Effective Communication Message Strategy for Enhancing Traffic Safety in Fresno County: The Role of Time Horizon, Regulatory Focus, and Perceived Personal Control

Samer Sarofim

California State University, Fresno

Follow this and additional works at: https://scholarworks.sjsu.edu/mti_publications

Part of the Civil Engineering Commons, and the Transportation Engineering Commons

Recommended Citation

This Report is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in Mineta Transportation Institute Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.
Effective Communication Message Strategy for Enhancing Traffic Safety in Fresno County: The Role of Time Horizon, Regulatory Focus, and Perceived Personal Control

Samer Sarofim, PhD
MINETA TRANSPORTATION INSTITUTE

MTI BOARD OF TRUSTEES

Hon. Norman Y. Mineta

MTI FOUNDER

Founder, Honorable Norman Mineta (Ex-Officio)
Secretary (ret.), US Department of Transportation

Chair, Albhas Mohaddes (TE 2021)
President & COO, Edifice Group Inc.

Vice Chair, Will Kempton (TE 2022)
Retired

Executive Director, Karen Philbrick, PhD (Ex-Officio)
Mineta Transportation Institute
San José State University

Richard Anderson (Ex-Officio)
President & CEO, Amtrak

David Castagnetti (TE 2021)
Co-Founder, Metromover Castagnetti
Rosen & Thomas

Maria Cino (TE 2021)
Vice President, America & U.S. Government Relations, Hewlett-Packard Enterprise

Grace Crunican® (TE 2022)
Retired

Donna DeMartino (TE 2021)
General Manager & CEO, San Joaquin Regional Transit District

Noria Fernandéz® (TE 2020)
General Manager & CEO, Santa Clara Valley Transportation Authority (VTA)

John Fiherty (TE 2020)
Senior Fellow, Silicon Valley Leadership Group

Rose Guibault (TE 2020)
Board Member, Peninsula Corridor Joint Powers Board

Ian Jeffries (Ex-Officio)
President & CEO, Association of American Railroads

Diane Woodend Jones (TE 2023)
Principal & Chair of Board, Lea & Elston, Inc.

Theresa McMillan (TE 2022)
Executive Director, Metropolitan Transportation Commission (MTC)

Bradley Mims (TE 2020)
President & CEO, Conference of Minority Transportation Officials (COMTO)

Jeff Morales (TE 2022)
Managing Principal, Infrastructure, LLC

Dan Moshavi, PhD (Ex-Officio)
Dean, Lucas College and Graduate School of Business, San José State University

Takayoshi Oshima (TE 2021)
Chairman & CEO, AlliedTelesis Inc.

Larry Willis (Ex-Officio)
President, Transportation Trades Dept., AFL-CIO

* = Past Chair, Board of Trustees

MTI BOARD OF TRUSTEES

Mineta Transportation Institute (MTI) is an organized research and training unit in partnership with the California State University (CSU) and the University of California (UC), which assume no liability for the contents or use thereof. MTI is funded by the State of California through Senate Bill 1.

MTI's transportation policy work is centered on three primary responsibilities:

Research
MTI works to provide policy-oriented research for all levels of government and the private sector to foster the development of optimum surface transportation systems. Research areas include: bicycle and pedestrian issues; financing public and private sector transportation improvements; intermodal connectivity and integration; safety and security of transportation systems; sustainability of transportation systems; transportation/land use/environment; and transportation planning and policy development. Certified Research Associates conduct the research. Certification requires an advanced degree, generally a Ph.D., a record of academic publications, and professional references. Research projects culminate in a peer-reviewed publication, available on TransWeb, the MTI website (http://transweb.sjsu.edu).

Education
The Institute supports education programs for students seeking a career in the development and operation of surface transportation systems. MTI, through San José State University, offers an AACSB-accredited Master of Science in Transportation Management and graduate certificates in Transportation Management, Transportation Security, and High-Speed Rail Management that serve to prepare the nation’s transportation managers for the 21st century. With the active assistance of the California Department of Transportation (Caltrans), MTI delivers its classes over a state-of-the-art videoconference network throughout the state of California and via webcasting beyond, allowing working transportation professionals to pursue an advanced degree regardless of their location. To meet the needs of employers seeking a diverse workforce, MTI's education program promotes enrollment to under-represented groups.

Information and Technology Transfer
MTI utilizes a diverse array of dissemination methods and media to ensure research results reach those responsible for managing change. These methods include publication, seminars, workshops, websites, social media, webinars, and other technology transfer mechanisms. Additionally, MTI promotes the availability of completed research to professional organizations and journals and works to integrate the research findings into the graduate education program. MTI's extensive collection of transportation-related publications is integrated into San José State University's world-class Martin Luther King, Jr. Library.

