A Visible Light Communications Framework for Intelligent Transportation Systems

Hovannes Kulhandjian

California State University, Fresno

Follow this and additional works at: https://scholarworks.sjsu.edu/mti_publications

Part of the Public Policy Commons, and the Transportation Commons

Recommended Citation
A Visible Light Communications Framework for Intelligent Transportation Systems

Hovannes Kulhandjian, PhD
MINETA TRANSPORTATION INSTITUTE

Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, efficiency, accessibility, and convenience of our nation’s transportation system. Through research, education, workforce development, and technology transfer, we help create a connected world. MTI leads the four-university MTI leads the four-university California State University Transportation Consortium funded by the State of California through Senate Bill 1.

MTI’s transportation policy work is centered on three primary responsibilities:

Research
MTI works to provide policy-oriented research for all levels of government and the private sector to foster the development of optimum surface transportation systems. Research areas include: bicycle and pedestrian issues; financing public and private sector transportation improvements; intermodal connectivity and integration; safety and security of transportation systems; sustainability of transportation systems; transportation/land use/environment; and transportation planning and policy development. Certified Research Associates conduct the research. Certification requires an advanced degree, generally a Ph.D., a record of academic publications, and professional references. Research projects culminate in a peer-reviewed publication, available on TransWeb, the MTI website (http://transweb.sjsu.edu).

Education
The Institute supports education programs for students seeking a career in the development and operation of surface transportation systems. MTI, through San José State University, offers an AACSB-accredited Master of Science in Transportation Management and graduate certificates in Transportation Management, Transportation Security, and High-Speed Rail Management that serve to prepare the nation’s transportation managers for the 21st century. With the active assistance of the California Department of Transportation (Caltrans), MTI delivers its classes over a state-of-the-art videocconference network throughout the state of California and via webcasting beyond, allowing working transportation professionals to pursue an advanced degree regardless of their location. To meet the needs of employers seeking a diverse workforce, MTI’s education program promotes enrollment to under-represented groups.

Information and Technology Transfer
MTI utilizes a diverse array of dissemination methods and media to ensure research results reach those responsible for managing change. These methods include publication, seminars, workshops, websites, social media, webinars, and other technology transfer mechanisms. Additionally, MTI promotes the availability of completed research to professional organizations and journals and works to integrate the research findings into the graduate education program. MTI’s extensive collection of transportation-related publications is integrated into San José State University’s world-class Martin Luther King, Jr. Library.

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the State of California. This report does not necessarily reflect the official views or policies of the State of California or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.

MTI BOARD OF TRUSTEES

MTI FOUNDER
Hon. Norman Y. Mineta

MTI BOARD OF TRUSTEES

Founders, Honorable Norman Mineta
Secretary (ret.), US Department of Transportation
Chair,
Abbas Mohaddes
President & COO
Ecosite Group Inc.

Vice Chair,
William Kempson
Executive Director
Sacramento Transportation Authority

Executive Director,
Karen Philipbrick, PhD
Mineta Transportation Institute
San José State University

Winsome Bowen
Chief Regional Transportation Strategy
Facebook

David Castagnetti
Co-Founder
Methane Castagnetti
Rosen & Thomas

Maria Cino
Executive Director
Chevron / University Relations
California Lutheran University

Grace Crucianc
Owner
Crucian LLC

Donna DeMartino
Managing Director
Los Angeles-San Diego-San Luis Obispo Rail Corridor Agency

Nuria Fernandez
General Manager & CEO
Santa Clara Valley Transportation Authority (VTA)

John Flaherty
Senior Fellow
Silicon Valley Leadership Group

William Flynn
President & CEO
Amtrak

Rose Guibault
Board Member
Peninsula Corridor Joint Powers Board

Ian Jeffries
President & CEO
Association of American Railroads

Diane Woodend Jones
Principal & Chair of Board
Los Angeles Mayor

David S. Kim
Secretary
California State Transportation Agency (CalSTA)

Theresa McMillan
Executive Director
Metropolitan Transportation Commission (MTC)

Bradley Mims
President & CEO
Conference of Minority Transportation Officials (COMTO)

Jeff Morales
Managing Principal
Infratraxx, LLC

Dan Moschavi, PhD
Dean, Lucas College and Graduate School of Business
San José State University

Toks Omishakin
Director
California Department of Transportation (Caltrans)

Takayoshi Oshima
Chairman & CEO
Allied Telesis, Inc.

Paul Skoutelas
President & CEO
American Public Transportation Association (APTA)

Beverly Swaim-Staley
President
Union Station Redevelopment Corporation

Jim Tymon
Executive Director
American Association of State Highway and Transportation Officials (AASHTO)

Larry Willis
President
Transportation Trades Dpts.

** = Past Chair, Board of Trustees

* = Ex-Officio

MTI BOARD OF TRUSTEES

Karen Philbrick, PhD
Executive Director

Hilary Nixon, PhD
Deputy Executive Director

Asha Weinstein Agrawal, PhD
Education Director
National Transportation Finance Center Director

Brian Michael Jenkins
National Transportation Security Center Director

Econolite Group Inc.

