
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

Stealthy Plaintext Stealthy Plaintext

Naidele Katrumane Manjunath
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Manjunath, Naidele Katrumane, "Stealthy Plaintext" (2012). Master's Projects. 275.
DOI: https://doi.org/10.31979/etd.ppj8-8j9k
https://scholarworks.sjsu.edu/etd_projects/275

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/275?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

Stealthy Plaintext

A Project Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Naidele Katrumane Manjunath

December 2012

2

© 2012

Naidele Katrumane Manjunath

ALL RIGHTS RESERVED

3

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

“Stealthy Plaintext”

by

Naidele Katrumane Manjunath

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2012

--

Dr. Soon Tee Teoh, Department of Computer Science

Date

--

Dr. Mark Stamp, Department of Computer Science

Date

--

Hariharan Sudagar, Broadcom

Date

APPROVED FOR THE UNIVERSITY

--

Associate Dean Office of Graduate Studies and Research

Date

4

Table of Contents

1. Introduction .. 8

2. Background ... 10

2.1 Encryption ... 10

2.2 Encryption Detection .. 10

2.3 Steganography .. 12

2.3.1 Hiding a message inside text: .. 12

2.3.2 Image Steganography: .. 13

2.3.3 Implementation .. 13

2.4 Entropy .. 14

2.5 HMM ... 14

2.6 Grammatical model of English text ... 18

2.6.1 Grammatical Syntax .. 18

3. Design and System Overview .. 20

System Overview .. 20

4. Implementation .. 22

5. Evaluating Stealthy Plaintext .. 27

5.1 Test for Randomness .. 27

5.2 Test for Englishness ... 28

6. Conclusion and Future Work .. 34

References .. 36

5

List of Figures

FIGURE 1 : HISTOGRAM OF REGULAR TEXT FILE; REFERENCED FROM COLE [7] ... 11

FIGURE 2 : HISTOGRAM OF ENCRYPTED TEXT FILE; REFERENCED FROM COLE [7] ... 11

FIGURE 3 : EXAMPLE OF HMM ... 16

FIGURE 4 : GENERAL REPRESENTATION OF HMM; REFERENCED FROM STAMP [11] .. 17

FIGURE 5 : COMPONENTS OF A GRAMMATICALLY CORRECT SENTENCE ... 19

FIGURE 6 PHASE 1- ENCRYPTION .. 20

FIGURE 7 TRAINING AND CALCULATING ENTROPY .. 21

FIGURE 8 : ORIGINAL EMAIL .. 22

FIGURE 9 : EMAIL GENERATOR HELP FILE ... 23

FIGURE 10 : FILES PRESENT IN DIRECTORY BEFORE ENCRYPTION ... 23

FIGURE 11 : FILES GENERATED AFTER ENCRYPTION ... 24

FIGURE 12 : STEALTHY ENCRYPTED EMAIL ... 24

FIGURE 13 : CODE TEXT FILE GENERATED .. 25

FIGURE 14 : ORIGINAL EMAIL GENERATED FROM STEALTHY EMAIL .. 25

FIGURE 15 : IMAGE ENCODING .. 26

FIGURE 16 : CODE BEING PUT INTO IMAGE .. 26

FIGURE 17 : COMPARISON OF IMAGE-BEFORE AND AFTER ENCODING ... 27

FIGURE 18 : TEST FOR RANDOMNESS ... 28

FIGURE 19: PROBABILITY OF INPUT TEXT BEING ENGLISH WITH 5 HIDDEN STATES 30

FIGURE 20: FLOW OF GRAMMAR IN AN ENGLISH SENTENCE; REFERENCED FROM SIMOVA [2] 31

FIGURE 21: PROBABILITY OF INPUT TEXT BEING ENGLISH WITH 3 HIDDEN STATES 33

6

ABSTRACT

Stealthy Plaintext

By Naidele Katrumane Manjunath

Correspondence through email has become a very significant way of communication at

workplaces. Information of most kinds such as text, video and audio can be shared through

email, the most common being text. With confidential data being easily sharable through this

method most companies monitor the emails, thus invading the privacy of employees.

To avoid secret information from being disclosed it can be encrypted. Encryption hides the data

effectively but this makes the data look important and hence prone to attacks to decrypt the

information. It also makes it obvious that there is secret information being transferred. The most

effective way would be to make the information seem harmless by concealing the information in

the email but not encrypting it. We would like the information to pass through the analyzer

without being detected. This project aims to achieve this by “encrypting” plain text by replacing

suspicious keywords with non-suspicious English words, trying to keep the grammatical syntax

of the sentences intact.

7

ACKNOWLEDGEMENTS

This project is made possible through the help and support from my parents, professors, family,

and friends. Especially, I would like to dedicate my acknowledgment of gratitude towards the

following significant advisors and contributors.

First and foremost, I would like to thank my advisor Dr. Soon Tee Teoh, for his support,

encouragement and technical advice that made this project possible.

Secondly, I would like to thank my committee member Dr. Mark Stamp, for giving me the idea

for this project, providing valuable advices and inputs to improve my project.

I would also like to show my appreciation to Hariharan Sudagar, for the help and inspiration he

extended.

Finally, I sincerely thank my mother, family, and friends, who provided me advice and

unconditional support. This would not be possible without all of them.

8

1. Introduction

Employees in most large companies have access to the internet. This brings about a lot of

advantages for a company in terms of increasing the scope of communication with tools such as

email, instant messaging and video conferencing.

