
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

MapMyVTA MapMyVTA

Gaurav Sharma
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sharma, Gaurav, "MapMyVTA" (2012). Master's Projects. 269.
DOI: https://doi.org/10.31979/etd.35p5-pftx
https://scholarworks.sjsu.edu/etd_projects/269

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/269?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

MapMyVTA

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Gaurav Sharma

December 2012

ii

© 2012

Gaurav Sharma

ALL RIGHTS RESERVED.

iii

SAN JOSE STATE UNIVERSITY

The Undersigned Writing Project Committee Approves the Writing Project Title

MapMyVTA:

By

Gaurav Sharma

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

__

Dr. Soon Tee Teoh, Department of Computer Science Date

__

Dr. Mark Stamp, Department of Computer Science Date

__

Bharat Agarwal, Senior Software Engineer, Cisco Systems Date

iv

 ABSTRACT

Transportation is a very important part of our day-to-day life. Generally, it includes use

of public transportation services like those provided by Valley Transportation Authority

(VTA) to Santa Clara County. VTA has reported total combined boarding of light rails

and buses as more than a million on yearly basis. This fact clearly indicates the

importance of public transportation in a society. Obviously trip planning and schedule

matching are two very decisive factors to improve transit experiences. Information

related to services makes it easy for users to plan their journey ahead. Still manual

planning and information discovery is time consuming, tedious, and prone to human

errors. Therefore need of a better, user-friendly transit information system has been long

felt. MapMyVTA is a web application that provides detailed information about VTA

services to its users. MapMyVTA keeps the users updated about the timings of the buses,

positions of the buses at a given time, and expected time of arrival of a bus at a given stop

in a route. These features help users to match their timings with expected timings of the

buses at the stop, to see their options about the number of buses en-route, to look up their

connecting lines by a simple click at the connecting stops, and to plan their journey

quickly with all system supported routes. Additional features, such as stop locator is

useful to find more information about a particular stop with a near around attractions list

with addresses, and view lines information feature make it easy to view a very detailed

information about the bus lines.

5

 ACKNOWLEDGEMENTS

I am thankful to my project advisor Dr. Soon Tee Teoh, for his invaluable suggestions,

insights and support throughout my master’s project and I would like to thank my

committee members Dr. Mark Stamp, and Mr. Bharat Agarwal for their time and

suggestions.

I would like to thank my parents and my dear brother & sister in law for their continuous

love, motivation, and support.

6

TABLE OF CONTENTS

1. Introduction .. 9

 1.1 Project Overview .. 9

 1.2. Report Structure ... 10

2. Analysis of Existing Systems& comparison .. 12

 2.1 Chicago Transit Authority Bus Tracker .. 13

 2.2 Next Bus Tracking Services.. 13

 2.3 Washington Metropolitan Transit Authority .. 15

3.Software, Tools & Technologies .. 17

 3.1 J2EE .. 17

 3.1.1 JSP.. 17

 3.1.2 Servlets ... 18

 3.2 JSON ... 19

 3.3 JavaScript .. 19

 3.4 AJAX .. 20

 3.5 Google Maps ... 20

 3.6 Eclipse IDE ... 22

 3.7 Tomcat Apache Server .. 22

4. Software Architecture .. 24

5. Web Application Directory Structure ... 27

6. Design & Implementation .. 29

 6.1. Design .. 29

 6.2 Implementation .. 38

7. Web Application UI ... 58

8. Conclusion ... 64

References ... 65

7

 LIST OF FIGURES

Figure 2.1.1 CTA- visuals for Bus 802. ... 13

Figure 2.2.1 NextBus Front page .. 14

Figure 2.3.1 WMTA Front page. .. 15

Figure 4.1 MVC2 architecture. .. 24

Figure 5.1 Web application directory structure ... 28

Figure 6.1.1 3-Tier Architecture. .. 29

Figure 6.1.2 Service locator design pattern. ... 32

Figure 6.1.3 CSV file example ... 33

Figure 6.1.4 Sample non overlapping zones. .. 36

Figure 6.2.1 High level page flow diagram .. 38

Figure 6.2.2 Homepage ... 39

Figure 6.2.3 Input validation and direction check .. 40

Figure 6.2.4 Getting trips as result .. 41

Figure 6.2.5 Zone based filtering of lines ... 41

Figure 6.2.6 Connecting lines check for every stop .. 42

Figure 6.2.7 Getting results in JSON .. 43

Figure 6.2.8 JSON Data - Routes.. 44

Figure 6.2.9 General Structure – Route JSON Data ... 44

Figure 6.2.10 JSON Data - Timings... 45

Figure 6.2.11 General Structure – Timing JSON Data ... 45

Figure 6.2.12 Creating a map .. 46

Figure 6.2.13 Routes coloring ... 47

Figure 6.2.14 Mapping stops .. 48

Figure 6.2.15 Recursive call to calculate bus positions .. 49

Figure 6.2.16 Caculating bus positions ... 49

Figure 6.2.17 Getting total trips .. 49

Figure 6.2.18 Iterating for all trips .. 50

Figure 6.2.19 Trip filtering.. 50

Figure 6.2.20 Iteration for timings between source and destination stops.................................... 50

Figure 6.2.21 Time comparison CASE 1 .. 51

8

Figure 6.2.22 Populating result set ... 51

Figure 6.2.23 Time comparison CASE 2 .. 52

Figure 6.2.24 Populating result set ... 52

Figure 6.2.25 Calculating time & status for dynamic display table .. 53

Figure 6.2.26 Updating time & status in the dynamic display table ... 53

Figure 6.2.27 mapmybus method call ... 53

Figure 6.2.28 Delete Overlays .. 54

Figure 6.2.29 Mapping all the buses ... 55

Figure 6.2.30 Adding bus icons on the map.. 56

9

Introduction

1.1 Project Overview

Santa Clara Valley Transportation Authority (SCVTA) manages public transportation for

Santa Clara County. VTA (in short) serves almost 326 square miles of area with 75

different routes with its fleet including light rails and express buses [8]. The Availability

of connecting lines on transit centers for inter agency transfers, multiple connecting lines

for intra agency transfers and frequent services to most of the stops, are some of the

points which makes VTA a preferred choice to commute. VTA has reported a combined

boarding of almost 3,660,722 annually in the month of May 2009 as a reference point on

their website [8]. The reasons are obvious. Public transportation with frequent and

mostly regular services makes them a promising choice to commute. Hence public

transportation with a better information representation infrastructure will not only fill the

information gap between the services to its users but also will help to serve its users in a

time savvy manner.