President & CEO

President & CEO

President

Secretary

Director

Vice President

Senior Fellow

Chief Regional Transportation Strategy

Co-Founder

Chairman & CEO

Co-Founder

President & CEO

CEO

President & CEO

President & CEO

Chief Executive Officer

President & CEO

Chief Executive Officer

President & CEO

President & CEO

Executive Director

Executive Director

Executive Director

Executive Director

Executive Director

Senior Executive Director

Chairman & CEO

President

President & CEO

PhD

PhD
In this work, we developed a visible light communication (VLC) framework that can be used for Intelligent Transportation Systems (ITS). ITS has been motivated by the need for reducing traffic congestion and offering better user experience in navigation and location-specific services. Recently, VLC has drawn a great deal of attention in the research community, including the development of new applications for ITS. It would be of great use to enable the traffic lights to be able to talk to the vehicles in their proximity and convey important information about the traffic condition. In this project, we developed a framework that can potentially support infrastructure-to-vehicle (I2V) and vehicle-to-infrastructure (V2I) communication. (In our context the infrastructure refers to traffic lights using VLC.) Specifically, traffic lights will be used to not only to order traffic flow, but also to share some important information to the cars. The developed smart traffic light system can provide information about the traffic conditions several blocks down the road and, in case of accidents, this information would be useful for the driver to detour their original route to help reduce congestion and save time. In order to do that we have developed a transmitter circuitry that is composed of an embedded system and optical electronics. In addition, we have developed the receiver circuitry in which the photodiode along with other circuitry is used for detecting and decoding the VLC signal coming from the traffic lights. We have also developed and experimented in a laboratory with a novel optical code-division multiple-access (CDMA) scheme for overloaded optical CDMA transmission in which the optical codes are uniquely decodable. This new coding system could potentially provide higher data rate in the VLC protocol establishment.
ACKNOWLEDGMENTS

This study was supported by both the CSU Transportation Consortium and the Fresno State Transportation Institute. Any opinions, findings, conclusions, and recommendations expressed in this material are those of the author and do not necessarily reflect the views of these institutes. The author would like to thank his student assistants, Wyatt Greives undergraduate student and Rojin Zandi, graduate student in the Electrical and Computer Engineering (ECE) department at California State University, Fresno for working on this interesting research project and implementing and testing the final proposed prototype. The author would also like to thank Editing Press, for editorial services, as well as MTI staff, including Executive Director Karen Philbrick, PhD; Deputy Executive Director Hilary Nixon, PhD; Graphic Designer Alverina Eka Weinardy; and Executive Administrative Assistant Jill Carter.
TABLE OF CONTENTS

Executive Summary 1

I. Introduction 2

II. Overloaded Optical Code-Division Multiple-Access Modulation for VLC 6

III. LED Driver Circuit for Transmitter 7

IV. Photodiode Receiver Circuit 8

V. Simulation Results 12

VI. Hardware Implementation 14

VII. Conclusion 21

Abbreviations and Acronyms 22

Bibliography 23

About the Author 24

Peer Review 25
LIST OF FIGURES

1. Intelligent Transportation System Using VLC Framework 3
2. Block Diagram of VLC System 4
3. LED Driver Circuit 7
4. Photodiode Receiver Circuit 8
5. BPX61 Photodiode Relative Spectral Sensitivity as a Function of Wavelength 9
6. BPX61 Photodiode Junction Capacitance as a Function of Reverse Bias Voltage 10
7. BPX61 Photodiode Photocurrent and Open-circuit Voltage as a Function of Luminosity 10
8. UD Code Set C with L = 4 and K = 5 12
9. UD Code Set C with L = 8 and K = 13 12
10. UD Code Set C4x5 13
11. UD Code Set C8x13 13
12. Raspberry Pi 3 Model B+ 14
13. ThorLabs PDA 100A2 14
14. BPX61 Photodiode 14
15. High-power Red LED 15
16. OPA2810 Operational Amplifier 15
17. Red Green Traffic Light Signal Display 15
18. Arduino Uno R3 Board 16
19. Transmitter Circuit Design on Breadboard 16
20. High-power Red LED with Heat Sink and Focusing Lens 17
21. Receiver Circuit Design on Breadboard 17
22. Transmitter and Receiver Circuitry Experimentation 18
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.</td>
<td>Transmitter and Receiver Voltage Analysis on the Oscilloscope</td>
<td>18</td>
</tr>
<tr>
<td>24.</td>
<td>Transmitter and Receiver Voltage Captured On the Oscilloscope: A) Transmitted Information Bits Are Displayed on Top in Yellow, B) Received Information Bits Are Displayed at the Bottom In Cyan</td>
<td>19</td>
</tr>
<tr>
<td>25.</td>
<td>A Screenshot of the Transmitted Message</td>
<td>19</td>
</tr>
<tr>
<td>26.</td>
<td>A Screenshot of the Received Message</td>
<td>20</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. Resistor Component Values for LED Driver Circuit 7
2. Component Values for Receiver Circuit 11
EXECUTIVE SUMMARY

