine. The input test cases can be manually entered, by entering the machine

type, jobs and operations available on the left or by uploading a text file that consists of the

test cases like below for easier usage.

 The Output consists of both Heuristic and Exhaustive processing results for a

better comparison of the processing sequence, the make span and the calculation time. The

Tabu search algorithm clearly has resulted in a better processing sequence and the

calculation time is drastically reduced, for example in test case 3, the exhaustive

computation has resulted in 2497 milliseconds of computation time in comparison to 5

milliseconds of heuristic processing time.

27	

	

8.1.1Test case 1:

This is the test case for 3x2, which means 3 jobs, each with 2 operations and their duration.

Input sequences:

0 5,1 10

1 10,0 5

2 10,0 5

28	

	

8.1.2 Test case 2:

This is the test case 4x4

Input Sequence:

2 10,0 5,1 10

1 5,2 5,0 5

0 5,1 10,2 10

3 10,3 5,3 15

29	

	

8.1.3 Test case 3:

This is the test case for 6x6

Input Sequence:

2 1,0 3,1 6,3 7,5 3,4 6

1 8,2 5,4 10,5 10,0 10,3 4

2 5,3 4,5 8,0 9,1 1,4 7

1 5,0 5,2 5,3 3,4 8,5 9

2 9,1 3,4 5,5 4,0 3,3 1

1 3,3 3,5 9,0 10,4 4,2 1

30	

	

8.1.4 Analysis

Based on the below analysis rearranging the data to be the best case scenario, the time

taken to compute the makespan is lesser than the worst case scenario, but did not affect the

makespan.

31	

	

8.1.5 Comparisons

For the below heavy test data, Tabu search results in a relatively better makespan with

very less computational time

2 44,3 5,5 58,4 97,0 9,7 84,8 77,9 96,1 58,6 89

4 15,7 31,1 87,8 57,0 77,3 85,2 81,5 39,9 73,6 21

9 82,6 22,4 10,3 70,1 49,0 40,8 32,2 48,7 80,5 71

1 91,2 17,7 62,5 75,8 47,4 11,3 7,6 72,9 35,0 55

6 71,1 90,3 75,0 64,2 94,8 15,4 12,7 67,9 20,5 50

7 70,5 93,8 77,2 29,4 58,6 93,3 68,1 57,9 7,0 52

6 87,1 63,4 26,5 6,2 82,3 27,7 56,8 48,9 36,0 95

32	

	

Comparisons	
 Tabu Search	
 Median of the

tabu list	

Exhaustive	
 Median of all

Permutations	

Make Span	
 1148	
 11451 / 12 =

954	

928 6195358 / 5040

= 1230

Time to

compute (in

milli seconds)	

19	
 Based on the

tabu list.	

32066	
 Based on the

exhaustive

results.	

 Based on the above comparisons table for heavy test data, median of tabu list yields

comparatively better makespan in very less computational time when compared to exhaustive.

33	

	

9.0 Implementation Issues:

I had few issues when implementing the tabu search heuristic. I was not able to understand

the concept of k-insertion and implemented my own understanding of the algorithm. I faced

few logical errors in the development of the prototype. The major problem I faced was in

implementing non-delay timetabling, which satisfies the no wait constraint specified in the

requirements. I am glad to say that the non-delay timetabling is working well.

34	

	

10.0 Lessons Learned:

From the academic perspective, I have learnt new concepts about job shop scheduling and I

was exposed to different job shop problems and their solution approaches. I also understood

how these problems could be modeled using a disjunctive graph approach. From the project

management perspective, I have understood the role of a software development model in

completing a project successfully.

35	

	

11.0 Conclusion and Future Work:

I have done all the hard work and have successfully implemented the initial project

requirements. I have designed the prototype in such a way that it is flexible and one can

implement a new heuristic algorithm by keeping the non delay timetabling intact. The

code and technical details are well documented, such that readers can understand the

functionality of the system.

The scope of the project can be extended to multiple instances of each machine. I

recommend modeling the job shop problem using the Disjunctive graph model as it is

widely used at the industry level.

36	

	

12.0 References:

[1] C. Rajendran, "A no-wait flowshop scheduling heuristic to minimize makespan,"

Journal of the Operational Research Society, vol. 45, pp. 472-478, 1994.