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the State of California. This report does not necessarily reflect the official views or policies of the State of California or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.

MINETA TRANSPORTATION INSTITUTE

Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, efficiency, accessibility, and convenience of our nation’s transportation system. Through research, education, workforce development, and technology transfer, we help create a connected world. MTI leads the four-university MTI leads the four-university California State University Transportation Consortium funded by the State of California through Senate Bill 1.

MTI's transportation policy work is centered on three primary responsibilities:

Research
MTI works to provide policy-oriented research for all levels of government and the private sector to foster the development of optimum surface transportation systems. Research areas include: bicycle and pedestrian issues; financing public and private sector transportation improvements; intermodal connectivity and integration; safety and security of transportation systems; sustainability of transportation systems; transportation/land use/environment; and transportation planning and policy development. Certified Research Associates conduct the research. Certification requires an advanced degree, generally a Ph.D., a record of academic publications, and professional references. Research projects culminate in a peer-reviewed publication, available on TransWeb, the MTI website (http://transweb.sjsu.edu).

Education
The Institute supports education programs for students seeking a career in the development and operation of surface transportation systems. MTI, through San José State University, offers an AACSB-accredited Master of Science in Transportation Management and graduate certificates in Transportation Management, Transportation Security, and High-Speed Rail Management that serve to prepare the nation’s transportation managers for the 21st century. With the active assistance of the California Department of Transportation (Caltrans), MTI delivers its classes over a state-of-the-art videoconference network throughout the state of California and via webcasting beyond, allowing working transportation professionals to pursue an advanced degree regardless of their location. To meet the needs of employers seeking a diverse workforce, MTI's education program promotes enrollment to under-represented groups.

Information and Technology Transfer
MTI utilizes a diverse array of dissemination methods and media to ensure research results reach those responsible for managing change. These methods include publication, seminars, workshops, websites, social media, webinars, and other technology transfer mechanisms. Additionally, MTI promotes the availability of completed research to professional organizations and journals and works to integrate the research findings into the graduate education program. MTI's extensive collection of transportation-related publications is integrated into San José State University's world-class Martin Luther King, Jr. Library.

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the State of California. This report does not necessarily reflect the official views or policies of the State of California or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.
EFFECTIVE COMMUNICATION MESSAGE STRATEGY FOR ENHANCING TRAFFIC SAFETY IN FRESNO COUNTY: THE ROLE OF TIME HORIZON, REGULATORY FOCUS, AND PERCEIVED PERSONAL CONTROL

Samer Sarofim, PhD

June 2020
Effective Communication Message Strategy for Enhancing Traffic Safety in Fresno County: The Role of Time Horizon, Regulatory Focus, and Perceived Personal Control

Samer Sarofim, PhD

Mineta Transportation Institute
College of Business
San José State University
San José, CA 95192-0219

State of California SB1 2017/2018
Trustees of the California State University
Sponsored Programs Administration
401 Golden Shore, 5th Floor
Long Beach, CA 90802

DOI: 10.31979/mti.2020.1908

This research empirically investigated the differential effect of message framing on message recipients’ attitudes and intended behaviors related to pedestrian, cyclist, and motorist traffic safety practices. The framework empirically investigated time horizon (expansive vs. limited) and regulatory focus (prevention vs. promotion) message framing.

The time horizon in the message can make someone either think of the future (expansive) or the present (limited). For example, an expansive time horizon message communicates that life is long and directs the focus on the future. On the contrary, a limited time horizon message communicates that life is short and directs the focus on the present moment. The regulatory focus of the message can direct the message recipients’ attention to take certain action to either avoid negative consequences (prevention) or attain positive outcomes (promotion).

The research examined the role of the individual difference of perceived personal control on the perceptions of the presented messages and behavioral intentions to adopt safe transportation practices. Various messages were designed to employ a multilayer framing and fit with a 2 (time horizon: expansive vs. limited) x 2 (regulatory focus: promotion vs. prevention) between-subjects design. Findings suggest the messages adopting the expansive and promotion-focused framing combination seem to be more effective and have a higher tendency to induce positive intentions to act safe on the road for both pedestrians and motorists. Also, perceived personal control serves as a positive significant predictor of various safety-related motivations and intended behaviors. This research experimentally studied the differential effects of time horizon and regulatory focus framing on advancing traffic safety throughout effective messaging, an endeavor that shall benefit transportation authorities, city administrators, policymakers, and the general public. The tested message framing can be adopted in various forms, including text message, billboards, road signs, flyers, educational workshops, etc.
ACKNOWLEDGMENTS

The author thanks the Fresno State Transportation Institute (FSTI) for offering the resources and the support needed to conduct this research project. The author especially thanks Dr. Aly Tawfik, Executive Director of the Fresno State Transportation Institute, for his tremendous support and advice throughout the course of this project.