In this research work, the author develops a visible light communication (VLC) framework that can be used for intelligent transportation systems (ITSs). ITS has been motivated by the need to reduce traffic congestion and offer better user experience in navigation and location-specific services. Recently, VLC has drawn a lot of attention by the research community in the areas of high data rate transmission, secure communications, and indoor localization systems as well in ITS. The use of VLC in ITS could lead to potential new useful applications. Traffic lights have been used to control traffic flow and are often located at a particular place, and they are rarely moved. It would be of great use to enable the traffic lights to be able to talk to the vehicles in their proximity and convey important information about the traffic conditions. In this project, the aim is to develop a framework that can support infrastructure-to-vehicle (I2V) and vehicle-to-infrastructure (V2I) communication: in this context, the infrastructure refers to traffic lights using VLC. Specifically, traffic lights are used not only to orderly provide traffic flow but also to share some important information to the cars. The developed smart traffic light can provide information about the traffic conditions several blocks down the road, and in case of accidents this information would be useful for the passenger to take a detour from their original driving route to help reduce congestion and save time. The infrastructure of the ITS is composed of a central station that controls the traffic flow and when new information is provided to the traffic lights they are routed to the central station for analysis and to provide smarter traffic control. The focus is on the development of VLC infrastructure to establish communications between the traffic lights and vehicles for better traffic management.

To begin with, the researchers establish a visible light communication link between a traffic light and a vehicle which is capable of receiving the information. To do that, the research team first develops transmitter circuitry that is composed of an embedded system and optical electronics fast-switching network. The traffic lights not only will be performing its functionalities i.e., providing traffic light signals to pedestrians, drivers, but also sending out pertinent coded information to the vehicles through light pulses. After presenting the transmitter side circuitry, the authors will then present the receiver circuitry that is composed of optical electronics circuitry in which the photodiode along with other circuitry is used for detecting and decoding the VLC signal coming from the traffic lights. The received signal is passed through an analog-to-digital (ADC) interface before sending them to the embedded system to receive and decode the transmitted signals. The authors have also developed and experimented a novel optical code-division multiple-access (CDMA) scheme for overloaded optical CDMA transmission in which the optical codes will be uniquely decoded. This new coding system could potentially provide higher data rates and can support larger numbers of users in the visible light communication protocol establishment. After developing the system, the researchers conducted actual experimentation using a traffic light model/prototype and experimented with the VLC framework to test its functionality and have been working on improving its performance.
I. INTRODUCTION

In this research work, the researchers develop a visible light communication (VLC) framework that can be used for intelligent transportation systems (ITSs). The development of ITS has been motivated by the need to reduce traffic congestion and offer better user experience in navigation and location-specific services. Recently, VLC has drawn a lot of attention from the research community in the areas of high data rate transmission, secure communications, and indoor localization systems as well in ITS. The use of VLC in ITS will lead to potential new and useful applications.

Traffic lights have been used to control traffic flow, are often located at a particular place, and are rarely moved. It would be of great use to enable the traffic lights to talk to the vehicles in their proximity and convey important information about the traffic conditions. In this project, the aim is to develop a framework that can potentially support infrastructure-to-vehicle (I2V) and vehicle-to-infrastructure (V2I) communication; in the present context the infrastructure refers to traffic lights using VLC. Specifically, traffic lights are used not only to provide orderly traffic flow, but also to share some important information with the cars. The traffic light can provide information about the traffic conditions several blocks down the road, and in case of accidents this information would be useful to enable the passenger to divert from their original driving route to help reduce congestion and save time. The infrastructure of the ITS is composed of a central station that controls the traffic flow, and when new information is provided to the traffic lights it is first routed to the central station to undergo analysis to make sure it is a legitimate information and in addition to that provide smarter traffic control. The focus in this work is on the development of VLC infrastructure to establish communications between the traffic lights and vehicles for better traffic management.

To begin with, the researchers establish a visible light communication link between traffic lights and a vehicle which is capable of receiving the information. To do that, the researchers first develop transmitter circuitry that is composed of an embedded system and an optical electronics fast-switching network. The traffic lights will not only be performing their standard functionalities, i.e., providing traffic light signals to pedestrians and drivers, but they will also be sending out pertinent coded information to the vehicles through light pulses. After presenting the transmitter circuitry, this report will then present the receiver circuitry that is composed of optical electronics circuitry in which the photodiode along with other circuit components is used for detecting and decoding the VLC signal coming from the traffic lights. The received signal is passed through an analog-to-digital converter (ADC) before being sent to the embedded system to receive and decode the transmitted signals. The researchers also developed and tested a novel optical code-division multiple-access (CDMA) scheme for overloaded optical CDMA transmission in which the optical codes will be uniquely decoded. This new coding system could potentially provide a higher data rate and can support larger numbers of users in the visible light communication protocol establishment. After developing the system, the authors conducted actual experimentation using a traffic light model/prototype and experimented with the VLC framework to test its functionality and improve its performance.
A demonstration of the ITS traffic light controller using the VLC framework is shown in Fig. 1. As shown, the traffic lights can transmit digital pulse coded information to the vehicles for navigation or to convey important information.

