
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

SEMANTIC SIMILARITY BASED INFORMATION RETRIEVAL AS SEMANTIC SIMILARITY BASED INFORMATION RETRIEVAL AS

APPLIED TO MOOCs APPLIED TO MOOCs

Krishna Nitin Tenali
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tenali, Krishna Nitin, "SEMANTIC SIMILARITY BASED INFORMATION RETRIEVAL AS APPLIED TO MOOCs"
(2014). Master's Projects. 340.
DOI: https://doi.org/10.31979/etd.rejz-tj5q
https://scholarworks.sjsu.edu/etd_projects/340

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/340?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Krishna Nitin Tenali Page 1

.

SEMANTIC SIMILARITY BASED INFORMATION RETRIEVAL AS APPLIED TO

MOOCs

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Krishna Nitin Tenali

Dec 2013

Krishna Nitin Tenali Page 2

© 2013

Krishna Nitin Tenali

ALL RIGHTS RESERVED

Krishna Nitin Tenali Page 3

The Designated Thesis Committee Approves the Thesis Titled

SEMANTIC SIMILARITY BASED INFORMATION RETRIEVAL AS APPLIED TO

MOOCs

by

Krishna Nitin Tenali

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

Dec 2013

Krishna Nitin Tenali Page 4

ABSTRACT

 Over the last few years there has been a significant development in the e-learning

industry that provides online courses to the public. Due to the drastic improvement in

technology and the Internet, this form of education reaches many people across

boundaries. There is vast set of courses currently provided by various sources, which

range from the latest technologies in the field of computer science to any topic in history.

Since the invention of e-learning, there has been constant improvement of user friendly

tools to enhance the learning process. In the span of the last three years, many websites

have come into existence that provide online courses. Some of the best universities in the

United States and other universities throughout the world have also started to provide

online courses that students can easily attend. It has become very difficult for a student to

pick the right online course. Hence, an application that can integrate the courses provided

by various e-learning websites like Coursera, Udacity and Edx would be very helpful.

The student can compare the regular courses provided by his or her university with the

courses offered by the e-learning websites and can enroll in similar online courses to get

a better understanding of the subject.

 The objective of this project is to use semantic similarity techniques to identify

the MOOCs [massive open online courses] offered by the e-learning websites which are

similar to the regular courses offered by the university.

Krishna Nitin Tenali Page 5

ACKNOWLEDGEMENTS

I would like to thank to my advisor Dr. Chris Tseng for his continuous guidance and

support throughout this project. Also I would like to thank the committee members

Mr. Ronald Mak and Mr. Venkatasubramanian Soundararajan for their suggestions and

valuable advice.

Krishna Nitin Tenali Page 6

TABLE OF CONTENTS

1. Project Overview 8

1.1 Introduction 8

1.2 Introduction to Web Mining 9

1.3 Introduction to Phrase Similarity 11

2. Data Extraction 12

 2.1 DOM Parser 13

 2.2 Using Jsoup 14

3. Project Design 20

 3.1 Data Extraction 20

 3.2 Similarity Phase 22

 3.3 Presentation Phase 23

4. Semantic Similarity 26

 4.1 Vector Space Model 27

 4.2 Corpus-based and Knowledge-based Measures 28

 4.3 Support vector machines 29

5. Implementation 31

 5.1 Training Module 32

 5.2 Prepare data for training 34

 5.3 How to Train 35

 5.4 Predict the scores 36

6. Conclusion and Future Work 37

7. References 38

Krishna Nitin Tenali Page 7

List of Tables and Figures

Fig 1: San Jose State University web page that contains course data from the Computer Science

Department. 16

Fig 2: Web page containing course-related information. 17

Fig 3: Web Page from Edx containing course information. 18

Fig 4: Web page from Coursera containing the course information. 19

Fig 5: Data Identification stage. 20

Fig 6: Data Extraction stage. 21

Fig 7: Data Processing stage. 22

Fig 8: XAMPP 24

Fig 9: Web page to compare the courses. 25

Fig 10: Cosine similarity. 27

Fig 11: WordNet 29

Fig 12: Support vector machine. 30

Fig 13: Project flow. 31

Fig 14: Web page to collect training data. 33

Fig 15: Sample training data. 34

Fig 16: The database table which contains the training data 35

Krishna Nitin Tenali Page 8

1. Project Overview

1.1 Introduction

 The Internet is a huge collection of data that is mostly semi-structured or

unstructured. It is very important for websites to be light and responsive. They are

