
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2013

Semantic Search over Encrypted Data in Cloud Computing Semantic Search over Encrypted Data in Cloud Computing

Kam Ho Ho
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ho, Kam Ho, "Semantic Search over Encrypted Data in Cloud Computing" (2013). Master's Projects. 347.
DOI: https://doi.org/10.31979/etd.sna9-7ay9
https://scholarworks.sjsu.edu/etd_projects/347

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/347?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Semantic Search over Encrypted Data in Cloud

Computing

A Written Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Kam Ho Ho

CS298 Written Report

May 2013

Final Version

© 2013

Kam Ho Ho

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Semantic Search over Encrypted Data in Cloud

Computing

by

Kam Ho Ho

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

San José State University

May 2013

Dr. Teng Moh Department of Computer Science

Dr. Mark Stamp Department of Computer Science

Dr. Frank Butt Department of Computer Science

Abstract

Semantic Search over Encrypted Data in Cloud

Computing

by Kam Ho Ho

Cloud storage becomes more and more popular in the recent trend since it

provides various benefits over the traditional storage solutions. Along with many

benefits provided by cloud storage, many security problems arise in cloud

storage which prevents enterprises from migrate their data to cloud storage.

These security problems induce the data owners to encrypt all their sensitive

data such as social security number (SSN), credit card information, and personal

tax information before they can be stored in cloud storage. The encryption

approach may have strengthened the data security of cloud data, but it degrades

the data efficiency because the encryption reduces the searchability of the data.

Many schemes were proposed in recent researches which enable keyword

search over encrypted data in cloud computing, and these schemes contain

weaknesses which make them impractical when applying these schemes in real-

life scenarios. In this project, we developed a system to support semantic search

over encrypted data in cloud computing with three different schemes. The three

schemes that we developed are “Synonym-Based Keyword Search (SBKS)”,

“Wikipedia-Based Keyword Search (WBKS)”, and “Wikipedia-Based Synonym

Keyword Search (WBSKS)”. Based on our experiment data, it demonstrated that

the indexes created by our schemes are 95% smaller and reduced the average

search time by 95% if compared to the schemes proposed previously. These

improvements illustrated that our developed schemes are more practical than the

former proposed schemes.

.