The author thank Editing Press, for editorial services, as well as MTI staff, including Executive Director Karen Philbrick, PhD; Deputy Executive Director Hilary Nixon, PhD; Graphic Designer Alverina Eka Weinardy; and Executive Administrative Assistant Jill Carter.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>I. Methodology</td>
<td>2</td>
</tr>
<tr>
<td>Design</td>
<td>2</td>
</tr>
<tr>
<td>Procedure</td>
<td>2</td>
</tr>
<tr>
<td>Sample</td>
<td>2</td>
</tr>
<tr>
<td>II. Findings</td>
<td>4</td>
</tr>
<tr>
<td>III. Conclusions and Recommendations</td>
<td>10</td>
</tr>
<tr>
<td>Appendix A: Messages</td>
<td>11</td>
</tr>
<tr>
<td>Appendix B: Personal Control Scale, adopted from Lachman and Weaver (1998)</td>
<td>12</td>
</tr>
<tr>
<td>Endnotes</td>
<td>13</td>
</tr>
<tr>
<td>Bibliography</td>
<td>14</td>
</tr>
<tr>
<td>About the Author</td>
<td>16</td>
</tr>
<tr>
<td>Peer Review</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1. The Differential Effect of Regulatory Focus of the Message on Perception of Message’s Ability to Reduce Pedestrians and Cyclists Accidents 7

2. The Differential Effect of Regulatory Focus of the Message on Perception of Message’s Ability to Deter Others from Speeding 7

3. The Differential Effect of Regulatory Focus of the Message on the Likelihood of the Message to Make Participants Exercise More Caution While Crossing 8

4. The Differential Effect of Time Horizon of the Message on Participants’ Agreement that the Message Would Make Participants Monitor Drinking While Driving 8

5. The Interaction Effect of Regulatory Focus and Time Horizon on Message Credibility 9

6. The Interaction Effect of Regulatory Focus and Time Horizon on Message Effectiveness 9
LIST OF TABLES

1. Sample Characteristics 3

2. ANOVA – The Effect of Prevention vs. Promotion Regulator Focus Message Framing 5

3. Correlations Between Perceived Personal Control and Dependent Variables 7
EXECUTIVE SUMMARY

The motivation for this research stemmed from multiple recent meetings with a variety of transportation stakeholders including Fresno Council of Government, California Department of Transportation (Caltrans) District 6, and City of Fresno Public Works Department. Discussions about the role of effective messaging in changing public attitudes and behaviors to increase traffic safety indicated the lack of a cohesive messaging strategy. Current messages, and their framing, seem to be conducted on an ad-hoc basis and forego the benefit of building on the vast academic research on message strategy and framing. This research is aimed at identifying effective messaging strategies and framing that shall induce attitudinal and behavioral changes rated to traffic safety.

Fresno, due to its high rate of pedestrian and bicyclist fatalities, is selected as a focus city. The Federal Highway Administration has included Fresno in the list of cities with the highest bicycle and pedestrian fatalities since 2015. The Focus Cities Program in California, a joint program between UC Berkeley Safe TREC and California Walks, aims at supporting community efforts geared towards the development of safe walking and biking communities and programs.

Message framing has increasingly attracted both scholars’ and practitioners’ attention, as it influences various behaviors.¹ For instance, message framing has been found to affect consumers’ decision making when buying, using, or recommending health care products, and it has been found that positive and negative framing messages are more effective for prevention and detection products, respectively.² Similarly, Wu et al. illustrated the differential effect of message framing on the effectiveness of dietary supplement advertisements.³

This research investigates the effectiveness of different messaging strategies and frames that are aimed at inducing safer behaviors among pedestrians, cyclists, and motorists. The framework empirically investigates time horizon (expansive vs. limited) and regulatory focus (prevention vs. promotion) framing. The author experimentally studies the differential effects of time horizon and regulatory focus message framing on advancing traffic safety, an endeavor that shall benefit the public, transportation authorities, city administrators, and policy makers.

Findings suggests that the utilization of expansive horizon time framing and promotion-focused messaging could lead to higher perceptions of message credibility and greater intentions to act safely on the roads. Also, the individual difference of perceived personal control was significantly correlated with various safety behavioral intentions, suggesting that future research would benefit from message framing that heightens the sense of personal control.

