San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

MapMyVTA

Gaurav Sharma
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

b Part of the Computer Sciences Commons

Recommended Citation

Sharma, Gaurav, "MapMyVTA" (2012). Master's Projects. 269.
DOI: https://doi.org/10.31979/etd.35p5-pftx
https://scholarworks.sjsu.edu/etd_projects/269

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/269?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

MapMyVTA

A Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Computer Science

by
Gaurav Sharma

December 2012

© 2012

Gaurav Sharma

ALL RIGHTS RESERVED.

SAN JOSE STATE UNIVERSITY
The Undersigned Writing Project Committee Approves the Writing Project Title
MapMyVTA:
By

Gaurav Sharma

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Soon Tee Teoh, Department of Computer Science Date

Dr. Mark Stamp, Department of Computer Science Date

Bharat Agarwal, Senior Software Engineer, Cisco Systems Date

ABSTRACT
Transportation is a very important part of our day-to-day life. Generally, it includes use
of public transportation services like those provided by Valley Transportation Authority
(VTA) to Santa Clara County. VTA has reported total combined boarding of light rails
and buses as more than a million on yearly basis. This fact clearly indicates the
importance of public transportation in a society. Obviously trip planning and schedule
matching are two very decisive factors to improve transit experiences. Information
related to services makes it easy for users to plan their journey ahead. Still manual
planning and information discovery is time consuming, tedious, and prone to human
errors. Therefore need of a better, user-friendly transit information system has been long
felt. MapMyVTA is a web application that provides detailed information about VTA
services to its users. MapMyVTA keeps the users updated about the timings of the buses,
positions of the buses at a given time, and expected time of arrival of a bus at a given stop
in aroute. These features help users to match their timings with expected timings of the
buses at the stop, to see their options about the number of buses en-route, to look up their
connecting lines by a simple click at the connecting stops, and to plan their journey
quickly with all system supported routes. Additional features, such as stop locator is
useful to find more information about a particular stop with a near around attractions list
with addresses, and view lines information feature make it easy to view a very detailed

information about the bus lines.

ACKNOWLEDGEMENTS

I am thankful to my project advisor Dr. Soon Tee Teoh, for his invaluable suggestions,
insights and support throughout my master’s project and | would like to thank my
committee members Dr. Mark Stamp, and Mr. Bharat Agarwal for their time and

suggestions.

| would like to thank my parents and my dear brother & sister in law for their continuous

love, motivation, and support.

TABLE OF CONTENTS

I [011 7T [8 i { [o O USROS P PRSPPSO 9
1.1 PrOJECE OVEIVIEW ...ttt ettt et e s e te e e snaenneennesneers 9

1.2. REPOIM STIUCKUIE ...t 10

2. Analysis of EXisting SyStems& COMPATISONc.cciverveerueieeiieieseeseeie e sre e see e eeseesnas 12
2.1 Chicago Transit Authority Bus TracKer...........ccccviveiiiieiiece e 13

2.2 Next BUS TraCKing SEIVICES........ccueiiiiiiieieiie ettt 13

2.3 Washington Metropolitan Transit AUtNOIILYcccccoeveiieiiie e 15
3.Software, TOOIS & TECNNOIOGIESccviiieeiieie et 17
BLLUJZEE ...ttt bbb 17

K T 00 0 1SS 17

312 SEIVIBLS ...t nee e 18

B2 JSON Lttt bbbt e et bbb ne e 19

Be3 JAVASCIIPE ..ttt bbbttt b 19

B AJAX et ettt Re R e et et et tenteareene e 20

3.5 GOO0GIE IMIAPS......eeeieieie ettt et rs 20

BB ECHPSE IDEot et 22

3.7 TOMCAL APACNE SEIVET ...ttt bbbt bbb 22

4. SOTtWAre AFCHITECTUIEoeiieie et esreeneeenee e 24
5. Web Application DIreCtory SIFUCTUIE........c.oiieiieec et 27
6. Design & IMPIemMENtatioN.............cceiiiiiiieiie st anas 29
8.1, DESIGN -ttt bbbt bbbt 29

6.2 IMPIEMENTALION ...t e 38

7. Web APPHICALION UL ..o et 58
S TR @70 o] 131 [] o PSSR 64
RETEIBINCES ...ttt b et e bt et e st e e bt e be e b e s ee e be et e nreenbe e e 65

LIST OF FIGURES

Figure 2.1.1 CTA- visuals for BUS 802.ccoiiieiieiicie et ae e sne e 13
Figure 2.2.1 NeXtBUS FrONT PAGEoiieiiiieieeite sttt sta e ae e te e e e sne e 14
Figure 2.3.1 WIMTA FIONE PAGE. .. .ooveiieiiiiiieiieieiet ettt bttt 15
Figure 4.1 MV C2 arChitECIUIE.ociiivieie ettt e e e e sre e e e e sneenee s 24
Figure 5.1 Web application direCtory StrUCIUIE..........coovieie e 28
Figure 6.1.1 3-TIer ArCRITECIUIE.eoiuieiieiesieie ettt sre et e sae e e 29
Figure 6.1.2 Service locator desSign PatterN.cceiveiiiieieese e 32
Figure 6.1.3 CSV file €XaAMPIEooiiiee e 33
Figure 6.1.4 Sample NON OVErlapPiNg ZONES.ocveiiiiiiiiiieiee et 36
Figure 6.2.1 High level page flIow diagramccooviiiiii i 38
FIQUIE 6.2.2 HOMEPAGEeiueeieeie ettt ettt ettt te e e et e s b e te e e e sbe e te e e e sseesteeseaneenneeneeas 39
Figure 6.2.3 Input validation and direction Checkccoiiiiiiiiii e 40
Figure 6.2.4 Getting trips @S FESUIL.........ccvi it 41
Figure 6.2.5 Zone based filtering Of lINEScov i 41
Figure 6.2.6 Connecting lines check for eVEry StOP.........ccoiiiriiiene e 42
Figure 6.2.7 Getting reSUlts IN JSONoiiiiiieie e 43
Figure 6.2.8 JSON Data - ROULES..........cciuiiiiiieeiecie sttt ste et sae e sreesne e sre e 44
Figure 6.2.9 General Structure — Route JSON Data...........ccooveiriiiriienienesiseeeeee e 44
Figure 6.2.10 JSON Data - TIMINGS.....coueiuirieieieiesiesiesie st sr et se bbb 45
Figure 6.2.11 General Structure — Timing JSON Datacccoeveiieiieiciieseece e 45
FIQUIe 6.2.12 CreatiNg @ MAP.......coueruerterrerieeeeeeiesie sttt sttt ss et bbbt sbe e e e b e neesbesbesbeene e 46
Figure 6.2.13 ROULES COLOTING......ovetiitiitiiiieiieie ettt 47
FIgUre 6.2.14 MapPIing SLOPSveeveiieiieeiie e st este e sreeste e e te e s e eae s e e steessestaesteasesseesteessesseesaeerens 48
Figure 6.2.15 Recursive call to calculate bus poSItIONSccoeiiiiiiiiiiec e 49
Figure 6.2.16 Caculating bUS POSITIONS.........ceiiiiiiiiieieii e 49
Figure 6.2.17 Getting total triPS.....ccviiiieiie et 49
Figure 6.2.18 Iterating for all tripS.........ccooiiiiiie 50
Figure 6.2.19 TriP FITEIING.cviiiieie e 50
Figure 6.2.20 Iteration for timings between source and destination StOpPS..........ccccvveevieiieevinene, 50
Figure 6.2.21 Time compariSON CASE L......oooiiiiiiiiiiiiee e 51

Figure 6.2.22 Populating reSUIT SELeiiiieieiiii e 51

Figure 6.2.23 Time compPariSON CASE 2......ccovoiiiiiiieceee et sre e 52
Figure 6.2.24 POPUIAtING FESUIL SELeeviiieiece et 52
Figure 6.2.25 Calculating time & status for dynamic display table.............ccccooeiiiinniiinnne 53
Figure 6.2.26 Updating time & status in the dynamic display table...........ccccccoovvieiiiiiiieieens 53
Figure 6.2.27 mapmybus method Call.............cooiiiiiei e 53
FIgure 6.2.28 DElete OVEITAYSoiviiiiiiieieeeee bbb 54
Figure 6.2.29 Mapping all the DUSESccviiiei e 55
Figure 6.2.30 Adding bus iCONS 0N the MaP......cciiieiieiicc e 56

Introduction

1.1 Project Overview

Santa Clara Valley Transportation Authority (SCVTA) manages public transportation for
Santa Clara County. VTA (in short) serves almost 326 square miles of area with 75
different routes with its fleet including light rails and express buses [8]. The Availability
of connecting lines on transit centers for inter agency transfers, multiple connecting lines
for intra agency transfers and frequent services to most of the stops, are some of the
points which makes VTA a preferred choice to commute. VTA has reported a combined
boarding of almost 3,660,722 annually in the month of May 2009 as a reference point on
their website [8]. The reasons are obvious. Public transportation with frequent and
mostly regular services makes them a promising choice to commute. Hence public
transportation with a better information representation infrastructure will not only fill the
information gap between the services to its users but also will help to serve its users in a

time savvy manner.

The basic idea behind this project is to make people more aware of their options
of public transport, VTA in this case and make VTA journey more convenient for
commuters by providing some very specific visual features, which can deliver the VTA
transit information in a more detailed and user-friendly manner. Easy to use and detailed
information about the transit is a necessity for better transit experience. It is quite
interesting to discover that how a simple time-table can be made more user-friendly

which can help users to make the most of their time by saving them those minutes which

otherwise would have been wasted, just waiting at a stop for a bus. This transformation of
information is obviously a very refined version of the textual form of information. In this
project, we tried to provide the same. This project is a web application, which can be
accessed over the internet from anywhere, any devices (PCs/Mobiles/Tablets) which
support any web browser. Hence the project for its services has almost no specific
requirements on the external environment on the user’s part; therefore the project has
very high accessibility. MapMyVTA allows users to view their buses visually, provides a
time estimation of the buses en route for all stops in a dynamic display table and a trip
planner to help users plan their trip. In addition to these features, this project also has
features such as stop locator and line information dashboard. The goal is to help
commuters to have a leading edge of information to save their time by reducing wait
times at stops as much as possible, to reduce the necessity of tedious timetable lookups,
calculations, manual planning, and to eliminate human errors, by providing coherent set

of services to help the commuters to plan their trip more intelligently.

1.2 Report Structure

The project report is structured into the following sections:

Section 1 is an overview of this project and the report. Section 2 includes an analysis of
existing systems and comparison. Section 3 discusses the details of software, tools, and
technologies used to develop this application. Then Section 4 talks about the software
architecture used in this project. Then Section 5 has details of the internal directory

structure of the application. Section 6 provides the internal details of design and

10

implementation of the system. Then section 7 has screen shots of the system. Finally,

Section 8 concludes the project. References are included in the last part of this report.