V

Table of Contents

I. Introduction ... 1

II. Review of Related Literature .. 4

Keyword Search over Encrypted Cloud Data .. 4

Wikipedia Similarity Matching in Content Targets Advertising .. 7

III. System Architecture .. 8

IV. Semantic Search Schemes .. 12

Synonym-Based Keyword Search (SBKS) .. 13

Wikipedia-Based Keyword Search (WBKS) ... 16

Wikipedia-based Synonym Keyword Search (WBSKS) .. 19

V. Test Implementation .. 19

VI. Test Data and Analyses ... 21

Storage Requirements .. 21

Performance ... 25

Data Security .. 28

Search Quality .. 30

WFSC and SBKS ... 30

WBKS and WBSKS ... 33

VII. Conclusion and Recommendations ... 34

References .. 37

Appendix A: Test Data ... 39

VI

List of Tables

Table 1: Modified keyword set of keyword "student" when the predefine edit

distance value equals to 1 ... 5

Table 2: Modified keyword set of keyword "student" when the predefine edit

distance value equals to 2 ... 6

Table 3: User application and its components .. 10

Table 4: Cloud computing server and its components 11

Table 5: Cloud storage server and its components .. 11

Table 6: Examples of Synonym keyword set ... 15

Table 7: Sizes of items that take up space in local storage 23

Table 8: Index entries that are generated by our developed schemes 29

Table 9: Trapdoors that are generated by our developed schemes for search ... 29

Table 10: Search result classifications ... 31

Table 11: Test data used to generate Figure 5 .. 39

Table 12: Test data used to generate Figure 6 .. 39

Table 13: Test data used to generate Figure 9 .. 39

Table 14: Test data used to generate Figure 10 .. 39

Table 15: Test data used to generate Figure 11 .. 40

Table 16: Test data used to generate Figure 7 .. 40

Table 17: Test data used to generate Figure 8 .. 40

Table 18: Test data used to generate Figure 13 .. 40

Table 19: Test data used to generate Figure 12 .. 41

Table 20: Test data used to generate Figure 14 .. 41

VII

List of Figures

Figure 1: Overview of our system architecture ... 9

Figure 2: An overview of semantic search over encrypted data in cloud

computing .. 12

Figure 3: Synonym Set Construction (SSC) process ... 14

Figure 4: Overview of the Wikipedia index construction 18

Figure 5: Comparison of the sizes of the index files ... 21

Figure 6: Comparison of the numbers of index entry in the index 22

Figure 7: Comparison of Wikipedia articles sizes and WKS sizes 24

Figure 8: Index file size increases when the number of articles in WKS increases

 .. 25

Figure 9: Comparison of average time used to construct the index files 26

Figure 10: Comparison of average times used to search the index 27

Figure 11: Average time used to pre-compute WKS increases as the number of

Wikipedia articles increases... 28

Figure 12: Comparison of average number of distinct keywords returned from a

search ... 31

Figure 13: Comparison of search result classifications 32

Figure 14: Comparison of search hit rate with different keywords set 34

Semantic Search over Encrypted Data in Cloud Computing 1

Semantic Search over Encrypted Data in Cloud

Computing

by Kam Ho Ho

I. Introduction

Cloud storage is becoming more and more popular in the recent trend as it

provides many benefits over the traditional storage solutions. With cloud storage,

corporations can purchase only the needed amount of storage from the cloud

storage provider (CSP) to fulfill their storage needs instead of maintaining their

own data storage infrastructures. They can rely on CSP to handle all data

maintenance tasks such as backup and recovery. It also allows all data to be

accessed remotely in order to streamline their operation among different

locations. With all these benefits, companies can significantly reduce their

operation cost by simply outsourcing their business data to cloud storage.

Beside these benefits that provided by the cloud storage, however, many

security problems arise in cloud storage that prevent companies from migrating

their data to cloud storage [7]. Due to the facts that cloud storage is usually

hosted by third party provider other than the data owners and cloud storage

infrastructure is usually shared among different users, data stored in cloud

storage can be easily targeted by the masquerade attack [1, 8] and the insider

data theft attack [9, 10]. These attacks threaten the data security and the data

privacy of the stored data, as result, the data owners cannot rely on CSP to

secure their confidential data. These attacks also induce the data owners to

encrypt all their sensitive data such as the social security numbers (SSN), credit

card information, and personal tax information before they can be saved in cloud

storage. The encryption approach may have strengthened the data security of

cloud data, but it has also degraded the data efficiency because the encryption

will reduce the searchability of the data. Especially in the cloud computing

environment, it is impractical for the user to download and decrypt the entire

encrypted data from the remote cloud server before a search can occur.

Therefore, an efficient scheme that supports search over encrypted data in cloud

computing becomes very significant before many enterprises can take advantage

of the cloud storage.

Many schemes were proposed in recent researches that enable keyword

search over encrypted data in cloud computing. The most common approach of

these schemes is indexing the keywords contain in each uploading data file to

Semantic Search over Encrypted Data in Cloud Computing 2

create an index file. The index file will be uploaded along with the encrypted data

files to the cloud storage for later search operation. Instead of indexing the actual

keywords, authors in [3] proposed a scheme called “Wildcard-based Fuzzy Set

Construction (WFSC)” to support fuzzy keyword search over encrypted cloud

data by expanding each keyword into variations of the keywords with wildcard

character based on a predefine edit distance value. The authors in [4] modified

WFSC and proposed another scheme called “Dictionary-based Fuzzy Set

Construction (DFSC)” that uses a dictionary to expand each keyword which

based on a predefine edit distance value. Both WFSC and DFSC support fuzzy

keyword search over encrypted data in cloud computing.

Even those WFSC and DFSC support fuzzy keyword search over encrypted

cloud data, these schemes contain weaknesses that make them impractical in

real-life scenarios. The main weakness of the previously proposed schemes is

that they do not capture the true intention of the users that initiate the search

command. These schemes build their index files based on the actual keywords

extracted or variations of keywords that generated based on the predefine edit

distance value. These indexes can only support search with keyword that are

identical to the actual keyword or keywords that have very similar structures. For

example, if the user tries to search with keyword “paper”, WFSC will only return

data containing keywords such as “paper”, “page”, or “papers” which share

similar word structure with keyword “paper”, but keywords such as “article” and

“thesis” that share similar meanings with keyword “paper” will be ignored.