One of the most common uses of internet at work is for communication through email. Email

access is provided as a method for internal and external communication at work. It saves money

for the company by making less use of paper and labor for delivery of mails and providing faster

communication, hence increasing effective usage of time. However employees with access to

email tend to use it for personal purposes also. At times employee‟s emails may be monitored.

This raises concerns of privacy. Although the Federal Electronic Communications Privacy Act

provides some privacy to employee electronic information at work, it fails to protect all data.

Emails may be monitored for reasons such as security, productivity measures, Performance

Review, legal liabilities and compliance.

Most people today would agree with the fact that no privacy can expected at their workplace.

Every conversation from phone calls to emails, every letter typed on the keyboard, every location

the employee visits with the company badge on can be and are mostly monitored. All this is

mostly considered to be legal. Most companies have their employees sign a legal document

giving their consent for these details to be monitored by their employers. A 2007 American

Management Association survey

 found that two-thirds of employers monitor employee‟s Internet use [1]. Employers use

different techniques to monitor employees such as video surveillance, internet surveillance,

desktop surveillance etc.

Employees mostly get into trouble due to the conversations they have. Email scanning is the

method by which emails are passed through filtering software or email monitors which are used

to analyze the content of the email. It is unusual for humans to actually go through e-mails

manually. Surveillance of communication between employees and external communication being

a very common practice at most companies employees tend to be cautious.

Email scanners are used to detect suspicious mails being sent across. Emails both inbound and

outbound are monitored. Why would emails be monitored at work?

 It would ensure increased security for the company.

 Increase in employee productivity.

In a lot of cases, employees wouldn‟t want their emails being monitored. They may like to have

discussions about new job prospects or leakage of confidential information at work to go

unnoticed.

One of the methods that are used to maintain privacy is to use encryption. On being encrypted it

becomes obvious that there is important information being shared. Stealthy Ciphertext [2] is a

SJSU project which tries to hide the fact that data has been encrypted. It converts the cipher text

9

into ordinary looking plain text. The grammar may not be right but this may pass through a test

for encryption when passed through a trained analyzer.

Our project will deal with developing a method to get emails across the email monitors without

being detected. We want the fraudulent or stealthy email to be accepted as a genuine message by

the analyzer.

These emails will not be encrypted; instead, they will be converted to another form of plain text.

It will be an application of the idea presented in Stealthy Ciphertext. This project will optimize

their approach by giving a better entropy value for the converted email. This can be considered

as a form of steganography.

The first and the simplest approach to do this would be to replace keywords with less important

looking data. Randomly replacing words can cause the analyzers to raise an alarm since this will

increase the entropy of the data and make it look like it is encrypted. Encrypted data attracts

unwanted attention. We try to make the data look as English like as possible. The “Englishness”

of the converted text will be checked using a Hidden Markow Model. The next step in improving

the “stealthy email” is to make it confirm to English grammar syntax. Although this may not be

achieved to the fullest, that is humans will be able to tell the difference, email analyzers will not

be able to detect the difference. Thus we aim to make communication at workplace worry free.

10

2. Background

The following section defines 4 important aspects which are used and implemented in this

project:

1. Encryption.

2. Encryption Detection.

3. Steganography.

4. Entropy.

5. HMM.

6. Grammatical model of English text

2.1 Encryption

Encryption is the process of encoding information in such a way that only the intended parties

can read or understand the information and no unauthorized parties such as eavesdroppers or

hackers can read it. To encrypt a message in readable format, also known as plaintext, an

encryption algorithm is used. This algorithm is used to convert plaintext into encrypted format

called cipher text. This encryption is done usually with the help of an encryption key from the

sending party. Any third party seeing the encrypted text should not be able to determine the

contents of the encrypted information. On the receiving party side, the cipher text needs to be

decoded into its original form. This is done with the use of secret decryption key.

There are two basic encryption schemes:

1. Private-key or Symmetric encryption: In this encryption scheme, the encryption and

decryption keys are the same. Both the sending and the receiving parties need to agree on

a common key before they communicate with each other.

2. Public-key or Asymmetric encryption: In this encryption scheme, there are two keys:

the public key, which is used for encrypting the data and a private key, which is used for

decrypting the data. As the names suggest, any one or everyone has access to the public

key, therefore, anyone can encrypt the information, but only the receiving party has

access to the decryption or private key [5].

With the use of transmission of large amounts of data via the internet, where information travels

through a lot of connecting nodes before it reaches from the sending party to the receiving party,

encryption plays a very important role to protect data in transit.

2.2 Encryption Detection

 Encrypted data may be very effective in hiding valuable or secretive information but is equally

vulnerable to being detected. Hence it gets unwanted attention, thus leading to attacks.

Encryption of information leads to increase in randomness/entropy of the content.

In a research by Eric B Cole for his patent, “Methodology, System and Computer Readable

Medium for Detecting File Encryption”, he tried to illustrate this randomization property of

encrypted text. Figure 1 shows the histogram of a regular text file, where the x axis shows the

11

ASCII values of the characters present in the text file, whereas the y axis represents the

frequency of the characters. If you take a look at the figure 1, you will observe a huge spike at

32, which is due to the constant use of spacebar keystroke in the text file, illustrating common

behavior. The second figure shows the histogram of the same text file as input and encrypted

with PGP encryption. The histogram for the PGP encrypted text file looks flatter as compared to

the regular text file, it is because encryption of text has increased the randomness in the file, and

not many encrypted characters are repeated, thereby uniformly distributing the frequency of

characters. This increase in randomness, which leads to uniformity in the frequency distribution

of byte values in a file, can help in detecting if a file has been encrypted or is in its regular form

[7].

