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ABSTRACT 

Easier debugging of multithreaded software 

By 

Sampada Kathare 

 

Software activation is a technique designed to avoid illegal use of a licensed 

software. This is achieved by having a legitimate user enter a software activation 

key to validate the purchase of the software. Generally, a software is a single-threaded program. 

From an attacker’s perspective, who does not wish to pay for this software, it is not hard to 

reverse engineer such a single threaded program and trace its path of execution. With tools such 

as OllyDbg, the attacker can look into the disassembled code of this software and find out where 

the verification logic is being performed and then patch it to skip the verification altogether. 

In order to make the attacker’s task difficult, a multi-threaded approach towards software 

development was proposed [1]. According to this approach, you should break the verification 

logic into several pieces, each of which should run in a separate thread. Any debugger, such as 

OllyDbg, is capable of single-stepping through only one thread at a time, although it is aware of 

the existence of other threads. This makes it difficult for an attacker to trace the verification 

logic. Not just for an attacker, it is also difficult for any ethical developer to debug a 

multithreaded program. 

The motivation behind this project is to develop the prototype of a debugger that will make it 

easer to trace the execution path of a multi-threaded program. The intended debugger has to be 

able to single-step through all of the threads in lockstep.  
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1. Introduction 
 

A lot of commercial softwares in the market, today, usually come with a trial version that has 

limited functionality. In order to take advantage of the full set of promised features, users are 

required to buy the software. After making the purchase, typically, a software activation key is 

provided to the user for activating his copy of the software, thereby enabling its full 

functionality.  

Reverse engineering is the art of backtracking a program with the intent of tracing its flow of 

execution. It is also the skill of refuting the assumptions made by the developer of the program 

with respect to its security and privacy. In this world of reverse engineering, it is a common area 

of interest to be able to overcome the limitations of such a trial version without having to 

actually buy the software. There are a number of debuggers/disassemblers available, viz: 

OllyDbg, that provide a disassembled view of the software. With just the executable or the 

binary image in hand and the help of such a tool, it then takes the knowledge and expertise of the 

user to figure out the patch of code that needs to be changed to disable the check that performs 

the validation of activation key entered by the user.  

There are a number of techniques that can be employed by the software developer to make it 

tougher to reverse engineer his software. Such techniques include detection of debugger, 

injecting junk code just to confuse the attacker, putting in lot of jumps in the code to damage the 

sense of locality etc. Multithreading or splitting the logic in different threads is one such 

technique. In case of a single-threaded program, it is easy for the debugger tool to trace the 

execution path of the single thread that also includes all the validation logic. However, if the 

software is multithreaded, the task gets tougher, with the difficulty of debugging lying in the core 

principle of multithreading itself. My project deals with reducing this level of difficulty and 
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making it one step easier to debug a multithreaded software. My intention here is not to 

encourage hacking of softwares, but just to solve an intellectual challenge raised by 

multithreaded programming.  

1.1 Problem statement & motivation 

 

The difficulty of debugging such a multi-threaded software lies in the basic principle that 

multithreading was designed for – concurrent and, if possible, parallel execution of a program. 

Concurrent programming is an illusion given to the user that multiple tasks are being executed 

simultaneously. In reality, the threads of execution are being swapped in and out of the 

processor, completely utilizing the processor time. The processor idle time is effectively reduced 

and hence this is faster than a normal execution of tasks.  

Parallel programming, on the other hand, is literal parallel execution of threads on multiple 

cores. On a multi-core system, the resources available for executing threads are also multiple. 

Hence, the threads can literally execute in parallel, one on each of the cores, at a particular 

instance of time. In case of a single processor system, this is nothing but concurrent execution. 

The task of scheduling threads to execute in the CPU entirely lies in the hands of the scheduler of 

the operating system. Depending upon the scheduling algorithm applied (such as round robin, 

first-in-first-out, shortest remaining time etc.), there can be a wide range of possible paths of 

execution for the same application. Also, depending upon whether the application is running on a 

single core or multiple cores, it may run concurrently or parallelly, as explained previously. A 

lot of the debuggers available today, however, are not able to single-step through multiple 

threads in lockstep i.e. while you are single-stepping through one thread, you might end up 

executing multiple instructions in the other threads before returning to your thread. This led to 

the idea of my project – to be able to visibly trace the execution path of a multithreaded program. 
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The prototype that has been designed as part of this project will serve as a basic debugger that 

outputs the code of whichever thread is running in the CPU at that instance of time.  