11

2 Analysis of Existing Systems & Comparison

This section includes a summary of current systems, their advantages, and their
possible inadequacies. By comparing these similar systems, it will be easier to
understand the relevance of this project. As the web is increasingly getting popular and
accessible almost from everywhere via wireless / 3G networks, using smart phones /
tablets therefore any service available over the web will have high accessibility to its
users. So now it is a user’s constraint that a system should be user-friendly and consistent
enough to display the same information in mobile platforms without reducing its

completeness.

All available applications have very limited set of features. Some of them which
support VTA are the ones which do have a same time-table (stop & time combination)
like those provided by VTA but without any additional visual support. Few of them
navigate users back to the VTA site. However, in my research | have found no
application which is supporting visual mapping of buses on a map for the VTA now.
Hence | have analyzed systems being used in other parts of the USA by different transit
agencies.
| have analyzed these systems:

1.1 Chicago Transit Authority (CTA) Bus Tracker System
1.2 Next Bus

1.3 Washington Metro transit Authority (WMTA)

12

2.1 Chicago Transportation Authority (CTA) — Bus Tracker Application
According to the description of the application provided on the website of the CTA
BusTracker, it says, “CTA Bus Tracker uses GPS devices to report bus location data (and

more) back to our servers. We can then, in real time, show you where buses are on a map

and estimate when they will arrive at your stop.”

g e m Ue m e @ 'a ‘@
C A © ctabustracker.com/bustime/map/displaymap.jsp
(©) Free Java Tutorials ...

® '8 '‘a ‘@a ‘a

¢ Interview Questions ... () Java Programming.. {f} Java web developm... [Overview (Java Platf... (§) Jenkov.com - About... (D) Preciselava.com - T... [l Java Practices -> Ho...

} ctabustracker.com Q bus tracker

12:10 AM 51°F SN

Bus Stop Changes

- E
] i z z W Lake St W Lake St (50] o
a2 ® Wiake St o =
BEE O Wiakest © s 28 =
e Union Park West Loop an 5 o Routes
— East Garfield Near =] WMadsonSt @ & Find St
P —— ark o L WiadsnSt o West Side ab S w Menaum [FndStop
© Pk & o — X @ B
& 2 TounyH bert g & a@ £ WAdamsst o @Istops
E i Park 2 wedems| Bus: 802 el o e Grant { /| Buses
T DR el W Jackson Bivd > 2 Route: 12 To 15th/ndiana a 9 L] " £
: Hlt Direclion East Bound = 12
£ E| . Eisenhower Expy o 290 1250)
o w50 owight Next Stops
W Harrison St . 524) ;
(] i = e Roosevelt& Wood ~ APPROACHING
@ g z @ g Roosevelt& Paulina Lessthan 2MIN | [o | a
3 % 2t g Roosevelt & Ashland Less than 2 MIN 2\ 50 K
Ef 2 L 3 W Roosevelt& Laflin Lessthan2MIN | [F &
3 b4 2 3 g = ®
E 3 = . [¢ @ <
z = f T ity I 7
s 8 gl e ® & OFP F
B @ o @ooom® W Roose @mw’u % -
] James)
4 * Socoer Stukel Towers
I EEE| Fosca Perk
W Douglas Bl E H @ &4
| 3 . sml‘..an g o idier Field
> habitatio 3
z z il z] 3 a Burniy
] ' 2 z T Park Hd
] Gougl g 3 3
- 30 Prairie
z Park > W 18th St @ wighsSt g W 18th St g WABN S Gigres a
o 2000 3) Lozan: 3
500 m = e Library g L4 Map data ©20{ 1 Google - Terms of Use -

B showall downloads... %

10:10PM I
9/14/2011

Figure. 2.1.1 CTA- visuals for Bus 802

CTA BusTracker [Image]. (2011). Retrieved September 14, 2011,
from Ctabustracker.com/bustime/map/displaymap.jsp

13

2.2 NextBus Services

Next Bus services cover a variety of transportation authorities but in a selective

manner. So here in California NextBus covers MUNI and SFBay Ferry only.

€« C i © www.nextbus.com/predictor/stop

(®) Freelava Tutorials .. . Interview Questions ... (T) Java Programming.. (3} Java web developm... (@] Overview (Java Platf... (©) Jenkov.com - About.. (©) Preciselava.col

NexTbus San Francisco Muni

Choose another transit system...
= About HextBus

I

Select your route/direction/stop to obtain GPS-based arrival times: Agency Site

B How it works

= Help

Route: | 8x-Bayshore Exp [~] B

o Cellph . .
plone access Direction: |Inbound to Kearny & North Point St. [=]

Schedule
= Automatic Alerts st E
(s] Visitacion Ave & Sawyer St
B ADA Website P oy ¥ £ ;
¥ Simple Website Destination: | Visitacion Ave & Britton St [+] =
{optional}

Google Map
B Management Pages -
Save time & money! Get a Clipper card

Tracked vehicles for line 8X-Bayshore Exp arriving in
Select Language:

Live r;lap
Engish Francais
i s High: 63
11 minutes Q 63
25 minutes” Stop Number 16353 Lo 54

Pho

ne: 5-1-1
* § . :
N SMS: 41411 "nextmuni 16853
40 minutes -
Mosthy CI

Valid as of 10:11 PM Wednesday, September 14
Go to page that can be bookmarked (2)

FE| BusTime Developer_...pdf O showall downloads.. %

10:11 PM F

9/14/2011

Figure 2.2.1 NextBus Front page

NextBus [Image]. (2011). Retrieved September 14, 2011,
from www.nextbus.com/predictor/stopSelector.jsp?a=sf-muni

14

2.3 Washington Metropolitan Area Transit Authority (WMTA)
WMTA provides metro rail & metro bus transit services in Washington, DC,
Maryland and Virginia areas. For tracking buses WMTA uses next bus technology

and services.

[Metro - Home

€ CcC M wawAwmata.cum w| ol 2

® FreeJava Tutorials... %, Interview Questions ... (©) Java

WWashington Metropolitan’Area Transit’Authol

rr— :
metro | B Rail Bus & Accessibility Getting Around Rider Tools About Metro

Trip Planner

From: Using: » New bus route to connect

Do not use cty, state or zip S Southwest Washington with
Tor Downtown
R © Railonly
Do not use city, state or zip » Yellow, Blue, Orange and
© Botn Red Line weekend track
;i work September 16-18
Leaving after E| s P
szt s T » Metroto accelerate escalator

[Submit Advanced | Help Tips

Service Status

» Bus senice improvements
under consideration

Metro Map Survey: Tell Us
What You Think

Rail Bus Elevator
» Bus detours in September
@ RedLine On Time
[On Time

@ oOrangeline On Time
@ Greenline | OnTime

@ volowine |OnTme Maps & Stations Real-Time Arrivals Business with Metro
Panyourtriporfinda K-S Don't miss another Learn about business.
There are no Metrorail alerts at this time. stop. PO busortrain s gl opportunies at Metro.

" N
View All Rail Alerts Sign-up for eAlerts Rail | Bus © " Rail | Bus © Learn more
New to Metro SmarTrip® Card SmartBenefits®
forward Discover the bestride The aster, sater, e
m abeteyommelnea B m n the nation. Vi smarter way to pay. !(\ ‘ commute by using ~
‘ L dpage-brochurevi2lpdf ‘ T BusTime_Developer_...pdf 3 Show all downloads.. %

Figure. 2.3.1 WMTA Front page

WMTA [Image]. (2011). Retrieved September 14, 2011,
from www.wmta.com

15

http://www.wmta.com/

In my detailed analysis, there were different areas of improvements | came across
with all 3 different systems. Complete details of analysis are beyond the scope of this
report. However, all 3 systems as official applications were able to display real time
information and to plot the buses on the maps, to locate a particular stop, to show bus
movements, and to list all schedules. MapMyVTA supports all these basic features except
real time tracking as it does not have access to GPS data currently. But all 3 other
systems lacked some vital features on common grounds such as, no user-friendly
interface like icons selections, navigational issues, too much unnecessary data, similar
icons for both directions, therefore it is difficult to sense the direction, no information of
connecting lines at a particular stop, no complete snapshot of expected timings of the
next bus arrival on a stop at one place for a particular route, no search feature for nearby
attractions around a stop. Above all, clean and user-friendly interfaces are the top-most
requirements of any application to attract any user; as these are the first few features that
get noticed by a user. MapMyVTA supports all these features, in addition to the basic

features.

16

3 Software, Tools & Technologies
3.1 J2EE

Java 2 Platform Enterprise Edition (J2EE) defines a standard for developing multi
tier distributed enterprise applications. A platform-independent and component based
J2EE framework makes it easy to develop web applications which are going to run on top
of Java platform. The J2EE simplifies application development by providing reusable
modules and very large libraries of APIs. The J2EE basically consists of several inter-
connected yet independent set of services like ready to use APIs, which work together to
ensure the success of the important aspects of a web application for example, transaction
management, security, performance, scalability etc. As a framework all these services are
provided and taken care of by the servers supporting the J2EE framework for developing
enterprise level applications. The J2EE has two important constituents in it; they are

JSPs & Servlets. Both of them are web components in the J2EE framework.

3.1.1 JSP

JSP technology is a dynamic web page generation technology. In an MVC
architecture style, this technology is a part of a view layer. Any user specific customized
page is a dynamic web page which is generated on the fly as a response. Page can also
perform CRUD operations before it gets transmitted to a user for viewing and can interact
with the user. The user gets the simple HTML/XHTML document and has no clue that
the contents of the page have been changed selectively, very specific to him/her. JSP

pages unlike simple HTML pages require some specific tools to translate them into an

17

appropriate browser viewable document (into an HTML page) and this is why JSP
technology requires servers with web containers. The motive behind the use of JSP pages
IS to save a developer’s time from writing a tedious Servlets code for view component.
This helps to reduce time, human errors, increase production time, and clarity. However,
the server finally compiles all JSP pages into a Servlet. The view component of

MapMyVTA is written using JSP technology.

3.1.2 Servlets

The Servlets are special java classes, which extend specific classes like
HttpServlet, which make them able to talk to the server’s web container for http protocol
based request-response processing over the internet. In MVC technology, Servlets are
generally part of “controller layer”. Hence Servlets generally used as a controller for the
application where they decide the flow of control, and do the decision making for the
application like invoking service classes to process business logic, error handling, and
selecting an appropriate response (view) as a result of the request. Whenever server (web
container) receives a request for the application, it looks for a particular java Servlet
whose binding with the request context is defined in an application’s deployment
descriptor files named as “web.xml”. Deployment descriptor files are simple xml files
consisting of relevant data for the server’s to properly set the execution environment,
initialize the application and context binding. Servlets, as they are java classes
themselves make it easier to use communicate with other java classes and exchange

information. Therefore, Most of the business logic is carried out in java classes also

18

known as “model layer”, then the processed result is passed to a Servlet acting as a
controller and then finally, the result is handed over to the view technology like JSP. The

controller component of MapMyVTA is written using Servlets Technology.