[2] C. Schuster, "No-wait job shop scheduling: Tabu search and complexity of

subproblems," Mathematical Methods of Operations Research, vol. 63, pp. 473-

491, 2006.

[3] J. Zhu, et al., "Complete local search with limited memory algorithm for no-wait job

shops to minimize makespan," European Journal of Operational Research, vol.

198, pp. 378-386, 2009.

[4] C. Sriskandarajah and P. Ladet, "Some no-wait shops scheduling problems: complexity

aspect," European Journal of Operational Research, vol. 24, pp. 424-438, 1986.

[5]. P. Brucker, Scheduling algorithms: Springer Verlag, 2007.

[6] http://las.perkinelmer.com/Catalog/ProductInfoPage.htm?ProductID=6005176

[7] Glover, F. (1989). Tabu Search – Part II, ORSA Journal on Computing, Vol.2, No.1,

Winter 1990, 0899-1499/90/0201-0004

[8] M. WIDMER & A. HERTZ, A New Approach for Solving the Flowshop Sequencing

Problem, to appear in Euro-pean Journal of Operational Research

[9] BLAZEWICZ, J., et al. (2008). Metaheuristic approaches for the two-machine flow-shop

problem with weighted late work criterion and common due date. Computers &

Operations Research, 35 (2), pp. 574-599.

[10] S.M. Johnson, Optimal two- and three-stage production schedules with setup times

included, Naval Res. Log. Quart. I(1954)61-68.

37	

	

[11] Alippi, C., Galbusera A., & Stellini M. (2003). An Application-Level Synthesis

Methodology for Multidimensional Embedded Processing Systems, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22,

No. 11, 0278-0070

[12] E. Cogotti, A. Fanni, and F. Pilo, “A comparison of optimization techniques for

Loney’s solenoids design: An alternative Tabu Search approach,” IEEE Trans.

Magn., vol. 36, no. 4, pp. 1153–1157, Jul. 2000.

[13] Emmert, J., M.; Lodha, S. & Bhatia, D., K. (2003). On Using Tabu Search for Design

Automation of VLSI Systems, Journal of Heuristics, 9, 2003, 75–90

[14] Rajan, C.C.A., Mohan M.R. & Manivannan, K. (2003). Neural-based tabu search

method for solving unit commitment problem, IEE Proceedings Online, Vol. 150,

No. 4, July 2003,469-475

[15] Blazewicz, J.; Formanowicz, P.; Kasprzak, M.; Markiewicz, W., T. & Weßglarz, J.

Tabu Search for DNA Sequencing with False Negatives and False Positives,

European Journal of Operational Research, 125, 2000, 257-265, 0377-2217

[16] Corberan, A.; Marti, R. & Romero, A. (1998). Heuristics for the Mixed Rural Postman

Problem, Computers & Operations Research, 27, 2000, 183-203, 0305-0548

[17] Ahr, D. & Reinelt G. (2005). A tabu search algorithm for the min–max k-Chinese

postman problem, Computers and Operations Research, 33 (7 December 2005), 3403-

3422, 0305-0548.

38	

	

13.0 Appendices:

13.1 Appendix A: Terminology

Sample: A biological fluid (typically liquid) such as serum, blood, saliva, etc. on

which the immunoassay test is performed.

Test: A procedure involving multiple Jobs

Operation: Tasks that are performed on samples in a microplate.

Job: Contains number of operations to be performed on a particular machine

Machine: The devices that are used to perform the operations on microplate for

specific amount of time. Ex. Washer, Shaker, Incubator, etc…

Schedule: Sequence of jobs and their respective start times.

Start Time: The time at which the first operation of a job starts.

End Time: The time at which the last operation of a job ends.

Makespan: Difference between the last jobs end time and the first jobs start time in

a schedule.

13.2 Appendix B: Mathematical representation

In order to understand the job shop problem with no-wait constraint effectively, the

problem represented using mathematical notations. Mathematical notations give the

better understanding of the problem.

39	

	

n ϵ Z+ Number of jobs.

u ϵ Z+ Number of machines.

v ϵ Z+ Number of machine types.

J= {Ji| i ϵ [1, n]}

Set of jobs.

bi ϵ Z+ Number of operations in job Ji.

M= {Mr| r ϵ [1, v]}

Set of machine types.

m= {mx|x ϵ[1,u] and type(mx) ϵ M} m is set of machines

pi,k∈Z+ where k ϵ [1, bi] and i ϵ [1, n] pi,k is the processing time of kth operation of job Ji.