 

2. Research topics 

2.1 Multithreading fundamentals 

2.1.1 Parallel versus concurrent programming 

A thread is the smallest unit of execution that can run within the execution engine of a 

system. There can be multiple threads running within the context of a process, sharing 

the address space of the parent process. Shown below is the relationship between the 

processors, processes and threads. 

    

 

 

 

 

 

 

Figure 1. Relationship between processors, processes and threads 

 

With different threads performing different tasks each, task level parallelism is 

achieved. This parallelism can be in terms of reducing the latency of execution of a 

task or true parallelism with simultaneous execution of tasks. When the multiple 

threads are running on a single core, they achieve concurrency. Whenever a thread 

that has access to the CPU and its resources goes in a wait state, it is swapped out of 
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the execution and some other thread that is ready to actually utilize the resources is 

put into the execution engine. Thus, the CPU cycles are avoided from getting wasted, 

thereby reducing the latency of execution. 

When these threads run on a multi-core system, however, they do run simultaneously, 

owing to the multiple sets of resources available. 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Concurrency versus parallelism 

  

2.1.2 Thread synchronization primitives 

Since all the threads run within the address space of a single process, there is bound to be 

access to some shared memory. To impose an order of execution of threads and control 

the order in which these threads access the shared memory, there is a need of 

synchronization mechanisms. These mechanisms come in the form of mutex, semaphore, 

monitors, condition variables & so on. The section of code that accesses shared memory 

is termed as a critical section of the code. It is required to use one of these 

synchronization mechanisms before and after accessing this critical section. 
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Figure 3. Critical Section and synchronization primitives 

 

Multithreading leads to certain peculiar and intermittent bugs, that may or may not occur 

during runtime. Mentioned ahead are the most notorious of such bugs – deadlocks and 

race conditions. 
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programmatically by various techniques. 
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2.1.4 Race Conditions 

If no synchronization mechanism is used in the code, there is a race amongst the threads 

to gain access to the shared memory. Depending upon who gets the access first, the 

sequence in which this shared memory is read and modified by the threads can lead to a 

different output in every run. This is known as a race condition. 

 

2.2 Multi-threading and multi-core 

 

The notion of multiple threads running in a process has been around for decades. As a recap, a 

thread is the smallest unit of execution, that runs within the address space of the process. All 

threads of a process share its memory. Hence, context switching between threads is easier and 

cheaper than context-switching between processes.  

Two threads running on a single core is different from multiple threads running on multiple 

cores. On a single core, with Hyper-threading technology, most of the processor resources are 

duplicated and each thread gets its own set of resources. The actual execution engine, however, 

is not duplicated. The instructions of both threads are interleaved in such a fashion that the 

processor is kept busy all the time, without wasting any cycles.  This achieves performance gains 

through latency hiding. 

With two threads running on two cores, however, each thread gets its own execution engine. This 

means the threads can run in a truly parallel manner, as shown below. 

This difference of single-core and multi-core had to be kept in mind while developing the 

debugger and also while analyzing it’s output.  
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2.3 How scheduling works 

 

The task of executing a thread of instructions is done in the CPU. The task of scheduling which 

thread gets access to the CPU and its resources belongs to the scheduler. The scheduler is 

concerned with keeping all the processors busy without wasting any CPU cycles. As mentioned 

previously, the lifetime of a thread consists of various states as ready, running, wait etc.: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Lifecycle of a thread 

 

  

When a thread is not running, or is “waiting” for I/O or waiting on an event, it is not utilizing the 

CPU cycle. Instead of keeping it in the execution engine, the scheduler decides to swap it out and 

put another thread that is in “ready” into the execution engine. This is what is called context 

switching. In this fashion, each thread gets access to the execution resources during any 

particular CPU cycle. 
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2.4 Reverse engineering techniques 

 

Given only the binary of an application, there are few techniques that can be applied to figure out 

what might be going on within the program. Mentioned below are some of these techniques. 