3.2 JSON

There are two very popular data exchange formats available as XML and JSON.
Out of these two, JSON is fastest growing widespread data exchange format. JSON
stands for “JavaScript Object Notation”. Unlike XML, every well-formed JSON file is
automatically a valid JavaScript object. That makes JSON data very easy to access,
manipulate, and to retrieve them on a webpage. JSON is also known as lightweight, as
JSON does not have a redundant information structure unlike </endtags> in XML and
because of that reason resulting JSON file is very small compared to a similar XML file.
Small size with the same amount of information reduces the number of HTTP response
packets which results in faster and better efficient use of applications over the internet.

The data representation and exchange format for MapMyVTA is JSON.

3.3 JavaScript

JavaScript is the scripting language of the front end. JavaScript makes it easier to
manipulate the DOM structure of the HTML page thereby opens up a huge potential for
dynamic content creation. Together with CSS, JavaScript is known as DHTML.
JavaScript Makes it easy to interact with a user for trivial tasks which can be handled on

the user’s side and hence saves a round trip network call to the server and time.

19

JavaScript is used as the client side scripting language for MapMyVTA.

3.4 Ajax

Ajax stands for “Asynchronous JavaScript & XML”. Apparently, Ajax is not a
new technology; instead it is an intelligent approach to make the request to the server for
fetching the new data without making a new request for the entire page to reload.
Although XML is a preferred format to receive the data but using an XMLHttpRequest
object Ajax’s abilities are unlimited. Ajax can send and receive the data in formats like
JSON, HTML, TEXT files, and of-course XML. Hence it can also receive information
from server-side scripts as well. Hence using Ajax, we can asynchronously make
requests to the server while a client is still using the page and perform the necessary
transformation and present the new data to the user in the same page. Hence it reduces
the network calls; pay loads of HTTP response packets and keeps the client interaction
while performing more action in the background. Ajax is used for the Quick Query

Dashboard feature in this project.

3.5 Google Maps API

Google Maps APIs are a collection of maps APIs. These APIs are used to perform
various operations over Google Maps. All Google Maps APIs are of two types: one is
Google Maps APl Web Services, which can be invoked over standard HTTP protocol to
get geographic data in any map related application. So the use of web services makes it

easy to build an application which can invoke some map related operation using the

20

exposed set of web services and consume their responses. The format of the response is
specified in its request URL as “output=json” or “output=xml”; as currently these are the
only two formats which the web services support. Second one is the Google Maps
JavaScript API. The current version of the JavaScript APl is 3. The JavaScript API
library is loaded just like any other library using a URL and invoked in your HTML page
just like any other JavaScript method. Hence both forms of APIs are very easy to
incorporate into any application. Google Maps APIs are further divided into different
categories like Directions, Geocoding, Elevation, and Places etc. Each one of them
includes interfaces to serve the particular need. For Geocoding API services, Google
Maps APIs helps to project a point on our spherical earth onto a flat presentation of a map
using one of the available projection techniques like Mercator projection. Some
terminologies used in Google Maps are as follows: 1) GeoLocation: Every point on the
map is represented by a pair of latitude and longitude pair (Latitude, Longitude). The
latitude and the longitude are together known as the Geolocation. 2) GeoCoding:
Geolocations are used to pinpoint any particular position on the map. This process of
converting address to its Geolocation on the Map is known as Geocoding. 2) Reverse
GeoCoding: The process of converting a Geolocation back to its address form is known
as reverse Geocoding. 3) Map Objects: To incorporate a map in your web page we
need to create an object of the type “google.maps.Map” — it’s a JavaScript class that
represents a map. Every new instance of this class is a new map. Hence for multiple
maps on the same page require an equal number of instances to be created using a new

Operator. 4). Overlays (Decorator Pattern): Overlays are different types of objects

21

that we can create which are tied to a map. For a map, overlays objects include map
points, map markers, map lines, map areas, or simply any MV C type collection of objects
which have more detailed information about a Geolocation. Google maps JavaScript v3,
makes it easy to integrate the Google maps APIs into custom JavaScript code and invokes

them effortlessly like a local method.

3.6 Eclipse IDE

Eclipse IDE is an open source tool, which can be used to develop a variety of
application for multiple platforms. Eclipse supports almost all major development
languages with the help of plug-ins. Eclipse supports integration of third party software
back-end like database server or the enterprise servers like tomcat apache. This
integration gives complete control on your development environment from a single IDE.
Using an appropriate IDE makes the development process very fast as syntax checks,
missing library links and compile time errors are discovered and highlighted by the IDE

instantly.

3.7 Tomcat Apache Server

Tomcat apache provides a pure java implementation of Servlet container. Servlet
container is basically responsible for managing Servlets life cycle events, context
mapping and provide a set of services like access right check on requester before handing
over the request to a particular Servlet. Tomcat server is made of different components

like Catalina, Coyote & Jasper.

22

A Catalina component is an actual Servlet container, which handles the Servlet
life cycle events like create and destroy. To receive a request, the tomcat needs to listen
to a specific port. To listen on a specific port tomcat needs a HTTP connector
component. Tomcat’s HTTP connector component is Coyote. Finally, all JSP files are
parsed into a compatible Java Servlets by a JSSP-Engine. JASPER is the JSP-Engine for
the tomcat. JASPER parses all JSP files in a web application into a compatible

equivalent java Servlets file.

23

4 Software Architecture

This project is based on a very popular and successful software architecture style
known as MV C2 architecture. In MVC2 architecture style the entire application is
divided into layers. Each layer has separate responsibilities from another layer. Each
layer cannot directly communicate with the other layer until they pass some criteria. This
is known as “separation of concerns”. Every layer addresses different concerns of the

application. Here MVC2 architecture style has 3 layers a model, a view, and a controller.

R Controller ‘

Interacts with Interacts with

Interacts with Interacts with

v v
‘ View ’ ‘ Model J

Fig 3.1 MVC2 Architecture
1) Model:

The model layer is comprised of model objects, which provide access to data,
business logic to perform on data and methods to store the system state data. These data
objects may represent the state of the system, the contents of a response, or the contents
of a request depending upon the context. Once the request is given to the model object
via a controller, the model applies appropriate business logic on the input based on the
rules of the application to serve the request, generates results, and returns the response to

the controller then the controller returns the response to the presentation layer i.e. to the

24

client. In MVC2 architecture, models never talk directly to a view. Model objects are

not concerned with the presentation of result data.

2) View:

The view layer is the presentation layer of any application. The main purpose of
the view layer is to provide a user-friendly interface of the system to the end user. View
collects requests from the end user, hands it over to the controller and after getting a
response from the controller, it prepares the data in a more presentable format for the user
to view and to use. Views are not concerned with the execution of the business logic on
the input data rather their work is just to render data, received from the controller in the
correct format. The view layer in this project is written with JSP technology. Every JSP
page in this project interacts only with the controller and renders its response on a JSP
page. After this Apache server compiles this JSP page into a Servlet and then finally to a

HTML static page which is delivered to the end user.

3) Controller:

Controller controls the behavior of the application. All requests for the
application are directed to a single controller in the application. Controller then selects
an appropriate model class with business logic to perform the requested operation, gets
the response and hands it over to the appropriate view layer. Hence, the controller is an
important link between the view and the model in the MV C2 architecture. In this project

Servlet class (UserServices) is implemented as a controller. This controller class calls an

25

appropriate model class for successful processing of request and then returns the response

to a selected JSP page for presentation.

26

5 Web Application Directory Structure

This project is based on MV C2 architecture, therefore all inter connected modules
are placed into the MV C layer like folder structure. All model classes are inside the
model folder. Our controller is inside the controller folder. Constants for the entire
application are inside the constant folder. Constants definition at one place improves
code readability and increases code re-use. As constants can be made available to all
classes using object composition therefore we don’t need to redefine them every time.
Model classes use DAO (Data Access Objects) for data retrieval to generate response so
they are placed inside the DAO folder. Our models have plenty of utility methods for
various operations required for a proper response generation. Our views are placed inside
the JSP folder of the directory structure. Hence, the view can now only be accessed via a

Servlet as creating a directory structure prevents any invalid access to the view.

27

L[Project Explarer 3 — <}=r=l">| |

4 7 maprmyata

. 'eq Deplayment Descriptor: maprmyta
4 7B gva Resources
PR
- H comumaprmyta.constants
. B comumaprryvta.controller
- B comumaprytadac
. B com.maprmevta.model
- JH comumaprytaservice
- B comumapryata.utility
lﬁ WoehContentWEB-TMFAlib
. =i, Libraries
- B, JavaScript Resources
- = build
4 = WebCaontent
. [= images
- = img
. = ISP
- = media
- = META-INF
- [= WEB-IMF
[Z] index.html
™ jconTest.gif
K| timestamp_example outxml
K| tirnestarnp_exarmple sl

Fig 4.1 Web Application Directory Structure

Our icons for stops, buses, backgrounds, header, footers, are inside the img folder
of the directory structure. The application’s configuration file “web.xml” (DD) is inside
the WEB-INF folder in which individual mappings of a context to a corresponding

Servlet are defined.

28

6 Design & Implementation

6.1 Design

MapMyVTA is a 3-tier, MVVC2 architecture based application. The 3 tiers
are; the web browser — serves as the common standard universal interface for request and
response to the application, a web server — receives the request and apply the application
logic and returns the response to the user’s browser, a data store- used as a repository of
information in a customized version of GTFS information provided by VTA about the bus
services, stops, and other line related information. In addition to it, the Google Maps
JavaScript v3 gets loaded at the user browser via a CDN link. A CDN is known as
Content Delivery Network, a connection of networked server for providing the content to
the user’s universally. So using a CDN link, a web browser can make a request for
Google Maps API v3 on its own and load it from one of the CDN servers. Hence it
removes the necessity of providing the Google Maps API file to the end users by the

MapMyVTA application.

1 st Tier ond Tier

1 et 3rd Tier
I I :_p_plication
oy ¥
=:>_ server |::
3 > Data Store
25 ; [
I .
Text files,
<= |I | << k
PCs & Mobiles with
Web Browsers

Figure 6.1.1: 3-Tier Architecture

29

The web browser and web server supports client-server architecture. The communication
between them takes place over standard HTTP protocol. In this architecture client makes
a request and thereby is an active component. Server on the other hand waits for a
request and serves any request as they arrive so a server is a passive component. The
application server and the data store communicate via model components (java classes
which implements business logic for the request). Model components maintain the life
cycle events of connections to the data stores. In case of MapMyVTA, the data stores are
CSV text files (based on General Transit Feed Specification format) so the file handles

are created and destroyed as and when needed.