Figure 1. Intelligent Transportation System Using VLC Framework

In this project, a transmitter and receiver circuitry is developed that communicates pertinent information using modulated light pulses. It is meant to improve upon the existing infrastructure of LEDs by adapting their driver circuitry for high-speed VLC. The project also serves to test the capabilities of photodiodes as viable receiver devices used in the developed VLC network. The main component of the project is a transmitter/receiver pair design that can send and receive modulated light data. The transmitter system is designed for high-frequency operation in order to modulate the data at optimal rates. The system’s microcontroller outputs a modulated bit stream to an amplifier, whose output drives the base of a transistor controlling the current flow to a high-power red LED. The binary data are encoded into the pulses of light through the quickly switching behavior of the transistor. On-Off-Keying (OOK) modulation is used for data transmission, which is simply switching on and off the LED light, i.e., the traffic light, at a very high rate. To transmit the digital information, a binary “1” information bit is represented by a square pulse and is generated by turning the LED on, while the binary “0” is generated by turning the LED off, i.e., no light transmission. The modulated light is projected into the medium where it can be detected by the receiver system’s optical sensor. The optical sensor is composed of a photodiode, which converts the modulated light data sent from the transmitter into a current. This current is converted into a voltage using a transimpedance amplifier (TIA), and the output voltage is then filtered and amplified using a band-pass filter and inverting amplifier. The voltage is sampled by the ADC connected to the receiver system’s microcontroller, where the received signal can be processed and decoded.
Figure 2. Block Diagram of VLC System

Figure 2 shows an overview of how the complete system operates. All of the main components are indicated by numbers and are described below.

1. The encoding is performed by the Raspberry Pi board scripted in Python. The general-purpose input/output (GPIO) ports on the Pi board are output to the encoded data.

2. The light-emitting diode (LED) circuitry consists of amplifiers and transistors to drive the LED with the proper amount of current.

3. The high-power LED is used to convert the modulated data into light pulses that is projected through the physical medium.

4. The photodiode collects the incident light pulses sent from the transmitter and converts the information to a current signal.

5. The current is converted into a voltage utilizing the TIA, which is optimized for fast response.
6. The voltage signal from the TIA is filtered using a combination of a high-pass and a low-pass filter.

7. The signal is amplified for increased reception reliability.

8. The signal is sampled by an ADC and decoded using the Raspberry Pi board.
II. OVERLOADED OPTICAL CODE-DIVISION MULTIPLE-ACCESS MODULATION FOR VLC

The authors have recently developed a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) system in Kulhandjian et al. (2019), which is then utilized to improve the proposed VLC system developed for ITS. The proposed decoder is designed in such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only a 1–2 dB higher signal-to-noise ratio (SNR) than the ML decoder. The Fast Decoder Algorithm (FDA) is presented below. The details of the algorithm can be found in Kulhandjian et al.

<table>
<thead>
<tr>
<th>Input: y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: $z_1 \leftarrow Q(y_1, 0, K)$</td>
</tr>
<tr>
<td>2: if $</td>
</tr>
<tr>
<td>3: else</td>
</tr>
<tr>
<td>4: $m \leftarrow -1_K$, $r_c \leftarrow 1$, $n \leftarrow z_1$</td>
</tr>
<tr>
<td>5: $m_{LR}(r_c, 3) \leftarrow n$</td>
</tr>
<tr>
<td>6: $dP(r_c) \leftarrow [n, K, m_{LR}(r_c, 1), m_{LR}(r_c, 2), mP(r_c)]$</td>
</tr>
<tr>
<td>7: $c_{AL} \leftarrow 0$, $z \leftarrow 0$, $s_I \leftarrow 1$, $c_T \leftarrow 1$</td>
</tr>
<tr>
<td>8: while ($s_I = 1$ AND $c_T < N_c$)</td>
</tr>
<tr>
<td>9: $s_I \leftarrow 0$</td>
</tr>
<tr>
<td>10: while ($r_c < L$, $r_c \leftarrow r_c + 1$)</td>
</tr>
<tr>
<td>11: $[dP(r_c), m] \leftarrow mP(dP(r_c - 1), m, n, K, r_c, m_{LR}, mP)$</td>
</tr>
<tr>
<td>12: $A_{min} \leftarrow \min T(dP(r_c))$, $A_{max} \leftarrow \max T(dP(r_c))$</td>
</tr>
<tr>
<td>13: $z(r_c) \leftarrow Q(y', A_{min}, A_{max}, 1)$</td>
</tr>
<tr>
<td>14: $c_{AL}(r_c, 2) \leftarrow (A_{min} - A_{max}) + 1$</td>
</tr>
<tr>
<td>15: $m_{LR}(r_c, 3) \leftarrow z(r_c)$</td>
</tr>
<tr>
<td>16: $m_{LR}(r_c, 4) \leftarrow n - m_{LR}(r_c, 3)$</td>
</tr>
<tr>
<td>17: $m \leftarrow uM(m, m_{LR}, r_c, mP)$</td>
</tr>
<tr>
<td>18: $m \leftarrow f_c(m, m_{LR})$, $t_D \leftarrow z - Cm$</td>
</tr>
<tr>
<td>19: if $t_D \neq 0$, $s_I \leftarrow 1$, $r_c \leftarrow i_d$</td>
</tr>
<tr>
<td>20: $c_{AL}(r_c + 1, 1) \leftarrow c_{AL}(r_c + 1, 1) + 1$</td>
</tr>
<tr>
<td>21: $c_T \leftarrow c_T + 1$</td>
</tr>
<tr>
<td>22: $\hat{x} \leftarrow m$</td>
</tr>
</tbody>
</table>

Output: \hat{x}

The researchers evaluated the performance of the proposed antipodal UD code sequences generated in the simulation results section.
III. LED DRIVER CIRCUIT FOR TRANSMITTER

Traffic lights are composed of high-power LEDs that require driver circuitry capable of supplying enough current to the LED. Figure 3 below shows the driver circuit designed for simulation purposes using National Instruments (NI) Multisim software package.