designed in such a way that data retrieval is very quick and efficient. Hence the websites

do not use the structured data model that is normally associated with databases but

instead use XML or JSON to enable huge amounts of data to be stored and retrieved

efficiently. The technologies used in the Internet are designed in such a way that each

website can store and present the data differently. With the Internet expanding across the

world and the data on the Internet is accessible by everyone, that makes Internet the most

efficient and effective platform. Due to the flexibility and scope of the Internet, a lot of

development is taking place to invent new technologies to constantly improve the

visibility of its content. Many efficient methods have been employed for the storage and

retrieval of data. The same content and its interface can be developed in multiple ways

using various technologies due to the lack of a fixed structure or hierarchy of data across

the Internet. Due to the constant changes involved, designing and developing a standard

algorithm or technique to extract data from all the web pages has become very difficult.

 In this project we have considered only San Jose State University's regular course

data and the MOOCs [massive open online courses] data. The data from San Jose State

University and MOOCs websites like Coursera, Udacity, and Edx are extracted using

various data extraction techniques, and the data is stored in a relational database. The

goal of the project is to build a web application that will take San Jose State’s course

Krishna Nitin Tenali Page 9

details as input and use a semantic similarity technique to compare items such as the

course title and course description against MOOCs in order to identify similar courses.

The purpose is to help the student pick the most relevant MOOC compared to the

University’s regular course. This would help the student to learn the subject in detail.

 The project is divided into two stages. The first stage extracts the data from

MOOC websites using web mining techniques. The second stage compares the courses

and gives a score based on the level of similarity using semantic similarity techniques.

1.2 Introduction to Web Mining

 Web mining is the process of identifying data patterns on the Internet by using

various data mining methods. Internet content is generated from different data sources.

The mining of content on the Internet can be divided into three sections.

1.2.1 Web Usage Mining

 Many companies and educational institutions are investing time and effort in

research to find new methodologies to improve the process of mining data from the web.

Web usage mining is especially useful for e-commerce websites, where the company is

concerned about the user’s interest and would like to present the data in their website

according to the user’s interest. The data from server logs and mouse events of the user

are captured and the data is used to identify the user’s requirement. Some users might

look for textual data and some might look for media. This information is later used to

analyze and predict the user’s interest. Then the user is provided with information they

Krishna Nitin Tenali Page 10

are looking for, thereby making the website more user-friendly. Typically a web

application would store the IP address of the user, the sections of the web page accessed

by the user, the searches made by the user, and the user’s mouse events.

1.2.2 Web Structure Mining

 Web structure mining is a method to understand the relationship between various

hyperlinks available in a website. This would help the website designers to understand

the hierarchy of the website and to connect relevant information through links. These

links will help the user to access the content of the website.

1.2.3 Web Content Mining

 Web content mining is an efficient method to extract useful data from the web

page contents. Since the data is semi-structured, the lack of a data model makes it very

difficult to develop a standard technique to identify the information from the websites.

Hence the extraction of this data is also challenging. Websites generally use XML or

JSON to store the data because those formats are very easy to handle and do not have any

data model like a relational database. Web content can be divided into two points of

view, the IR view and the database view. The IR view or information retrieval view,

deals with extracting information from semi-structured data source. The database view

tries to determine if the data is stored in the database. In this project, we focus on web

content mining and use various techniques to extract the data from the websites.

Krishna Nitin Tenali Page 11

1.3 Introduction to Phrase Similarity

 Phrase similarity is the second stage and the core portion of the project. Course

data from San Jose State University and the MOOC websites are extracted using content

mining techniques. Then a regular San Jose State University course is compared with all

MOOC courses using the course description from the respective courses and the

similarity score calculated using various semantic similarity techniques. Phrase similarity

techniques can be broadly classified in two groups.

 1.3.1 Lexical similarity

 If the language is similar then lexical similarity would help us analyze two word

sets and identify the measure of similarity between them. The similarity scores are in the

range of zero to one, where one means that there is a complete overlap between the two

word sets and the word sets are very similar to each other. If the score is zero then there

are no common words between the two sets. This technique can also be used to find the

genetic relationship between languages. If the scores are high it can also be assumed that

the two languages can be dialects.