For every software system, the design is the heart of the system. MapMyVTA is
no exception to this rule. MapMyVTA is an attempt to provide every significant feature
that a user may need while they wish to make a transit. MapMyVTA allows users to view
VTA bus lines en route between a given pair of source and destination. It also allows
users to view the timings of the buses in a dynamic display table. MapMyVTA s also
equipped with a trip planner, which can plan a journey between a given pair of source and
destination using VTA transit line services. MapMyVTA also has stop locator, attractions
search features and a line services detailed dashboard for all the system supported line

services.

It is evident for a map based trip planner, constraints are to make correct

temporal, spatial, and system decisions while trip planning. According to Smith (2000)

30

[1] temporal and spatial decisions are two important decisions a map based trip planner
has to make (p.47). Temporal Decisions include an ability of a trip planner to schedule
the times to the source and to the destination, ability to determine the total trip time and
to enforce a maximum trip time, constraints if any. Spatial decisions include the ability
of a trip planner to identify all the transit stops surrounding the given source and
destination stops. System constraints are the physical (memory/processing time) and
virtual constraints (server uptime). According to Smith (2000) [1], goal of a good, map
based trip planner is to fulfill all these requirements while keeping total trip time to the
minimum (p.48). User constraints also include the user’s freedom to choose from
minimum transit time or minimum numbers of stops or minimum connections, or as
minimum fare while requesting a trip planning service. Several authors have suggested
similar opinions about this decision making process like Huang and Peng (2001) [1] and
Donovan (1998) [1] to mention a few. To provide all these functionalities together in a
single web application a simple design was needed which fulfill the constraints of the

system and those of the user’s.

MapMyVTA is designed using “MVC2” architecture style. The Entire web
application is divided into 3 components namely Models, Views & Controller. The views
contain the presentation logic which gives a user-friendly appearance to the result data.
The Views in this application are JSP pages which takes the data from the service handler
classes (model classes) applies the necessary presentation logic on the data and then these

JSP pages are converted into a static HTML page by the server and are returned as a final

31

response to the client(web browser). Hence the views are only concerned with the
presentation of information. Then the Controllers are decision making Servlets classes
which are invoked when a request is made at the view either by a click on a button or on
a hyper link. As this project implements “Front Controller Design Pattern”, hence only
one controller Servlet receives every request. Therefore it is only a single controller
which is responsible for making service decisions for every request received. The service
decision to invoke an appropriate model method to serve a request is decided by the
parameters that come along with the request. UserServices.java is the controller Servlet
for MapMyVTA. This Controller Servlet makes appropriate calls to the
ServiceHandler.java class which works as a class to locate services. ServiceHandler.java
class has been designed to implement “Service Locator Design pattern” which helps
Controller to access all the service of the system from a single instance of the

ServiceHandler class.

User

Requests

locates » ServiceA

locates » ServiceB

Ll

Figure 6.1.2:

Service locator design pattern [Image]. (2012). Retrieved April 14, 2012,
from: http://msdn.microsoft.com/en-us/library/ff648968.aspx

Third components as models are the classes which not only perform data store related
activities but also perform the business logic associated with the request. So the actual

data processing and application of business logic on the data for an appropriate response

32

is performed by the model components. Models perform CRUD operations on the data.
Models also perform the operation such as initialization of the system cache, creation of
lines and stops objects from the data store files, then making uniform distribution of the
time difference between any two stops based on the number of points between them, and
preparing the output as in a JSON format for the response. The data store for this
application is a collection of General Transit Feed Specification (GTFS) format files.
The format of the data has been designed on top of the GTFS, which is a standard for
transit authorities to provide transit information to any map related applications. These
are simple csv text files which contain all information related to the bus lines, routes,
stops, timing, hours of operations etc. Hence we grouped all related information under
the same text file like a text file for stop, which will contain all information related to
stops. Information stored in this manner also makes it very easy to represents them into
appropriate objects in memory. Like a snapshot of the stopZone file is shown below.
lstopID, stopname,zonelID, lattitude, longitude

10000, (PATC) Palo Alto Transit Center,1,37.44373,

1000,E1 camino Real & california,l1,37.42484, -122
1001,E1 camino Real & castro,1,37.38515, -122.082.

Figure 6.1.3: CSV file example

There had been many challenges / design issues surfaced while balancing between
the functionalities of the system and its simplicity. After all, the primary objective of this
system is to present services in a very user friendly, simpler manner than to those
currently available (MapMyVTA is the first application with respect to the set of services

it offers now).

33

MapMyVTA implements an innovative approach for trip planning based on
incremental-elimination filtering. This approach makes lesser use of space (memory)
with respect to the other trip planning methods as this approach does not requires a road
network and a transit network to be always available in memory. For example, there
might be 50 additional points could have been between a pair of stops for displaying the
motion of the bus on maps. As currently MapMyVTA serves two roles; one is of a
service provider and other is of a service consumer, therefore to properly display the
movement in a fraction of minute MapMyVTA requires more data where locations are
mapped to timestamps. This data generated using the RouteQueryDashboard Servlet and
later on the data is used as an input by MapMyVTA to display the route on the map. For
one complete agency with all routes, the memory requirement could have been huge. But
MapMyVTA implements incremental-elimination filtering to locate any stop presents in
the system and to plan a trip. This technique does not require the road network or the
transit network to be always available in memory and hence does not require much space.
This approach also makes use of “divide n conquer” technique to plan a trip between two

stops.

MapMyVTA utilizes a unique design which helps it to filter records incrementally
until it reaches a situation of a match or no match. Incremental-elimination filtering is
based on the facts that are true about all the elements in this project. Elements like transit
lines, transit centers, stops etc. So the very facts, which are true about them help

MapMyVTA to locate right information in a timely and efficient manner. Incremental-

34

elimination filtering starts with the division of the service areas into a number of non-
overlapping rectangular areas. Each rectangular area is tagged as a zone and assigned a
zonelD. For example, in this case of a VTA service area, the area is divided into a total of
6 zones. Then each stop is assigned a unique systemID and a unique zonelD. Now the
truth about each stoplD is that the same stopID cannot belong to two different zones. If it
would, that means two different zones have the same stop and it will refute the fact one
that two zones cannot overlap. Now the truth about each transit line is that they will pass
through one or more zones, therefore each zone will have one or more transit lines

associated with it.

That means if stoplD can be given a unique zone ID and then this zonelD can be
utilized to fetch all the transit lines servicing in and/or around that particular zone. This
will dramatically reduce the search space for all lines to a single zone out of “n” zones.
Now the search space for a stop is limited only to lines, which serve in that particular
zonelD. Now the search for a stop is limited to the lines servicing in that particular zone.
This will make the search for a stop faster. Hence MapMyVTA also fulfills the spatial &

temporal requirements as mentioned by Smith (1996) [5] (p.47).

Hence, MapMyVTA first filter the zone based on the zonelD and then it filters the
transit lines by utilizing the zonelD. That is why it is called as incremental-elimination
filtering. Now if source and destination stops are on the same line, the match will be

found and a trip will be returned.

35

R 4 i
ont . = 41% Snoboy s Sunol Regtonal om Satellit
227 A\ A\l‘_‘ Wildemess TIEMess

& Regional
Preserve
wood o | (262)
’ach“y Friendly @
Park Acres Ea_it
Ndrth Palo Alto
|[§] :’ilr‘l Fair Daks pZONE 1 ZONE 2 S ZONE 3
ilis jillows A i evin
Menlo Rark |QT © gg(;qc%h;fy" 2 County Park J
+ 1210 A
dside Menlo ok prfett Miloit
Stanford Stanford Bl Airfield e Sierra Visfa Open
Weekend Acles 4 o g Sweigert Space Pgeserve
@ 55 T *
-
-“ Lakewood 5
Portola Centi St jbis He >
1a Vel " Wy Norman ast
i;'iﬁﬁi Valay Floaisier QT Mineta San J§se Foothills
indy Hill Open Palo- Los Altos 2 Intemational Aifport
y Alto Hills Byvae Alum Rock
Bpace Presprve Hills um Roc
ZONE 4 ZONES <§ i eid-Hillview g
Los Trancos) o | ¥ cener | (130)
| £ Woods ARar\ch%San A | Joseph% Gn
AL \ntonio Open #10 Serma " Hi i
(D)) Space Preserve pri b N | S Sunol-Midtown > GI’:;‘ ";’:M County Parl
= - urban
o g Monta Vis az&ggmno 280 F oy S U
Monte Bello O '
Ruieaian Ridds E ,?2:. ignnﬂfn Fruitdale ZUNE,B—\ Albanese

Figure 6.1.4 A sample non overlapping zones

(adivision of a service area into unique zones)

Every stop and transit line model object also store the information regarding the
connecting lines. Every time a stop is declared in the file as a transit center; it’s
connecting list also becomes the connecting list to that of line number, which serve the
particular transit center. Whenever MapMyVTA search for a connection while planning a
trip, it looks for this connection list of every transit line before looping through a stops
list of any transit line. If any match with a transit line is found then that particular trip is
added to the result object and search continues until the entire connection list of a source
is compared against the list of lines that serve a destination. Now, 2 objects are created
from the source to the connecting stop as trip 1 object and from connecting stop to
destination stop as trip 2 object which then later on combined as one single object

representing one complete planned trip.

36

Due to the nature of the application as to show and update the positions of the
buses after every 15 seconds or less, the data collection rate for points between the stops
is very high. Therefore a separate dashboard feature as a system service has been built
which utilizes direction API of the Google maps and calls directions API for all stops pair
within a route. The geocoding information for individual stop pair needs to be manually
collected from a website known as itouchmap.com. Then dashboard gives a collection of
points along the route between all stops pairs to show better movement of buses along the
route. This process needs to be done exactly once for each route. Then these collections
of points are stored in a csv file as route information. All stops objects for which VTA
provides official timings are treated as major stops / transit centers and all other stops are
treated as points along the route. So for all points between the two major stops the
uniform distribution of time is performed so that every stop and every point are mapped
to a single timestamp. uDistribute Method() of a model class MappingServices.java
implements a bijective mapping function which maps every point from a route object to
a unique timestamp. Then once the mapping is performed, the stop object and its
corresponding timing are stored in a string which is in the JSON format. This JSON
format information contains information about the route, stops, and timings. This JSON
string is returned to the user as a part of the response on the appropriate page for bus

mapping or planning a trip.