![LED Driver Circuit Diagram]

Figure 3. LED Driver Circuit

The encoded binary information is applied as a voltage signal to the input of an operational amplifier (op-amp) in an inverting amplifier configuration. Resistors R and R_f are used to amplify the voltage signal, where $V_o = -V_in \cdot R_f / R$. The output voltage from the first amplifier is returned to a positive voltage using another inverting amplifier configuration with R_1 and R_2 having the same resistance value of 1 kΩ.

The amplified voltage output from the op-amp is used to drive a transistor switch. Two BJTs are used in a Darlington pair configuration for heat dissipation and high current gain. R_b and R_d are used to set the base current, with R_d also serving as a sink for the turn-off period. R_c is used as a current-limiting resistor for the LED. Table 1 below shows the resistor component values used for the LED driver circuit.

Table 1. Resistor Component Values for LED Driver Circuit

<table>
<thead>
<tr>
<th>R (kΩ)</th>
<th>R_f (kΩ)</th>
<th>R_1 (kΩ)</th>
<th>R_2 (kΩ)</th>
<th>R_b (kΩ)</th>
<th>R_d (kΩ)</th>
<th>R_c (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>17</td>
<td>330</td>
</tr>
</tbody>
</table>

The capacitors on the op-amp power supplies are used to prevent oscillations from the power supplies by shorting AC components to ground. All capacitors are 0.01 μF.
IV. PHOTODIODE RECEIVER CIRCUIT

There are two main ways to receive a visible light signal: an image sensor or a photodiode. A photodiode is used for this design to improve the response time. A photodiode is a type of semiconductor device that converts absorbed photons of light into current. Figure 4 shows the receiver design used for the simulation.

Figure 4. Photodiode Receiver Circuit

As can be seen in Fig. 4 (left side), the photodiode receives the encoded light signal sent through line-of-sight (LOS) and converts the pulses of light into a current waveform. The photodiode is operated in reverse bias with V_{bias} being used to decrease the junction capacitance, thereby increasing the responsiveness and decreasing the rise time. The current is converted into a voltage using a TIA configuration. The feedback capacitor (C_f) offsets the effects of the photodiode’s junction capacitance. The current generated by the photodiode runs through the feedback resistor (R_f) and generates a voltage at the output.

The TIA maximum output voltage is set by the maximum generated photodiode current and the R_f. The relative spectral sensitivity of the BPX61 photodiode used in the system is shown below in Fig. 5. Due to red light being approximately 70% of the peak spectral sensitivity for the BPX61, the maximum photodiode current is 49μA. The equation for determining the value of the feedback resistor in the transimpedance amplifier circuit for a maximum output voltage of 1V is shown below.
\[R_f = \frac{V_{out,max} - V_{out,min}}{I_{PD,\text{max}}} = \frac{1V - 0V}{49\mu A} = 20.4k\Omega \approx 20k\Omega \]

Figure 5. BPX61 Photodiode Relative Spectral Sensitivity as a Function of Wavelength

Junction capacitance of the photodiode with a reverse bias voltage of 10V is determined from the BPX61 datasheet, as shown in Figure 6. Total input capacitance is determined from the junction capacitance of the photodiode and the differential and common-mode input capacitance of the operational amplifier, according to the following equation.

\[C_{in} = C_J + C_{diff} + C_{CM} = 18pF \]
The BPX61 photodiode photocurrent and open-circuit voltage as a function of luminosity is depicted in Fig. 7.
The gain-bandwidth product (GBWP) for the OPA2810 op-amp is 70 MHz. For stability, the GBWP is set to 60% of that value, 42 MHz. The equation for determining the value of the feedback capacitor for the TIA is shown below.

$$C_f = \frac{1 + \sqrt{1 + (8\pi R_f C_{\text{in}} \cdot GBWP)^2}}{4\pi R_f \cdot GBWP} \approx 2\text{pF}$$

The output voltage from the TIA is filtered using a combination of a high-pass filter and low-pass filter to produce a bandpass filter as shown in Fig. 4. The high-pass filter blocks any DC interference and therefore is set to a lower cut-off frequency of about 3000 Hz. The two filters are separated by an inverting op-amp buffer that amplifies the voltage output from the high-pass filter, where $V_O = -V_{\text{in}} \cdot R_2 / R_1$. The output from the amplifier is put through a low-pass filter to eliminate high-frequency oscillations present at the maximum and minimum light levels. The upper cut-off frequency is set to 20 MHz. The voltage output is inverted to a positive voltage using an inverting amplifier with a gain of 1. The output is sampled by an analog-ADC and the binary information is processed. Table 2 shows the component values for the receiver circuit.