1.3.2 Semantic similarity

 Semantic similarity is used to identify the relatedness of two word sets. This

technique is used in various applications related to artificial intelligence, information

retrieval, and natural language processing. The scores are usually in the scale of zero to

one. If the two word sets are similar then the scores are closer to one and if the score is

Krishna Nitin Tenali Page 12

zero then the word sets are not similar. Some of the common techniques use to implement

semantic similarity are the hierarchical model or the statistical model like the vector

space model. In both the techniques the word sets are represented as nodes and the

similarity score is calculated based on distance between the two word sets. If the distance

is more, then the word set are less similar and if the distance is less, then the word sets

are similar. Semantic similarity measures can be classified into the following categories

like topological similarity, edge-based, node-based, pairwise, groupwise, statistical

similarity and semantics-based similarity.

2. Data Extraction

 Data extraction is the first stage in this project. The course-related data

from San Jose State University and MOOC websites are the data that we will be working

on, so it is very important to extract the data from all these websites. Since we are

concerned only about the content on the websites, we use web content mining to extract

the data. Web content mining is very similar to text mining and data mining. Some of the

methodologies used in data mining are used in the web content mining since both deal

with information extraction. In web content mining the data is either semi-structured or

unstructured whereas in data mining the data is more structured. Due to the exponential

growth in web content and its usage, many applications are built to use this data and

present the data in a user-friendly manner. There are various problems involved in

extracting data from the Internet due to lack of a standard structure used by websites to

store the data. Since the solution for these problems is very important in various real

time applications, a lot of research is being done in this field. Using web scraping we can

Krishna Nitin Tenali Page 13

convert the semi-structured data from a website to a more structured format that can be

stored in a relational database. Since each website stores and presents the data

differently, the data we require might not always be present in the same location, and the

same method cannot be used to extract the data across various websites. Every web page

should be analyzed to exactly determine the location of data. Some websites display

information that is not required. It is critical to extract only the information that is

required and scrap the rest of the data before storing the data in the database. Otherwise,

it would involve a lot of overhead to process the data every time it is fetched from the

database. Some of the techniques used to implement web scraping involve the use of a

DOM/HTML parser.

2.1 DOM Parser

 The Document Object Model is a standard to interact with the objects stored in

XML and HTML documents. All browsers use a model like DOM to render an HTML

page. Typically, HTML code consists of nodes, these nodes are in a tree like structure

known as the DOM tree with the document object forming the topmost node. When a

browser renders an HTML document, it parses the document in order to display the

contents. The HTML Parser accesses and traverses the HTML document. It is also

important that the HTML Parser identifies various HTML tags. The HTML parser also

provides various functions to extract specific portions of the HTML content. HTML

parsers are written in various languages. For this project we have used Jsoup.

Krishna Nitin Tenali Page 14

2.2 Using Jsoup

 Jsoup is a Java library that provides various methods to extract and manipulate

the data from an HTML document. Jsoup reads the HTML document and parses it

similarly to the DOM parser to identify various nodes. These nodes are represented in a

tree structure, and this tree can be traversed and the required data can be extracted

using various methods provided by Jsoup. The following are some of the methods in

Jsoup to extract data.

 Document doc = Jsoup.connect("http://www.sjsu.edu/").get();

This above method can be used to render an HTML document and find the required

data. The “connect” method make connections to the URL provided and “get” method

parses the HTML document. An exception is thrown if there is any error in fetching the

HTML page.

 Elements getid = doc.select("div[id=top_subsite]");

The “select” method helps to traverse the HTML document and go to the particular

location where the required data is found. In the above case we traverse to the “div” tag

in the HTML page where the “id” attribute is “top_subsite”

 String value = getid.get(1).attr("href")

The “get” method extracts data from the HTML page. The “attr” method helps us to

selects the value for the attribute “href”.

Krishna Nitin Tenali Page 15

 String content = getid.get(1).text();

The text method can be used to extract the text portion between the HTML tags.

 Elements list = getid.select("a[href]");

 for (int i=0;i<list.size();i++)

 {//Extract a particular data

 }

The above snippet of the code is used to loop over all the nodes in the HTML

document with “href” attribute and extract data. There are many other methods

provided by Jsoup which would help us to efficiently extract data from an HTML

document. Jsoup is a very efficient API and to use all its methods, we can import its jar

file into our Java program. In this project we have focused on extracting course related

data from San Jose State University, Edx, Udacity, and Coursera.

