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ABSTRACT 

APPLICATION OF SECRETARY ALGORITHM TO DYNAMIC LOAD 

BALANCING IN USER-SPACE ON MULTICORE SYSTEMS 

by Kyoung-Hwan Yun 

 

In recent years, multicore processors have been so prevalent in many types of 

systems and are now widely used even in commodities for a wide range of applications.  

Although multicore processors are clearly a popular hardware solution to problems that 

were not possible with traditional single-core processors, taking advantage of them are 

inevitably met by software challenges.  As Amdahl’s law puts it, the performance gain is 

limited by the percentage of the software that cannot be run in parallel on multiple cores.  

Even when an application is “embarrassingly” parallelized by a careful design of 

algorithm and implementation, load balancing of tasks across different cores is a very 

important and critical aspect in utilizing a multicore system as close to its fullest potential 

as possible. 

In this paper, we investigate how a solution to a cardinal payoff variant of the 

secretary problem can be applied to a proactive, decentralized, dynamic load balancing 

technique in user-space to assist single program, multiple data (SPMD) applications in 

multiprogrammed environment so that all tasks can make roughly equal progress 

distributed over all cores.  We examine how this method compares with the default Linux 

load balancer in terms of scalability and predictability.  Our experiments show promising 

results that show our technique outperforms the default Linux scheduler by an average 40% 



	
  

speedup in multiprogrammed environment with less time variance among multiple 

executions.  
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1. INTRODUCTION 

In recent years, multicore processors have been so prevalent that they are no 

longer considered to be novelty, and parallel computing systems are now less often 

narrowly equated to high performance computing (HPC) systems specialized for 

scientific research, engineering, and such.  In fact, multicore processors are now widely 

used in commodities.  Most desktop computers, laptops, and even smartphones are 

parallel computing machines powered by multicores and are constantly evolving towards 

many-core systems; Intel has already produced an 80-core “Teraflops Research Chip” 

and said that they could easily have processors with hundreds of cores in next 5-10 years 

[14].  They are used in a wide range of applications including general purpose, machine 

vision, virtualization, graphics, networking, medical imaging, digital signal processing 

(DSP), and gaming.  Ever increasing constraints on Moore’s Law like heat/power wall 

and diminishing return from instruction-level parallelism (ILP) have forced the industry 

to turn to multicore processors. 

Although multicore processors are clearly a popular hardware solution to 

problems that were not possible with traditional single-core processors, taking advantage 

of them are inevitably met by software challenges.  Parallelization of software is the 

central aspect on performance improvement by multicore processors in light of the effect 

of what is known as Amdahl’s law.  The performance gain is limited by the percentage of 

the software that cannot be run in parallel on multiple cores.  Given that an application is 

“embarrassingly” parallelized by a careful design of algorithm and implementation, 

ideally, its tasks should be well distributed across different cores.  As increased number 
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of cores is available in a system, it is even more important to utilize them as much as 

possible.  The most undesirable scenario is all tasks of a parallelized application or a 

single-threaded application running on only one core, leaving the other cores idle and 

unutilized. 

Particularly in single program, multiple data (SPMD) application (which is the 

most common parallel programming technique [18]), tasks are almost equally load 

balanced within it, but the actual runtime doesn’t often reflect this internal balance due to 

many external reasons.  Whatever happens outside the application such as OS jitter, other 

applications, heterogeneous cores, unequal number of tasks among cores, etc. impact the 

progress of each task.  Consequently, some tasks that finished early block at the barrier 

while some others are still doing their computations, making the total execution time 

longer.  All tasks within the SPMD application must make equal progress executing on 

all available cores in order to achieve good performance.  Any parallel application is only 

as fast as its slowest task. 

The load balancing is a fundamental problem in parallel computing, and there has 

been a great deal of research in this subject.  A load balancing strategy can be as simple 

as static task assignment, or as sophisticated as using adaptively several heuristics (e.g., 

[10, 11]) to dynamically move around tasks among cores.  Implementations of load 

balancing algorithms are done in different domains.  For example, the programmer can 

do static balancing at the application level, whether arbitrarily or with some intelligent 

decision method.  Modern operating systems implement schedulers that do certain load 

balancing operations.  Moreover, programming languages designed for parallel 
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programming paradigm (e.g., OpenMP, MPI, Cilk, X10, UPC, etc.) implement load 

balancing algorithms, assisted by compiler and runtime library.  They all have different 

advantages and disadvantages, and there is none that performs well in all aspects. 