Decision makers will be able to use the results of this research to effectively allocate communication efforts and spending to induce attitudinal and behavioral change that shall enhance the safety of active transportation modes.
I. METHODOLOGY

DESIGN

The messages were designed to fit with a 2 (time horizon: expansive vs. limited) × 2 (regulatory focus: promotion vs. prevention) between-subjects design. The time horizon manipulation was adapted from Williams and Drolet. For the complete messages, see Appendix A. Participants were randomly assigned to see one of the four messages. The content of the four messages was slightly modified to suit the participants’ indicated main mode of transportation (motorists vs. cyclists and pedestrians) that was included in the initial screening questions.

PROCEDURE

Participants were randomly assigned to see one of the four messages. After reading the message, participants completed a set of related appeal, attitudinal, and behavioral intentions questions and scales. Questions included participants’ perceptions about message credibility (1–7; anchored on 1 = "Not at All" and 7 = “Very Much”) and perception of the message’s ability to deter others from speeding (1–5; anchored on 1 = “Strongly Disagree” and 5 = “Strongly Agree”); scales were adapted from Tay and De Barros. The likelihood of the message causing participants to exercise more caution while crossing (1–7; anchored on 1 = “Extremely Unlikely” and 7 = “Extremely likely”) was adapted from Glendon and Walker, and the scale of agreement for whether the message would make participants monitor drinking while driving (1–5; anchored on 1 = “Strongly Disagree” and 5 = “Strongly Agree”), adapted from Lewis, Watson, & Tay, was also included. A scale was adapted from Lewis, Watson, and White to assess the usefulness of message information for how people can reduce their risk of pedestrian and cycling accidents; message effectiveness in providing a strategy (or strategies) in reducing pedestrians’ and cyclists’ accidents; and effectiveness of adopting the message’s recommendations in reducing accidents involving pedestrians and cyclists using a 1–7 scale (anchored on 1 = “Strongly Disagree” and 7 = “Strongly agree”). The belief that the message would be effective in reducing pedestrians’ and cyclists’ accidents in general was measured using a 1–5 scale (anchored on 1 = “Not at All Effective” and 5 = “Very Effective”), adapted from Glendon and Cernecca. Participants also completed individual differences scales, and among those scales was a four-item perceived personal control individual difference scale (α = .86), adapted from Lachman and Weaver: see Appendix B.

SAMPLE

Quota sampling was used to ensure equal gender distribution (50% males, 50% females) and maximize efforts to include participants from the 15 cities in Fresno County. Also, sampling attempted to map onto the population proportions of the 15 cities. The sample is composed of 400 respondents from Central California, recruited via a marketing research firm to complete...
the study. Detailed Sample characteristics are shown in Table 1.