2.2.1 Extracting San Jose State University’s data

 The objective of the project is to compare similarity or relatedness of a regular

course offered at San Jose State University with MOOC courses. The first step is to

identify the hierarchy used in San Jose State University course website and understand

the location of data. The data extraction process begins with the extraction of course

related information. There are about seventy four departments in San Jose State

University, and each department offers many courses.

We parse the HTML document which contains all the departments in San Jose State

University http://info.sjsu.edu/web-dbgen/catalog/departments/all-departments.html.

http://info.sjsu.edu/web-dbgen/catalog/departments/all-departments.html

Krishna Nitin Tenali Page 16

Using Jsoup the list of department names and their corresponding URLs are extracted.

This data is stored in hash map with department names as keys and the URLs as their

values. The department URL is then parsed and the course-related URL is extracted.

This HTML document contains the list of courses offered by a particular department.

The value of the href attribute of each course is extracted using the “attr” method. This

value would give us the URL to the particular course.

Fig 1: San Jose State University web page that contains course data from the Computer

Science Department.

We parse this particular HTML document and identify the tag which contains data

related to course name, course number, description, grading and units. This data is

extracted and stored in the database.

Krishna Nitin Tenali Page 17

Fig 2: Web Page containing course-related information.

 We parse this particular HTML document and identify the HTML tags with

data related to course name, course number, description, grading, and units. This data is

extracted and stored in the database. There are some challenges while extracting

prerequisite related information, since this information is part of the description tag.

The description is parsed and then if prerequisite data is available then that portion of

the data is stored separately. Some course don’t have prerequisites and some have only

prerequisite data and not course descriptions, Java exceptions are used to handle each

case separately. The semi-structured data related to courses are extracted from San Jose

State University’s website and is stored in the database.

2.2.2 Extracting MOOCs course data

 After extracting course-related data from San Jose State University’s website,

Krishna Nitin Tenali Page 18

now the second stage is to extract the course-related data from MOOC websites like

Edx, Coursera, and Udacity.

Fig 3: Web Page from Edx containing course information.

Each website uses a different hierarchy to store its data. In the case of Edx, we parse

the HTML document at https://www.edx.org/course-

list/allschools/allsubjects/allcourses?page=0 which contains the courses offered by Edx

under all the categories. We identify all the courses, extract the course name and the

URL related to each particular course. We parse the HTML document which contains

information related to the particular course. Using the various methods available in

Jsoup, we extract information such as course name, course description, course image,

professor’s name, start date, and video link. Some of the courses have exceptions in the

description and start date information which are handled using Java exceptions.

Udacity is another MOOCs website whose structure is similar to Edx. By using the

https://www.edx.org/course-list/allschools/allsubjects/allcourses?page=0
https://www.edx.org/course-list/allschools/allsubjects/allcourses?page=0

Krishna Nitin Tenali Page 19

“attr” and “text” methods from Jsoup, the course-related information is extracted from

Udacity website. But in the case of Coursera, the course list is generated during runtime

and do not have course-related content in the HTML document.

Fig 4: Web page from Coursera containing the course information.

Coursera stores the course-related data in a JSON file at the URL

https://www.coursera.org/maestro/api/topic/list2. We parse the JSON and extract the

topic id for each course and append the id to the URL

https://www.coursera.org/maestro/api/topic/information?topic-id to get information

related to a particular course. We parse this JSON file to extract the information such as

course name, course description, course image, professor’s name, start date, and video

link.

https://www.coursera.org/maestro/api/topic/list2
https://www.coursera.org/maestro/api/topic/information?topic-id

Krishna Nitin Tenali Page 20

3. Project Design

 The project can be divided into three phases: the Data Extraction phase, the

Similarity phase, and the Presentation phase.

3.1 Data Extraction Phase

 In this phase we use some of the web content extraction techniques to extract

semi-structured data from the websites and convert it into a structured data that will help

us access the data effectively in the later stages. This extraction phase can be sub-divided

into three stages: Data Identification, Data Extraction, and Data Processing.

3.1.1 Data Identification Stage

Fig 5: Data Identification stage.