2.4.1 Black box analysis 

 

This is a standard reverse engineering methodology that does not require any access to the source 

code of the binary. The analysis involves testing the running program for all sorts of inputs, and 

analyzes the corresponding behavior of the program. With the knowledge of how the output 

varies with input, a guess can be made about the internals of the system. 

2.4.2 Code coverage tools 

Code coverage is finding out what execution path has been taken by each run of the program. A 

lot of code coverage tools available today do not require the source code of the program to be 

available. It is human, while trying to reverse engineer, to skip certain portions of code, thinking 

that it is not significant. Such tools can give a report of how much of such code is yet to be 

analyzed.  

2.4.3 Decompiling and disassembling 

Decompiling is recovering the high-level source code from the binary executable of a program. 

Disassembling is recovering the assembly language code of the binary. There are a few such 

decompilers/disassemblers available in the market today, IdeaPro and OllyDbg to name a few. 

These tools give the best possible estimate of the source code using which, the vulnerabilities of 

the program can be explored.  
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2.5 How debuggers work 

 

A debugger is nothing but a process that debugs another process. Typically, the debugger can 

either create the process to be debugged or simply attach to a running process. Any basic 

debugger needs to be able to do the following in order to debug a process : 

 Set breakpoints in the process  

 Single-step through the code 

 Display the lines of source code  

 

2.5.1 Setting breakpoints 

 

Placing breakpoint is equivalent to deliberately introducing a trap or a software-invoked interrupt 

to occur. When such an interrupt occurs, irrespective of the source code, control is transferred to 

corresponding interrupt service routine. This gives the debugger an opportunity to decide on the 

further course of action to be followed. Usually, the int 3 instruction (0xcc) is used by a 

debugger to set  a breakpoint. The instruction where breakpoint is desired is replaced with the int 

3 instruction, the instruction pointer is decremented and the program is resumed. This causes the 

int 3 instruction to be executed, thereby generating a trap, and pausing the process. 

 

2.5.2 Single-stepping 

 

Single-stepping is a feature of the x86 chipset that is used to trace the execution of a program. 

There is a special flag in the processor that, if set, will cause only a single 
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instruction to be executed followed by an interrupt [1]. For tracing the execution path, this flag 

needs to be reset again and again, for every instruction. 

2.5.3 Enumerating source code 

 

 Any executable is a binary image of the source code. However, to enumerate the lines of source 

code from this binary, certain other information is required for the debugger. This information 

comes in various formats, one of them being PDB file.  

 

 

3 Design  
 

The developed prototype has been developed with the following functionality: 

 The debugger is notified for various events that occur in the application being debugged. 

These events primarily include 

o Thread creation 

o Process creation 

o Thread completion (indicated by the exit status of the thread) 

o Process completion 

o Exceptions such as breakpoint, single-step, array out-of-bounds etc. 

 When an event is notified to the debugger, all the threads/processes in the debugged 

application are paused, until some action is taken by the debugger. 

 Every new thread that is created in the application is put in a single-step mode.  

 For every thread that is scheduled by the scheduler, it is displayed in the output window 

with a unique color. 
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 Whenever the thread is swapped out and another thread is scheduled to run, the 

corresponding color changes too. This makes it easier to track the thread execution. 

 The disassembled view of each thread is displayed as and when the thread is scheduled to 

run. 

3.1 Justification 

My intention while starting this project was to develop some prototype tool that will assist a user 

to debug a multithreaded program in some way. With the above stated design, the user gets to 

look at whatever thread is running on the system. The prototype is able to single-step through all 

the threads. With some expertise in assembly language, the output of the debugger can be used to 

understand the code of a multithreaded exe.  Whenever a context switch between threads occurs, 

the user can clearly identify it on the output screen as each thread is represented with a different 

color. If a user is only interested in a particular thread, he can choose to trace only that color of 

code throughout the output.  

The debugger is not affected by multithreading bugs like deadlocks and race conditions within 

the program being debugged. If a thread is stuck on deadlock, the scheduler might swap it out of 

execution engine during some CPU cycle. When that happens, the debugger will display 

corresponding code on the output screen.  

3.2 Platform 

The debugger has been implemented using Microsoft’s Visual Studio – Express edition. 

Primarily, windows APIs have been used and the development language has been C.  