To accomplish all these functionalities successfully MapMyVTA utilizes a system

cache, which helps to reduce response time and increase efficiency. A special Servlet is

37

mapped to the context name of the application by setting a configuration file, web.xml of
the application. Apache server uses this file to resolve the context mapping with the

Servlets. Therefore, the first request to the system initializes the system cache.

6.2 Implementation

High level page flow diagram for the MapMyVTA Application:

Map My Bus

Trip Planner

Homepage
Stop Locator

Get More

View Lines Information ;
Information

Figure 6.2.1: High level Page Flow Diagram

As the first feature user can select to view a particular service line on the map. For this

user can select Map My Bus feature. The list of lines is shown as a drop down menu on
the display page. Values of this drop down menu are set by the system cache. Once the
request has been submitted to MapMyVTA, it will map all the buses, which are either at

some stops or they are arriving at a stop soon.

38

10 <title=MapMyVWTA: One Stop Solution for Public transportation</title>

11= =style type="text/css">

12 select {width: 50%;height: 200x;margin-left: 10%;}

13 body { width: 1200px; height: 800px; margin-left: 8%;"}

14 <«/style=

1s

16= «<script type="text/javascript”=

17

18 </script>

19 </head>

20

21 <body =

22= «div id ="container” style="width: 1200px; height: 800px;background-image: url"img/fpages.png');background-repeat: no-repeat;
23 background-position: botfom;" =

24= =div id="header” style="width: 100%;height: 50px; color: darkblue;" >

25 «sprinclude page="header.jsp"></jsp:include=

26 </divs

27= =div id="information” style="width: 100%;height: 60%;margin-top: 45%;"=

28

29= =div id="mapBus” style="width: 50%;height: 30%;float: /eft" >

20= =form name="UserChoice" action="service.do" method ="Post"-

31 <input type="submit" name="gefline" value="Map My Bus "style="width: 150px; height: 35px;margin-left: 60%;"></form=
32 </div>

33= «div id="planTrp" style="width: 50%;height: 30%;float: ight;" >

34= <form mame="UserChoice” action="service.do" method ="Post">

35 <input type="submit" name="planTrip" value="Trp Planner”style="width: 150px; height: 35px;"></form=
36

37 <fdiv>

38= «div id="sfoplocator” style="width: 50%;height: 30%,;float: /left; margin-top: -8%;">

IO Frern mmene— Wit Rmien T s mbimn — Trmeeime AT mneb A — s

Figure 6.2.2 Homepage

From HomePage a user can select Map My bus feature which will direct him to
the mapmybus page for making a selection about the bus line. Then mapmybus.jsp page
utilizes a list, set by the controller in the request object under the attribute name “busList”

for transit lines and “stopsList” for the list of stops.

Once a user has selected a transit line, a request is then sent to the single controller
“UserServices.java”. There can be around 12 requests that can be made to the system and
controller on the basis of the request parameters makes the decision about the action to
take. For example, for the mapmybus feature the request will have a parameter linelD set

as the number of bus service line.

39

43 try{

44

45 J/ String pPath = (String) request.getParameter("path");

46

47 ServiceHandler svc = new ServiceHandler();

48 HashMap<String, String> routeDetails;

49

50

51 if{ request.getParameter{"lineID") != null) //pLinelD will be zero for cases of trip planning
52

53 int pLinelD = Integer.parselnf{request.getParameter("linelD"));
54 boolean path = true;

1=

56 if{ Integer.parseint{request.getParameter("direction"))==0)
57 path = false;

5B

59

60 routeDetails = svc.mapMyBus({pLinelD, path};

61 request.setAttribute("busInfo”, routeDetails);

62 System.out.printin{" routeDetails "+routeDetails.size());

63 RequestDispatcher view = request.getRequestDispatcher("JSP/myBus.jsp");
54 view .forward({request, response);

65 T

66

Figure 6.2.3 Input validation and direction checking
Then the controller also checks for the direction of the service requested if it is a one(1)

means the direction is East/North bound zero(0) means the opposite direction.

For trip planning, the parameters come as source and destination stop names. For
every stop, the first task is to get the unique stopID which binds to this particular stop
name hence the controller gets the appropriate stoplD from the system cache. Then it
passes the source 1D and destination ID pair to the tPlanner method of the ServiceHandler

class to get the result.

40

[Ve e R I o R s S 0]
= IV T S T I (O [N

O

[T QT Vo R
WO s Th o W R

[Te)

—

—
[

Loz

else if(request.getParameter("source") != null)

String srcName = (String) request.getParameter("source");
String dstName = (String) request.getParameter("destination");

System. out.println{"src "+srcame);
System. out.println("dst "+dstName);

// String stopSearch = (String) request.getParameter("stopFinder");

L

J/trip planning
HashMap«<String, ArrayList<String=>> tripsPlanned = new HashMap<String, ArrayList<String==();

tripsPlanned = svc.tPlanner{srcName, dstName);
request.setAttribute("tripInfo”, tripsPlanned);

RequestDispatcher view = request.getRequestDispatcher("1SP/myTrip.Jsp");
view .forward{request, response);

Figure 6.2.4: Getting trips as result

tPlanner then filters the lines by zonelD to which the stops belong by calling a

method getFileteredLines of NsTripPlanner class and then tPlanner calls the planMyTrip

method of NsTripPlanner class to find out the no of trips that can be planned between

source and destination stops.

=] Th 1

el

= p Wk =D

O N TV VS IS I SV U TS V5 Y IV R PV S SRS SN
[I RV i

43

438

50
51
52
53
54

56
57

= public ArrayList<ArrayList<TripPlanned>> planMyTrip(int srcIndex, String source, int dstIndex, String destination)
i

Initialization init = new Initialization();
init. fnitializeCache);

NsTripPlanner ntp = new NsTripPlanner();
f/5tring source="{PATC) Palg Alto Transit Center”, destination ="(ERTC) Eastridge Transit Center";
//5tring source="4th & San Fernandg", destination ="Almaden Expwy & Camden”;

int srczone, dstzone;

Arraylist<NsLine> src ;
Arraylist<NslLine> dst ;

ArrayList<Integer= src2 = new ArrayList<Integer=();
Arraylist<Integer> dst2 = new ArrayList<Integer=();

ArrayList<ArrayList<TripPlanned>> trips;

srczone = init.stopZone. get(srcindex);
src2 = init. zoneVtalines.get(srczone);

dstzone = init.stopZone.get(dstindex);
dst2 = init. zonelVtalines.get(dstzone);

src= ntp.getFileteredLines(srcindex, src2);
dst = ntp.getFileteredLines{dstindex, dst2);

ntp.tripPlanner(srcindex, source, src, dstindex, destination, dst);

Figure 6.2.5 Zone based filtering of lines & a call to the trip planning method

41

planMyTrip method then plans the trip for a source and a destination pair, if it
can. For the direction of the service line, it calls another method getindex, which helps
the tripPlanner to ascertain the right direction and store the direction value in the object.
Route objects also stores individual stop number in a route as well. Therefore direction
calculation is based on the position of source and destination stops in a route. If a source

stop’s number is greater than a destination stop’s number then the direction is opposite.

To plan a trip that requires one transfer planMyTrip method looks into the
connecting list of individual lines originating from a source and matches it with the a

destination line(s) if it matches, then planMyTrip adds those trips to the result.

285 //get the first line passes through the source stop

286 line = srcLines.get(i);

287

288 //for all connecting lines

289 for(int j=0;j<line.connectingLines.size();j++)

290

291 lineMum = line.connectingLines.get(j);

292

293 if(init. getVtaLline. containsKey(lineNum))

294 {

295

296 line2 = init.getVtaline.get(lineMum);

297 int length = line2.stopsindex.size();

298 for(int k=0;k<length;k++)

299 {

300

301 stop = line2.stops.get(line2.stopsindex.get(k));
U

303 if(stop.stopCode == dstStop)

304 {

305 tp = new TripPlanned();

306

307 for(int 1=0;l<line.stopsIndex.size();l++)

308 {

309 stop2 = line.stops.get(line.stopsindex.get(l));
310 if(stop2.ConnectingLines.contains(line2.linelD))
311 {

312 tp = new TripPlanned();

313

314 //for the first part of journey

315 srclndex = getlndex(srcStop,line);

316 dstIndex = getlndex(stop2.stopCode, line);
317

318 src2 = stop2.stopCode;

319 srcName2 = stop2.stopName;

320 System.out.printin("srcIndex ="+srcIndex+" , dstIndex ="+dstIndex);

Figure 6.2.6 Connecting lines check for every stop

42

When planMyTrip returns the result to the tPlanner, the result is in a java object
form, which needs to be converted into an appropriate JSON format so that the front end

(view) can understand and use.

Hence tPlanner passes the results object to MappingServices class and asks an

ArrayList of String data type which stores the result in JSON format

*%'5 jsonTrips = ms.getdsonTrips{trips);

;E" timings = ms.getTimelsonTrip(trips);

;E routeDetails = ms.getRouteDetails(trips);
oo

i]i System.out.printin{"timingsTrips "+timings);
102 System.out.printin{"jsonTrips "+jsonTrips);
103

104 trip.put{"json",jsonTrips};

105 trip.put{"timeList", timings};

106 trip.put{"routebetails", routeDetails);

107 System. out.printin{" RouteDetails size "+routeDetails.size());

108 System. owt.printin{" RouteDetails size "+routeDetails.get{0).toString(});
109 System. owt.printin{" RouteDetails size "+routeDetails.get{1).toString(});

Figure 6.2.7 Getting results in JSON
Mapping services performs the following operations: 1. Data cleansing operation on the
time-table, 2. Appropriate decisions making regarding the day of the service and selecting
the corresponding published schedules, 3. Performing the Uniform distribution and
bijective mapping of timestamps to points along a route, and 4. Populating the result in a
JSON format which looks like similar to the one shown below. Mapping services utilizes
different modules to accomplish all these functionalities and then put them together as a
single result. It performs a pipeline operation where the output of one method becomes

the input to another till the results finally become a JSON string.

43

This resulting JSON formatted String looks like this
For Planned Routes:

json = { "Route” : { "Trip" : [{ "TlineID" : 22 , "source" : "(PATC) Palo
Alto Transit Center" , "destination" : "(ERTC) Eastridge Transit Center"
, "stopIndex":[0, 89, 193, 254, 339, 396, 468, 572, 670, 806, 915, 1025,
1209], "stops"™ : [{ "name" : "(PATC) Palo Alto Transit Center" ,

"destination"” : "A Point" , "coordinates" : [37.44373 , -122.16627]} ,

Figure 6.2.8 JSON Data — Routes (all planned trips as results)

Here Route is an object containing details of all routes for this particular trip; the
trip is the type of arrays of objects. For every trip one trip type of object will be added to
this JSON data. lineID is the number representing the transit line’s number. A source
and a destination pairs are source and destination stops for this particular trip. Then stop

is another array of objects, which contains all information related to stops for this

particular trip.