Krishna Nitin Tenali Page 21

 In the data identification stage, we finalize the list of MOOC web pages that we

will consider for this project. The data available in these websites are semi-structured

data or unstructured. We have considered San Jose State University, Edx, Coursera, and

Udacity. Each website should be analyzed in depth to understand the hierarchy of the

website and the exact location of the data in these websites.

3.1.2 Data Extraction Stage

 In the data extraction stage, we construct algorithms to extract information from

the identified sources. We convert the static HTML document into a DOM tree in which

the HTML tags form the nodes of the tree. We can access the child nodes and scrape the

metadata of the web page to extract the relevant data. Using various methods provided by

Jsoup we can access these sources, traverse through its web pages and extract data from

them.

Fig 6: Data Extraction stage.

Krishna Nitin Tenali Page 22

3.1.3 Data Processing Stage

 We use four tables to store data. We store San Jose State University's data in

courses table, and we store the course data scraped from MOOCs in course_data and

professor-related data in coursedetails. We have a scorecompare table that is populated

after the Similarity phase which contains the similarity scores of MOOC courses when

compared with San Jose State University's courses. We have a foreign key and primary

key relationship between the fields in course_data and course details tables.

Fig 7: Data Processing stage

3.2 Similarity Phase

 Similarity phase is the core section of this project that deals with semantic text

similarity. Two courses are compared and a similarity score is generated. We compare all

the MOOC courses with San Jose State University courses, and the corresponding scores

Krishna Nitin Tenali Page 23

for each set of courses are then stored into scorecompare database table. To calculate the

similarity score we use the system developed by TakeLab as a part of SemEval 2012.

This system is developed in Python using WordNet and Support Vector Machines.

WordNet is a lexical database that groups words into sets based on their semantic

relation. This is a commonly used methodology in various text analysis applications.

Support Vector Machines is a machine learning algorithm that consists of various

learning models to analyze data and identify patterns. Both Support Vector Machines and

WordNet will be explained in detail in next few sections.

3.3 Presentation Phase

 XAMPP is an open source web server stack which helps developers publish their

applications on their local system [10]. XAMPP is an acronym where X denoted cross

platform, which can be deployed across different operating systems. A denotes apache

HTTP server, M is for MySql database and PP denotes PHP and Perl script interpreters.

 We designed and developed two web pages which we deployed on a local server

using XAMPP. The web pages use PHP and the MySql database. The data scraped from

San Jose State University and the MOOCs are also stored. We developed a web page to

help the user identify the courses offered by MOOCs that are similar to courses offered at

San Jose State University.

Krishna Nitin Tenali Page 24

Fig 8: XAMPP

 This webpage was developed using PHP, Jquery and MySql database. The

following is Jquery snippet that implements AJAX functionalities like retrieving records

from the database without refreshing the whole page.

$(document).ready(function() {

 $('#dropdwn1').load("getDept.php",function(){

 $('#dropdwn1').change(function(){

 var checkA = $("#dropdwn1").val();

 $('#dropdwn2').load("getCrs.php",{'dept': checkA},function(){

 $('#dropdwn2').change(function(){

 var value = $("#dropdwn2").val();

 $('#table1').load("getSJSUcrs.php",{'sjsucrs': value},function(){

 });

Krishna Nitin Tenali Page 25

 });

 });

 });

 });

});

function test(id)

{

window.open("http://localhost/SJSU_MOOCS/Moocsdetails.php?val="+id ,"_blank");

}

Fig 9: Web page to compare the courses.

 The web page lets the user select a department from the first dropdown menu

which is populated from the courses table in the database. This dropdown contains the list

of departments at San Jose State University and allows the user to select a department.

Using Jquery, we dynamically populate the next dropdown menu with the courses offered

Krishna Nitin Tenali Page 26

by the selected department. We query the table course with the course name and retrieve

the data and display a table with the course number, course name, and the course

description. If the user is interested in finding the similar course offered by MOOCs that

are related to the selected San Jose course, the user would click on the button.

 We now query the scorecompare table with the San Jose State University course

number selected by the user and retrieve the related MOOCs data from the course_data

table and scores from scorecompare table. A table with MOOCs course name, course

description, site name and scores are displayed. Since the video link data and course link

data were also extracted from all the MOOCs websites, the link for the course and the

video are hyperlinked to the course name and the course image. After analyzing the

similarly scores of various courses, we have come to a conclusion that courses with

similarity score of 3.8 and above are similar and courses less than that are not similar.