Table 1. Sample Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percentage</th>
<th>Characteristic</th>
<th>Percentage</th>
<th>Characteristic</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Population</td>
<td></td>
<td>Ethnicity</td>
<td></td>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Clovis</td>
<td>16.5</td>
<td>American Indian or</td>
<td>2.8</td>
<td>Less than high</td>
<td>6.5</td>
</tr>
<tr>
<td>Coalinga</td>
<td>1.8</td>
<td>Alaska Native</td>
<td>35.0</td>
<td>school</td>
<td>25.5</td>
</tr>
<tr>
<td>Firebaugh</td>
<td>0.3</td>
<td>Hispanic/Latino</td>
<td>7.2</td>
<td>High school graduate</td>
<td>5.8</td>
</tr>
<tr>
<td>Fowler</td>
<td>1.3</td>
<td>Black or African</td>
<td>1.0</td>
<td>(or GED)</td>
<td>27.8</td>
</tr>
<tr>
<td>Fresno</td>
<td>59.5</td>
<td>American</td>
<td>40.3</td>
<td>Vocational or technical</td>
<td>10.3</td>
</tr>
<tr>
<td>Huron</td>
<td>0.8</td>
<td>Native Hawaiian or</td>
<td>6.8</td>
<td>training</td>
<td>14.5</td>
</tr>
<tr>
<td>Kerman</td>
<td>2.0</td>
<td>Pacific Islander</td>
<td>3.3</td>
<td>Some college (no degree)</td>
<td>7.0</td>
</tr>
<tr>
<td>Kingsburg</td>
<td>2.5</td>
<td>White Caucasian</td>
<td>1.3</td>
<td>Two-year college degree</td>
<td>2.8</td>
</tr>
<tr>
<td>Mendota</td>
<td>1.0</td>
<td>Asian</td>
<td>2.5</td>
<td>Master’s degree</td>
<td></td>
</tr>
<tr>
<td>Orange Cove</td>
<td>1.0</td>
<td>Multiracial</td>
<td></td>
<td>Doctoral degree</td>
<td></td>
</tr>
<tr>
<td>Parlier</td>
<td>1.8</td>
<td>Other</td>
<td></td>
<td>(PhD, JD, MD, etc.)</td>
<td></td>
</tr>
<tr>
<td>Reedley</td>
<td>3.8</td>
<td>Prefer not to answer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Joaquin</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanger</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selma</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>Total Annual Household Income</td>
<td></td>
<td>Employment Status</td>
<td></td>
</tr>
<tr>
<td>18 to 24</td>
<td>23.5</td>
<td>Less than $30,000</td>
<td>43.0</td>
<td>Working full-time</td>
<td>34.3</td>
</tr>
<tr>
<td>25 to 34</td>
<td>29.5</td>
<td>$30,000 to $49,999</td>
<td>19.8</td>
<td>Working part-time</td>
<td>16.3</td>
</tr>
<tr>
<td>35 to 44</td>
<td>20.8</td>
<td>$50,000 to $74,999</td>
<td>15.3</td>
<td>Self-employed</td>
<td>6.8</td>
</tr>
<tr>
<td>45 to 54</td>
<td>11.0</td>
<td>$75,000 to $99,999</td>
<td>7.5</td>
<td>Homemaker or stay-at-home parent</td>
<td></td>
</tr>
<tr>
<td>55 to 64</td>
<td>8.0</td>
<td>$100,000 to $124,999</td>
<td>5.5</td>
<td>Student</td>
<td>8.8</td>
</tr>
<tr>
<td>65 or older</td>
<td>7.2</td>
<td>$125,000 to $149,999</td>
<td>4.3</td>
<td>Out of work, but looking for work</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$150,000 to $199,999</td>
<td>1.5</td>
<td>Out of work, but not looking for work</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$200,000 to $249,999</td>
<td>0.8</td>
<td>Unable to work</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$250,000 or more</td>
<td>2.5</td>
<td>(e.g., disability)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Military</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Retired</td>
<td>0.3</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td>Main Mode of Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>50</td>
<td>Motorists</td>
<td>80</td>
<td>Employment Status</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>50</td>
<td>Pedestrians and Cyclists</td>
<td>18</td>
<td>Working full-time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td>2</td>
<td>Working part-time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-employed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Homemaker or stay-at-home parent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Out of work, but looking for work</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Out of work, but not looking for work</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unable to work</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(e.g., disability)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Military</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Retired</td>
<td></td>
</tr>
</tbody>
</table>
II. FINDINGS

The regulatory focus of the message showed a differential significant main effect on perceptions of a message’s ability to reduce pedestrians’ and cyclists’ accidents in general, perception of a message’s ability to deter others from speeding, and the likelihood of the message causing participants to exercise more caution while crossing.

One-way ANOVA testing (see Table 2 for all ANOVA results) showed that when compared to prevention-focus message framing, promotion-focus message framing demonstrated more positive perceptions of the message’s ability to reduce pedestrians’ and cyclists’ accidents in general (see Figure 1).

Similarly, compared to those participants under the prevention-focus condition, motorist participants under the promotion-focus condition indicated higher perceptions of a message’s ability to deter others from speeding (see Figure 2).

Also, pedestrian participants under the promotion-focus condition expressed more likelihood that the message would make participants exercise more caution while crossing compared to those under the prevention-focus condition (see Figure 3).

The time horizon manipulation of the message showed a significant main effect on motorist participants’ agreement that the message would lead participants to monitor drinking while driving, where the expansive time horizon manipulation showed more positive results than the limited time horizon manipulation (see Figure 4).

A two-way ANOVA revealed significant interaction between time horizon manipulation and regulator focus manipulation on participants’ perception of message credibility (see Figure 5). The message framing that combines the promotion-focus and expansive time horizon showed the highest perceptions of message credibility.

The three items assessing message effectiveness adapted from Lewis, Watson, & White showed high inter-scale reliability (α = .84), and hence they averaged into a single measure that indicates the overall message effectiveness. A two-way ANOVA revealed a significant interaction between time horizon manipulation and regulator focus manipulation on participants’ perception of message effectiveness (see Figure 6). The message framing that combines the promotion-focus and expansive time horizon showed the highest perceptions of message effectiveness.