Figure 1 : Histogram of regular text file; Referenced from Cole [7]

Figure 2 : Histogram of encrypted text file; Referenced from Cole [7]

12

Another approach to detection of encryption by examining packet headers was proposed by

Bruce Schneier in his book Applied Cryptography, 2nd Ed. Most strong encryption algorithms

compress the data before performing encryption. Compression before encryption is good because

it reduces the redundant information in data and also reduces the time needed for encryption.

Redundant data makes the job of cryptanalysts easy hence its removal increases the efficiency of

the encryption algorithm.

According to Schneier‟s method if a file is encrypted using a good encryption algorithm it cannot

be compressed much further. Such a file can be considered to be encrypted [5].

2.3 Steganography

Steganography is a method in which important information is concealed in seemingly innocent

data. The art of invisible communication is called steganography. It provides security by using

techniques to conceal the communication itself from the observer also known as “information

hiding”. Use of steganography can be seen from historical times and dates back to 480 BC where

Demaratus, a Greek sent a warning about a pending attack to the Spartans by writing on the

wooden surface of a wax tablet and then applying beeswax on the surface. Since the tablets

looked blank to the guards the secret information could be communicated without being

detected. In the early 20
th

 century, some of the tricks used were invisible inks, difference in size

of the text and microdots during the world wars by the Germans.

Internet is the largest source of information where information is available mostly at no cost. It is

also one of the most effective and easy means of communication and can used be for sending and

receiving large sizes of information. The presence of the large amount of multimedia data on the

internet makes it a good avenue to use steganography. Internet steganography is the exploitation

of Internet elements and protocols for the purpose of covertly communicating supplementary

data [8]. The presence of text, images, videos and audio on the internet means different kinds of

steganography over the internet. Below are a few types of steganography:

2.3.1 Hiding a message inside text:

There are a lot of proposed algorithms to hide a message inside a plain text. Although it is

effective, the down side is that plain text can be read by anyone. Most of these algorithms have a

pattern, which could be found out easily by reading through the plain text. Once the pattern is

found out, the secret message inside the text can be recovered, making this technique non-robust.

There are further modifications to hiding a secret message in plaintext that try and make it hard

to decode, such as using every nth character, and altering the number of whitespaces between

lines and words. Another way was to generate a secret key from a public source of information,

such as books or newspapers. You could generate the secret key keeping in mind a combination

of page numbers, paragraphs, line number and character number. To decode information hidden

in this form, a person should be able to get access to both the secret key and the source. The

downside of this is that the secret key and source information has to be sent from the sender to

the receiver in a secure manner. This leads to the conclusion that although easy to encode and

decode, hiding a secret message in plaintext is not secure.

Our project can be considered to be performing text steganography since we are hiding the

original email in the converted email.

http://en.wikipedia.org/wiki/Demaratus

13

2.3.2 Image Steganography:

Since the advent of internet and digital technology, the method of hiding secret messages has

shifted its paradigm from text methods to other forms, such as messages hidden in bit form in

things like audio and images. Though the practical use of image stenography was found to be

limited by a research by German steganography expert Niels Provos, who created a scanning

cluster to scan through more than a million pages in various newsgroups on the internet and

couldn‟t find any hidden messages in them, the increase in concerns for privacy and anonymity

are showing an increasing trend in the use on Image Steganography to communicate messages

secretly between two parties. Even though there is concern for the use of image steganography

for malicious purposes, such as hackers to spread Trojans and viruses, and terrorists to exchange

information, it can be used for constructive purposes too, such as digital watermarking for

copyright purposes. One of the other main uses for Image Steganography is for the transportation

of high-level or top-secret documents.

To hide a message in an image, you need to modify the bits in the image, and you need to do so

in such a way that it should not alter the visible properties of the image. The best way to do that

is to modify the image in its “noisy” spectrum, where the color variations are more, there-by

reducing chances of detection. The common methods of hiding data in images are to modify the

Least Significant Bit (LSB) of a byte, masking, filtering etc. The type of image file being used

also contributes to the effectiveness of data hiding. Image steganography is gaining popularity

nowadays, because graphics standards are improving, thereby leading to have more gradations of

color than what the human eye can notice, and data at the receiving end can be stripped out. A

1024 * 1024 grey scale picture can store a 64 KB message. [14]

2.3.3 Implementation

Image steganography can be done by one of the 3 methods listed below:

1. LSB Substitution: LSB stands for Least Significant Bit, the title itself is self-explanatory

as to what the algorithm does. Information is embedded in the least significant bit of the

cover or source image. On an average, this technique leads to the modification of 50% of

all the LSB‟s in the image, the image is not distorted to the human eye.

Example: Let us say this is the image represented in bits:

(00101101 00011100 11011100)

(10100110 11000100 00001100)

(11010010 10101101 01100011)

The information we want to send in bit format is 11001000, after LSB substitution, the image in

bitwise format will be:

(00101101 00011101 11011100)

(10100110 11000101 00001100)

(11010010 10101100 01100011)

14

2. Blocking: This works by breaking an image into blocks and using DCT‟s (Discrete

Cosine Transforms).

3. Palette Modification: Palette modification works by taking advantage of the fact that

number of colors in an image is limited. For example: If we take a GIF image, a very

popular format used in the internet images, it has a depth of 8, that means it cannot have

more than 2^8 =256 colors. The colors are stored in a color lookup table or palette. A

single byte is used to represent a pixel. This data is used to index the color palette [9].