4. Semantic Similarity

 Semantic similarity is a measure of identifying the level of relatedness between a

set of texts. This has been researched in the field of natural language processing and

machine learning. There are three approaches to implement semantic similarity.

4.1 Vector Space Mode

 Vector space model is an algebraic model in which the texts are represented as a

vector.

Krishna Nitin Tenali Page 27

d = (d1, d2, d3. . . dz)

q = (q1, q2, q3. . . qz)

Each value in the vector is a non-zero value which weight of the term in the document.

This weight can be calculated by tf-idf, i.e., term frequency-inverse document frequency.

The similarity between texts can be identified using cosine similarity. This can be

calculated by comparing the deviation of angles between the query vector and the

document vector.

 Cos θ = d2 * q / | d2 | | q |

 Fig 10: Cosine similarity.

 In the above figure d1 and d2 are two document vectors and q is the query

vector. The value of α and θ will give the relevance measure between the query and the

two documents d1 and d2, respectively.

4.2 Corpus-based and Knowledge-based Measures

Krishna Nitin Tenali Page 28

 This technique is based on an assumption that if two word sets are semantically

similar then we should be able to align their words. This alignment quantity is the

similarity measure.

4.2.1 Corpus-based Measure

 The corpus-based method depends on the degree of similarity between the two

word sets using the information from a large corpus. The co-occurrence of a word with

the count is collected in a large corpus where the degree of dependency between the

two word sets is calculated. The occurrence of a term in the corpus can also be

determined using singular value decomposition in a term by document matrix. When

singular value decomposition is applied to the matrix, it decomposes into three

matrices. Similarity is calculated using cosine similarity on a lower dimensional space

and hence this method is more efficient than the vector space model [9].

4.2.2 Knowledge-based Measure

 Knowledge-based similarity is dependent on WordNet. WordNet is a semantic

network of words. The similarity between two words can be determined using their

relative positions in the knowledge base hierarchy. The two words can have high

similarity score if the words are in the same WordNet synset or if one word is a

hypernym of another word [9].

Krishna Nitin Tenali Page 29

Fig 11: WordNet

 WordNet is a hierarchically organized lexical database that groups words into

synonyms called synsets. It provides semantic relations between synonym sets. Based

on the grammatical rules, WordNet categorizes the words as nouns, verbs, adjectives

and adverbs. Morphologic functions are used in order to deduce the root form of the

word and only the root is stored in the database.

 A sentence is partitioned into a list of tokens and these words are stemmed to

find the root of the word. Using the WordNet database, an appropriate word is

substituted and the similarity is computed based on the pairs of words.

4.3 Support vector machines

 In this approach, different measures of machine learning models are used to

analyze data. The support vector machine takes a set of input and predicts the scores for

Krishna Nitin Tenali Page 30

a set of input. An SVM model is a representation of the data as points in space, and the

data belonging to different categories are divided by a gap. The new data are then

mapped into the same space and based on which category is predicted.

 Some of the advantages of SVM are its effectiveness in high dimensional

spaces. It uses only a subset of the training points in the decision function to make it

very efficient. In this project we use a support vector regression and the model is

developed from support vector classification in which only a subset of the training data

is used. The training points that lie beyond the margin do not affect the cost function

for the model. Analogously, the Support Vector Regression model depends only on a

subset of the training data.

 Fig 12: Support vector machine

5. Implementation

Krishna Nitin Tenali Page 31

Fig 13: Project flow.

 The initial step is to extract the data from San Jose State University’s web site

which can be done using “/SJSUCourses/HtmlParser/HtmlParser.java” and extract Edx

data using “/SJSUCourses/MOOCS/src/moocs/Edx.java” and

“/SJSUCourses/MOOCS/src/moocs/staff.java”. The data will be stored in the database in

courses and course_data tables respectively. In this project we have used the system built

by TakeLab during SemEval. This system uses knowledge based measure from WordNet

and support vector machines. WordNet is used to find the relationship between two

words using a lexical database. Every word has a specific position in the knowledge-

based hierachy tree depending on its context. The similarity score between two words is

identified based on the relative positions on a hierachy tree. Each word has many

Krishna Nitin Tenali Page 32

concepts based on the context. The NLTK library provides various methods to calculate

the similarity score based on WordNet.While computing the similarity score we will take

the maximum score over all the possible pairs of concept[10]

 The text received as input during the training is preprocessed to remove all the

stop words such as the, is, at, which, and on, special characters and also remove words

like not and am. This preprocessing step will help the system to be more robust and

focus on only the relevent words.