Perceived personal control showed significant positive correlations with people’s perceptions about the overall message effectiveness and the message’s ability to reduce pedestrian and cycling accidents in general, deter other drivers from speeding, make people exercise more caution while crossing, and encourage people to monitor drinking while driving (see Table 3).
Table 2. ANOVA – The Effect of Prevention vs. Promotion Regulator Focus Message Framing

<table>
<thead>
<tr>
<th>Message’s ability to reduce pedestrians’ and cyclists’ accidents in general</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention Focus</td>
<td>3.35</td>
<td>1.15</td>
<td>Between Groups</td>
<td>6.546</td>
<td>1</td>
<td>6.546</td>
<td>4.981</td>
</tr>
<tr>
<td>Promotion Focus</td>
<td>3.61</td>
<td>1.14</td>
<td>Within Groups</td>
<td>523.032</td>
<td>398</td>
<td>1.314</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.47</td>
<td>1.15</td>
<td>Total</td>
<td>529.578</td>
<td>399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message’s ability to deter others from speeding</td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Sum of Squares</td>
<td>df</td>
<td>Mean Square</td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>Promotion Focus</td>
<td>3.49</td>
<td>1.00</td>
<td>Within Groups</td>
<td>319.130</td>
<td>318</td>
<td>1.004</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.35</td>
<td>1.01</td>
<td>Total</td>
<td>324.497</td>
<td>319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message would make participants exercise more caution while crossing</td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Sum of Squares</td>
<td>df</td>
<td>Mean Square</td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>Prevention Focus</td>
<td>4.72</td>
<td>1.99</td>
<td>Between Groups</td>
<td>18.128</td>
<td>1</td>
<td>18.128</td>
<td>5.730</td>
</tr>
<tr>
<td>Promotion Focus</td>
<td>5.68</td>
<td>1.49</td>
<td>Within Groups</td>
<td>246.759</td>
<td>78</td>
<td>3.164</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.16</td>
<td>1.83</td>
<td>Total</td>
<td>264.887</td>
<td>79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANOVA – The Effect of Expansive vs. Limited Time Horizon Framing

Motorist participants’ agreement that the message would lead participants to monitor drinking while driving	Mean	Std. Deviation	Sum of Squares	df	Mean Square	F	Sig.	
Expansive Time Horizon	6.07	1.61	Between Groups	10.510	1	10.510	5.598	.019
Limited Time Horizon	6.43	1.07	Within Groups	596.987	318	1.877		
Total	6.25	1.38	Total	607.497	319			

Two-way ANOVA: The Interaction Between Time Horizon Manipulation and Regulator Focus

<table>
<thead>
<tr>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Credibility</td>
<td>Promotion Focus message</td>
<td>Limited Time Horizon</td>
<td>5.68</td>
<td>1.50</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Promotion Focus message</td>
<td>Expansive Time Horizon</td>
<td>6.10</td>
<td>1.28</td>
<td>9.932</td>
</tr>
<tr>
<td>Prevention Focus message</td>
<td>Limited Time Horizon</td>
<td>6.05</td>
<td>1.30</td>
<td>Error</td>
</tr>
<tr>
<td>Prevention Focus message</td>
<td>Expansive Time Horizon</td>
<td>5.83</td>
<td>1.51</td>
<td>Total</td>
</tr>
<tr>
<td>Message Effectiveness</td>
<td>Promotion Focus message</td>
<td>Limited Time Horizon</td>
<td>5.22</td>
<td>1.32</td>
</tr>
<tr>
<td>Promotion Focus message</td>
<td>Expansive Time Horizon</td>
<td>5.46</td>
<td>1.12</td>
<td>Regulatory Focus</td>
</tr>
<tr>
<td>Promotion Focus message</td>
<td>Expansive Time Horizon</td>
<td>6.05</td>
<td>1.30</td>
<td>Time Horizon</td>
</tr>
<tr>
<td>Prevention Focus message</td>
<td>Limited Time Horizon</td>
<td>5.28</td>
<td>1.28</td>
<td>Interaction</td>
</tr>
<tr>
<td>Prevention Focus message</td>
<td>Expansive Time Horizon</td>
<td>4.95</td>
<td>1.32</td>
<td>Error</td>
</tr>
<tr>
<td>Total</td>
<td>11516.222</td>
<td>400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Correlations Between Perceived Personal Control and Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>Reduce pedestrians and cyclists' accidents in general</th>
<th>Deter other drivers from speeding</th>
<th>Exercise more caution while crossing</th>
<th>Monitor drinking while driving</th>
<th>Message Credibility</th>
<th>Message Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Personal Control</td>
<td>Pearson Correlation .311** .342** .586** .252** .357** .458**</td>
<td>Sig. (two-tailed) .000 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (two-tailed).