The general structure of json data for a planned route is as follows:

Route : {
Trip:{[//trip Object 1
{1ineID,source,destination,
stopIndex:[],
Stops: [
{name,destination,coordinates[]},
{name,destination,coordinates[]},

1

//trip Object 2
{1ineID, source,destination,
stopIndex:[],
Stops: [
{name,destination,coordinates|[]
{name,destination, coordinates|[]

1

},
s

}
1}

Figure 6.2.9: General Structure — Routes JSON data

44

Similarly a JSON String for the timing also has arrays of timing information for a
complete listing of timings for trips:

ftimeList = { "tripList" : [{ "sIndex" : 0, "dIndex": 1210 , "direction”
: 0, "trip" ¢ [{ "timing"
:"11:52:0,11:52:7,11:52:14,11:52:21,11:52:28,11:52:35,11:52:42,11:52:49,1
1:52:56,11:53:3,11:53:10,11:53:17,11:53:24,11:53:31,11:53:38,11:53:45,11:
53:52,11:53:59,11:54:6,11:54:13,11:54:20,11:54:27,11:54:34,11:54:41,11:54
:48,11:54:55,11:55:2,11:55:9,11:55:16,11:55:23,11:55:30,11:55:37,11:55:44
,11:55:51,11:55:58,11:56:5,11:56:12,11:56:19,11:56:26,11:56:33,11:56:40,1
1:56:47,11:56:54,11:57:1,11:57:8,11:57:15,11:57:22,11:57:29,

Figure 6.2.10 JSON Data — Timings (for each trip in a Route)
Here the triplist is an array of objects, which contains information for the entire
timings schedule for a given source and destination pair.

The general structure of json data for timing data is as follows:

tripList:{[//trip object 1
{sIndex,dIndex,direction,
trip:[
{array of timings},
{array of timings}

//trip object 2
{sIndex,dIndex,direction,
trip: [
{array of timings},
{array of timings}

13

Figure 6.2.11: General Structure — timings JSON Data

Now we will see the details of implementation on the client side and how to

interpret and use these details:

45

= Creating a map

836 <%

837 boolean center = true;

838 if{busInfo.containsKey({"stops") && buslnfo.containsKey("path"))
839 {

840 String [] stops = busInfo.get{"stops").spht(",") ;

841 String [] str = busInfo.get{"path").split(",");

842

843 ArrayList<Double> loc = new ArrayList<Double=();
844 for{int 1=0;j<str.length;j++)

845 {

846 loc.add(Double.parseDouble({str{j1.trim{)})7;
847 ¥

848

849 int i=1;

850 int st=0;

851

852 %=

853

854 war lat =<%=loc.get(0)%>;

855 war Ing =<%=loc.get{1)%>;

856 war latlng = new google.maps.LatLng(lat,Ing);
857 war myOptions = {

//set the zoom level?

zoom: 11,

//put the place in the center of the map?
center: lating,

//put the map type ?

mapTypeld: google.maps.MapTypeld. ROADMAP

N
o

oA R o s R s
ohoh O ohoh
W RO

o]

T

Figure 6.2.12 Creating a map

This function “initialize()” called only once when MapMyBus page loads for the first
time.

This function is called by the body =onload() function to initialize the map, to
color the routes, and to geocode all the stops for this trip as these settings are going to
remain same for this page. This function uses Google Maps API service for drawing a
map and then setting the necessary options for the map and then uses the div section of

the HTML page named as “animap” to draw the map.

46

= Color coded Routes

]

872 war travelPath<%=1-1%= = [

873 <%

874 int p=0;

875 int 5 = loc.size();

876 for{p=0;p<(s-2);p+=2)

877 out.printin{"new google.maps.LatLng("+Hoc.get{p}+", "+Hoc.get(p+1)+"),");
878

879 out.println{"new google.maps.LatLng("+loc.get{p)+", "+Hoc.get{p+1)+")"};
880 Yo

881 1

882

883 var pathPolyline<%=i-1%> = new google.maps.Palyline{{

a4 path: travelPath<"%=i-1%"=>,

885 strokeColor: <% out.println{"™\""+Constants.colors[i-1].trim{)+"\""); % =,
886 strokeOpacity: 0.8,

887 strokeWeight: 3

888

889 i

890

89

89 pathPolyline<%:=1-1%=.setMap({map);

893 <%}

ac

8

8

[
[9y R OO N Y

L]

Figure 6.2.13 Routes coloring

This part comes after a map is initialized. In this part we retrieve a list of
geocodes for all the stops from the request object as an array of stops and their geocodes,
and we set these arrays of geocodes as polyline objects. A polyline is shown as a colored

route, which passes through all points of a given array of stops on the map.

47

= Stop Positions

900 <%
> int 5=0, mk=0, i=0;

String stop="";
String resultList="No Connection.";
& String name="";

String [] arr = busInfo.get("stops").split(","} ;

210 for(int k=0;k<arr.length;k+=3, mk++)
i

name=arr[k]:

out.printin("var marker"+mk+" = new google.maps.Marker({ ");
out.printin(" map: map, ");
6 out.printin(" position: new google.maps.LatLng("+arr[k+11+","+arr[k+21+"), ");
217 out.printin(" icon: busstop, ");
out.printin(" title: \"Bus Stop\", ");
219 out.printin("animation : google.maps.Animation.DROP");
0 out.printin("});");
out.printin("marker"+mk+".setMap(map);");

y //if(transit.containsKey(stop))
//resultList = transit.get(stop).toString();

6 /fout.printin{"var infowindow"+i+" = new google.maps.InfoWindow({ content: \"This Stop is "+stop+" :: Lines connecting this stop are:

227 out.println("var infowindow"+mk+" = new google.maps.InfoWindow({ content: \"This Stop is "+name+"\"});");
out.printin(" google.maps.event.addListener(marker"+mk+", 'click’, function() { infowindow"+mk+".open(map,marker"+mk+"); 3);");

resultList="No Connection.";

Figure 6.2.14 Mapping Stops (Plotting Stops on the map for a route)

Then for every stop name we recursively call Google Maps API with the
geocodes of the stop to plot them on the map. While doing so it is important to give a
unique name to each marker else without a unique name when we attach information

window for displaying information it would not store a proper message.

Finally, we have set our map then we call another JavaScript method
“busPositions()” to start interpreting the result data and start showing the buses and
timing information. SetTimeout function calls the method after the delay specified in
microseconds. Here in this case, busPositions is called after every 15 seconds once

control reaches at this position.

48

Jfcall busPositions method after 15 seconds
tc2 = setTimeout{"busPositions{map)", 15*1000 };

Figure 6.2.15 Caculating bus positions (recursive call to calculate bus positions)

= Calculating bus positions

8 /f alert{currTime);
9 <% HashMap<String, String> busInfo = (HashMap<String, String:) request.getAttribute("busInfo"};
0 ArrayList<String> stopsList = nuill;

72 if{businfo != null && businfo.size() = 0)

73

74 if{ busInfo.containsKey("route") != false)
75 out.println("json = "+busInfo.get("route"});

77 if{ busInfo.containsKey("timings") != false)
78 out.println{"timeList = "+busInfo.get({"timings"));

Figure 6.2.16 Calculating bus positions

This JavaScript function first gets the data from the request object. It stores the
route information in a JavaScript variable “json” and it stores the timing information in
another JavaScript variable called as “timeList”. As this information is in the JSON
format, therefore these variables are inherently proper JavaScript objects.

This function then initializes the number of routes returned by the server for the

requested source and destination pair, By

//no of trip objects we have in our result set betweeen a partiular source-destination pair
var tripsFound =json.Route.Trip.length;

Figure 6.2.17 Getting total trips (No of planned trips for the route)
Then it puts a for loop to estimate the positions of the buses for all available timings list
in the variable timeL.ist & initializes the MapMyVTA information Panel once for one

iteration as

49

239 for{var up=0;up<tripsFound;up++)

240 {

241 document.getElementById("linelD"+up).innerHTML = json.Route.Trip[up].linelD;

242 document.getElementById("source"+up).innerdTML = json.Route. Trip[up]l.source;

243 document.getElementByld("destination"+up).innerdTML = json.Route. Trip[up].destination;
244 }

245

Figure 6.2.18 Iterating for all routes
If the trip’s timing’s start time is less than the current time and journey’s end time
is greater than the current time that means the bus is live on the route somewhere so to

locate its position between the given pair of,

//if trip's StartTime is before the Current Time = trip has started before the current Time now check for end time
if{ (currentT - startT) >0)
{
J/if trip's End Time is after the Current Time = trip has not finished yet = status, ACTIVE
if((endT - currentT) >0)
{

{
//update the Triptime]
var time = (endT-currentT)/(60*1000);
var time2 = parselnt(time);
var diff = time - time2;
diff = diff * 60;
var arrival="";

if(time2>1)

arrival = ""+time2+" Minutes & "+Math.ceil(diff)+"Seconds";
else

arrival =""+time2+" Minute & "+Math.ceil(diff)+"Seconds" ;

document.getElementByld("tripTime"+nTrip).innerHTML = arrival;

Figure 6.2.19: Trips Filtering

for(j=sIndex;j<dIndex;j++)
{

var temp = timeStamps[il;

Figure 6.2.20: iterating for timings between source and destination stops
sIndex= source stop position in the current list,

dindex = destination stop position in the current list

50

if{ (tempT - currentT) ==0)

var sit=0, sitprev=0;
var state, status, arrival, Id, tId, td;

for{var si=0;si<stIndexes.length;si++)

{
/[take out the first stop index
sit = stIndexes[si]:

Figure 6.2.21 Time comparison CASE 1(current time == bus time)

If a match is found for timings between source and destination stops then add it to
an array called as activeBuses holding information about identified active buses, the
String busData will contain all information for the bus including the time to next stop,
direction, and type of vehicle (bus/rail).

The data inside this string are added with a token “$” which will be used to split
this string into a number of individual string of individual data items. This will help to

get all the individual data back from this String.