In this paper, we briefly survey a few basic load-balancing strategies, including 

also an interesting concept of user-space application assisted dynamic load balancing that 

can coexist with other load balancers.  Then, we investigate how a solution to a cardinal 

payoff variant of the secretary problem can be applied to the latter concept of user level 

dynamic load balancing to assist SPMD applications in multiprogrammed environment so 

that all tasks can make roughly equal progress distributed over all cores.  We examine 

how this method compares with the default Linux load balancer in terms of performance 

and execution time variation. 

The results from our experiments of running NAS Parallel Benchmarks (NPB) 

[15] in OpenMP in both dedicated and non-dedicated environments show promising 

results where our online (“on the fly”) selection load balancer (OSLB) achieves good 

speedups overall.  In a dedicated environment with most other system processes disabled, 

we see an 8% average speedup of all the benchmarks when they are run individually.  In 

the same environment, when there is an induced imbalance by a CPU-intensive process, 

the average speedup rises to 14.8%.  Furthermore, we see a 40% average speedup when 

all the benchmarks run together to simulate a non-dedicated environment.  Our load 

balancer is able to correct imbalances very well by making balancing decisions based on 

partial information of the parallel subtasks.  It demonstrates the applicability and 

potential of optimal stopping strategies to load balancing for scalability.  
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2. BACKGROUND 

There are various and vastly many techniques applied to multicore load balancing, 

all with one goal in mind:  To improve performance by distributing the total load of all 

tasks evenly among all cores.  They can be broadly categorized into static load balancing 

and dynamic load balancing.  In this section, we lay down some fundamental 

understanding of load balancing, and then discuss how modern operating system 

schedulers support the load balancing.  In addition, we describe a different approach 

taken by others’ prior work, which explored the idea of user-space application 

performing proactively dynamic load balancing.  From the discussions of these topics and 

this latter technique we develop our work. 

2.1. Static Balancing 

In static balancing, load balancing is done before the application is run.  Tasks are 

statically distributed to cores before execution of the parallel application.  One simple and 

classic but not effective or useful (other than being a popular benchmark for comparison) 

algorithm is to assign tasks randomly to cores.  Whereas this algorithm does not require 

any prior knowledge about the application’s behavior, there are other methods that make 

improvements by obtaining and utilizing such information.  Round robin assignment of 

tasks to processors is a very simple but not much effective approach.  There are also 

partitioning methods where tasks are represented by a graph.  One particular approach of 

such kind is to use mapping heuristics using an Expected Time to Compute (ETC) matrix.  

By using genetic algorithm (GA), search for an acceptable task mapping from a large 
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search space in a reasonable amount of time is attempted [1].  In a practical sense, 

calculating an ETC matrix with reasonable accuracy could be challenging, especially in a 

multiprogrammed environment where other programs change the system state.  Also, the 

fact that many factors have to be considered when calculating an ETC matrix adds 

complexity to the designing of algorithm.  Although advantages of static load balancing 

are simplicity to implement and minimal runtime load balancing overhead, the example 

of GA method highlights the inherent problem all static load balancing methods face, 

namely, the complexity in predicting execution times with plausible degree of accuracy 

when computation pattern is not predictable.  Static load balancing works well if 

computation pattern is predictable.  However, SPMD applications in a multiprogrammed 

environment do not benefit much from static load balancing and need a balancing method 

that reacts dynamically and timely to constantly evolving task progress status. 

Our work saw this very limitation of the static load balancing and thus naturally 

explored the utility of dynamic load balancing for SPMD applications which run, more 

likely than not, on systems that have many elements of imbalance. 

2.2. Dynamic Balancing 

If an SPMD application runs on a non-dedicated system (as it is often the case) 

with other applications or system processes, all of its tasks will make different progresses 

because of different and constantly changing load on each core.  The progress of each 

task is generally unpredictable and uneven just as the system state is often not predictable.  

In such an environment, it is better that load balancing decisions be made based on the 
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current state of the system and that task assignments to cores be changed during runtime.  

Unlike static load balancing, dynamic load balancing incurs extra overhead for 

monitoring and rebalancing, but performance gain generally offsets the overhead with a 

proper decision on monitoring and rebalancing policies. 

Depending on the location where decisions on load balancing are made, a load 

balancing technique can be classified as either centralized or decentralized (distributed).  

In the centralized technique, a single process makes decisions on distributing tasks.  The 

single process can gather necessary information on demand, so the reduced amount of 

exchanged data is an advantage.  On the other hand, in the decentralized technique, 

multiple processes (e.g., one balancing process per core) individually make decisions on 

distributing tasks.  This necessitates some form of information exchange among one 

another, resulting in an increased amount of data communication, significantly more than 

the centralized technique as the number of the decision-making processes increases.  