Table 2. Component Values for Receiver Circuit

<table>
<thead>
<tr>
<th>V_{bias} (V)</th>
<th>R_1 (kΩ)</th>
<th>C_i (pF)</th>
<th>R_{HP} (kΩ)</th>
<th>C_{HP} (nF)</th>
<th>R_1 (kΩ)</th>
<th>R_2 (kΩ)</th>
<th>R_{LP} (kΩ)</th>
<th>C_{LP} (pF)</th>
<th>R (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>2</td>
<td>20</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>
V. SIMULATION RESULTS

The next step was to evaluate the performance of the proposed antipodal UD code sequences generated to be utilized in the developed VLC system for ITS. Two of the code sets are shown in Figs. 8 and 9.

\[
C_{4 \times 5} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
\end{bmatrix}
\]

Figure 8. UD Code Set C with L = 4 and K = 5

\[
C_{8 \times 13} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

Figure 9. UD Code Set C with L = 8 and K = 13

In the simulations conducted, the researchers compare the proposed decoder with the maximum likelihood (ML) decoder and a probabilistic data association (PDA) decoder to decipher the proposed code set sequences. The comparison in the simulation is performed with the PDA algorithm alone as it has the best performance compared to other decoding algorithms (e.g., matched filter (MF), minimum-mean-square-error (MMSE), and so on). Figures 10 and 11 plot the BER performance averaged over the different users for \(C_{4 \times 5} \) and \(C_{8 \times 13} \), respectively. As can be seen from Figs. 10 and 11 for a BER of \(10^{-3} \) the performance of the proposed detector is only about 0.2 dB and 1 dB inferior compared to the ML decoder for UD code sets \(C_{4 \times 5} \) and \(C_{8 \times 13} \), respectively. In other words, using the proposed overloaded O-CDMA code design along with the developed detector, it would require additional powers of 0.2 dB and 1 dB to decode the UD code sets \(C_{4 \times 5} \) and \(C_{8 \times 13} \), respectively, compared to the ML decoder. The performance of the PDA suffers significantly compared to the proposed decoder developed in Kulhandjian et al. Although the BER performance of the proposed decoder is slightly higher than that of the ML detector, it is much less complex and less costly to implement compared to the ML decoder.
Simulation Results

Figure 10. UD Code Set C4x5

Figure 11. UD Code Set C8x13
VI. HARDWARE IMPLEMENTATION

The proposed visible light communication framework for ITS was developed and tested in a laboratory. A description of some of the hardware used in developing the VLC system follows.

Figure 12. Raspberry Pi 3 Model B+

Figure 12 shows the Raspberry Pi 3 Model B+. The board is used for transmitting the CDMA-encoded information.

Figure 13. ThorLabs PDA 100A2

Figure 13 shows the photodetector from ThorLabs used for running tests. The PDA 100A2 is a switchable gain detector with a large active area and bandwidth used for high-speed applications.

Figure 14. BPX61 Photodiode

Mineta Transportation Institute
Figure 14 shows the BPX61 photodiode that is used for receiving the light signals sent by the transmitter. The BPX61 is a fast-response, highly sensitive photodiode that works well with bias voltages.

Figure 15. High-power Red LED

Figure 15 shows the high-power red LED that is used in the project. This LED is driven by the LED driver circuitry to modulate light data and send through the medium.

Figure 16. OPA2810 Operational Amplifier

Figure 16 shows the OPA2810 operational amplifier that is used in the transimpedance amplifier for the receiver. The OPA2810 is a rail-to-rail operational amplifier that has a large small-signal bandwidth, dynamic AC/DC performance, large GBWP, low noise, and a fast slew rate.

Figure 17. Red Green Traffic Light Signal Display
Figure 17 shows the traffic light signal display that is used to simulate a real traffic light signal lens. The light from the high-power LED is partially scattered by the red covering but this causes no significant degradations in the quality of the light at the receiver side.

Figure 18. Arduino Uno R3 Board

Figure 18 shows the Arduino Uno R3 board that is used for sampling the output voltage of the receiver circuit and decoding the information.

Figure 19. Transmitter Circuit Design on Breadboard

Figure 19 shows the transmitter side of the VLC system. The LED driver circuit is shown on the breadboard connected to the Raspberry Pi board. The traffic light signal display is shown with the high-power LED behind the red lens. The Raspberry Pi board outputs modulated data to the driver circuit and pulses the LED on and off corresponding to the binary information.
Figure 20. High-power Red LED with Heat Sink and Focusing Lens

Figure 20 shows the high-power red LED assembled with the heat sink and focusing lens. The LED receives modulated current pulses from the driver circuit.

Figure 21. Receiver Circuit Design on Breadboard

Figure 21 shows the receiver circuit on the breadboard. The photodiode receives optical signals sent from the LED and converts them to current pulses. The current is converted
to a voltage and is then filtered and amplified to be sampled by the ADC.