567 ousData = "+json Route. Trip[nTrip]. Scops[sitprev] name+"$"+json,Route. Tip[nTrip] Stops| sit-sIndex)] name+'5'+

568 J5on.Route. Trip{nTrip]. Stops[tIndex].coordinates[0+'4 +json. Route. Trip[nTrip]. Stops| tindex].coorcinates[1 +'5"+tmeDifferance+
569 "$"+drection+'s HineID+'s +sBus+'s +Trip+'s +HIndext'$';

570

571 activeBuses.push{busData);

Figure 6.2.22 Populating result set (Adding result data to an array of results)

At the same time set the dynamic display table for this particular bus as “Arrived”. Now,

51

577 else If{ (tempT - currentT) >0 &&] !=0)

578

579

580 test =3-1;

581 |

582 var stlndexes = json.Route.Trip[nTrip]l.stopIndex;
583 var sit=0, sitprev=0;

584

585 for(var si=0;si<stindexes.length;si++)
SB6 {

G&7 //take out the first stop index

GE8 sit = stindexes[sil;

5E9

590 state = "-";

591 arrival ="-";

Figure 6.2.23 Time comparison case 2 (current time > bus time)

if time of the bus is greater than current time but not equal to timings of any of
the stops timing then the bus must be somewhere between the current stop and one stop
before it so add the bus info with all other details consider the current stop as destination

and one stop before it as a source stop.

765 busData = "+json,Route, Trp{Trip].Stops[sitprev]name+§+json.Route, Tri{Trip] Stops{ sit-sinde] . name+'+

766 J50n.Route. Trip{nTrip]. Stops{ tIndex].coordinates[0]+'%"+json. Route. Trip[nTrip]. Stops{tIndex] coordinates[1]+ 4 +tmeDifference+
767 "§"tdirection's " HinelD+'5 +isBus+' $"tnTrip""+{ tindex) +'5 4,

768

769 activeBuses.push{busData);

Figure 6.2.24 Populating result set
At the same time, to set the dynamic display table value of this particular bus as
“Arriving” and set the time to the next stop. Every major stop in a route has a
corresponding element id in the HTML table. This element id is used to access a specific
id, to store the information about the particular stop and to update the table for every run
of bus positions calculation method. The id’s of the elements and the corresponding trip

indexes have been matched to avoid ambiguity and the above two cases are handled

52

something like this for the table,

635 //update next stop info for this bus

636 if(si+1< stIndexes.length && document.getElementByld{nTrip+"_"+{si+1)+"_"+(si+1)).innerdTML == "-")
637 {

638 var counter =si+1;

639

640 for(; counter<stindexes.length; counter++)

541 {

642 //get the timing of that stop get in Miliseconds then calculate the difference
643 var nst = new Date("Oct 25, 2012 "+timeStamps|stindexes[counter]]);
644 timeDifference = nst.getTime() - currentT;

645

646 state = "Expected";

647

648 //update timing of 1 next future stop with respect to current bus if there is no bus running between the next two stops
649

650 var time = timeDifference/({60*1000);

651 var time2 = parselnt(time);

652 wvar diff = time - time2;

653 diff = diff * 60;

654

655 if(time == 0)

656

657 arrival = "-";

658 state ="-";

659

660 else if(time < 1 && time >=0)

661 {

662 arrival = "-";

663 state = "Arrived.";

664

665

666 else

667 if{time2 > 1)

668 arrival = ""+time2+" Minutes & "+Math.ceil(diff)+" Seconds.";

669 else if{time2 > 0 && time2 <=1)

TN arrneal — M ik AT ! Minoda 8 "Ltk ~Rll AFRLY Camandes T

Figure 6.2.25 Calculating time & status for the dynamic display table

0ol

663 status = document.getElementByld(nTrip+'_"+(counter));

664 status.innerHTML =state;

665 td = document.getElementByld(nTrip+'_"+{counter)+'_"+{counter));

666 td.innerHTML =armval;

667

668 document.getElementByld(nTrip+'-"+{counter)) innerHTML = nst.toLocaleTimeString()+", (Bus ID = "+i+")";
bbY

670

Figure 6.2.26 Updating time & status in the dynamic display table
Once details for all the buses are added, now call mapping method to draw them on the

map by calling MapMyBus method

813 //alert("callingMapmyBus :)");
814 MapMyBus{activeBuses);

815

816 7} //buspositions Method Ends
217

Figure 6.2.27 A call to map my bus method

53

MapMyBus takes an array of strings, which has all the details of the buses active at a

particular point of time.

e Bus Mapping

MapMyBus method() takes the array of information about active buses in the
form of string array. But before mapping new buses we need to remove the buses
mapped before. So it calls a mehod deleteOverlays() which deletes all previous bus icons
from the map. Complete descriptions of the Google Maps APIs are beyond the scope of
this report. However, the official documentation available online can be consulted for

further information.

11047 function MapMyBus(activeBuses)
1048 {

1049 //delete all bus icons from the Map
1050 deleteOverlays();

AN&ET

Figure 6.2.28 Delete Overlays (on the Google map)
Then for the entire array of active buses, we retrieve the individual data items using the
string split by the same token ($) we used and call an addMarker() method which is

another method to add one marker at a time on the map.

54

1120 busData="";

1121

1122 name=arrlst[0];

1123 alert("Map my BUS name "+name);

1124 destination=arrlst[1];

1125 alert("Map my BUS desti "+destination);

1126 lat=arrlst[2];

1127 alert("Map my BUS lattitude "+lat);

1128 Ing=arrist[3];

1129 alert("Map my BUS Ing "+ing);

1130 ttns=arrlst[4];

1121 alert("Map my BUS ttns "+ttns);

1132

1133 alert("Map My BUS direction "+arrlst[5]);

1134

1135 direction = arrlst[5];

1136 //alert(direction);

1137 linelD = arrlst[6];

1138

1139 isBus = arrlst[7];

1140 alert(" 9 th "+arrlst[8]+" parselnt(arrlst[9]) = "+parselnt(arrlst[9]));
1141

1142 tripPositions.push{parselnt{arrist[8]));

1143 positions.push({parselnt(arrist[9]));

1144 BusMumber = parselnt(arrist[10]);

1145 //if(delay = ttns)

1146 // {delay=ttns;}

1147

1148 // json.Routell.Trip[i].Stops[j-1].name+" "+json.Routell.Trip[i].Stops[j-1].destination+" "+
1149 // json.Routell.Trip[i].Stops[j].cordinates[0]+" "+json.Routell.Trip[i].Stops[j].cordinates[1]+
1150

1151 war bus = new google.maps.LatLng(lat,Ing);

1152

1153 ID4++;

1154

1155 bddMarker(bus, name, destination, ttns, ID, direction, linelD, isBus, BusNumber);

+json.Routell.Trip[i].Stops[j].ttns;

Figure 6.2.29 Mapping all the Buses
Add marker method() then checks for a vehicle type, its direction and based on those

conditions it makes a decision about icons and maps the particular vehicle on the map

55

if(time < 1)
var arrival = "Arrived";

else
if(time2 > 1)
arrival = ""+time2+" Minutes & "+Math.ceil(diff)+" Seconds.";
else
arrival = ""+time2+" Minute & "+Math.ceil(diff)+" Seconds.";

//alert("add Marker is Called "+direction+ " "+isBus);
if(direction == "true")

if{isBus == "true")
{image = bus;}
else
{image = train;}

if{(markerArray.length ==0)
{

marker = new google.maps.Marker({
position: location,

map: map,

icon: image,

title:"Line ID is="+lineID+", BusID ="+BusNumber+", Prev. Stop was:="+name+", Next Stop is="+destination+", Time ="+arrival

1

¥

alert("Number of markers are ="+markerArray.length);
1000 marker = markerArray.pop();
1001 marker.setPosition(location);
1002
1003 markerArray.push{marker);
1004
1005 else{

Figure 6.2.30 Adding bus icons on the map

Finally, once after all markers are added to the map, MapMyBus calls
showOverlay() method, which shows all the buses on the map by setting visible property
of each marker to true. Then as MapMyBus() method has processed all active buses so it
sets activeBuses array to empty and calls again the busPositions() method with a delay of
some seconds.

As the 3" feature, stop locator helps a VTA user to search for a particular stop and
to view more information about the stop. User is presented with a list of drop down
values to select a stop and to make a request. As a response MapMyVTA returns the lines
information serving that particular stop. Front end scripting has been done using
JavaScript and HTML tags along with a stop mapped on a map using Google Maps API

v3 for better location identification. Also a drop down menu to search and locate the

56

attractions around a particular bus stop using Google Maps location services is provided.
Almost always VTA users want to reach a school, market, station, or a mall from a VTA
stop hence this feature with attraction mapped on map and address visibility, makes it
easy to search places around.

As the 4™ feature view lines information presents user an option to view the
complete information about all the lines supported by the system. On the first page it
gives a snapshot of all the bus lines currently supported by the system with an additional
navigational button to display more information about a particular bus line. Also at the
bottom of more information page there is a “Quick Query Dashboard” which helps user
to select bus lines, directions, and days of service and to see the line’s information for the
specified criteria instantly. The view is a JSP page with scripting using Ajax, JavaScript

& HTML.

57

7 Web Application Ul

7.1 Index Page

urce:localhost:808 x

)/ & MapMyvTa: One stop so!

€« CcC 0 D[ocaThosfSOSG"nau-nyvla"vme\«do Q@ o B Eﬂ

% Aitpod of Santal

a ek 7 ciors County
puo o
PaloAto Beencspak &
Line ID is=22, BusID =10, Prev. Stop was:=(PATC) Palo
Alto Transit Center, Next Stop is=El Camino Real &
Minutes & 40 Seconds.

Menio Park

California, Time =

e Misen € onl

\ Home About the Project Demo Supported Agencies Information
e ToaTe
ast Bay Navonal Rereevor
oAt _ East Widile Retuge
Palo Alto
n The Witows
Palo Ao
4 Alfpodtof Santa
Ouveneck - . 5
ek W ciaca Coltty o])
Pao Ato yerinRe o
PaloAlto Eoyads Pak & T 20 connPur
Whlanton | S ‘
& Pelo . mictown i Pk
Miptas % o -
Stantord 3
o Moften Fedsral
Airteid - NUQ o
Barron Park (o Pracmont
3 o}
4 . g
East RockPak
" s s B o
Los Attos z Space Presarve
v Loa Abos g
Py s Ayt @
eason o Jose!. Commodore o &
Ao ConCarsa | Brush Gien ‘\’n\l N
jum
Pordeross LT
Paio At P oy . 1%
Footh Park . &
&0 Los Atos
Foons O
Space Presorve
s “The Highlands [Map My Bus] [Trip Planner Nagiee Park
B . 5 . Shasta-Hatert . L
A Rancho San S— e iy 5]
Antoews Open -
Los T e Auzaras J
o Traces e Soace Preserve I Stop Locator] [View Lines Invormanonl_ P A "
% Bt oty P 8
= I = : Ketay Park £
e Rinconada s S g AU o §
¢ . Joaqun trawberry <
1Space & Monte Bato Opan e Park Fower
T ek esenn e wowsen My VTA, My way. s
(89) Rainbow s

8:03PM

® 11/22/2012

7.2 Map this Bus option

By s (EFEEE——I w

€« C A [localhost:8080/mapmyvta/service.do

P oo P
St Francis, Clas Loty

o
Palo Ato Bopangs Park & >
Alto Tra Center, Next Stop is=El Cam &

California,

| Home About the Project Demo encis a

i,

Map This Line

Please Select your Line B EastNorthBound El

l Map My Bus!] [Resetl

| MapMyVTA ™ v1.0 © 2012 All Rights Reserved.