Also, since a centralized decision maker could be a bottleneck when there are a lot of 

tasks to balance, the decentralized technique is more scalable.  Many researchers believe 

the decentralized load balancing is more scalable.  Each process makes decisions based 

on its local information or global information, and its optimal policy [8]. 

Our dynamic load balancer has per-core balancing threads that make balancing 

decisions in decentralized manner without enforcing lock-step execution of the threads, 

and this approach will be more beneficial as we see increasing number of cores and tasks 

running on them. 
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The following subsections describe centralized and decentralized algorithms that 

are frequently discussed and contrasted. 

2.2.1. Work-Sharing 

In work-sharing, whenever a core creates new tasks, the scheduler attempts to 

distribute some of them to other underutilized cores.  The tasks are usually pooled at the 

global centralized location.  This algorithm causes frequent migrations of tasks by the 

scheduler, and there are scalability problems because of the contention on centralized 

task pool.  The scalability issue has been observed on the parallel programming language 

X10, and there has been work to implement work-stealing scheduling as an improvement 

over its existing work-sharing runtime system [10]. 

2.2.2. Work-Stealing 

One area that has generated a great deal of research is work-stealing (or task-

stealing).  There have been many variants since the introduction of its idea as far back as 

the work by Burton and Sleep [5].  Work-stealing is used in many task-parallel runtime 

implementations.  It allows dynamic load balancing with low overheads incurred to 

critical paths because idle cores steal from busy cores.  Fundamentally, tasks are kept on 

each core’s queue and other idle cores steal from busy cores; and there are fewer task 

migrations in work-stealing than in work-sharing.  Because of its distributed 

implementation, work-stealing is more scalable than work-sharing.  In many work-

stealing variant implementations, steal overheads, cache sharing, and NUMA 

characteristics are considered when designing work-stealing algorithm.  All variant 
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approaches overcome certain shortcomings of the pure work-stealing policy.  Issues they 

address are mostly salient on multi-socket multicore architectures.  A hierarchical policy 

that combines shared LIFO queue among local cores and work-stealing between chips 

has been shown to maintain good load balance and cache performance with limited 

overhead [16].  Randomized work-stealing can incur severe cache misses for memory-

bound tasks that share data, and a cache aware work-stealing based on online profiling 

for programs whose tasks can be represented as tree-shaped DAGs (e.g., divide-and-

conquer programs) has been shown to perform well [6].  To address locality-

obliviousness due to randomized stealing and inflexibility of fixed task scheduling policy 

(work-first or help-first [10]), a scalable locality-aware adaptive work-stealing scheduler 

was designed so that the programmer can provide locality hints to the runtime or 

compiler.  Work-first policy and help-first policy have different stack and memory 

requirements, and context switch patterns, so this work-stealing algorithm adaptively 

switches its scheduling policy during runtime [11].  It is commonly important among all 

work-stealing approaches to limit randomness of stealing which negatively affect cache 

locality and load balancing, not to mention other overheads.  The parallel programming 

language Cilk is an example that has compiler and runtime implementations to support 

work-stealing. 

Both work-sharing and work-stealing require support by compiler and runtime (if 

not by OS or by application modification).  In this aspect, our load balancer offers 

flexibility and portability by running as an independent user-space application without 

requiring changes to the parallel application or compiler and runtime support. 
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2.3. Load Balancing by Operating System Scheduler 

Modern operating systems assume symmetric speed of cores (thus, SMC).  

However, many systems have asymmetric multicores (AMC) with different capabilities 

and specialized usages.  We have particularly seen AMCs being used in many 

smartphones in recent years; different speed and power consumptions of each core enable 

efficient usage of power while delivering appropriate performance for tasks that require 

different computation intensities.  The Exynos 5 Octa processor in the recently 

announced Samsung Galaxy S4 has low clock speed cores (thus, low power consumption) 

for lighter tasks like web browsing and e-mail checking, and high clock speed cores for 

computationally intensive tasks like gaming [7].  Most OS schedulers treat each core as 

equal when distributing tasks, but tasks make different progress because of different core 

speeds and other external factors like OS jitter.  This assumption for load balancing is 

problematic because tasks do end up making different progress on different cores due to 

such reasons. 

Moreover, operating systems keep an independent runqueue on each core for 

scalability reason as number of cores increases.  Each runqueue has certain number of 

tasks assigned to it.  Besides the local scheduling of tasks from each queue, the scheduler 

periodically checks the lengths of all queues and tries to balance the queues by 

redistributing tasks across cores so that the queue length differences are as small as 

possible.  With external factors like core asymmetry, OS jitter, and other applications 
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running, some tasks run more frequently than others, and balancing based on runqueue 

length do not help tasks make equal progress. 