2.4 Entropy

Entropy is used to measure the randomness of data. The entropy of English is very low, that is, it

is less random, and hence, fairly predictable. Application of common knowledge of English is

required to make a fairly reliable assumption that in sentences , there will be more a‟s and e‟s

than y‟s and z‟s, certain letter such as “the” are used more often in combination than any other

words. Text in English has entropy of one bit for each byte (eight bits) of message. According to

Shannon‟s experiments, it was concluded that the entropy rate of English text is between 1.0 and

1.5 bits per letter, or as low as 0.6 to 1.3 bits per letter. Entropy should not be too low or too

high, there is an optimal entropy range. [13]

Adi Shamir and Van Someren, in the paper “Hide and Seek With Stored Keys” try to find out

methods and techniques to efficiently find hidden cryptographic keys within large amounts of

data like file systems, such as algebraic attacks to find out RSA keys in strings and statistical

attacks to find arbitrarily hidden keys in data.

The basis of all applications to find encrypted information hidden in large amounts of data is that

entropy or randomness of encrypted data is comparatively more that non-encrypted data.

Therefore, one way to find keys in data would be to divide the data into small sections, calculate

the entropy of that section and plot it in a graph. If the section consists of hidden key data, it can

be detected easily in the graph. We need not get a true measure of entropy of complete data to

differentiate between key and non-key data. Shamir and Someren carried out an experiment with

a 64 byte sliding window and found the number of unique byte values within it. To give precise

values, the first code which they analyzed in such fashion yielded just 30 unique values on an

average, with a deviation of 10. In comparison, with sections having key data, the average was

60 unique values, which made things quite evident. Final results for their experiment on 300 KB

of data yielded only 23 windows (64 bytes in each window) having a value of 50 or more, in

which 20 of these were consecutive and comprised of cryptographic key data.

2.5 HMM

A Markov process or model is a stochastic model that is based on the Markov property. Markov

property is a property that can be seen in a set of stochastic processes. The process is memory

less that is the present state can predict the future states as well as the past states. A Markov

chain is a process that consists of a finite number of states and some known probabilities pij,

where pij is the probability of moving from state j to state i. That is the past affects the future

through the present. These hidden states form the Markov chain.

15

A hidden Markov model (HMM) is a statistical Markov model in which the system being

modeled is assumed to be a Markov process with unobserved (hidden) states [15]. Only the

output of the HMM is visible, the state or states which the process goes through before reaching

the output is not visible to the observer.

HMM has been extensively used for several decades and has various applications such as speech

recognition, handwriting recognition by automatically recognizing repeated strokes and

molecular biology for gene finding. Studies have shown HMMs to be effective in solving these

kinds of problems.

A hidden Markov model comprises of five-tuples namely X, O, A, B and pi. The value of X and

O are fixed. λ = {A, B, π} will be the parameters for a given HMM.

Example of HMM:

Let us consider two people, A and B. A is the employer and B is the employee. A is on vacation

and is out of the city. At the end of the day, B has to report back to A on what he did, his job is to

do 3 chores: mow the lawn, put heating on and clean the pool. The choice of what is done on a

given day is decided by the temperature that day. When employee B reports back to A at the end

of the day, A tries to guess weather that day was hot or cold.

A considers the temperature as a discrete Markov Chain. There are 2 states which as hidden,

namely “Hot” and “Cold”. B does one of three chores listed out above in a single day based on

the temperature that day, which is “mow”, “put heating on” and “clean pool”. These three things

are the observations, as B reports back to A with what he does at the end of the day and A learns

about it from B. Let‟s represent the chores as M, H and C respectively.

A knows about the general temperature trends, and what does B do on an average each day.

These things would form the parameters for the Hidden Markov Model (HMM).

1) states = ('Cold', 'Hot')

2) observations = ('mow lawn', 'clean pool ', 'put heating on')

3) start_probability = {'Cold': 0.6, 'Hot': 0.4}

4) transition_probability = {

'Cold' : {'Cold': 0.7, 'Hot': 0.3},

'Hot : {'Cold': 0.4, 'Hot': 0.6} }

5) emission_probability = {

'Cold' : {'mow lawn': 0.1, 'clean pool': 0.4, 'turn heating on ': 0.5},

'Hot' : {'mow lawn': 0.6, 'clean pool': 0.3, 'turn heating on': 0.1}

}

16

Figure 3 : Example of HMM

We can understand the following from the above example:

1. The start_probability is the probability of the temperature being hot or cold on an average.

This is the state of the HMM initially. We can arrive at the initial state matrix from (3)

 π =

2. The transition_probability is the probability of the change in temperature in the Markov

chain. In the above example, the possibility of it being a hot day if the previous day was cold is

only 30%. We can arrive at the state transition matrix from (4).

 A =

3. The emission_probability is the probability of B performing a specific chore based on what

the temperature is. In the above example, the possibility of B mowing the lawn if the

temperature is cold is just 10%. We can arrive at the observation matrix from (5)

0.7 0.3

0.4 0.6

0.6 0.4

17

 B =

Suppose there are four days when B has reported that he moved the lawn, cleaned the pool,

moved the lawn, turned the heater on. That is the observation sequence is {M, C, M, H}. „A‟

wants to determine what the temperatures were on these four days using the observations made.

Here „A‟ is trying to get the state sequence of the Markow process given the observation

sequence.