The basic idea behind this project is to make people more aware of their options

of public transport, VTA in this case and make VTA journey more convenient for

commuters by providing some very specific visual features, which can deliver the VTA

transit information in a more detailed and user-friendly manner. Easy to use and detailed

information about the transit is a necessity for better transit experience. It is quite

interesting to discover that how a simple time-table can be made more user-friendly

which can help users to make the most of their time by saving them those minutes which

10

otherwise would have been wasted, just waiting at a stop for a bus. This transformation of

information is obviously a very refined version of the textual form of information. In this

project, we tried to provide the same. This project is a web application, which can be

accessed over the internet from anywhere, any devices (PCs/Mobiles/Tablets) which

support any web browser. Hence the project for its services has almost no specific

requirements on the external environment on the user’s part; therefore the project has

very high accessibility. MapMyVTA allows users to view their buses visually, provides a

time estimation of the buses en route for all stops in a dynamic display table and a trip

planner to help users plan their trip. In addition to these features, this project also has

features such as stop locator and line information dashboard. The goal is to help

commuters to have a leading edge of information to save their time by reducing wait

times at stops as much as possible, to reduce the necessity of tedious timetable lookups,

calculations, manual planning, and to eliminate human errors, by providing coherent set

of services to help the commuters to plan their trip more intelligently.

1.2 Report Structure

The project report is structured into the following sections:

Section 1 is an overview of this project and the report. Section 2 includes an analysis of

existing systems and comparison. Section 3 discusses the details of software, tools, and

technologies used to develop this application. Then Section 4 talks about the software

architecture used in this project. Then Section 5 has details of the internal directory

structure of the application. Section 6 provides the internal details of design and

11

implementation of the system. Then section 7 has screen shots of the system. Finally,

Section 8 concludes the project. References are included in the last part of this report.

12

2 Analysis of Existing Systems & Comparison

 This section includes a summary of current systems, their advantages, and their

possible inadequacies. By comparing these similar systems, it will be easier to

understand the relevance of this project. As the web is increasingly getting popular and

accessible almost from everywhere via wireless / 3G networks, using smart phones /

tablets therefore any service available over the web will have high accessibility to its

users. So now it is a user’s constraint that a system should be user-friendly and consistent

enough to display the same information in mobile platforms without reducing its

completeness.

 All available applications have very limited set of features. Some of them which

support VTA are the ones which do have a same time-table (stop & time combination)

like those provided by VTA but without any additional visual support. Few of them

navigate users back to the VTA site. However, in my research I have found no

application which is supporting visual mapping of buses on a map for the VTA now.

Hence I have analyzed systems being used in other parts of the USA by different transit

agencies.

I have analyzed these systems:

1.1 Chicago Transit Authority (CTA) Bus Tracker System

1.2 Next Bus

1.3 Washington Metro transit Authority (WMTA)

13

2.1 Chicago Transportation Authority (CTA) – Bus Tracker Application

According to the description of the application provided on the website of the CTA

BusTracker, it says, “CTA Bus Tracker uses GPS devices to report bus location data (and

more) back to our servers. We can then, in real time, show you where buses are on a map

and estimate when they will arrive at your stop.”

Figure. 2.1.1 CTA- visuals for Bus 802

CTA BusTracker [Image]. (2011). Retrieved September 14, 2011,

from Ctabustracker.com/bustime/map/displaymap.jsp

14

2.2 NextBus Services

Next Bus services cover a variety of transportation authorities but in a selective

manner. So here in California NextBus covers MUNI and SFBay Ferry only.

Figure 2.2.1 NextBus Front page

NextBus [Image]. (2011). Retrieved September 14, 2011,

from www.nextbus.com/predictor/stopSelector.jsp?a=sf-muni

15

2.3 Washington Metropolitan Area Transit Authority (WMTA)

WMTA provides metro rail & metro bus transit services in Washington, DC,

Maryland and Virginia areas. For tracking buses WMTA uses next bus technology

and services.

Figure. 2.3.1 WMTA Front page

WMTA [Image]. (2011). Retrieved September 14, 2011,

from www.wmta.com

http://www.wmta.com/

16

 In my detailed analysis, there were different areas of improvements I came across

with all 3 different systems. Complete details of analysis are beyond the scope of this

report. However, all 3 systems as official applications were able to display real time

information and to plot the buses on the maps, to locate a particular stop, to show bus

movements, and to list all schedules. MapMyVTA supports all these basic features except

real time tracking as it does not have access to GPS data currently. But all 3 other

systems lacked some vital features on common grounds such as, no user-friendly

interface like icons selections, navigational issues, too much unnecessary data, similar

icons for both directions, therefore it is difficult to sense the direction, no information of

connecting lines at a particular stop, no complete snapshot of expected timings of the

next bus arrival on a stop at one place for a particular route, no search feature for nearby

attractions around a stop. Above all, clean and user-friendly interfaces are the top-most

requirements of any application to attract any user; as these are the first few features that

get noticed by a user. MapMyVTA supports all these features, in addition to the basic

features.

17

3 Software, Tools & Technologies

3.1 J2EE

Java 2 Platform Enterprise Edition (J2EE) defines a standard for developing multi

tier distributed enterprise applications. A platform-independent and component based

J2EE framework makes it easy to develop web applications which are going to run on top

of Java platform. The J2EE simplifies application development by providing reusable

modules and very large libraries of APIs. The J2EE basically consists of several inter-

connected yet independent set of services like ready to use APIs, which work together to

ensure the success of the important aspects of a web application for example, transaction

management, security, performance, scalability etc. As a framework all these services are

provided and taken care of by the servers supporting the J2EE framework for developing

enterprise level applications. The J2EE has two important constituents in it; they are

JSPs & Servlets. Both of them are web components in the J2EE framework.