The task independence assumption is often wrong with parallel applications like 

OpenMP, MPI, UPC, Cilk, X10, etc.  These applications have their subtasks dependent 

on each other.  Consequently, the OS scheduler would do better in load balancing if it 

would incorporate into its balancing policy the relationships among tasks.  Our load 

balancer runs along with a particular application it needs to balance, so the application’s 

tasks are grouped in a scope of the balancing decisions.  In this way, the relationships 

among tasks are taken account.  Another characteristic of our load balancer is that it 

proactively watches for imbalance and tries to migrate tasks to correct it whereas the OS 

scheduler migrates only when they block. 

2.4. Proactive User-Space Application Assisted Dynamic Load Balancing 

Proactive user-space dynamic load balancing is not a novel idea.  Clavis is an 

open-source project that uses various user-level CPU and memory statistics, hardware 

performance counters, and hardware-supported instruction sampling to enforce 

scheduling decisions to support Linux operating system scheduler [4].  One drawback is 

that relying on hardware-specific features makes it less portable.  Juggle (similarly, its 

previous work) is another load balancer that explores the proactive user-space dynamic 

load balancing concept, yet it takes a simpler approach to measuring the task progress by 

using the concept of load balancing on speed; and task progress is measured by gathering 

only a few statistics—mainly user time, system time, and total elapsed time [12, 13].  
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Focused on SPMD programs, speed balancing assists OS scheduler by proactively and 

periodically migrating tasks so that all tasks within the program make equal progress.  

Whereas the OS scheduler balances in terms of runqueue length, the speed balancer 

balances the time each task spends on “fast” and “slow” cores.  The speed is defined as 

the task’s execution time (both user and system times) divided by the elapsed time.  It is a 

reasonable and simple measurement of how much share of CPU time the task received 

without being bogged down with complex formulation of various system measurements, 

hardware-dependent performance counters, etc., and it also works well in asymmetric 

systems.  Whatever happened for a period of time outside the task that influenced its 

share of execution time is well captured by the particular definition of speed.  No 

assumption is made about application behavior, as it just observes task speeds for 

migrations.  The balancer runs in user-level and no kernel, runtime system, or program 

modification is necessary, as it runs independent from the OS scheduler.  Architecture 

independence is another advantage of the speed balancer. 

1 Determine progress of threads (all 
balancers) 

2 Determine fast and slow processors (all 
balancers) 

3 [Barrier] 
4 Classify threads as ahead and behind 

(single balancer) 
5 Redistribute threads (single balancer) 
6 [Barrier] 
7 Migrate threads (all balancers) 
8 [Barrier] 

Figure 1.  Pseudocode for Juggle [12]. 
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Figure 1 shows in high level how Juggle works.  An instance of balancer thread runs the 

algorithm independently on each core.  Lines 3, 6, and 8 are global synchronizations 

needed for coordinating with one another to achieve as optimal balance as possible.  By 

having those barriers, Juggle is able to calculate the provably optimal task distributions 

and migrate accordingly.  Synchronizing at barriers, however, can be a bottleneck, 

especially with a large number of cores. 

Our work investigates further on this interesting concept of proactive user-space 

dynamic load balancer.  With scalability in mind, our decentralized load balancer is 

aimed to minimize the data communication complexity while achieving a good level of 

load balancing.  As we are clearly heading to the direction of many cores becoming 

commonplace, we anticipate such scalability issue of load balancing so many tasks on so 

many cores.  Moreover, having many load balancing threads synchronizing at a barrier to 

calculate redistribution plan of many tasks is another scalability issue.  To address these, 

our work is described in more detail in the next section, which will be followed by 

experimental results. 
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3. OUR APPROACH 

With increasing number of cores and proportionally many parallel tasks running 

on them, we are concerned with the scalability of such user-space dynamic load balancers 

with barrier synchronization.  Synchronization among many balancer threads in order to 

calculate the optimal redistribution plan may cause some bottleneck.  Especially, if there 

is some significant amount of latency and data communication complexity involved in 

gathering all task speeds, the scalability issue may be proportionally significant.  If we 

were to be free from global synchronization, we are to deal with unsynchronized arrival 

of speed measurements at a given window of time.  As a solution taken in this project, 

each balancer on each core makes online observations of task speeds from other cores in 

random order, and makes independent task migration decisions, as they are available at 

the time of observation.  The strategy that our load balancer uses to choose the likely 

optimal candidate tasks to be migrated is a solution to a cardinal payoff variant of the 

secretary problem [9, 17].  The optimal policy for selecting the maximum value with the 

highest probability when making online observations of n candidates one at a time is to 

skip the first 𝑛 − 1 candidates and select the next candidate that has a higher value than 

all previously observed candidates [3].  By using the optimal stopping solution, we limit 

the number of tasks to be observed and allow each load balancing thread make online 

decisions without having to synchronize with the other threads. 
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3.1. Optimal Stopping:  Cardinal Payoff Variant of the Secretary Problem 