The following notation is used to represent the observation and the states of HMM:

T = length of the observation sequence (training sequence)

N = number of states in the model (they are the hidden states, we may know this number, if we

 do not know the number we make a guess)

M = number of observation symbols

X = {X0, X1,….., XN-1} = distinct states of the Markov process

O = {0, 1,….., T - 1} = set of possible observations

A = state transition probabilities

B = observation probability matrix

π = initial state distribution

A general HMM is illustrated below:

Figure 4 : General representation of HMM; Referenced from Stamp [11]

The symbols in the figure are as described in the notations section above. Xi represents the

hidden state at time „t‟ and Oi represents the observation state at time„t‟. The hidden states are

0.1 0.4 0.5

0.6 0.3 0.1

18

above the dashed line and „A‟ is the probability of transition from one state Xi to Xj. The Markow

process is determined by the current state and the matrix „A‟. [11]

There are three kinds of problems which can be solved efficiently using HMM:

1. The Evaluation Problem: For a given observation sequence, O=O1, O2…OT, and the

complete parameter set of an HMM, λ= {A, B, π}, what is the probability (P (O|λ)) that

the observation sequence can be generated using the parameter set?

2. The Decoding Problem: For a given an observation sequence O and the parameter set of

HMM λ, what is the optimal state sequence X=X1X2…XT that can generate the

observation sequence.
3. The Training Problem: For an observation sequence O, known number of states, and

known number of observation symbols what is the optimal model λ which maximizes the

probability of observing the given sequence P(O|λ)? [16]

We are going to be evaluating the grammar of our converted text using HMM. We use the

algorithm of the training problem for training the HMM and then use the algorithm for the

evaluation problem to determine if the stealthy plaintext confirms to English language grammar.

2.6 Grammatical model of English text

We try to understand the syntax of English language, i.e., how words are organized in relation to

each other.

2.6.1 Grammatical Syntax

Like every language English also uses certain rules when forming a sentence. We need to keep

these in mind when doing the substitution. Natural language models assign certain probability to

words.

The main assumption we make is that the analyzer will look for randomness in data and certain

keywords. We need to understand certain rules in English before going any further.

According to grammar rules we can divide the words into: verbs, nouns, pronouns, adverbs,

adjectives, prepositions, conjunctions, and interjections.

If a statistical analyzer looks for syntax then the rules it will follow are very similar to as

described in Figure 5. In English sentence structure we can see the five patterns as described

below.

1. Subject-Verb = Noun-Verb

Example: Jill came.

2. Subject-Verb-Object: Noun-Verb-Noun

Example: Jack climbed the hill

3. Subject-Verb-Adjective = Noun-Verb-Adjective

Example: The food is delicious

19

4. Subject-Verb-Adverb = Noun-Verb-Adverb

Example: Jack runs sometimes.

5. Subject-Verb-Object = Noun/Pronoub-Verb-Noun

Example: He is running to the car.

Figure 5 : Components of a grammatically correct sentence

While picking out words to replace keywords we have to make sure that certain syntax rules are

being followed. Simova‟s describes her observations as depicted in the figure below. She saw

that if a verb followed a noun then the verb would be followed by an adverb/preposition/period

depending on its position in the sentence. We would not need to understand the syntax of the

English language much in depth since we use a simple dictionary to spot words and then

substitute them with relevant words.

20

3. Design and System Overview

The goal of this project is to design a method by which we can bypass an analyzer looking for

encrypted and “suspicious” information being shared via email. Consider a scenario where

Trudy works for Bob‟s company ABC. Trudy has some confidential information belonging to

ABC which she wants to share with Alice only. Trudy composes an email, encrypts it and sends

it to Alice. Meanwhile Bob receives an alert from the email analyzer stating that there is some

encrypted information being sent through company email. Trudy makes up an excuse which Bob

believes and hence Trudy is spared. Trudy now has to come up with an idea to share the

information while maintaining its confidentiality as well as a method using which she can send

the information while not being undetected by the analyzer. Trudy knows that the company

analyzer looks out for keywords which the company wants to maintain confidential. Using this

information Trudy comes up with an idea to send the information to Trudy without encrypting it.

She also makes sure the confidentiality of the information is maintained. Our project is based on

this scenario and implementation of the method which Trudy came up with. We will discuss in

the following sections how the method is implemented, assumptions on what is based, its

strengths and weaknesses.

System Overview

Phase 1:

Figure 6 Phase 1- Encryption

21

Phase 2

Figure 7 Training and Calculating Entropy

The project has two phases. The main goal of this project is to avoid encryption and make the

plain text merge with common data as well as possible. In the first phase of the project we will

be developing a generator for generating the stealthy email/plaintext. The generator along with

the stealthy email/plaintext also generates a code. This code is embedded into an image using

LSB image steganography. Most emails contain the signature of the person sending the email.

The signature would usually contain a small image or symbol representing the company or

person. We embed the code into this image. The email is then sent. At the receiver‟s side the

code is extracted from the image and it is used to get the original image.

The second phase of the project will be to show that our implementation will be able to bypass

the analyzer. The entropy of the stealthy plaintext is calculated using Shamir‟s entropy. We show

that the generated email confirms to the English grammatical model using HMM.

22

4. Implementation

An email containing text can be encrypted and the encrypted information can be sent across to

the receiver to provide confidentiality. In this project we are trying to achieve confidentiality

when the information is being sent, but we also would like the information exchange to be

unnoticeable. For achieving this we would need to bypass the email analyzer.

The approach which is being used makes use of the grammatical model of English text. We

prepared different sets of dictionaries for the parts of speech such as nouns, verbs, adjectives etc.