3.1.1 JSP

JSP technology is a dynamic web page generation technology. In an MVC

architecture style, this technology is a part of a view layer. Any user specific customized

page is a dynamic web page which is generated on the fly as a response. Page can also

perform CRUD operations before it gets transmitted to a user for viewing and can interact

with the user. The user gets the simple HTML/XHTML document and has no clue that

the contents of the page have been changed selectively, very specific to him/her. JSP

pages unlike simple HTML pages require some specific tools to translate them into an

18

appropriate browser viewable document (into an HTML page) and this is why JSP

technology requires servers with web containers. The motive behind the use of JSP pages

is to save a developer’s time from writing a tedious Servlets code for view component.

This helps to reduce time, human errors, increase production time, and clarity. However,

the server finally compiles all JSP pages into a Servlet. The view component of

MapMyVTA is written using JSP technology.

3.1.2 Servlets

The Servlets are special java classes, which extend specific classes like

HttpServlet, which make them able to talk to the server’s web container for http protocol

based request-response processing over the internet. In MVC technology, Servlets are

generally part of “controller layer”. Hence Servlets generally used as a controller for the

application where they decide the flow of control, and do the decision making for the

application like invoking service classes to process business logic, error handling, and

selecting an appropriate response (view) as a result of the request. Whenever server (web

container) receives a request for the application, it looks for a particular java Servlet

whose binding with the request context is defined in an application’s deployment

descriptor files named as “web.xml”. Deployment descriptor files are simple xml files

consisting of relevant data for the server’s to properly set the execution environment,

initialize the application and context binding. Servlets, as they are java classes

themselves make it easier to use communicate with other java classes and exchange

information. Therefore, Most of the business logic is carried out in java classes also

19

known as “model layer”, then the processed result is passed to a Servlet acting as a

controller and then finally, the result is handed over to the view technology like JSP. The

controller component of MapMyVTA is written using Servlets Technology.

3.2 JSON

There are two very popular data exchange formats available as XML and JSON.

Out of these two, JSON is fastest growing widespread data exchange format. JSON

stands for “JavaScript Object Notation”. Unlike XML, every well-formed JSON file is

automatically a valid JavaScript object. That makes JSON data very easy to access,

manipulate, and to retrieve them on a webpage. JSON is also known as lightweight, as

JSON does not have a redundant information structure unlike </endtags> in XML and

because of that reason resulting JSON file is very small compared to a similar XML file.

Small size with the same amount of information reduces the number of HTTP response

packets which results in faster and better efficient use of applications over the internet.

The data representation and exchange format for MapMyVTA is JSON.

3.3 JavaScript

JavaScript is the scripting language of the front end. JavaScript makes it easier to

manipulate the DOM structure of the HTML page thereby opens up a huge potential for

dynamic content creation. Together with CSS, JavaScript is known as DHTML.

JavaScript Makes it easy to interact with a user for trivial tasks which can be handled on

the user’s side and hence saves a round trip network call to the server and time.

20

JavaScript is used as the client side scripting language for MapMyVTA.

3.4 Ajax

 Ajax stands for “Asynchronous JavaScript & XML”. Apparently, Ajax is not a

new technology; instead it is an intelligent approach to make the request to the server for

fetching the new data without making a new request for the entire page to reload.

Although XML is a preferred format to receive the data but using an XMLHttpRequest

object Ajax’s abilities are unlimited. Ajax can send and receive the data in formats like

JSON, HTML, TEXT files, and of-course XML. Hence it can also receive information

from server-side scripts as well. Hence using Ajax, we can asynchronously make

requests to the server while a client is still using the page and perform the necessary

transformation and present the new data to the user in the same page. Hence it reduces

the network calls; pay loads of HTTP response packets and keeps the client interaction

while performing more action in the background. Ajax is used for the Quick Query

Dashboard feature in this project.

3.5 Google Maps API

Google Maps APIs are a collection of maps APIs. These APIs are used to perform

various operations over Google Maps. All Google Maps APIs are of two types: one is

Google Maps API Web Services, which can be invoked over standard HTTP protocol to

get geographic data in any map related application. So the use of web services makes it

easy to build an application which can invoke some map related operation using the

21

exposed set of web services and consume their responses. The format of the response is

specified in its request URL as “output=json” or “output=xml”; as currently these are the

only two formats which the web services support. Second one is the Google Maps

JavaScript API. The current version of the JavaScript API is 3. The JavaScript API

library is loaded just like any other library using a URL and invoked in your HTML page

just like any other JavaScript method. Hence both forms of APIs are very easy to

incorporate into any application. Google Maps APIs are further divided into different

categories like Directions, Geocoding, Elevation, and Places etc. Each one of them

includes interfaces to serve the particular need. For Geocoding API services, Google

Maps APIs helps to project a point on our spherical earth onto a flat presentation of a map

using one of the available projection techniques like Mercator projection. Some

terminologies used in Google Maps are as follows: 1) GeoLocation: Every point on the

map is represented by a pair of latitude and longitude pair (Latitude, Longitude). The

latitude and the longitude are together known as the Geolocation. 2) GeoCoding:

Geolocations are used to pinpoint any particular position on the map. This process of

converting address to its Geolocation on the Map is known as Geocoding. 2) Reverse

GeoCoding: The process of converting a Geolocation back to its address form is known

as reverse Geocoding. 3) Map Objects: To incorporate a map in your web page we

need to create an object of the type “google.maps.Map” – it’s a JavaScript class that

represents a map. Every new instance of this class is a new map. Hence for multiple

maps on the same page require an equal number of instances to be created using a new

Operator. 4). Overlays (Decorator Pattern): Overlays are different types of objects

22

that we can create which are tied to a map. For a map, overlays objects include map

points, map markers, map lines, map areas, or simply any MVC type collection of objects

which have more detailed information about a Geolocation. Google maps JavaScript v3,

makes it easy to integrate the Google maps APIs into custom JavaScript code and invokes

them effortlessly like a local method.