The classical secretary problem is a famous optimal stopping problem, and is also 

known as the marriage problem.  It can be described as the following: 

1. There is a single secretary position for hire. 

2. The number of applicants is n, and the value of n is known. 

3. Each candidate arrives sequentially in random order, where each order is 
equally likely. 

4. The interviewer has to either accept or reject the candidate immediately 
after an interview.  The decision is irrevocable and is based on the relative 
ranks of the applicants seen so far. 

5. The expected payoff of selecting the best candidate is 1; otherwise, 0.  The 
goal is to maximize the probability of selecting the best candidate. 
 

The solution to this problem is remarkably elegant and simple.  The optimal stopping 

policy is to reject initially about 𝑛 𝑒 candidates and accept afterwards the first candidate 

who is better than those interviewed so far.  Also, for any value of 𝑛, the probability of 

making the best choice is at least 1 𝑒 ≈ .368 [9, 17].  Obviously, the same theory can be 

applied for making the worst choice. 

In many situations, it may be more natural to relax the strict rule of accepting only 

the best.  The problem where the employer would rather hire a higher-valued candidate 

than a lower-valued one, instead of only the best, is known as the cardinal payoff variant 

of the secretary problem.  If the candidates are drawn independently and identically from 

a uniform distribution on [0, 1], the optimal cutoff for the cardinal payoff variant problem 
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is 𝑛 − 1 for the cardinal payoff variant, which is considerably smaller than the 𝑛 𝑒 

optimal cutoff of the classical secretary problem. 

 

Figure 2.  Expected payoff of the selected candidate (n in logarithmic scale) 

As can be seen from Figure 2, the expected payoff of the selected candidate is well above 

average even at small values of n, and surpasses .73 fairly quickly at the small number 

𝑛 = 10, .90 at 𝑛 = 100, and .95 at 𝑛 = 500. 

3.2. Algorithm 

Our dynamic load balancer runs as a user-space program that lives during the 

lifetime of a parallel application that it needs to load balance.  It can either launch the 

application it needs to load balance, or the process IDs (PIDs) of the already-running 
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application’s subtasks can be specified when it is started.  Upon termination of the 

parallel application, the load balancer also terminates since there remains no more 

balancing work to be done.  Its goal is to watch the progress of each task of the parallel 

application, compare it against the overall average progress of all tasks, and appropriately 

migrate the task (if necessary) to a remote core.  The load balancer does not require any 

modification of the parallel application and the balancing operations are transparent to the 

application.  The balancer consists of per-core balancer threads, each of which runs 

independently on a core without global synchronization with the other balancer threads.  

The load balancing decision-making process is decentralized.  Each balancer thread 

wakes up at every interval τ, checks for imbalance, migrates tasks, and goes back to sleep.  

With a shorter τ, migrations occur more frequently and thus more overheads are incurred; 

and with a longer τ, the opposite is true.  The section 4.2 will discuss about the load-

balancing interval. 

Before discussing the algorithm further, the following definition of speed needs to 

be established [12]: 

speed≔
𝑡𝑖𝑚𝑒    𝑝𝑟𝑜𝑐𝑒𝑠𝑠  𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑒𝑙𝑎𝑝𝑠𝑒𝑑  𝑡𝑖𝑚𝑒 ∈ [0,1] 

At every interval τ, the balancer thread calculates the speeds of all tasks running on the 

local core and also their average.  The average is considered as the speed of the local core.  

Also, the global core speed is calculated by taking an average of all core speeds.  Every 

time a balancer thread updates its local core speed, it also updates the global core speed.  
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In order to prevent race condition, the global core speed is protected with a lock.  The 

balancer thread considers its local core as fast if its speed is greater than the global speed, 

and as slow if less.  We define a task to be ahead if its speed is above the global core 

speed, and behind if below. 

Figure 3 outlines general action taken by each balancer thread at every interval.  

The general strategy is that each balancer thread on a fast core tries to swap the fastest 

local task with a slow task on a remote core. 