Figure 1. The Differential Effect of Regulatory Focus of the Message on Perception of Message’s Ability to Reduce Pedestrians and Cyclists Accidents

Figure 2. The Differential Effect of Regulatory Focus of the Message on Perception of Message’s Ability to Deter Others from Speeding
Figure 3. The Differential Effect of Regulatory Focus of the Message on the Likelihood of the Message to Make Participants Exercise More Caution While Crossing

Figure 4. The Differential Effect of Time Horizon of the Message on Participants' Agreement that the Message Would Make Participants Monitor Drinking While Driving
Findings

Figure 5. The Interaction Effect of Regulatory Focus and Time Horizon on Message Credibility

Figure 6. The Interaction Effect of Regulatory Focus and Time Horizon on Message Effectiveness
III. CONCLUSIONS AND RECOMMENDATIONS

Findings suggest that message framing could lead to differential effects when promoting transportation safety. The perceived message credibility and effectiveness (e.g., providing useful information, communicating effective strategies, and the applicability of adopting the message strategies) were perceived differently depending on whether the message was designed with expansive vs. limited time horizon or promotion- vs. prevention-focused framing. Also, the message framing influences essential transportation safety practices. For instance, intentions to monitor drinking when planning to drive were affected by the time horizon manipulation of the message. When expansive time horizon is used (e.g., life is long), participants showed significantly higher intention to monitor drinking when planning to drive than when the limited time horizon message is used (e.g., life is short).

Continuing to demonstrate the effect of message framing on transportation safety intended behaviors, findings suggest that promotion-focused messages tend to be more effective than prevention-focused messages. The perception of the message’s ability to reduce pedestrians’ and cyclists’ accidents was higher for the promotion-focused messages than for the prevention-focused messages. Similarly, perceptions about the message’s ability to deter other drivers from speeding was higher among participants presented with the promotion-focused message than those who were presented with the prevention-focused message. Also, the essential safety practice of exercising caution while crossing was affected by the regulatory focus (promotion vs. prevention) of the message, where the promotion-focused message continued to show more favorable effects.

This research and its findings suggest that the prevention-focused messaging could be more effective than prevention-focused messaging when promoting transportation safety. Furthermore, transportation safety messages that promote recipients’ thinking of time as more expansive (versus limited) seem to have more favorable effects.

Importantly, when considering the integration of both regulatory focus and time horizon framing in the same message, the combination of expansive time horizon and promotion-focus tends to have the most favorable effects on the perceived message credibility and effectiveness, providing transportation authorities with directions in message framing to yield the desirable safety-related effects.
APPENDIX A: MESSAGES

<table>
<thead>
<tr>
<th>Time Horizon Manipulation (adapted from Williams and Drolet 2005)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansive Because Life is Longer than You Think, Focus on what’s Yet to Come</td>
<td>Expansive Because Life is Longer than You Think, Focus on what’s Yet to Come</td>
<td></td>
</tr>
<tr>
<td>Limited Because Life is Shorter than You Think, Focus on the Moment</td>
<td>Limited Because Life is Shorter than You Think, Focus on the Moment</td>
<td></td>
</tr>
</tbody>
</table>

Body of the Message

Motorists
Pedestrians and Cyclists who run into the street without first looking for oncoming vehicles do not give drivers adequate time to see them and have difficulty performing an adequate search. Furthermore, by running before they know it is safe, they reduce the time they have to react to an unexpected car in their path.

Slow Down and Look for Pedestrians & Cyclists

Pedestrians and Cyclists
Pedestrians and Cyclists who run into the street without first looking for oncoming vehicles do not give drivers adequate time to see them and have difficulty performing an adequate search. Furthermore, by running before they know it is safe, they reduce the time they have to react to an unexpected car in their path.

Cross Safely

Regulatory Focus Manipulation

<table>
<thead>
<tr>
<th>Promotion</th>
<th>Do Not Waste A Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention</td>
<td>Save A Life</td>
</tr>
</tbody>
</table>

Each message randomly presents one of the regulatory focus manipulations at the end.

The body of the message was selected based on each participant's indicated main mode of transportation in the screening questions in the beginning of the study.
APPENDIX B: PERSONAL CONTROL SCALE, ADOPTED FROM LACHMAN AND WEAVER (1998)

I can do just about anything that I really set my mind to.

Whatever happens in the future mostly depends on me.

When I really want to do something, I usually find a way to succeed at it.

Whether or not I am able to get what I want is in my own hands.