To disassemble the line of code being executed, beangine library has been used.  Beaengine is a 

multi-platform disassembler for Intel and AMD processors.  
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The system that this prototype has been tested upon is an x64-based PC with an Intel i5 

processor that comes with 2 cores and 4 logical processors.  

 

 

4 Implementation 

4.1 Attaching to the debuggee 

 

A debugger is just another process bound to run in the system and so is the debuggee. Hence, in 

order to debug the application, it is created as a child process from the debugger process. We 

also specify the creation flags that control the scheduling priorities of the process. By specifying 

DEBUG_PROCESS as the process creation flag, we ask the Windows OS to communicate all the 

events such as process/thread creation/termination, runtime exceptions etc. of this thread as well 

all it’s child threads and processes. 

/*Code Snippet*/ 

STARTUPINFO si;  

PROCESS_INFORMATION pi;  

ZeroMemory( &si, sizeof(si) );  

si.cb = sizeof(si);  

EXCEPTION_DEBUG_INFO exception; 

ZeroMemory( &pi, sizeof(pi) ); 

CreateProcess(NULL, argv[1], NULL, NULL, FALSE,  

                DEBUG_PROCESS, NULL,NULL, &si, &pi ) 

 

4.2 Main Debugger loop 

This is the main area of the debugger. It is a while loop that keeps waiting for debugging events 

from the debuggee, processes each event, and then continues waiting again. This is achieved 

through the windows APIs WaitForDebugEvent and ContinueDebugEvent. When an event is 

notified to the debugger, all the processes and threads of the debuggee are paused. Only after 
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ContinueDebugEvent is executed with DBG_CONTINUE as the last parameter, the debuggee 

process is resumed. 

 

/*Code snippet*/ 

while(ContinueDebugging) 

{ 

 

 if (!WaitForDebugEvent(&debug_event, INFINITE)) 

        return 0; 

 Sleep(500);    

 switch(debug_event.dwDebugEventCode) 

{ 

  //Handle the debug events 

  ContinueDebugging = true; 

} 

 

 ContinueDebugEvent(debug_event.dwProcessId, 

  debug_event.dwThreadId, 

                      DBG_CONTINUE); 

}  

 
  

4.3 Handling Debugging events 

 

Certain steps of execution are treated as “events” in every running process. For every event 

occurring in the debuggee, the debugger is notified. At the same time, all the threads and 

processes running in the debuggee are paused. Listed below are some of the relevant events that 

have been handled in order to implement the intended prototype. 

 

4.3.1 CreateThread event 

 

Every time a new thread is created in the debuggee, it is treated as a new event and the debugger 

is notified about it. Upon receiving such an event, the debugger prints it out to the output screen 
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with a unique color that it assigns to this thread. Going further, every time this thread is running, 

the corresponding prints will be in this particular color to identify the thread.  

In order to debug the thread, a breakpoint needs to be added at the starting point of the thread. 

Hence, the thread context is retrieved and the very first instruction is replaced with a breakpoint 

instruction 0xcc. Note that this is not the only breakpoint instruction that can be used. The 

instruction pointer will have already moved ahead by one instruction by this time. But since we 

want the breakpoint instruction to be executed, we decrement the instruction pointer of this 

thread and then continue.  This leads to the very next event to be an exception event caused by 

this thread, with the exception type being a breakpoint exception. 

 

 

/*Code Snippet*/ 

// Read the first instruction   

ReadProcessMemory(main_process,(void*)debug_event.u.CreateThread.lpStartAddress, 

&(threads[i].OriginalInstruction), 1, &dwReadBytes); 

// Replace it with Breakpoint 

cInstruction = 0xCC; 

WriteProcessMemory(main_process,(void*)debug_event.u.CreateThread.lpStartAddress, 

&cInstruction, 1, &dwReadBytes); 

FlushInstructionCache(main_process,(void*)debug_event.u.CreateThread.lpStartAddress,1); 
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Figure 5. Handling Create Thread event 
  

4.3.2 Exception event 

Exceptions are abnormal behaviors of a process, such divide-by-zero, stack overflow, access 

violation etc. Listed below are couple of important exceptions that are intentionally planted into 

the debuggee as part of the debugging process. 