There is a dictionary of suspicious keywords which has a sample of words which the analyzer

looks for. We work on the assumption that the analyzer will look out for keywords and the

entropy of the information being sent. These suspicious keywords file is assumed to be shared

between the sender and receiver. These files/dictionaries are read in as arrays by our code. Our

method will look out for the suspicious keywords by traversing the email and then replacing

them with a word from the dictionary which corresponds to the keywords parts of speech.

Each time a word is chosen for replacing the index of the word in the email is noted and index of

the word in the dictionary is also noted. These two numbers form a pair in the code which is sent

to the receiver. The below figures illustrate the generation of the code, the stealthy email and

decoding. We have used C programming language to implement the stealthy plaintext generator.

Below are snapshots of how the generator works.

Encoding

1. Input email: This is plain text. “ input.txt”

Figure 8 : Original email

2. Compile the code to generate exe. In this case the exe name is email.exe.

3. Here is a look at the help file for the project. The command is: email.exe –help. You

should have the suspicious keyword, verb, noun and adjective list in the same directory

level as the exe is.

23

Figure 9 : Email generator help file

4. Here is a snapshot of the files present in the directory before running the exe:

Figure 10 : Files present in directory before encryption

5. Now, to encode, we will run the exe with the command: email.exe –e input.txt output.txt

code.txt, where:

a) input.txt – Input file.

b) output.txt- Encoded Output file.

c) code.txt – code file generated during encoding.

As you will see in the figure below, there are two additional files generated, which are

output.txt and code.txt.

24

Figure 11 : Files generated after encryption

6. Once we run the command, the output file will have the keywords matching any words in

the input email replaced by corresponding words with respect to their types, i.e., verb,

noun or adjective. As you can see, layoff is a noun in the sus.txt file, replaced by the

word kettle, present in the noun.txt file. The contents of the output file are:

Figure 12 : Stealthy encrypted email

25

7. The code.txt generated is as follows:

Figure 13 : Code text file generated

The first number in each line represents the word replaced from the sus.txt file, i.e., layoff

is the 14
th

 word in the sus.txt file replaced by the 31
st
 word, which is kettle, present in the

noun.txt file.

Decoding:

1. Decoding is done with the same exe file used for encoding with the –d flag.

2. The decoding process is the reverse of the encoding process, here the input is the encoded

output.txt file and code.txt file, and the output is the original email.

Figure 14 : Original email generated from stealthy email

26

Encoding the image

We have implemented least significant bit image steganography using Java. As illustrated in the

figures below, the user has a choice of choosing what information is to be encoded and into

which image. The information is read from the file and displayed on the screen. In the below

figure we can see the code displayed after being read. From the figure below we can see there is

no distortion visible in the image. The file size of the image also does not increase greatly.

Figure 15 : Image Encoding

Figure 16 : Code being put into image

27

Figure 17 : Comparison of image-before and after encoding

5. Evaluating Stealthy Plaintext

We said earlier that the analyzer would be looking for suspicious keywords. We have taken care

of this by making sure that there are no suspicious keywords present at all in the cipher text

generated.

Now we show that our method generates cipher text with entropy that matches English language.

5.1 Test for Randomness

Random data can be detected because of its higher entropy. We make sure that the entropy of our

cipher text is low. The optimal value for English text from the implementation of Shamir‟s

method gives a value of 26 unique bytes for an average window of 64 bytes [4]. In our

experiment we first calculated the entropy of Brown Corpus for which we found a value of 24.7.

We then took five files of plain text and found their entropy. They fell in the range of 25 to 28.

The same files when encrypted showed a remarkable change in the entropy value. The values

ranged in between 41 and 43. This shows that using Shamir‟s method we can clearly distiguish

between encrypted and plain text. We then took five emails and found their entropy and

compared that with the entropy of the same emails converted into stealthy plaintext uisng our

method. There was a very slight deviation of approximately 0.50.

The entropy for our cipher text gives a very good matching value which lies in the range of 26 to

27. This method has hence proved itself very effective in keeping the entropy same as English

text.

28

Figure 18 : Test for randomness

5.2 Test for Englishness

We make use of HMM to come up with a table of probabilities for the five sets of patterns or

sequences seen in English grammar. The HMM was constructed based on the algorithm

described by Stamp in [11]. It was trained with the Brown Corpus, which is well structured

English to get a model for our testing. The probabilities of these sequences were then used to

score the stealthy plaintext grammar. A high score or probability indicates high similarity

between the training data and the test data, while a low score indicates the opposite.

Consider an example where a noun is followed by a verb. The HMM would give values such as

there is a 40% chance of a verb appearing after the noun. Similarly the HMM can learn the

probabilities of longer sequences. HMM thus trains itself with the probabilities of these

sequences and gives us the probabilities of the parts of speech appearing in a particular sequence.

We then used these probabilities to get a score for the Brown Corpus.

Specifications:

Training the HMM: We provide the HMM with the brown corpus as input text. The HMM used

for training is based on the solution which is used for solving problem (3) (Training problem)

described in the HMM section. The solution for the problem (1) (Evaluation problem) is then

used to evaluate stealthy plain texts match to English.

Test Data: The observation symbols consisted of nine values namely noun, conjunction,

interjection, verb, adjective, preposition, adverb, pronoun, and period. Five hidden states were

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

Brown Corpus

Plain Text

Encrypted Information

Plain Email

Stealthy Plaintext

29

assumed based on the five patterns seen in English grammar which is described in the

Grammatical Syntax section. The words are classified into the parts of speech based on the

grammar dictionaries by the HMM. We have created dictionaries for eight of the observation

symbols excluding period. The dictionary consists of words varying approximately from

500(conjunction, interjection) to 3000(verb, noun, adverb etc). The observation sequence was of

length 10,000 and the number of iterations was 3000.