 

  

1 Compute the local core task speeds 

2 Compute the local core speed and the global core speed 

3 If local core speed = fast: 
4 Let procahead := the fastest process in the local core 

5 Let procbehind := the process as “slow” as procahead is “fast” relative to 
the global average speed 

6 Migrate procahead to the core procbehind is running on; and migrate 
procbehind to the local core 

7 Else: 

8 // Do nothing 

 
Figure 3.  Pseudocode for the balancer threads using the solution to the cardinal payoff 

variant. 

 

In line 5, as an attempt to make as evenly balanced distributions of behind tasks on fast 

cores as possible, the balancer tries to make an online decision to select the higher (not 

necessarily the best, as in the classical secretary problem) fit behind task.  For example, if 

procahead is 25% (or any other value p in general) faster than the global average speed, 
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then an online selection is done on a process that is as close to 25% slower than the 

global average speed as possible; the selection is done by using the solution to the 

cardinal payoff variant.  Also, in order to prevent a particular task from being migrated 

too frequently before being given enough time to run on a core, only a task that hasn’t 

been migrated recently is considered as an eligible candidate.  Using such optimal 

stopping strategy, online observations are made and task migration decisions are made 

independently without observing all speeds and synchronizing with the other balancer 

threads.  On average, only a small proportion of all process speeds are observed before 

making a selection. 

Migrating memory-bound tasks across nodes particularly on NUMA systems can 

be expensive because memory pages are not migrated and accessing non-local memory is 

slower.  Performance degradation due to a high rate of migrations can be a problem for 

memory-bound tasks, unlike CPU-bound tasks.  As a general strategy to mitigate this, we 

have disabled inter-node migrations whenever the migration rate is high. 

3.3. Software Implementation 

The load balancer is a multithreaded user-space application written in C (although 

it can very well be another programming language).  It takes as an argument the 

statement to execute the parallel application.  Then, it forks a child process that starts the 

parallel application.  Alternatively, the load balancer can be launched with a list of PIDs 

of the parallel application that has been already running.  After the parallel application is 

started, the load balancer creates per-core balancer threads, each of which executes the 
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algorithm in Figure 3 at every interval τ.  Initially, the tasks of the parallel application are 

evenly distributed by pinning them to all cores in a round-robin fashion. 

Throughout the program, pinning a task to a core is achieved by using the 

sched_setaffinity() system call.  The system call sets a process’s CPU affinity 

mask and the effect is immediate.  Once a task is migrated to a core using the system call, 

the pinning remains constant throughout the execution and the Linux scheduler does not 

change it.  This behavior is important and beneficial to our load balancer because we 

don’t want the Linux scheduler interfere with the load balancing and move around tasks 

to cores against our intention. 

The /proc file system is queried to identify the task PIDs of the parallel 

application.  The PIDs belong the parallel application are listed under 

/proc/<PID>/task where <PID> is the PID of the parallel application.  Gathering 

the execution time and elapsed time statistics of tasks is done through the netlink-based 

taskstats interface.  By opening a unicast netlink socket (NETLINK_GENERIC 

family) from user-space, commands specifying a PID can be sent to the kernel to get the 

response containing the statistics for the task.  The taskstats interface is an efficient 

way to obtain task statistics, and is more accurate than gathering statistics in user-space 

alone.  From the interface encapsulated in /usr/include/linux/taskstats.h, 

three basic accounting fields are of particular interest in our load balancer. 
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struct taskstats { 
 
... 
 
__u64   ac_etime; /* Elapsed time [usec]  */ 
__u64   ac_utime; /* User CPU time [usec]  */ 
__u64   ac_stime; /* System CPU time [usec] */ 
 
... 

}; 

The speed is calculated by (𝑎𝑐!"#$% + 𝑎𝑐!"#$%) 𝑎𝑐!"#$!.  Any calculated speed that is 

above 1.0 due to measurement inaccuracy and floating point precision is adjusted to 1.0. 
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4. EXPERIMENTS 

In this section, we describe the experiments we have performed to demonstrate 

the effectiveness of our cardinal payoff online selection load balancer in dedicated and 

non-dedicated environments. 

4.1. Setup 

The evaluation of our online selection load balancer (OSLB) was done on a 12-

core system.  The specification of the system is shown in Table 1. 

Table 1.  Specification of the test system 

Item Details 
Processor Intel® Xeon® X5675 @ 3.07GHz 
Cores 12 (6 cores per chip) 
L1 Cache 32 KB (I-cache) + 32 KB (D-cache) per core 
L2 Cache 256 KB per core 
L3 Cache 12 MB per chip 
Memory 80 GB 
OS Ubuntu 12.10 (GNU/Linux kernel 3.5.0-21) 
NUMA Nodes 2  
Hyper-Threading® Yes 

 

We have disabled Hyper-Threading® so that we test only on physical cores and avoid 

possible idiosyncrasies from having logical cores.  Also, we have disabled unnecessary 

processes that are not related to our load balancer and parallel applications. 