Ψ(i, k) ϵ [1,v] where k ≤ bi

Ψ:(Z+, Z+) Z+

Ψ(i, k) is the machine type index of the kth

operation of job Ji.

Ψ is a mapping function which takes two integer

values i, k and returns an integer, which is an

index for the machine type.

40	

	

oi,k = (Mψ(i, k), pi,k) oi,k is the kth operation of job Ji.

Ji = seq{ oi,1 , oi,2………… oi, } Sequence of operations of job Ji.

Ai,k = p!,!
!

!!!
 where k ≤bi

Cumulative processing time of job Ji upto the kth

operation

di =Ai, = p!,!
bi
!!!

Total processing time of job Ji

Si ϵ Z+ Start time of job Ji in a schedule.

S = { si | i ϵ [1,n]}

Schedule S for problem is a set of start times of

jobs satisfying the constraints.

ei = si + di End time of the job Ji.

smin = min {si | i ϵ [1,n] } Start time of the first scheduled job.

emax = max {ei| i ϵ [1,n] } completion time of the last scheduled job

Schedule:

bi

bi

41	

	

A schedule S for Job shop scheduling problem is a set of start times of jobs satisfying the

constraints defined below.

S = {si | i ϵ [1,n]}

Operation oi,k is assigned a machine mx of typeMψ(i, k)at time t=si+Pi,k-1

Makespan:

Makespan is the difference between the end time of the last job and start time of first scheduled

job.

Makespan = emax – smin.

Assumptions:

 The time taken to move a job from one machine to other machine is considered to be

negligible.

 Constraints

sti,j ∈Z+ Start time of jth operation of job Ji.

eti,j ∈Z+ End time of jth operation of job Ji.

eti,j = sti,j+1 where i ϵ [1,n] and j ϵ [1, bi] No-wait constraint. End time of the

operation in a job should be the start time

of its consecutive operation.

Eβ,ϒ = {(g,h)} where β,ϒ ϵ [1, n]

 g ϵ [1,bβ], h ϵ [1,b ϒ]

Set of pairs of indices of operations oβ,g

and oϒ,h which need same type of machine

42	

	

such that the below conditions are satisfied

sϒ - sβ ≥ Aβ,g - Aϒ,h-1 or

sβ - sϒ ≥ A ϒ,h - A β,g-1

∀{g,l} ϵ Eβ,ϒ , β<ϒ

.

No machine processes two operations atthe

same time.

Ai,j ≤Ai,k-1 ∀ k > j and k, j ϵ [1,bi]

No job should be processed by two

machines at the same time.

13.3 Appendix C: Complete Local Search with Limited Memory

(CLLM):

CLLM starts with a given sequence as an initial solution and puts it into

NEWGEN, NEGIHBOR and DEAD are empty.

(1) Generate neighbors for all solutions in the NEWGEN and put them in the

NEIGHBOR if NEGIHBOR is not full. By using pair-wise exchange and 1-

insertion on every solution of NEWGEN neighbors can be generated. The set

of neighbors for a solution π generated by the above procedure is denoted as

GN(π).

(2) Empty NEWGEN

43	

	

(3) Check solutions of NEIGHBOR belonging to DEAD or not. The

solutions belonging to DEAD are called good neighbors and others are called

not good neighbors.

(4) Among all good neighbors those having makespan less than the certain

threshold value are transported to NEWGEN for the next iteration and the

others are kept in DEAD.

 Cbest * (ĩ + 1) is set as the threshold value

 Cbest = is the best-so- for makespan

 Itemp = is the number of iterations without improvement

 Nmax = is the maximum number of consecutive iterations without

improvement

 Boolean flag is set to false at first iteration and it is set to true once

improvement has been improved.

(5) Empty the neighbor, after performing successive iterations Rmax if there is

no improvement then the current instance is reversed.

(6) Maximum number of iterations the algorithm can perform is Imax. Iadd

constant is added to it once there is improvement Imax← Imax ⁺Iadd and are flag is

set to true.

This iteration process is repeated until Imax iterations have been performed no

improvement has been made for Nmax successive iterations or NEWGEN is

empty.

	An approach to solve job shop scheduling problem
	Recommended Citation

	cs 298