3.6 Eclipse IDE

Eclipse IDE is an open source tool, which can be used to develop a variety of

application for multiple platforms. Eclipse supports almost all major development

languages with the help of plug-ins. Eclipse supports integration of third party software

back-end like database server or the enterprise servers like tomcat apache. This

integration gives complete control on your development environment from a single IDE.

Using an appropriate IDE makes the development process very fast as syntax checks,

missing library links and compile time errors are discovered and highlighted by the IDE

instantly.

3.7 Tomcat Apache Server

Tomcat apache provides a pure java implementation of Servlet container. Servlet

container is basically responsible for managing Servlets life cycle events, context

mapping and provide a set of services like access right check on requester before handing

over the request to a particular Servlet. Tomcat server is made of different components

like Catalina, Coyote & Jasper.

23

A Catalina component is an actual Servlet container, which handles the Servlet

life cycle events like create and destroy. To receive a request, the tomcat needs to listen

to a specific port. To listen on a specific port tomcat needs a HTTP connector

component. Tomcat’s HTTP connector component is Coyote. Finally, all JSP files are

parsed into a compatible Java Servlets by a JSP-Engine. JASPER is the JSP-Engine for

the tomcat. JASPER parses all JSP files in a web application into a compatible

equivalent java Servlets file.

24

4 Software Architecture

This project is based on a very popular and successful software architecture style

known as MVC2 architecture. In MVC2 architecture style the entire application is

divided into layers. Each layer has separate responsibilities from another layer. Each

layer cannot directly communicate with the other layer until they pass some criteria. This

is known as “separation of concerns”. Every layer addresses different concerns of the

application. Here MVC2 architecture style has 3 layers a model, a view, and a controller.

Fig 3.1 MVC2 Architecture

1) Model:

The model layer is comprised of model objects, which provide access to data,

business logic to perform on data and methods to store the system state data. These data

objects may represent the state of the system, the contents of a response, or the contents

of a request depending upon the context. Once the request is given to the model object

via a controller, the model applies appropriate business logic on the input based on the

rules of the application to serve the request, generates results, and returns the response to

the controller then the controller returns the response to the presentation layer i.e. to the

Model View

Controller

Interacts with

Interacts with Interacts with

Interacts with

25

client. In MVC2 architecture, models never talk directly to a view. Model objects are

not concerned with the presentation of result data.

2) View:

The view layer is the presentation layer of any application. The main purpose of

the view layer is to provide a user-friendly interface of the system to the end user. View

collects requests from the end user, hands it over to the controller and after getting a

response from the controller, it prepares the data in a more presentable format for the user

to view and to use. Views are not concerned with the execution of the business logic on

the input data rather their work is just to render data, received from the controller in the

correct format. The view layer in this project is written with JSP technology. Every JSP

page in this project interacts only with the controller and renders its response on a JSP

page. After this Apache server compiles this JSP page into a Servlet and then finally to a

HTML static page which is delivered to the end user.

3) Controller:

Controller controls the behavior of the application. All requests for the

application are directed to a single controller in the application. Controller then selects

an appropriate model class with business logic to perform the requested operation, gets

the response and hands it over to the appropriate view layer. Hence, the controller is an

important link between the view and the model in the MVC2 architecture. In this project

Servlet class (UserServices) is implemented as a controller. This controller class calls an

26

appropriate model class for successful processing of request and then returns the response

to a selected JSP page for presentation.

27

5 Web Application Directory Structure

This project is based on MVC2 architecture, therefore all inter connected modules

are placed into the MVC layer like folder structure. All model classes are inside the

model folder. Our controller is inside the controller folder. Constants for the entire

application are inside the constant folder. Constants definition at one place improves

code readability and increases code re-use. As constants can be made available to all

classes using object composition therefore we don’t need to redefine them every time.

Model classes use DAO (Data Access Objects) for data retrieval to generate response so

they are placed inside the DAO folder. Our models have plenty of utility methods for

various operations required for a proper response generation. Our views are placed inside

the JSP folder of the directory structure. Hence, the view can now only be accessed via a

Servlet as creating a directory structure prevents any invalid access to the view.

28

Fig 4.1 Web Application Directory Structure

Our icons for stops, buses, backgrounds, header, footers, are inside the img folder

of the directory structure. The application’s configuration file “web.xml” (DD) is inside

the WEB-INF folder in which individual mappings of a context to a corresponding

Servlet are defined.

29

6 Design & Implementation

6.1 Design

 MapMyVTA is a 3-tier, MVC2 architecture based application. The 3 tiers

are; the web browser – serves as the common standard universal interface for request and

response to the application, a web server – receives the request and apply the application

logic and returns the response to the user’s browser, a data store- used as a repository of

information in a customized version of GTFS information provided by VTA about the bus

services, stops, and other line related information. In addition to it, the Google Maps

JavaScript v3 gets loaded at the user browser via a CDN link. A CDN is known as

Content Delivery Network, a connection of networked server for providing the content to

the user’s universally. So using a CDN link, a web browser can make a request for

Google Maps API v3 on its own and load it from one of the CDN servers. Hence it

removes the necessity of providing the Google Maps API file to the end users by the

MapMyVTA application.

Figure 6.1.1: 3-Tier Architecture

30

The web browser and web server supports client-server architecture. The communication

between them takes place over standard HTTP protocol. In this architecture client makes

a request and thereby is an active component. Server on the other hand waits for a

request and serves any request as they arrive so a server is a passive component. The

application server and the data store communicate via model components (java classes

which implements business logic for the request). Model components maintain the life

cycle events of connections to the data stores. In case of MapMyVTA, the data stores are

CSV text files (based on General Transit Feed Specification format) so the file handles

are created and destroyed as and when needed.