All items are measured on a 7-point scale (1 = “Strongly Disagree” to 7 = “Strongly Agree”)
ENDNOTES

BIBLIOGRAPHY

ABOUT THE AUTHOR

SAMER SAROFIM

Dr. Samer Sarofim is an award-winning marketing scholar and educator. He is a Faculty Fellow at Fresno State Transportation Institute and an Assistant Professor of Marketing at Craig School of Business, California State University Fresno. His research was honored by the Best Paper Award in Consumer Behavior Track at the American Marketing Association Summer conference. Sarofim is also the recipient of Pearson Education Michael Solomon Consumer Behavior Best Paper Award and the Society for Marketing Advances Conference, Retailing Track Best Paper Award. Dr. Sarofim's research appeared in multiple prestigious academic journals, including the Journal of Business Research and Marketing Letters.

Dr. Sarofim holds a Ph.D. in Business Marketing from The University of Kansas. He also holds an MBA from the American University in Cairo, including a semester at George Washington University in Washington, D.C. His bachelor's degree in Pharmaceutical Sciences was granted by Ain Shams University.
PEER REVIEW

San José State University, of the California State University system, and the Mineta Transportation Institute (MTI) Board of Trustees have agreed upon a peer review process required for all research published by MTI. The purpose of the review process is to ensure that the results presented are based upon a professionally acceptable research protocol.
Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, efficiency, accessibility, and convenience of our nation’s transportation system. Through research, education, workforce development, and technology transfer, we help create a connected world. MTI leads the four-university MTI leads the four-university California State University Transportation Consortium funded by the State of California through Senate Bill 1.

MTI’s transportation policy work is centered on three primary responsibilities:

Research
MTI works to provide policy-oriented research for all levels of government and the private sector to foster the development of optimum surface transportation systems. Research areas include: bicycle and pedestrian issues; financing public and private sector transportation improvements; intermodal connectivity and integration; safety and security of transportation systems; sustainability of transportation systems; transportation land use/transportation planning and policy development. Certified Research Associates conduct the research. Certification requires an advanced degree, generally a Ph.D., a record of academic publications, and professional references. Research projects culminate in a peer-reviewed publication, available on TransWeb, the MTI website (http://transweb.sjsu.edu).

Education
The Institute supports education programs for students seeking a career in the development and operation of surface transportation systems. MTI, through San José State University, offers an AACSB-accredited Master of Science in Transportation Management and graduate certificates in Transportation Management, Transportation Security, and High-Speed Rail Management that serve to prepare the nation’s transportation managers for the 21st century. With the active assistance of the California Department of Transportation (Caltrans), MTI delivers its classes over a state-of-the-art videoconference network throughout the state of California and via webcasting beyond, allowing working transportation professionals to pursue an advanced degree regardless of their location. To meet the needs of employers seeking a diverse workforce, MTI’s education program promotes enrollment to under-represented groups.

Information and Technology Transfer
MTI utilizes a diverse array of dissemination methods and media to ensure research results reach those responsible for managing change. These methods include publication, seminars, workshops, websites, social media, webinars, and other technology transfer mechanisms. Additionally, MTI promotes the availability of completed research to professional organizations and journals and works to integrate the research findings into the graduate education program. MTI’s extensive collection of transportation-related publications is integrated into San José State University’s world-class Martin Luther King, Jr. Library.

Directors
- **Karen Philbrick, Ph.D.**
 - Executive Director
- **Hilary Nixon, Ph.D.**
 - Deputy Executive Director
- **Asha Weinstein Agrawal, Ph.D.**
 - Education Director
 - National Transportation Finance Center Director
- **Brian Michael Jenkins**
 - National Transportation Security Center Director

Research Associates Policy Oversight Committee
- **Jan Botha, Ph.D.**
 - Civil & Environmental Engineering
 - San José State University
- **Katherine Kao Cushing, Ph.D.**
 - Environmental Science
 - San José State University
- **Dave Czerwinski, Ph.D.**
 - Marketing and Decision Science
 - San José State University
- **Frances Edwards, Ph.D.**
 - Political Science
 - San José State University
- **Taeho Park, Ph.D.**
 - Organization and Management
 - San José State University
- **Christa Bailey**
 - Martin Luther King, Jr. Library
 - San José State University

MTI FOUNDER
Hon. Norman Y. Mineta

MTI BOARD OF TRUSTEES

- **Theresa McMillan**
 - Executive Director
 - Metropolitan Transportation Commission (MTC)
- **Bradley Mims**
 - President
 - Public Transportation Officials (COMTO)
- **Jeff Morales**
 - Managing Principal
 - InfraStrategies, LLC
- **Dan Moshavi, PhD**
 - Executive Director
 - American Association of State Highway and Transportation Officials (AASHTO)
- **Larry Willis**
 - President
 - Transportation Trades Dept., AFL-CIO

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by grants from the State of California. This report does not necessarily reflect the official views or policies of the State of California or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.