From the training, HMM produced the following state and transition matrices.

The state transition matrix A:

 A =

The observation matrix from training the HMM model is as below:

Using the above matrices as input for the Evaluation problem HMM we found the probabilities

of different texts confirming to English grammar. The different input files used were a plain

email file of ~500 words, four grammatically correct plain text files, a file of 1000 nouns, a file

of 1000 verbs, a file 150 interjections and then finally the stealthy plaintext. The scores have

been plotted in the graph shown in Figure: 19

0.435277, 0.156975, 0.118584, 0.166901, 0.122217

0.116642, 0.063435, 0.365502, 0.196055, 0.258308

0.051165, 0.000000, 0.010732, 0.863517, 0.074597

0.203585, 0.394978, 0.032964, 0.281989, 0.086434

 0.732479, 0.117054, 0.002351, 0.130420, 0.017661

0.153436, 0.008479, 0.140808, 0.830515, 0.175811, 0.619238, 0.020123, 0.000000, 0.016244

 0.000000, 0.038024, 0.004599, 0.060040, 0.121584, 0.000000, 0.014217, 0.106753, 0.011927

0.000000, 0.149909, 0.001302, 0.508158, 0.010095, 0.001878, 0.000000, 0.098006, 0.011093

0.011581, 0.023697, 0.000879, 0.040683, 0.009050, 0.204300, 0.000000, 0.666089, 0.006830

0.032616, 0.561287, 0.000000, 0.000000, 0.028268, 0.299142, 0.000000, 0.006086, 0.007308

30

For each of the plain text files and the plain text emails the probabilities overlapped with very

close values ranging from 98.85 to 98.88.

The files with only nouns, verbs, interjections showed probabilities which lie very far from 98

such as 92.61, 94.35 and 61 respectively.

Thus the probability helps us to clearly distinguish grammatically correct text from those which

are not. Our stealthy plaintext email scored 98.88 which clearly shows that the grammar is right.

Figure 19: Probability of input text being English with 5 hidden states

Analysis of stealthy plaintext based on the understanding of syntax of English text by Simova:

In the paper “Stealthy Ciphertext” Simova describes the flow of English grammar. This is

illustrated in the Figure: 20 [2].

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

Plain Text

Plain Email

Stealthy Plaintext

Nouns

verbs

interjections

adverb

scrambled data

31

Test Data: The observation symbols consisted of nine values namely noun, conjunction,

interjection, verb, adjective, preposition, adverb, pronoun, and period as before. Three hidden

states were assumed. The hidden states are:

State 1: noun, pronoun

State 2: verb, preposition, adverb, conjunction, period

State 3: adjective, interjection

Figure 20: Flow of grammar in an English sentence; Referenced from Simova [2]

This HMM was trained with the same set of data and values as in the previous experiment. We

thus obtained the following values for the state and transition matrices.

The state transition matrix A:

 A =

0.514939, 0.083035, 0.402039

0.974965, 0.011807, 0.013204

0.414368, 0.505277, 0.080325

32

The Observation Matrix:

These matrices were then used for initializing the matrices in the evaluation problem. The input

files used for testing were the same as the ones used in the HMM model with 5 hidden states.

The scores have been plotted in the graph shown in Figure: 20

For each of the plain text files and the plain text emails the probabilities overlapped with very

close values ranging from 96.07 to 98.71 percent.

The files with only nouns, verbs, interjections showed probabilities which lie very far from 96

such as 70.15, 86.13 and 88.01 respectively.

A scrambled email in which words were organized in random was used as input and we saw a

score of 70.16.

Stealthy plaintext email scored a high value of 95.91 percent which shows that it is very similar

to the training data and the plain text emails, proving that it has good grammatical structure.

0.527730, 0.089955, 0.000000, 0.232258, 0.028804, 0.232487, 0.081825 , 0.029259 , 0.005183

0.019509, 0.055235, 0.088286, 0.000341, 0.000000, 0.377598, 0.050055, 0.011777 , 0.036441

0.073469, 0.408696, 0.009963, 0.000000, 0.376279, 0.021471, 0.014839, 0.000000 , 0.228559

33

Figure 21: Probability of input text being English with 3 hidden states

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

Plain Text

Plain Email

Stealthy Plaintext

Nouns

verbs

interjections

adverb

scrambled email

34

6. Conclusion and Future Work

To summarize, we have developed a stealthy plain text generator which takes as input an email

which contains “suspicious keywords” and converts it into an innocent looking email. The

human mind would be able to recognize the awkwardness in the meaning of the stealthy

plaintext since the sentences may not make complete sense, but after the evaluation of the

converted text based on our assumptions about the automated analyzer, we are safe in assuming

that we can easily pass off our stealthy plaintext email as a simple email. The English language

has endless words and possible states in which we can combine and arrange words to form a

sentence. Developing a complete grammatically correct and completely changed email while

keeping the size of the original email intact is a very challenging problem. We understand that

this is just the basis for a more sophisticated converter and can be improved in many ways so it is

more efficient in hiding the transmission of data.

The basis of our project is stealthy encryption, where plain text replaces plain text. We have seen

in the evaluation section that our project will be able to bypass an automated email analyzer

which is based on our assumption that an analyzer looks for and flags random encrypted

information. To validate our assumption, we conducted experiments which showed us that the

entropy of the data does not change much when compared to plain text and lies far beyond the

score of encrypted information.