For every software system, the design is the heart of the system. MapMyVTA is

no exception to this rule. MapMyVTA is an attempt to provide every significant feature

that a user may need while they wish to make a transit. MapMyVTA allows users to view

VTA bus lines en route between a given pair of source and destination. It also allows

users to view the timings of the buses in a dynamic display table. MapMyVTA is also

equipped with a trip planner, which can plan a journey between a given pair of source and

destination using VTA transit line services. MapMyVTA also has stop locator, attractions

search features and a line services detailed dashboard for all the system supported line

services.

It is evident for a map based trip planner, constraints are to make correct

temporal, spatial, and system decisions while trip planning. According to Smith (2000)

31

[1] temporal and spatial decisions are two important decisions a map based trip planner

has to make (p.47). Temporal Decisions include an ability of a trip planner to schedule

the times to the source and to the destination, ability to determine the total trip time and

to enforce a maximum trip time, constraints if any. Spatial decisions include the ability

of a trip planner to identify all the transit stops surrounding the given source and

destination stops. System constraints are the physical (memory/processing time) and

virtual constraints (server uptime). According to Smith (2000)

[1], goal of a good, map

based trip planner is to fulfill all these requirements while keeping total trip time to the

minimum (p.48). User constraints also include the user’s freedom to choose from

minimum transit time or minimum numbers of stops or minimum connections, or as

minimum fare while requesting a trip planning service. Several authors have suggested

similar opinions about this decision making process like Huang and Peng (2001) [1] and

Donovan (1998) [1] to mention a few. To provide all these functionalities together in a

single web application a simple design was needed which fulfill the constraints of the

system and those of the user’s.

 MapMyVTA is designed using “MVC2” architecture style. The Entire web

application is divided into 3 components namely Models, Views & Controller. The views

contain the presentation logic which gives a user-friendly appearance to the result data.

The Views in this application are JSP pages which takes the data from the service handler

classes (model classes) applies the necessary presentation logic on the data and then these

JSP pages are converted into a static HTML page by the server and are returned as a final

32

response to the client(web browser). Hence the views are only concerned with the

presentation of information. Then the Controllers are decision making Servlets classes

which are invoked when a request is made at the view either by a click on a button or on

a hyper link. As this project implements “Front Controller Design Pattern”, hence only

one controller Servlet receives every request. Therefore it is only a single controller

which is responsible for making service decisions for every request received. The service

decision to invoke an appropriate model method to serve a request is decided by the

parameters that come along with the request. UserServices.java is the controller Servlet

for MapMyVTA. This Controller Servlet makes appropriate calls to the

ServiceHandler.java class which works as a class to locate services. ServiceHandler.java

class has been designed to implement “Service Locator Design pattern” which helps

Controller to access all the service of the system from a single instance of the

ServiceHandler class.

 Figure 6.1.2:

Service locator design pattern [Image]. (2012). Retrieved April 14, 2012,

 from: http://msdn.microsoft.com/en-us/library/ff648968.aspx

Third components as models are the classes which not only perform data store related

activities but also perform the business logic associated with the request. So the actual

data processing and application of business logic on the data for an appropriate response

User

Requests

33

is performed by the model components. Models perform CRUD operations on the data.

Models also perform the operation such as initialization of the system cache, creation of

lines and stops objects from the data store files, then making uniform distribution of the

time difference between any two stops based on the number of points between them, and

preparing the output as in a JSON format for the response. The data store for this

application is a collection of General Transit Feed Specification (GTFS) format files.

The format of the data has been designed on top of the GTFS, which is a standard for

transit authorities to provide transit information to any map related applications. These

are simple csv text files which contain all information related to the bus lines, routes,

stops, timing, hours of operations etc. Hence we grouped all related information under

the same text file like a text file for stop, which will contain all information related to

stops. Information stored in this manner also makes it very easy to represents them into

appropriate objects in memory. Like a snapshot of the stopZone file is shown below.

Figure 6.1.3: CSV file example

There had been many challenges / design issues surfaced while balancing between

the functionalities of the system and its simplicity. After all, the primary objective of this

system is to present services in a very user friendly, simpler manner than to those

currently available (MapMyVTA is the first application with respect to the set of services

it offers now).

34

MapMyVTA implements an innovative approach for trip planning based on

incremental-elimination filtering. This approach makes lesser use of space (memory)

with respect to the other trip planning methods as this approach does not requires a road

network and a transit network to be always available in memory. For example, there

might be 50 additional points could have been between a pair of stops for displaying the

motion of the bus on maps. As currently MapMyVTA serves two roles; one is of a

service provider and other is of a service consumer, therefore to properly display the

movement in a fraction of minute MapMyVTA requires more data where locations are

mapped to timestamps. This data generated using the RouteQueryDashboard Servlet and

later on the data is used as an input by MapMyVTA to display the route on the map. For

one complete agency with all routes, the memory requirement could have been huge. But

MapMyVTA implements incremental-elimination filtering to locate any stop presents in

the system and to plan a trip. This technique does not require the road network or the

transit network to be always available in memory and hence does not require much space.

This approach also makes use of “divide n conquer” technique to plan a trip between two

stops.

MapMyVTA utilizes a unique design which helps it to filter records incrementally

until it reaches a situation of a match or no match. Incremental-elimination filtering is

based on the facts that are true about all the elements in this project. Elements like transit

lines, transit centers, stops etc. So the very facts, which are true about them help

MapMyVTA to locate right information in a timely and efficient manner. Incremental-

35

elimination filtering starts with the division of the service areas into a number of non-

overlapping rectangular areas. Each rectangular area is tagged as a zone and assigned a

zoneID. For example, in this case of a VTA service area, the area is divided into a total of

6 zones. Then each stop is assigned a unique systemID and a unique zoneID. Now the

truth about each stopID is that the same stopID cannot belong to two different zones. If it

would, that means two different zones have the same stop and it will refute the fact one

that two zones cannot overlap. Now the truth about each transit line is that they will pass

through one or more zones, therefore each zone will have one or more transit lines

associated with it.