We ran various benchmarks from the NAS Parallel Benchmarks (NPB) [15] in 

OpenMP on dedicated and non-dedicated environments.  They range in small and large 

memory footprints, and short and long execution times.  One study found that the 
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methods of these benchmarks would be used in various commercial software domains [2], 

so experimenting with these benchmarks is reasonable.  The selected benchmarks from 

the NPB are ep.C, cg.B, ft.B, is.C, lu.A, sp.A, mg.B, bt.A, and ua.A.  The benchmarks 

were compiled with gcc 4.7.2, which has –fopenmp option support for OpenMP API 

version 3.0.  They were run on dedicated environment and non-dedicated environment, 

and were repeated ten times.  Each benchmark was run with 12 threads, one thread per 

core.  We compared test results from load balancing by the Linux scheduler and by 

OSLB.  For simulating an imbalance greater than the one caused by OS jitter, a highly 

CPU-bound application that sleeps periodically was pinned to one of the cores while 

executing.  We simulated the non-dedicated environment by executing all the 

benchmarks concurrently, and the times for all of them to complete under the Linux 

scheduler and OSLB were compared. 

Each benchmark has a varying degree of memory usage, some greater and some 

others less.  Benchmarks with more memory usage are impacted more by task migrations.  

Migrating memory-bound tasks across nodes on NUMA systems is expensive because 

memory pages are not migrated and accessing non-local memory is slower.  The problem 

is exacerbated if the migration rate is high.  For a highly CPU-bound benchmark like 

ep.C, this is not an issue.  As a general strategy to mitigate this, we have disabled inter-

node migrations whenever the migration rate is high. 
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4.2. Balancing Interval 

In order to determine what value of τ works well for our balancer, we repeated 

experiments by executing all the benchmarks at the same time with OSLB balancing at 

different values of τ.  Figure 4 shows speedup values we measured at various points of 

balancing interval τ. 

 
Figure 4.  Speedup at different balancing interval τ. 

 

Particularly for τ < 10 (in milliseconds), the benefit from OSLB is drastically degraded.  

This is attributed to the overhead from frequent balancing activities.  The overhead has 

taken a toll on the performance improvement.  Furthermore, the speedup actually falls 
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steeply below 1.00 at τ < 4 and reaches .65 at τ = 0.  It can be seen that a very short 

balancing interval is not beneficial. 

As the balancing interval was increased from τ ≈ 20, the speedup increased very 

quickly and stayed very close to the asymptotic value 1.40 measured from our experiment.  

From our empirical results, we decided τ = 100 is a reasonable value for the balancing 

interval of OSLB. 

4.3. Dedicated Environment 

Figure 5 shows the speedup of OSLB against the Linux scheduler on a system 

where there are no other applications but OS jitter to cause significant (if indeed) 

imbalance. 
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Figure 5.  Speedup of OSLB against the Linux scheduler on a system with only OS jitter. 

 

In this particular test environment, the overall average speedup was 8%.  The ua.A saw 

the most benefit from OSLB by getting 35% speedup.  The ua.A apparently got much 

imbalance and the Linux scheduler did very poorly in correcting imbalance in this 

benchmark.  Aside the extraordinary case, most benchmarks got speedup not far from the 

average speedup.  The ep.C did not see any speedup at all and the speedup fell just below 

1.0 by an insignificant amount, and one explanation is that the embarrassingly parallel 

benchmark (thus, the name) doesn’t exchange much data among the subtasks and the 

amount of imbalance caused by the OS jitter is not much.  The speedup for ft.B was 

insignificant, too, as the dedicated environment didn’t cause much imbalance. 
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Figure 6 shows the speedup of OSLB against the Linux scheduler when additional 

imbalance was caused by a CPU-bound application. 

 
Figure 6.  Speedup of OSLB against the Linux scheduler on a system with a CPU-bound 

application. 

 

The average speedup was 14.8% and the speedup of all benchmarks rose overall 

compared to the results from figure 5.  Again, the ep.C and ft.B saw an almost 

nonexistent amount of speedup.  Furthermore, the ua.A saw a remarkable 58% speedup. 

4.4. Non-Dedicated Environment 

Figure 7 shows the comparison of the time for all the benchmarks to complete 
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actual measurement values shown in table 2, it is clear that OSLB outperformed the 

Linux scheduler in load balancing.  Compared to the mean time of completion under the 

Linux scheduler, the benchmarks completed about 40% faster under OSLB. 