 Using LIBSVM, the Support Vector Regression Model is trained with the

training set and the SVM parameters C, g and p are genrated using grid search. This

model is later used to compute the similarity scores of the sentences. This system is

developed in Python and TakeLab also provides the training data that consists of pairs

of sentences and their respective similarity scores.

5.1 Training Module

 The training data provided by TakeLab consits of pairs of sentences and their

respective similarity scores. These sentences are not specific to any context. The

similarity score assigned to each pair of sentence range from zero to five, where zero is

less similar and five is almost similar and these scores are based on human judgement.

Since the existing training data is not related to courses, using this data will not help the

system to predit the similarity correctly. For this project it is very important to use a

training data related to courses. Hence we used the training data based on courses from

all MOOCs websites and rated these courses based on our judgment. To effiectlvely

Krishna Nitin Tenali Page 33

collect this traning data, we developed the web page to compare the course description

of any two courses and let the user rate a pair of courses based on similarity.

Fig 14: Web page to collect training data.

The web page “/MOOCS_Similarity/index.php” was developed using PHP and Jquery.

It consists of two dropdown menus adjecent to each other. One menu contains the

catogory data from the course_data table that contains the catogories of all the courses

from MOOCs. Once the user selects a catogory using Jquery we populate the other

dropdown menu with the list of courses offered in the particular catogory. When the

user selects a course then we query the course_data table for the corresponding course.

The course description of the particular course is displayed in the text box below the

dropdown menus. Now the users can compare the course description between both the

courses and rate the level of similarity. The program will check if the combination of

Krishna Nitin Tenali Page 34

courses has already been selected. If the record is already available then we display the

existing score for the combination. The user can retain the same score or give a new

score to the pair of courses. The average of the new score and the old score is taken and

updated in the table against the course. The training data used in this project is based on

the course description. But if the training data needs to be changed to a different item

like course name, the query used in “/MOOCS_Similarity/index.php” can be changed

to retreive the respective column data and populate the dropdown menu. Now the user

can compare the data that is based on a different field and can rate the new data based

on similarity.

5.2 Prepare data for training

 The traning data should be a text file containing pairs of sentences separated by

a tab space between them and another text file with similarity scores for those pairs of

sentences.

Fig 15: Sample training data.

 In our project the training data will contain the pairs of course descriptions

collected from the web page “MOOCS_Similarity/index.php”. Using the Java program

“/SJSUCourses/FileRead/src/fileread.java” we query the contents of the compare table

and write it to a text file using file operations. We used the two text files to train the

Krishna Nitin Tenali Page 35

model.

Fig 16: The database table that contains the training data.

5.3 How to Train

 The text files that contain pairs of sentences and scores are taken as inputs for

training. Training the model involves two steps. The first step is the preprocessing step

where the stop words and special characters are removed, and WordNet is used to get a

vector based on the similarity using the lexical database and its relative position in the

WordNet tree. The optimal parameters are generated using grid search.

python takelab_simple_features.py <Text file with pairs of sentences> <Text file with

scores> > <Output of this step is a set of vectors from WordNet>

svm-train -s 3 -t 2 -c 200 -g .02 -p .5 < WordNet output from the previous step >

Krishna Nitin Tenali Page 36

model.txt

In the second step, we use the library LIBSVM to train the model and support vectors

are constructed based on the optimal margin. The support vectors are then used to

predict the score of new sentences.

5.4 Predict the scores

 The input file containing the pair of sentences is preprocessed by removing the

stop words and WordNet’s lexical database is used to construct vectors based on the

relative distance in WordNet tree.

python takelab_simple_features.py <Text file with pairs of sentences> > <Output of

this step is a set of vectors from WordNet>

The system uses the support vectors generated for each pair of course descriptions for

the courses corresponding to training data collected from the website to predict the

similarity scores for new sentences. We use LIBSVM to process the input check with

training model and generate similarity scores.

 svm-predict < WordNet output from the previous step > model.txt <Output file to

capture the scores>

Since we need to calculate the scores by comparing all the MOOC courses with the

course offered at San Jose State University, the input files are generated with course

description of the MOOCs courses and San Jose State University courses. There are

around 600 MOOCs courses and 4024 San Jose State Universities course, so about 600

Krishna Nitin Tenali Page 37

text files are generated with each MOOC course compared to all of San Jose State

University’s courses.