That means if stopID can be given a unique zone ID and then this zoneID can be

utilized to fetch all the transit lines servicing in and/or around that particular zone. This

will dramatically reduce the search space for all lines to a single zone out of “n” zones.

Now the search space for a stop is limited only to lines, which serve in that particular

zoneID. Now the search for a stop is limited to the lines servicing in that particular zone.

This will make the search for a stop faster. Hence MapMyVTA also fulfills the spatial &

temporal requirements as mentioned by Smith (1996) [5] (p.47).

Hence, MapMyVTA first filter the zone based on the zoneID and then it filters the

transit lines by utilizing the zoneID. That is why it is called as incremental-elimination

filtering. Now if source and destination stops are on the same line, the match will be

found and a trip will be returned.

36

Figure 6.1.4 A sample non overlapping zones

(a division of a service area into unique zones)

Every stop and transit line model object also store the information regarding the

connecting lines. Every time a stop is declared in the file as a transit center; it’s

connecting list also becomes the connecting list to that of line number, which serve the

particular transit center. Whenever MapMyVTA search for a connection while planning a

trip, it looks for this connection list of every transit line before looping through a stops

list of any transit line. If any match with a transit line is found then that particular trip is

added to the result object and search continues until the entire connection list of a source

is compared against the list of lines that serve a destination. Now, 2 objects are created

from the source to the connecting stop as trip 1 object and from connecting stop to

destination stop as trip 2 object which then later on combined as one single object

representing one complete planned trip.

37

Due to the nature of the application as to show and update the positions of the

buses after every 15 seconds or less, the data collection rate for points between the stops

is very high. Therefore a separate dashboard feature as a system service has been built

which utilizes direction API of the Google maps and calls directions API for all stops pair

within a route. The geocoding information for individual stop pair needs to be manually

collected from a website known as itouchmap.com. Then dashboard gives a collection of

points along the route between all stops pairs to show better movement of buses along the

route. This process needs to be done exactly once for each route. Then these collections

of points are stored in a csv file as route information. All stops objects for which VTA

provides official timings are treated as major stops / transit centers and all other stops are

treated as points along the route. So for all points between the two major stops the

uniform distribution of time is performed so that every stop and every point are mapped

to a single timestamp. uDistribute Method() of a model class MappingServices.java

implements a bijective mapping function which maps every point from a route object to

a unique timestamp. Then once the mapping is performed, the stop object and its

corresponding timing are stored in a string which is in the JSON format. This JSON

format information contains information about the route, stops, and timings. This JSON

string is returned to the user as a part of the response on the appropriate page for bus

mapping or planning a trip.

To accomplish all these functionalities successfully MapMyVTA utilizes a system

cache, which helps to reduce response time and increase efficiency. A special Servlet is

38

mapped to the context name of the application by setting a configuration file, web.xml of

the application. Apache server uses this file to resolve the context mapping with the

Servlets. Therefore, the first request to the system initializes the system cache.

6.2 Implementation

High level page flow diagram for the MapMyVTA Application:

Figure 6.2.1: High level Page Flow Diagram

As the first feature user can select to view a particular service line on the map. For this

user can select Map My Bus feature. The list of lines is shown as a drop down menu on

the display page. Values of this drop down menu are set by the system cache. Once the

request has been submitted to MapMyVTA, it will map all the buses, which are either at

some stops or they are arriving at a stop soon.

 Homepage

Map My Bus

Trip Planner

 Stop Locator

View Lines Information
Get More

Information

39

Figure 6.2.2 Homepage

From HomePage a user can select Map My bus feature which will direct him to

the mapmybus page for making a selection about the bus line. Then mapmybus.jsp page

utilizes a list, set by the controller in the request object under the attribute name “busList”

for transit lines and “stopsList” for the list of stops.

Once a user has selected a transit line, a request is then sent to the single controller

“UserServices.java”. There can be around 12 requests that can be made to the system and

controller on the basis of the request parameters makes the decision about the action to

take. For example, for the mapmybus feature the request will have a parameter lineID set

as the number of bus service line.

40

Figure 6.2.3 Input validation and direction checking

Then the controller also checks for the direction of the service requested if it is a one(1)

means the direction is East/North bound zero(0) means the opposite direction.

For trip planning, the parameters come as source and destination stop names. For

every stop, the first task is to get the unique stopID which binds to this particular stop

name hence the controller gets the appropriate stopID from the system cache. Then it

passes the source ID and destination ID pair to the tPlanner method of the ServiceHandler

class to get the result.

41

Figure 6.2.4: Getting trips as result

tPlanner then filters the lines by zoneID to which the stops belong by calling a

method getFileteredLines of NsTripPlanner class and then tPlanner calls the planMyTrip

method of NsTripPlanner class to find out the no of trips that can be planned between

source and destination stops.

Figure 6.2.5 Zone based filtering of lines & a call to the trip planning method

42

planMyTrip method then plans the trip for a source and a destination pair, if it

can. For the direction of the service line, it calls another method getIndex, which helps

the tripPlanner to ascertain the right direction and store the direction value in the object.

Route objects also stores individual stop number in a route as well. Therefore direction

calculation is based on the position of source and destination stops in a route. If a source

stop’s number is greater than a destination stop’s number then the direction is opposite.

To plan a trip that requires one transfer planMyTrip method looks into the

connecting list of individual lines originating from a source and matches it with the a

destination line(s) if it matches, then planMyTrip adds those trips to the result.

Figure 6.2.6 Connecting lines check for every stop

43

When planMyTrip returns the result to the tPlanner, the result is in a java object

form, which needs to be converted into an appropriate JSON format so that the front end

(view) can understand and use.