4.3.2.1 Breakpoint exception 

Since this was the breakpoint that we implanted by replacing the first instruction, we need to 

place the original instruction in it’s place. Before doing that, we set the single-step bit in the 

thread context. This will cause the thread to go into a single-stepping mode and raise single-step 

exception when it is about to execute the next instruction. After setting the bit, we replace the 

breakpoint instruction with the original instruction, decrement the instruction pointer again, and 

continue.  
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/*Code snippet*/ 

//Fetch the context of the thread 

GetThreadContext(threads[j].child_handle, 

&(threads[j].lcContext)); 

 
//Replace the breakpoint instruction with the original 

instruction 

WriteProcessMemory(main_process, 

exception.ExceptionRecord.ExceptionAddress, 

&(threads[j].OriginalInstruction), 1,&dwWriteSize); 

// Set trap flag, which raises "single-step" exception 

threads[j].lcContext.EFlags |= 0x100;  

// Decrement the instruction pointer 

 threads[j].lcContext.Eip--;   

 

 

Figure 6. Handling breakpoint exception event 

  



 24 

4.3.2.2 Single-step exception 

As a result of the processing done during breakpoint exception handling, the very next exception 

raised by a thread, if it is scheduled to run, is the single-step exception. This exception is raised 

for the next line of instruction that the thread is about to execute. It is at this point, that we take 

the address of this next instruction, pointed by the instruction pointer, and give it to the 

disassembler routine, thereby getting the corresponding assembly language instruction.  

We also need to again set the bit for single-step , to keep stepping through the code of this 

thread. 

 

/*Code snippet*/ 

//    Fetch the context of the thread 

GetThreadContext(threads[j].child_handle, 

&(threads[j].lcContext)); 

// Take the instruction address 

threads[j].MyDisasm.EIP = threads[j].lcContext.Eip; 

//Give it to the disassembler routine 

len = Disasm(&threads[j].MyDisasm); 

//Print the disassembled instruction 

printf(" %s \n",&threads[j].MyDisasm.CompleteInstr); 

//Set the single-step flag again 

threads[j].lcContext.EFlags |= 0x100; 
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Figure 7. Handling single-step exception event 

4.3.2.3 Exit Process event 

Once the debuggee completes execution, its main process exits and raises this exception. The 

debugging is then stopped. 

 

Figure 8. Handling exit thread/process event 
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4.4 Handling multiple cores 

 

During initial runs of the debugger, it was observed that few threads completed execution 

without giving a chance to single-step. After further analysis, it became clear that it was because 

of the type of system that I was running it upon. My system has 2 cores and thereby, 4 logical 

processors. What this implies is that my operating system sees the system as having 4 processors. 

Hence, it can schedule the threads on any of these processors in parallel. This was the reason that 

my debugger was not able to single-step through some threads while being able to do so for 

others.  

To overcome this limitation, I had to mask the processor affinity of the thread. It is the processor 

affinity of the thread that determines which processor it will run upon. By default, this is set to 

all the logical processors i.e. it is eligible to run upon any of the processors. Since my 

requirement is to be able to look into each thread, I decided to force it to run upon a single 

logical processor. I also force my debugger process to run upon a single logical processor.  

 

/*Code snippet*/ 

When the debuggee process is created by the debugger: 

SetProcessAffinityMask(pi.hProcess, 1); //pi.hProcess is the 

handle to the debuggee process 

 

For every thread that is created, it is reported by CREATE_THREAD_EVENT : 

CREATE_THREAD_DEBUG_EVENT: 

   

 SetThreadAffinityMask(OpenThread(THREAD_ALL_ACCESS,FALSE,de

bug_event.dwThreadId),1); 
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Figure 9. Handling multiple cores 

  

4.5 Context switching between threads 

The debugger’s job is to catch hold of whatever thread is running in the execution engine at that 

instance of time. Since we put every thread in the single-step mode right when it is created, for 

every next instruction about to be executed, a notification is sent to the debugger. When such a 

notification arrives, the debugger checks which thread it has come from and displays the output 

in a specific color that was assigned to the thread in the beginning. This is to help the user 

identify that the switch between threads has happened and that there is a new thread running in 

the CPU.  
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Figure 10. Context switching between threads 

 

 

5 Testing  
 

In order to test the debugger, I wrote different versions of multithreaded programs. Each version 

is intended to test some peculiarity that arises with the multithreading methodology. The nature 

of multithreading bugs is inherently intermittent. Hence, even though I designed the debuggee 

with an intention to produce such bugs, they did not occur despite many runs. It was observed 

that none of these peculiarities really affect the working of my prototype debugger, since it 

works hand-in-hand with the scheduler of the system.  