Another example would be keywords like “steal” and “stole” which are basically

the same word but with different tenses. This problem can occur frequently when

the data users do not have precise knowledge over the encrypted cloud data.

The users may predefine the edit distance value to a larger number to increase

the range of the search result, but, at the same time, it will degrade the search

quality because more unrelated keywords will be returned in the search result

and degrade in search performance because the size of the index will increase.

Due to these drawbacks, previously proposed schemes are impractical when the

users do not have precise knowledge over the encrypted data.

In this project, we developed a system to support semantic search over

encrypted data in cloud computing with three different schemes. The three

schemes that we developed are called “Synonym-Based Keyword Search

(SBKS)”, “Wikipedia-Based Keyword Search (WBKS)”, and “Wikipedia-Based

Synonym Keyword Search (WBSKS)”.

Semantic Search over Encrypted Data in Cloud Computing 3

The first scheme we developed is called “Synonym-based Keyword Search

(SBKS)”. SBKS is an improved version of WFSC which uses the “Synonym Set

Construction (SSC)” process to expand each keyword with synonyms of the

keyword. Using the expanded keyword set, SBKS is able to improve the search

quality by extending the search coverage to cover keywords that share similar

meanings and reducing the number of unrelated keywords in the search result.

The second scheme we developed is called “Wikipedia-based Keyword

Search (WBKS)”. WBKS adopted the Wikipedia Similarity Matching technique

that was proposed recently to resolve the content-targeted advertising problem.

WBKS uses a set of Wikipedia articles which we called the “Wikipedia Key Set

(WKS)” as a reference point in between the data files and the search keyword.

WBKS decides if a data file is relevant to a keyword by comparing the cosine

similarity between the data file and the WKS with the cosine similarity between

the keyword and WKS. A similarity score between the data file and the keyword

will be generated from this comparison, and then it will be used to determine if

the keyword is relevant to the data file. Unlike the schemes proposed previously,

each index entry in WBKS is indexing each uploading data file instead of the

extracted keywords. Due to this reason, the index created by WBKS is much

smaller than the other schemes formerly proposed.

The third scheme we developed is called “Wikipedia-based Synonym

Keyword Search (WBSKS)”. WBSKS is a hybrid between SBKS and WBKS.

WBFKS takes advantage of the Wikipedia Similarity Matching technique to

create index on data file level. It also takes advantage of SSC from SBKS to

expand the search keyword with the synonyms to ensure the words with similar

meanings will be taken into consideration for the search result. WBSKS inherits

the advantages of both extended search coverage and the reduced index size

benefits from SBKS and WBKS.

We have implemented ours system with these 3 schemes that we

developed to support semantic search over encrypted data in cloud computing.

We also implemented the WFSC that formerly proposed in [3] as benchmark. We

have conducted different tests against each scheme with our own

implementations to collect statistical test data for careful analysis. In storage

analysis, it shows that the indexes created by our schemes are 95% smaller than

the index created by WFSC with edit distance equaled to 2 (WFSC-ED2). In

performance analysis, it shows that ours schemes have reduced the average

search time by 95% compare to WFSC-ED2. In search quality analysis, we

classified the search results and showed that 0% of keywords resulted from

Semantic Search over Encrypted Data in Cloud Computing 4

SBKS searches are unrelated while 92% of keywords resulted from WFSC-ED2

searches are unrelated. In data security analysis, we examined ours schemes

and showed that our schemes maintain the same level of security as WFSC if the

shared key and the Wikipedia key set remain hidden. Ours analysis indicated

that ours developed schemes are more efficient than the WFKS scheme in term

of storage usage, search performance, and search quality while maintaining the

same level of data security. These improvements show that our developed

schemes are more practical than the WFSC.

The rest of this paper is organized as follows: In Section II, we will review

the related literatures. In Section III, we will give a high level overview of the

system we developed. In Section IV, we will provide a detailed description of the

schemes we developed to support semantic search over encrypted data in cloud

computing. In Section V, we will describe our test implementation. In Section VI,

we will present our analysis over the collected test data. In Section VII, we will

conclude this paper and give recommendations for future work.

II. Review of Related Literature

In this section, we will review some of the schemes that proposed

previously to support keyword search over encrypted cloud data and we will

review the Wikipedia Similarity Matching technique proposed previously to

resolve the content-targeted advertising problems.