Figure 22. Transmitter and Receiver Circuitry Experimentation

Figure 22 shows the VLC system as a whole. The data are modulated and sent from the transmitter side through the medium and received by the optical sensor.

Figure 23. Transmitter and Receiver Voltage Analysis on the Oscilloscope

Figure 23 shows the signal that is sent by the transmitter (yellow) and the signal that is received by the sensor (blue), as observed on the oscilloscope.
Figure 24. Transmitter and Receiver Voltage Captured On the Oscilloscope:
A) Transmitted Information Bits Are Displayed on Top in Yellow, B)
Received Information Bits Are Displayed at the Bottom In Cyan

Figure 24 shows the captured image from the oscilloscope of the data being sent (yellow) and received (blue). The waveforms are encoded binary information. It can be seen that the sensor accurately picks up the transmitted data.

Figure 25. A Screenshot of the Transmitted Message
Figure 25 shows the screenshot of the transmitted message which was encoded and sent by the red traffic light stating that there is a “Traffic jam on Barstow and Cedar Ave.”

Figure 26 shows the screenshot of the decoded received message that was originally sent by the red traffic light stating that there is a “Traffic jam on Barstow and Cedar Ave.”
VII. CONCLUSION

In this research project, a visible light communication (VLC) framework has been developed that can be used for intelligent transportation systems (ITSSs). Not only can the traffic light control the flow of traffic: it can also provide information about the traffic conditions several blocks down the road, and in case of accidents this information would be useful to enable the passenger to take a detour from their original driving route to help reduce congestion and save time. In order to do that, the researchers have developed a transmitter circuitry that is composed of an embedded system and an optical electronics fast-switching network. In addition to that, the researchers have developed the receiver circuitry composed of optical electronics circuitry in which the photodiode along with other circuitry is used for detecting and decoding the VLC signal coming from the traffic lights. The received signal is passed through an analog-to-digital converter (ADC) before sending it to the embedded system to receive and decode the transmitted signals. The researchers have also developed and tested a novel optical code-division multiple-access (CDMA) scheme for overloaded optical CDMA transmission in which the optical codes will be uniquely decodable. This new coding system can provide higher data rates, and it promises to support larger numbers of users in the visible light communication protocol establishment. After developing the system, the researchers conducted actual experimentation in a laboratory using a traffic light model/prototype and studied the VLC framework to test its functionality and improve its performance.
ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog-to-Digital</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code-Division Multiple-Access</td>
</tr>
<tr>
<td>Cf</td>
<td>Feedback Capacitor</td>
</tr>
<tr>
<td>FDA</td>
<td>Fast Decoder Algorithm</td>
</tr>
<tr>
<td>GBWP</td>
<td>Gain-Bandwidth Product</td>
</tr>
<tr>
<td>GPIO</td>
<td>General-Purpose Input/Output</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation Systems</td>
</tr>
<tr>
<td>I2V</td>
<td>Infrastructure-to-Vehicle</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>LOS</td>
<td>Line-of-Sight</td>
</tr>
<tr>
<td>MF</td>
<td>Matched Filter</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum-Likelihood</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum-Mean-Square-Error</td>
</tr>
<tr>
<td>NI</td>
<td>National Instruments</td>
</tr>
<tr>
<td>O-CDMA</td>
<td>Optical Code-Division Multiple-Access</td>
</tr>
<tr>
<td>OOK</td>
<td>On-Off-Keying</td>
</tr>
<tr>
<td>Rf</td>
<td>Feedback Resistor</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>TIA</td>
<td>Transimpedance Amplifier</td>
</tr>
<tr>
<td>VLC</td>
<td>Visible Light Communication</td>
</tr>
<tr>
<td>V2I</td>
<td>Vehicle-to-Infrastructure</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

ABOUT THE AUTHOR

HOVANNES KULHANDJIAN, PHD

Dr. Hovannes Kulhandjian is an Assistant Professor in the Department of Electrical and Computer Engineering at California State University, Fresno (Fresno State). He joined Fresno State in Fall 2015 as a tenure-track faculty member. Before that, he was an Associate Research Engineer in the Department of Electrical and Computer Engineering at Northeastern University. He received his B.S. degree in Electronics Engineering with high honors from the American University in Cairo (AUC) in 2008, and his M.S. and Ph.D. degrees in Electrical Engineering from the State University of New York at Buffalo in 2010 and 2014, respectively. His current research interests are in digital signal processing, wireless communications, and networking, with applications to underwater and visible light communications and networking geared towards Intelligent Transpiration Systems (ITS).

Dr. Kulhandjian has received research grants from Fresno State Transportation Institute (FSTI) and he also received the 2020 Claude C. Laval Award for Innovative Technology and Research at Fresno State.