Following are the test cases: 

5.1 Simple multithreaded debuggee  5 Child threads are created by the debuggee, 

each executing its task independently. There is no communication between the 
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threads, and hence no need of synchronization. There is also no I/O or wait involved 

in the thread procedure. 

/*Code snippet*/ 

void ThreadPRoc(LPVOID param) 

{ 

    int x = 2; 

x++;   

   ExitThread(0); 

} 

 
 

Figure 11. Test case 1 – Simple multithreaded debuggee 

  

 

Observation  The debugger steps through each thread as and when it is scheduled in the CPU. 

 

 

5.2 Some sleep time in each thread   The intention of the sleep state is to check if that 

affects the way that the threads are swapped in and out of the execution engine. As 

explained before, when a thread is in a wait or not-running state, not utilizing any of 
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the CPU resources, the scheduler swaps it out of the execution engine and schedules 

any other thread that is ready to run. It was observed, however, that the sleep induced 

in the code did not affect the scheduling in a major way. With a heavier thread 

procedure and more number of threads, the thread swapping might become more 

visible. 

/*Code snippet*/ 

void ThreadPRoc(LPVOID param) 

{ 

    int x = 2; 

x++;  

Sleep(1000);  

   ExitThread(0); 

} 

 

5.3 Thread synchronization  Here, I induced some basic synchronization between the 

threads. There is one common variable, count, that is shared amongst the threads. 

Each thread increments the count. Since this is a shared memory, I used a mutex to 

control the way that the threads gain access to this variable. Each thread has to gain a 

lock over the mutex before being able to modify the count variable.  

/*Code snippet*/ 

//Wait to acquire the lock on mutex before modifying shared 

memory 

if(WaitForSingleObject(hMutex1, INFINITE) == WAIT_OBJECT_0) 

{ 

printf("Thread %d in critical 

section\n",GetCurrentThreadId()); 

while(count>0) 

count--; 

Sleep(10000); 

} 

else 

{ 

printf("Thread %d : not allowed to enter critical 

section\n", GetCurrentThreadId()); 
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ExitThread(0); 

} 

 

 

Figure 12. Test case 3 – thread synchronization 

 

Observation  The thread synchronization does not affect working of the debugger in any 

way. Threads continue to be scheduled in a regular fashion.  

 

In the previous test cases, the multithreaded program was designed using appropriate parallel 

programming constructs. But I also wanted to test the debugger functionality with programs 

that might incur multithreading bugs such as deadlocks and race conditions. What follows are 

the observations in those cases. 

5.4 Race condition  In this test case, I removed the use of  mutex for synchronizing 

shared variable access between the threads. With no mutex to monitor this access, a 

race condition is bound to occur. Depending upon the order in which threads get to 
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access this variable, the result can be an incorrect calculation of the final value of 

count.  

 

Figure 13. Test case 4 – race condition 

  

Observation  Even in this case, there was no effect on the debugger functionality. Since race 

condition is not a bug that only leads to incorrect output, and does not affect the normal 

execution of the program as such, the debugger works as it is supposed to and outputs the code 

of whatever thread is running. 

5.5 Deadlock  In this test case, I tried to cause a deadlock amongst the threads on 

purpose by using 2 mutexes. Each thread tries to gain access to both the mutexes. 