 We automated the process of calculating the similarity scores for all the input

files generated using the Python file similarityscore1.py. The filenames are stored in a

list and using reading the input text file and using subprocess command we can execute

Unix commands.

 p = subprocess.Popen("python takelab_simple_features.py newResults/Input/"

+filename +" > newResults/Input/" +predictfile,shell=True)

 ph_ret = p.wait()

 subprocess.Popen("svm-predict newResults/Input/" +predictfile +" model.txt

newResults/Score/" +scorefile,shell=True)

 Using the model generated after training and the Python script, the similarity

scores of all the courses are generated. The scores are generated in text files and these

files are used to populate the table scorecompare with all the similarity scores.

6. Conclusion and Future Work

 The objective of the project to access semi-structured and unstructured data

from the Internet, Parsing through the data was effectively accomplished by using

Jsoup. The structure of the data was analyzed and location of the course-related data

was identified. Using various methods provided by Jsoup we were able to extract the

URLs and traverse through those web pages and extract the course-related data from

San Jose State University’s websites and the MOOC websites like Coursera, Edx, and

Krishna Nitin Tenali Page 38

Udacity. This data was stored in the MySql database, thereby converting the semi-

structured data is converted to structured data stored in a relation database.

 Using the system built by TakeLab, using WordNet and Support vector

machines. The data from the database was formatted to remove unwanted space and the

training data was collected through a website. The users compare course descriptions of

two courses and give a rating on how similar the courses are in the scale of zero to five

with five being very similar and zero is not similar. Based on this training data,

collected the model was trained and this trained model was later used to calculate the

similarity scores between all the San Jose State University courses and MOOC courses.

Using PHP and Jquery, a web page was designed to help to user select a course offered

at San Jose State University and to identify the similar MOOC course.

 As an enhancement to this project, a better training set can be collected and

using which our model can be trained to provide better result. We can also include the

course title in our comparison to get a more relevant result. We could also try to use a

search engines like Nutch to crawl through various university websites which would

help us to get a huge amount of data.

7. References

1. Web Mining: Information and Pattern Discovery on the World Wide Web

http://maya.cs.depaul.edu/~classes/ect584/papers/cms-tai.pdf

2. Web Content Mining and Structured Data Extraction and Integration

Krishna Nitin Tenali Page 39

https://wiki.engr.illinois.edu/download/attachments/200017637/ResearchReport.pdf?ve

rsion=1&modificationDate=1336540363000

3. WebDB: A System for Querying Semi structured Data on the Web

http://www.public.asu.edu/~candan/papers/jvlc01.pdf

4. Lu, H. (2005). Semantic Web Services Discovery and Ranking. The 2005

IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005), 157-160.

5. UMBC EBIQUITY-CORE: Semantic Textual Similarity Systems paper presented by

Lushan Han, Abhay L. Kashyap, Tim Finin

6. D3 JavaScript data driven visualizations

http://d3js.org/

http://bl.ocks.org/mbostock

7. Jsoup API – HTML parser for Java.

http://jsoup.org/

8. Json parser for Java

http://json.org/java/

9. Corpus-based and Knowledge-based Measures of Text Semantic Similarity

http://www.cse.unt.edu/~rada/papers/mihalcea.aaai06.pdf

10. TakeLab: Systems for Measuring Semantic Text Similarity

http://aclweb.org/anthology//S/S12/S12-1060.pdf

11. Semantic Text Similarity system built by TakeLab

http://takelab.fer.hr/sts/

http://d3js.org/
http://bl.ocks.org/mbostock
http://jsoup.org/
http://json.org/java/
http://www.cse.unt.edu/~rada/papers/mihalcea.aaai06.pdf
http://aclweb.org/anthology/S/S12/S12-1060.pdf

	SEMANTIC SIMILARITY BASED INFORMATION RETRIEVAL AS APPLIED TO MOOCs
	Recommended Citation

	tmp.1391812931.pdf.vNsm7