58

7.3 MapMyBus Initialized page

1apMyVTA : Powered By x

€ = C A [localhost8080/mapmyvta/service.do Qo « B © =
e e R I
= e T

fapmyVTA : Information Panel

(PATC) Palo Alto Transit Center
T

El Camino Real & Showers

El Camino Real & Hollenbeck

El Camino Real & Kiely

‘The Alameda & Naglee

King & Alum Rock

(ERTC) Eastridge Transit Center

7.4 MapMyBus — after Initialization

-Dynamic Display Table

MapMyVTA : Powered By x
€ - C A | [localhost:8080/mapmyvta/service.do

= "k

Line ID is=22, BusID =10, Prev. Stop was:=(PATC) Palo
Alto Transit Center, Next Stop is=El Camino Real &
California, Time =6 Minutes & 40 Seconds.

Home

MapmyVTA :: Information Panel
SYSTEM TIME: 20:5:9
22 A(PATC) Palo Alto Transit Center (ERTC) Eastridge Transit Center 106 Minutes & 60Seconds

(PATC) Palo Alto Transit Center 3 Minutes & 52 Seconds
20:09:54, (BusID=6) El Camino Real & Showers iving. 4 Minutes & 45 Seconds.
20:08:04, (BusID=5) El Camino Real & Hollenbeck iving. 2 Minutes & 55 Seconds.

20:08:30, (BusID=4) El Camino Real & Kiely iving. 3 Minutes & 22 Seconds.

20:08:00, (BusID=3) The Alameda & Naglee iving. 2 Minutes & 52 Seconds.

20:04:16, (BusID=1) King & Alum Rock iving. 5 Minutes & 3 Seconds.

20:11:08. (Bus ID = (ERTC) Eastridge Transit Center iving. 5 Minutes & 59 Seconds.

7.5 MapMyBus — — after Intialization

-Bus Icons

'@ MapMyVTA: Powered By x [view-sourcelocalhost80f x

€« C A [localhost:8080/mapmyvta/service.do Q@ s B '—_'n
LUOOUT, (DUS I — T) 6 CaIY IKCar O FIVECHUCCR Friving- L IVIIIBICS O U7 DULUnGS: 5
20:18:05, (BusID=5) El Camino Real & Wolfe Expected 12 Minutes & 40 Seconds.
20:08:30, (BusID=4) El Camino Real & Kiely Arriving. 3 Minutes & 6 Seconds.
20:18:12, (BusID=4) (SCTC) Santa Clara Transit Center Expected 12 Minutes & 47 Seconds.
20:08:00. (BusID=3) The Alameda & Naglee Expected 2 Minutes & 36 Seconds.
20:19:10, (BusID=3) Santa Clara & 1st Expected 13 Minutes & 45 Seconds.
20:18:16, (BusID=2) King & Alum Rock Arriving. 12 Minutes & 51 Seconds.
20:10:12, (BusID=1) King & Story Arriving. 4 Minutes & 47 Seconds.
20:11:08, (BusID=0) (ERTC) Eastridge Transit Center Arriving. 5 Minutes & 44 Seconds.
T TS
Shores’ Sundale San Jose Satellits
LA S ?) [ttap | Sati
(< > Ly bl Sunol Regional. Onjone Regiénal
v San Carios Don Edwards 5, @ Widemess Widermess
| b o San Francisco < Vineyards L
) i Carlos ay National - Avalon
Redwood
(NS) RaxeRee s
Fair Oaks East g
o Palo Alto 0,
Leke M8 arm Hils Palo At ‘% @
Menlo § Sl
. Emeraid RQavendeEss 5)
= _ LakeHils v L) 1 Edlovn
() RO Q. oo County Park
ER. orett Feceral Mipitas
o] Airfield - NUQ - soumbay Y
+ (&7)
‘\ $ e i
. G = Lakewood @ .
£ Cote o,
L " Lt <
La Honda L
Creek Open # . =
ace Preserve jndy Hi Opon
Cr Soack iois. _ puats ‘ ()
Foomas Park o Hillview +
w A g B Clor
5 oS0 3 gy B R R o
La Honda &5 Cupertino s el ' Vv Hertage Murillo
©) > Frutonie ®
Morte Bello Open = Willow Glen,
. Space Preserve i %
Google be ooy 8 s Doarr- Wilow Glen Siver Croek The Vili55 8ata 62012 Google - T Use Report map sror
MapMyVTA ™ v1.0 © 2012 All Rights Reserved.
DISCLAIMER: The Positions of the buses shown here are according to their shcedule published by VTA and we do not guarantee for their punctuality and service.

7.6 MapMyVTA information panel(after system initialization)

MapmyVTA - Information Panel
SYSTEM TIME: 20625
2 (PATC) Palo Alto Transit Center (ERTC) Eastridge Transit Center 15 Mimotes & 44Seconds

60

7.7 Dynamic Display timing display

200954, (B D=6) El Camino Real & Showers fving. 2 Mimutes & 32 Seconds.

Minutes & 14 Seconds.

4 Minutes & 6 Seconds.

......
TTne D is=22, BusID =4, Prev Stop wasi= EI Camino Real l_,; o';g::'cw"‘;
&Wo!fe, Next Stop is=El Camino Real & Kiely, Time County A Ei

|§ Hentage

:

2

61

7.9 Trip planning from Metro Light Rail Station to East ridge transit Center

[55] Plan My trip

€« > C M | [localhost:8080/mapmyvta/service.do

Manio P

ev. Stop was:=(PATC)
enter, Next Stop is=El Camino Real
ime =6 Minutes & 40 Seconds.

Palo
&

Plan My Trip With:

Trip Planner

Source Stop:(from Here) Destination Stop: (to here)
Metro Light Rail Station B I (ERTC) Eastridge Transit Cc E
[Get My trip! 1 [Reset!]

€ = C A | [} localhost:8080/mapmyvta/service.do QOw v B © =

20:18:12 (SCTC) Santa Clara Transit Center Starting In 7 Minutes & 10 Seconds
20:19:10 Santa Clara & Ist Arriving. 8 Minutes & 8 Seconds.

King & Story

Canmine -
Parkmont

]
b

Townsend %., N
\|' senJose i N o
| Municipal £ Vinci South %
Golf Course &

Raynor Park

o1 SO0 EANUNG

62

o,

7.11 Active map

Naglee Park
W &
A & Paseo % -

o 2 o £t
G"“'%.‘f _[LineID is=22, Prev. Stop was:=The Alameda & Naglee,

> Next Stop is=Santa Clara & 1st, in =8 Minutes &8
5% Seconds.
¢ S O e Mm/}: < .'('__(rginia 073"‘311 -,»
Burvank: 11| Puona viete: 4 RO L %
)\ ¥ W, \
21Y /' oFullar e lay £

63

8. Conclusion

VTA provides multiple options of transit lines with frequent services towards the
important destinations. Even though VTA provides booklets of schedule and
connections, it is still a tiresome work to search and / or plan a trip using this static
information that needs to be repeated for every journey. The internet is available and
free, at most of the places. VTA itself provides free internet wireless access to its users
on its many of the transit lines. Almost all handheld devices now support internet
browsing using these wireless connections. Therefore, the infrastructure for a better IT
based option to provide service information for public transportation is already available.
Report on a study done by Transportation Research Board, Washington DC [7], has
several encouraging facts including this, about 38% of current non users will opt for
public transportation if better information is presented about the transit services.
Therefore, there is a huge scope of improvements for a better information representation.
Even then, there are very few dedicated applications are available for public transport. In
this case for VTA, there is none with such details that provides information about the
services of the VTA in such a detailed and user-friendly manner like MapMyVTA. All
these features not only help the public transport users, VTA users in this case, to use and
utilize the services of the VTA in an efficient manner but also help VTA to serve its users
to its full potential. As the knowledge gap between the user and that of VTA services gets
drastically reduced because of this project. MapMyVTA has the potential to be an asset

to the VTA users and to the VTA, both.

64

=

REFERENCES
Cherry, C., Hickman, M., & Garg, A. (2006). Design of a Map-Based Transit
Itinerary Planner. Journal of Public Transportation, 9(2). Retrieved from

http://nctr.usf.edu/jpt/pdf/IPT%209-2%20Cherry.pdf

Google Maps Javascript AP1 V3 Basics - Google Maps JavaScript AP1 V3 -
Google Code. (n.d.). Google Code. Retrieved from

http://code.google.com/apis/maps/documentation/javascript/basics.html

Guo, Z. (2010) Mind the Map! The Impact of Transit Maps on Travel Decisions
in Public Transit. Graduate. New York University. Retrieved from

http://wagner.nyu.edu/faculty/publications/files/Mind the Map Guo Zhan 2010.

pdf
Li, J., Zhou, K., & Zhang, W. (n.d.). A Multimodal Trip Planning System
Incorporating the Park-and-Ride Mode and Real-time Traffic/Transit Information.

Retrieved from http://www.networkedtraveler.org/tripplanner.pdf

Model view controller - Wikipedia, the free encyclopedia. (n.d.). Wikipedia, the
free encyclopedia. Retrieved from
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
The Java Tutorials. (n.d.). Oracle Documentation. Retrieved from
http://docs.oracle.com/javase/tutorial/
Transportation Research Board 500 Fifth Street, NW Washington, DC 20001 USA
(1996). INVESTIGATING EFFECT OF ADVANCED TRAVELER

INFORMATION ON COMMUTER TENDENCY TO USE TRANSIT. Retrieved

65

http://nctr.usf.edu/jpt/pdf/JPT%209-2%20Cherry.pdf
http://code.google.com/apis/maps/documentation/javascript/basics.html
http://wagner.nyu.edu/faculty/publications/files/Mind_the_Map_Guo_Zhan_2010.%20%09pdf
http://wagner.nyu.edu/faculty/publications/files/Mind_the_Map_Guo_Zhan_2010.%20%09pdf
http://www.networkedtraveler.org/tripplanner.pdf

from http://trid.trb.org/view.aspx?id=471018

VTA Newsroom: VTA Media Relations Frequently Asked Questions. (n.d.). Santa
Clara Valley Transportation Authority. Retrieved from

http://www.vta.org/news/media relations fag.html

66

http://trid.trb.org/view.aspx?id=471018
http://www.vta.org/news/media_relations_faq.html

	MapMyVTA
	Recommended Citation

	tmp.1356193939.pdf._HUtU