We also took care of not letting the email look suspicious by encrypting our code generator file,

which considered a list of numbers used to encode/decode into an image by LSB steganography,

and could be identified as suspicious text by an automated email analyzer. The image, even after

encoding the text, was minimally distorted, and the size of the image to be used for this could be

small enough to pass of as part of the signature in an email, a common practice nowadays in the

corporate world is to add in the company logo to emails.

A Hidden Markov Model was used to evaluate the Englishness of the stealthy plain text

generated. We experimented with different kinds of texts as input to the HMM. A higher score in

by the HMM evaluation means there is a high probability that the given text confirms to the

grammatical syntax. We saw that the stealthy plaintext scored above 95 percent which is a

distinguishable score and lies close to the score of plain English.

The techniques used by the analyzer may vary from one company to another. A project or

program always has scope for improvement, and ours is no different. There could be lot of

potential improvements to the “stealthy plaintext generator”. We need to share the suspicious

keywords file initially between the sender and receiver. Future work can be to come up with a

technique to handle the sharing in a more secure manner. There are many machine learning

techniques which also can be used to test the Englishness of our converted text.

Currently our project has two parts before an email can be sent. We generate the stealthy

plaintext and then encode the code into an image. This was done as the project started out with

just one part and branched out to a second part, which required more interaction, making it

necessary to add a graphical user interface for the latter. To make this tool easy to use for the

user we could handle both these processes with a single process. Improvements to the project can

be made such that a better technique could be used to perform the image steganography. We also

35

see a limitation in the vocabulary which is confined to the dictionary size created. The number of

states considered for the Hidden Markov Model can be further increased to get more consistent

HMM scores. We plan to improvise on this in the future.

The idea implemented in this project is just the beginning for much more sophisticated systems.

As the detection techniques get more elaborate we would have to come up with better ways of

hiding data without encryption.

36

References

1. American management association press room. (2008, February 28). Retrieved from

http://press.amanet.org/press-releases/177/2007-electronic-monitoring-surveillance-

survey/

2. Martina Simova, Chris Pollett, Mark Stamp, “Stealthy Ciphertext” Department of

Computer Science, San Jose State University

3. Susan E.Gindin, “Guide to email and the internet in the workplace”, URL:

http://www.info-law.com/guide.html#email (Accessed: Aug 30, 2010)

4. Shamir Adi, van Someren Nicko. 1998. Playing hide and seek with stored keys. URL:

http://www.ncipher.com/resources/downloads/files/white_papers/keyhide2.pdf

5. Schneier, B. (1996). " Detecting Encryption." Applied cryptography, protocols,

algorithms, and source code in c. John Wiley & Sons Inc.

6. Stamp, M. (2005). Information security: Principles and practice. Hoboken, New Jersey:

John Wiley & Sons, Inc.

7. Cole, Eric B. Methodology, System and Computer Readable Medium for Detecting File

Encryption. Sytex, Inc., assignee. Patent 7564969. 21 July 2009. Print.

8. Kundur, D., Ahsan, K., 2003: Practical Internet Steganography: Data Hiding in IP,

Proceedings of the Texas Workshop on Security of Information Systems, April 2nd,

2003

9. Silman, J., “Steganography and Steganalysis: An Overview”, SANS Institute, 2001

10. James C. Judge (2009). Steganography: Past, Present, Future. [URL]

http://www.sans.org/reading_room/whitepapers/stenganography/steganography-past-

present-future_552

11. M. Stamp, A revealing introduction to hidden Markov models.

http://www.cs.sjsu.edu/faculty/stamp/Hampton/HMM.pdf

12. Francis, W. N. and H. Kučera. 1964. Manual of Information to accompany A Standard

Corpus of Present-Day Edited American English, for use with Digital Computers.

Providence, Rhode Island: Department of Linguistics, Brown University. Revised 1971.

Revised and amplified 1979.

13. Shannon, Claude E.: Prediction and entropy of printed English, The Bell System

Technical Journal, 30:50–64, January 1951.

http://press.amanet.org/press-releases/177/2007-electronic-monitoring-surveillance-survey/
http://press.amanet.org/press-releases/177/2007-electronic-monitoring-surveillance-survey/
http://www.ncipher.com/resources/downloads/files/white_papers/keyhide2.pdf
http://www.sans.org/reading_room/whitepapers/stenganography/steganography-past-present-future_552
http://www.sans.org/reading_room/whitepapers/stenganography/steganography-past-present-future_552
http://www.cs.sjsu.edu/faculty/stamp/Hampton/HMM.pdf
http://en.wikipedia.org/wiki/The_Bell_System_Technical_Journal
http://en.wikipedia.org/wiki/The_Bell_System_Technical_Journal

37

14. T Morkel, JHP Eloff and MS Olivier, "An Overview of Image Steganography," in

Proceedings of the Fifth Annual Information Security South Africa Conference

(ISSA2005), Sandton, South Africa, June/July 2005 (Published electronically)

15. "Hidden Markov Model." Wikipedia. Wikimedia Foundation, 19 Nov. 2012. Web. 19

Nov. 2012. <http://en.wikipedia.org/wiki/Hidden_Markov_model>.

16. Han Shu, On-line handwriting recognition using hidden markov models, Master‟s thesis,

Department of Electrical Engineering and Computer Science, the Massachusetts Institute

of Technology, 1996.

17. Rabiner, L.R (1989). “A Tutorial on Hidden Markov Models and selected applications in

speech recognition”

	Stealthy Plaintext
	Recommended Citation

	tmp.1356193465.pdf.dnWk2