Hence tPlanner passes the results object to MappingServices class and asks an

ArrayList of String data type which stores the result in JSON format

Figure 6.2.7 Getting results in JSON

Mapping services performs the following operations: 1. Data cleansing operation on the

time-table, 2. Appropriate decisions making regarding the day of the service and selecting

the corresponding published schedules, 3. Performing the Uniform distribution and

bijective mapping of timestamps to points along a route, and 4. Populating the result in a

JSON format which looks like similar to the one shown below. Mapping services utilizes

different modules to accomplish all these functionalities and then put them together as a

single result. It performs a pipeline operation where the output of one method becomes

the input to another till the results finally become a JSON string.

44

 This resulting JSON formatted String looks like this

For Planned Routes:

Figure 6.2.8 JSON Data – Routes (all planned trips as results)

Here Route is an object containing details of all routes for this particular trip; the

trip is the type of arrays of objects. For every trip one trip type of object will be added to

this JSON data. lineID is the number representing the transit line’s number. A source

and a destination pairs are source and destination stops for this particular trip. Then stop

is another array of objects, which contains all information related to stops for this

particular trip.

The general structure of json data for a planned route is as follows:

Figure 6.2.9: General Structure – Routes JSON data

45

Similarly a JSON String for the timing also has arrays of timing information for a

complete listing of timings for trips:

Figure 6.2.10 JSON Data – Timings (for each trip in a Route)

Here the triplist is an array of objects, which contains information for the entire

timings schedule for a given source and destination pair.

The general structure of json data for timing data is as follows:

Figure 6.2.11: General Structure – timings JSON Data

Now we will see the details of implementation on the client side and how to

interpret and use these details:

46

 Creating a map

Figure 6.2.12 Creating a map

This function “initialize()” called only once when MapMyBus page loads for the first

time.

This function is called by the body =onload() function to initialize the map, to

color the routes, and to geocode all the stops for this trip as these settings are going to

remain same for this page. This function uses Google Maps API service for drawing a

map and then setting the necessary options for the map and then uses the div section of

the HTML page named as “animap” to draw the map.

47

 Color coded Routes

Figure 6.2.13 Routes coloring

 This part comes after a map is initialized. In this part we retrieve a list of

geocodes for all the stops from the request object as an array of stops and their geocodes,

and we set these arrays of geocodes as polyline objects. A polyline is shown as a colored

route, which passes through all points of a given array of stops on the map.

48

 Stop Positions

Figure 6.2.14 Mapping Stops (Plotting Stops on the map for a route)

Then for every stop name we recursively call Google Maps API with the

geocodes of the stop to plot them on the map. While doing so it is important to give a

unique name to each marker else without a unique name when we attach information

window for displaying information it would not store a proper message.

Finally, we have set our map then we call another JavaScript method

“busPositions()” to start interpreting the result data and start showing the buses and

timing information. SetTimeout function calls the method after the delay specified in

microseconds. Here in this case, busPositions is called after every 15 seconds once

control reaches at this position.

49

Figure 6.2.15 Caculating bus positions (recursive call to calculate bus positions)

 Calculating bus positions

Figure 6.2.16 Calculating bus positions

This JavaScript function first gets the data from the request object. It stores the

route information in a JavaScript variable “json” and it stores the timing information in

another JavaScript variable called as “timeList”. As this information is in the JSON

format, therefore these variables are inherently proper JavaScript objects.

This function then initializes the number of routes returned by the server for the

requested source and destination pair, By

Figure 6.2.17 Getting total trips (No of planned trips for the route)

Then it puts a for loop to estimate the positions of the buses for all available timings list

in the variable timeList & initializes the MapMyVTA information Panel once for one

iteration as

50

Figure 6.2.18 Iterating for all routes

If the trip’s timing’s start time is less than the current time and journey’s end time

is greater than the current time that means the bus is live on the route somewhere so to

locate its position between the given pair of,

Figure 6.2.19: Trips Filtering

 Figure 6.2.20: iterating for timings between source and destination stops

sIndex= source stop position in the current list,

dIndex = destination stop position in the current list

51

Figure 6.2.21 Time comparison CASE 1(current time == bus time)

If a match is found for timings between source and destination stops then add it to

an array called as activeBuses holding information about identified active buses, the

String busData will contain all information for the bus including the time to next stop,

direction, and type of vehicle (bus/rail).

The data inside this string are added with a token “$” which will be used to split

this string into a number of individual string of individual data items. This will help to

get all the individual data back from this String.

Figure 6.2.22 Populating result set (Adding result data to an array of results)

At the same time set the dynamic display table for this particular bus as “Arrived”. Now,

52

Figure 6.2.23 Time comparison case 2 (current time > bus time)

if time of the bus is greater than current time but not equal to timings of any of

the stops timing then the bus must be somewhere between the current stop and one stop

before it so add the bus info with all other details consider the current stop as destination

and one stop before it as a source stop.

Figure 6.2.24 Populating result set

At the same time, to set the dynamic display table value of this particular bus as

“Arriving” and set the time to the next stop. Every major stop in a route has a

corresponding element id in the HTML table. This element id is used to access a specific

id, to store the information about the particular stop and to update the table for every run

of bus positions calculation method. The id’s of the elements and the corresponding trip

indexes have been matched to avoid ambiguity and the above two cases are handled

53

something like this for the table,

.

Figure 6.2.25 Calculating time & status for the dynamic display table

Figure 6.2.26 Updating time & status in the dynamic display table

Once details for all the buses are added, now call mapping method to draw them on the

map by calling MapMyBus method

Figure 6.2.27 A call to map my bus method

54

MapMyBus takes an array of strings, which has all the details of the buses active at a

particular point of time.

 Bus Mapping

MapMyBus method() takes the array of information about active buses in the

form of string array. But before mapping new buses we need to remove the buses

mapped before. So it calls a mehod deleteOverlays() which deletes all previous bus icons

from the map. Complete descriptions of the Google Maps APIs are beyond the scope of

this report. However, the official documentation available online can be consulted for

further information.

Figure 6.2.28 Delete Overlays (on the Google map)

Then for the entire array of active buses, we retrieve the individual data items using the

string split by the same token ($) we used and call an addMarker() method which is

another method to add one marker at a time on the map.