Dr. Kulhandjian is an active member of the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE). He is a Senior Member of IEEE. He has served as a Guest Editor for IEEE Access Special Section Journal, Session Co-Chair for IEEE UComms’18 Conference, Session Chair for ACM WUWNet’19 Conference, Publicity Chair for ACM WUWNet’17 Conference. He also serves as a member of the Technical Program Committee (TCP) for ACM and IEEE Conferences such as GLOBECOM 2019, IPCCC 2017, WiMob 2018, WD 2018, ICC 2018, WUWNet 2018, and VTC Fall 2017. He is a recipient of the Outstanding Reviewer Award from ELSEVIER Ad Hoc Networks and ELSEVIER Computer Networks.
PEER REVIEW

San José State University, of the California State University system, and the Mineta Transportation Institute (MTI) Board of Trustees have agreed upon a peer review process required for all research published by MTI. The purpose of the review process is to ensure that the results presented are based upon a professionally acceptable research protocol.
MINETA TRANSPORTATION INSTITUTE

Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, efficiency, accessibility, and convenience of our nation’s transportation system. Through research, education, workforce development, and technology transfer, we help create a connected world. MTI leads the four-university MTI leads the four-university California State University Transportation Consortium funded by the State of California through Senate Bill 1.

MTI’s transportation policy work is centered on three primary responsibilities:

Research
MTI works to provide policy-oriented research for all levels of government and the private sector to foster the development of optimum surface transportation systems. Research areas include: bicycle and pedestrian issues; financing public and private sector transportation improvements; intermodal connectivity and integration; safety and security of transportation systems; sustainability of transportation systems; transportation/land use/environment; and transportation planning and policy development. Certified Research Associates conduct the research. Certification requires an advanced degree, generally a Ph.D., a record of academic publications, and professional references. Research projects culminate in a peer-reviewed publication, available on TransWeb, the MTI website (http://transweb.sjsu.edu).

Education
The Institute supports education programs for students seeking a career in the development and operation of surface transportation systems. MTI, through San José State University, offers an AACSB-accredited Master of Science in Transportation Management and graduate certificates in Transportation Management, Transportation Security, and High-Speed Rail Management that serve to prepare the nation’s transportation managers for the 21st century. With the active assistance of the California Department of Transportation (Caltrans), MTI delivers its classes over a state-of-the-art videoconference network throughout the state of California and via webcasting beyond, allowing working transportation professionals to pursue an advanced degree regardless of their location. To meet the needs of employers seeking a diverse workforce, MTI’s education program promotes enrollment to under-represented groups.

Information and Technology Transfer
MTI utilizes a diverse array of dissemination methods and media to ensure research results reach those responsible for managing change. These methods include publication, seminars, workshops, websites, social media, webinars, and other technology transfer mechanisms. Additionally, MTI promotes the availability of completed research to professional organizations and journals and works to integrate the research findings into the graduate education program. MTI’s extensive collection of transportation-related publications is integrated into San José State University’s world-class Martin Luther King, Jr. Library.

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the State of California. This report does not necessarily reflect the official views or policies of the State of California or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.

MINETA TRANSPORTATION INSTITUTE

MTI BOARD OF TRUSTEES

Founders

Hon. Norman Y. Mineta

MTI BOARD OF TRUSTEES

Founders, Honorable Norman Mineta

Secretary (ret.), US Department of Transportation

Chair, Abbas Mohaddes

President & COO, Ecolife Group Inc.

Executive Director, Karen Philbrick, PhD

Mineta Transportation Institute

San José State University

Chief Regional Transportation Strategy

David Castagnetti

Co-Founder

Milliman Castagnetti

Rosen & Thomas

Maria Cino

Vice President

America & U.S. Government Relations

 Hewlett-Packard Enterprise

Grace Crunican

Owner

Cruise LLC

Donna DeMartino

Managing Director

Los Angeles-San Diego-San Luis Obispo Rail Corridor Agency

Nuria Fernandez

General Manager & CEO

Santa Clara Valley Transportation Authority (VTA)

John Flaherty

Senior Fellow

Silicon Valley Leadership Group

William Flynn

President & CEO

Amerijet

Rose Guilbaud

Board Member

Peninsula Corridor Joint Powers Board

Ian Jeffries

President & CEO

Association of American Railroads

Diane Woodend Jones

Principal & Chair of Board

Les + Elliot, Inc.

David S. Kim

Secretary

California State Transportation Agency (CALSTA)

Theresa McMillan

Executive Director Metropolitan Transportation Commission (MTC)

Bradley Mims

President & CEO

Conference of Minority Transportation Officials (COMTO)

Jeff Morales

Managing Principal

Infrasig, LLC

Dan Moschavi, PhD

Dean, Lucas College and Graduate School of Business

San José State University

Toks Omishakin

Director

California Department of Transportation (Caltrans)

Takayoshi Oshima

Chairman & CEO

Allied Telesis, Inc.

Paul Skoutelas

President & CEO

American Public Transportation Association (APTA)

Beverly Swaim-Staley

President

Union Station Redevelopment Corporation

Jim Tymon

Executive Director

American Association of State Highway and Transportation Officials (AASHTO)

Larry Willis

President

Transportation Trades Department, AFL-CIO

** = Past Chair, Board of Trustees

* = Ex-Officio

Karen Philbrick, PhD

Executive Director

Hilary Nixon, PhD

Deputy Executive Director

Ash Weinstein Agrawal, PhD

Education Director

National Transportation Finance Center Director

Brian Michael Jenkins

National Transportation Security Center Director

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the State of California. This report does not necessarily reflect the official views or policies of the State of California or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.