Depending upon how the scheduler swaps between these threads, a deadlock can 

happen if each thread gains access to one mutex and waits for the other mutex.  
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Thread T1       Thread T2  

waitforMutex(Mutex1)     waitforMutex(Mutex2)  

 

waitforMutex(Mutex2)     waitforMutex(Mutex1) 

 

//critical section      //critical section 

 

 count++;       count++; 

 

ReleaseMutex(Mutex2)     ReleaseMutex(Mutex1) 

 

ReleaseMutex(Mutex1)     ReleaseMutex(Mutex2) 

 

/*Thread1 Code snippet*/ 

 
if(WaitForSingleObject(hMutex1, INFINITE)==WAIT_OBJECT_0) 

{ 

if(WaitForSingleObject(hMutex2, INFINITE) == WAIT_OBJECT_0) 

{ 

printf("Thread %d in critical 

section\n",GetCurrentThreadId()); 

while(count>0) 

count--; 

Sleep(10000); 

} 

else 

{ 

printf("Thread %d : not allowed to enter critical 

section\n", GetCurrentThreadId()); 

ExitThread(0); 

} 

 } 

 

/*Thread2 code snippet*/ 

 
if(WaitForSingleObject(hMutex2, INFINITE)==WAIT_OBJECT_0) 

{ 

if(WaitForSingleObject(hMutex1, INFINITE) == WAIT_OBJECT_0) 

{ 

printf("Thread %d in critical 

section\n",GetCurrentThreadId()); 

while(count>0) 

count--; 

Sleep(10000); 

} 

else 
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{ 

printf("Thread %d : not allowed to enter critical 

section\n", GetCurrentThreadId()); 

ExitThread(0); 

} 

 } 

 

 

 

 
 

Figure 14. Test case 5 - deadlock 

 

 

Observation  Even in this case, the debugger does its job of tracing the execution path of the 

program. If there is a deadlock and a thread is blocked, the scheduler will swap out that thread 

and run some other thread in its place. Accordingly, the output on the screen will also differ with 

corresponding assembly code of that thread. 

6. Known issues 

 

Multithreading comes with its own set of irreproducible bugs. These programs often fail in an 

unexpected, non-deterministic fashion. While developing my debugger prototype, a two such 
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bugs were encountered. These bugs surface unexpectedly and I have not been able to find a 

resolution to the same. 

5.5.1 No man’s land 

The operating system allocates memory addresses 00000000 through 0000FFFF as “No man‟s 

land”. Assuming that programmer‟s are bound to make mistakes, this no man‟s land 

prevents the programs that try to reference NULL from crashing altogether and exit 

gracefully. I encountered this sometimes when the memory instruction could not be 

interpreted by the disassembler routine. It printed „?‟ at such addresses. 

 
 

Figure 15. No man’s land error 

 

  

 

5.5.2 Access violation error 

 

An intermittent side-effect of the previously mentioned “no mans land” access was an access 

violation exception. This exception is the operating system’s way of telling you that the program 

has tried to access no man’s land that is off-limits. As a direct result, sometimes the program 
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threw the exception EXCEPTION_ACCESS_VIOLATION. At other times, the program abruptly stopped 

working and showed the same error when opened in a third-party debugger.  

 

 
 

Figure 16. Access violation error 
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Figure 17. Access violation exception 
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6 Recommendations for future work  
 

Since my debugger was developed by me alone, it only has the basic capabilities of debugging. 

When compared with the commercially available debuggers that are developed by larger teams 

over a period of time, following are the features that could be added to make it a complete 

functional debugger: 

 User interaction  

 Ability to pause/resume the debugging 

 Display the register values 

 Display the call stack 

 Ability to patch the code 

Secondly, my debugger has been developed using Windows APIs. The IDE used for writing both 

the debugger and the debuggee was Microsoft Visual Studio Express Edition. As part of future 

work, it can be tested upon programs that have been written in other IDEs. The debugger logic 

can also be tried on a different platform like Linux, to test the validity of the framework.  

 

The disassembler that I have used to develop the code-display feature of my debugger is not a 

well-known software. To be able to literally break a software using my debugger, it will be 

required to use a better and reliable disassembler. Also, the user will have to be skilled at 

assembly language programming, to interpret the instructions being displayed on the output 

screen and patch it accordingly. 
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7. Conclusion 

 

Multithreaded programming is a non-avoidable phenomenon. Following Amdahl’s law, as the 

number of cores increases, parallel programming is the way to be for future softwares. However, 

the complexity of parallel programming should not obstruct the curiosity of finding ways to 

debug such a software. With more number of tools to assist this, the challenge of developers to 

develop a hack-proof software also increases. My project was an attempt in this direction. I have 

tried to overturn the assumption that merely making the software multithreaded can be a strong 

anti-reverse engineering technique.  
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