 

Figure 7.  Total execution time in a non-dedicated environment. 

 

The variance among the repeated results under OSLB was 38.34, which was much lower 

than the variance 550.78 under the Linux scheduler.  Also, the maximum-to-minimum 

ratio of the run times under OSLB was 1.03, which is lower than 1.07 under the Linux 

scheduler.  This implies that we can expect OSLB to achieve a more consistent load 

balancing speedup under a competitive environment. 
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Table 2.  Total execution time (sec) and variance in a non-dedicated environment. 

	
   	
  
Linux	
   OSLB	
  

Mean:	
   1051.54	
   753.76	
  
Variance:	
   550.78	
   38.34	
  

Max/Min	
  Ratio:	
   1.07	
   1.03	
  
 

Figure 8 shows the speedup for each benchmark under OSLB from our non-dedicated 

environment tests. 

 

Figure 8.  Speedup for each benchmark under OSLB in a non-dedicated environment. 

 

All benchmarks except the ep.C saw good speedups ranging from 10% for is.C to 75% 
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ep.C to a combination of its well-parallelized characteristics and the balancing overhead 

that exceeded the mediocre benefit from balancing.  Also, the Linux scheduler apparently 

did a good job in load balancing a benchmark of such kind. 
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5. CONCLUSIONS 

In this paper, we have investigated how a solution to a cardinal payoff variant of 

the secretary problem can be applied to a proactive, decentralized, dynamic load 

balancing technique in user-space to assist SPMD applications so that all tasks can make 

roughly equal progress distributed over all cores.  Our load balancer OSLB used the 

optimal stopping strategy for a cardinal payoff variant of the secretary problem to 

examine only a small subset of all subtasks to make online balancing decisions without 

global synchronization.  We examined how this method compares with the runqueue 

length based load balancing by the current default Linux scheduler (Completely Fair 

Scheduler) in terms of scalability and predictability. 

The results from our experiments of running NPB-OpenMP in both dedicated and 

non-dedicated environments showed promising results where OSLB achieved good 

speedups overall.  In a dedicated environment with most other system processes disabled, 

we saw an 8% average speedup of all the benchmarks when they were run individually.  

In the same environment, when there was an induced imbalance by a CPU-intensive 

process, the average speedup rose to 14.8%.  Furthermore, we saw a 40% average 

speedup when all the benchmarks ran together to simulate a non-dedicated environment.  

Our experiments showed that OSLB was able to correct imbalances very well by making 

balancing decisions based on partial information of the parallel subtasks, while the 

default Linux scheduler didn’t do well. 
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Our user-space, decentralized, proactive load balancer (OSLB) demonstrated the 

applicability of optimal stopping strategies to load balancing for scalability.  As the 

number of cores grows, scalability and effectiveness of load balancing will be a growing 

challenge; and our approach has potential. 
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6. FUTURE WORK 

There are a plenty of opportunities to further explore our load balancing technique.  

As the number of cores continues to grow, it will be interesting to apply our optimal 

stopping load balancing method to even a larger number of cores.  As a 100+-core system 

may be available in the future, we can again evaluate for scalability and predictability on 

many-core systems as such. 

Besides experimenting on tightly coupled multiprocessor systems like multicore 

and even many-core systems, there’s yet another possibility with loosely coupled 

multiprocessor systems.  The data communication complexity becomes more visible on 

loosely coupled systems because of higher inter-processor communication latency, and 

the benefit from load balancing decision-making based on a smaller subset of information 

may be well demonstrated on these systems. 

Although we have disabled inter-node migrations in the experiments on our 

NUMA system whenever the migration rate is arbitrarily high, further investigations and 

optimizations can be done on applying our load balancing technique to NUMA systems.  

There will be additional measurements of cache and memory usage pattern to enable 

smarter decision making on migrations.  Also, being aware of the node configuration will 

help with initial distribution of parallel subtasks to cores in different nodes. 

In our study, although the optimal stopping policy based on the uniform 

distribution model worked well, the policy based on a more accurate probability 

distribution model (e.g., Gaussian distribution) can be investigated. 
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Finally, another area of investigation will be load balancing on heterogeneous 

multicore systems.  More thoughts can be given to whether the current definition of task 

speed might be adapted so that our load balancer can work better in such systems.  

Additionally, along the same line of thought, capabilities to adjust dynamically different 

parameters—e.g., balancing interval and enabling/disabling inter-node migrations on 

NUMA systems—for different balancing environments and target applications will 

further improve our load balancer. 
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