55

Figure 6.2.29 Mapping all the Buses

Add marker method() then checks for a vehicle type, its direction and based on those

conditions it makes a decision about icons and maps the particular vehicle on the map

56

Figure 6.2.30 Adding bus icons on the map

Finally, once after all markers are added to the map, MapMyBus calls

showOverlay() method, which shows all the buses on the map by setting visible property

of each marker to true. Then as MapMyBus() method has processed all active buses so it

sets activeBuses array to empty and calls again the busPositions() method with a delay of

some seconds.

As the 3
rd

 feature, stop locator helps a VTA user to search for a particular stop and

to view more information about the stop. User is presented with a list of drop down

values to select a stop and to make a request. As a response MapMyVTA returns the lines

information serving that particular stop. Front end scripting has been done using

JavaScript and HTML tags along with a stop mapped on a map using Google Maps API

v3 for better location identification. Also a drop down menu to search and locate the

57

attractions around a particular bus stop using Google Maps location services is provided.

Almost always VTA users want to reach a school, market, station, or a mall from a VTA

stop hence this feature with attraction mapped on map and address visibility, makes it

easy to search places around.

As the 4
th

 feature view lines information presents user an option to view the

complete information about all the lines supported by the system. On the first page it

gives a snapshot of all the bus lines currently supported by the system with an additional

navigational button to display more information about a particular bus line. Also at the

bottom of more information page there is a “Quick Query Dashboard” which helps user

to select bus lines, directions, and days of service and to see the line’s information for the

specified criteria instantly. The view is a JSP page with scripting using Ajax, JavaScript

& HTML.

58

7 Web Application UI

7.1 Index Page

7.2 Map this Bus option

59

7.3 MapMyBus Initialized page

7.4 MapMyBus – after Initialization

 -Dynamic Display Table

60

7.5 MapMyBus – – after Intialization

 -Bus Icons

7.6 MapMyVTA information panel(after system initialization)

61

7.7 Dynamic Display timing display

7.8 Bus position & time display on mouse hover

62

7.9 Trip planning from Metro Light Rail Station to East ridge transit Center

7.10 Initial map

63

7.11 Active map

7.12 interactive timing display of stops:

64

8. Conclusion

VTA provides multiple options of transit lines with frequent services towards the

important destinations. Even though VTA provides booklets of schedule and

connections, it is still a tiresome work to search and / or plan a trip using this static

information that needs to be repeated for every journey. The internet is available and

free, at most of the places. VTA itself provides free internet wireless access to its users

on its many of the transit lines. Almost all handheld devices now support internet

browsing using these wireless connections. Therefore, the infrastructure for a better IT

based option to provide service information for public transportation is already available.

Report on a study done by Transportation Research Board, Washington DC [7], has

several encouraging facts including this, about 38% of current non users will opt for

public transportation if better information is presented about the transit services.

Therefore, there is a huge scope of improvements for a better information representation.

Even then, there are very few dedicated applications are available for public transport. In

this case for VTA, there is none with such details that provides information about the

services of the VTA in such a detailed and user-friendly manner like MapMyVTA. All

these features not only help the public transport users, VTA users in this case, to use and

utilize the services of the VTA in an efficient manner but also help VTA to serve its users

to its full potential. As the knowledge gap between the user and that of VTA services gets

drastically reduced because of this project. MapMyVTA has the potential to be an asset

to the VTA users and to the VTA, both.

65

 REFERENCES

1. Cherry, C., Hickman, M., & Garg, A. (2006). Design of a Map-Based Transit

 Itinerary Planner. Journal of Public Transportation, 9(2). Retrieved from

 http://nctr.usf.edu/jpt/pdf/JPT%209-2%20Cherry.pdf

2. Google Maps Javascript API V3 Basics - Google Maps JavaScript API V3 -

Google Code. (n.d.). Google Code. Retrieved from

http://code.google.com/apis/maps/documentation/javascript/basics.html

3. Guo, Z. (2010) Mind the Map! The Impact of Transit Maps on Travel Decisions

 in Public Transit. Graduate. New York University. Retrieved from

 http://wagner.nyu.edu/faculty/publications/files/Mind_the_Map_Guo_Zhan_2010.

 pdf

4. Li, J., Zhou, K., & Zhang, W. (n.d.). A Multimodal Trip Planning System

 Incorporating the Park-and-Ride Mode and Real-time Traffic/Transit Information.

 Retrieved from http://www.networkedtraveler.org/tripplanner.pdf

5. Model view controller - Wikipedia, the free encyclopedia. (n.d.). Wikipedia, the

free encyclopedia. Retrieved from

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

6. The Java Tutorials. (n.d.). Oracle Documentation. Retrieved from

 http://docs.oracle.com/javase/tutorial/

7. Transportation Research Board 500 Fifth Street, NW Washington, DC 20001 USA

 (1996). INVESTIGATING EFFECT OF ADVANCED TRAVELER

 INFORMATION ON COMMUTER TENDENCY TO USE TRANSIT. Retrieved

http://nctr.usf.edu/jpt/pdf/JPT%209-2%20Cherry.pdf
http://code.google.com/apis/maps/documentation/javascript/basics.html
http://wagner.nyu.edu/faculty/publications/files/Mind_the_Map_Guo_Zhan_2010.%20%09pdf
http://wagner.nyu.edu/faculty/publications/files/Mind_the_Map_Guo_Zhan_2010.%20%09pdf
http://www.networkedtraveler.org/tripplanner.pdf

66

 from http://trid.trb.org/view.aspx?id=471018

8. VTA Newsroom: VTA Media Relations Frequently Asked Questions. (n.d.). Santa

 Clara Valley Transportation Authority. Retrieved from

 http://www.vta.org/news/media_relations_faq.html

http://trid.trb.org/view.aspx?id=471018
http://www.vta.org/news/media_relations_faq.html

	MapMyVTA
	Recommended Citation

	tmp.1356193939.pdf._HUtU