Keyword Search over Encrypted Cloud Data

Koletka and Hutchison in [2] proposed a unique data structure called

Secure File Object (SFO) to enable keyword search over encrypted cloud data.

When a data owner wants to upload a data file to the cloud storage, the client-

side application will create and attach a SFO to the encrypted data file before

uploading to the cloud storage. Each SFO contains information that describes the

uploading data file. During SFO creation, the client-side application extracts

unique keyword from the uploading data file and encrypts them to create a list of

encrypted keywords that will be stored in the SFO. When a user wants to search

for a specific keyword, the user will submit the keyword to the data owner and the

data owner will compute the search capability by encrypting the keyword with the

same key that used to generate the list of encrypted keywords in the SFO. The

user can submit the returned search capability from the data owner to the cloud

server. The cloud server will return the encrypted data file if the list of encrypted

keywords in the SFO contains the search capability. This proposed scheme with

Semantic Search over Encrypted Data in Cloud Computing 5

SFO is implemented by the authors to provide simple keyword search over

encrypted cloud data.

The major drawback of the SFO scheme is that the scheme only supports

keyword search using the exact keyword as it appears in the data file. If there are

any typos of the keywords that used to generate the search capability, the cloud

server will fail to locate the correct encrypted data file.

To overcome the drawback in [2], Li, Wang, et al in [3] proposed the

“Wildcard-based Fuzzy Set Construction (WFSC)” scheme to enable fuzzy

keyword search over encrypted cloud data. The key concept behind WFSC is

maintaining an index that covers all possible variations of a keyword within a

predefine edit distance. Instead of simply encrypting the keywords extracted from

the data file, WFSC expands each extracted keyword into a set of modified

keywords by inserting wildcard character into the keyword. The number of

wildcard character used to modify the keyword is based on a predefine edit

distance value. Table 1 shows the modified keyword set of the keyword

“student” using the wildcard character ‘*’ when the predefine edit distance value

equals to 1. Each modified keywords in the set will be hashed with a secured

hash function to create a trapdoor. The trapdoor will be appended by the

encrypted information that describes the uploading data files that contain the

keyword and the original keyword to form an index entry. The collection of index

entries will form an index file and it will be uploaded to the cloud storage along

with all the encrypted data files that addressed by the index file.

Table 1: Modified keyword set of keyword "student" when the predefine edit distance value

equals to 1

Edit Distance Modified Keyword Set

1

*student, *tudent, s*tudent, s*udent, st*dent, st*udent,

stu*dent, stu*ent, stud*ent, stud*nt, stude*nt, stude*t,

studen*, studen*t, student, student*

When a user needs to search for a specific keyword, the user will inject

the keyword with wildcard character to compute the modified keyword set based

on the predefine edit distance value and hash each modified keywords to create

the trapdoor set. The trapdoor set will be submitted to the cloud server and the

cloud server will search the index file and compare the trapdoor in each index

entry with each trapdoor in the received trapdoor set. The cloud server will return

Semantic Search over Encrypted Data in Cloud Computing 6

the matched encrypted index entries to the user and the user can decrypt the

index entry to retrieve the information of the data files that contain the keyword.

There are several weaknesses in WFSC if the user tries to expand the

search coverage by increasing the predefine edit distance value. The increase in

the edit distance value will cause a huge increase in the size of the modified

keyword set. Table 2 shows the modified keyword set of the keyword “student”

using the wildcard character ‘*’ when the predefine edit distance value equals to

2. Our examples of keyword “student” show the size of the modified keyword set

is 16 when the edit distance value equals to 1 and the size of the modified

keyword set has increased hugely to 122 by simply increase the edit distance

value to 2. The size of the index file will increase rapidly by increasing the edit

distance value and the search performance will be degraded due to the

increases in the index size. Furthermore, the quality of the search will also

degraded due to more unrelated keywords can be returned in the result.

Table 2: Modified keyword set of keyword "student" when the predefine edit distance value

equals to 2

Edit Distance Modified Keyword Set

2

**student, **tudent, **udent, *s*tudent, *s*udent, *st*dent,
*st*udent, *stu*dent, *stu*ent, *stud*ent, *stud*nt,
*stude*nt, *stude*t, *studen*, *studen*t, *student,

student, *t*dent, *t*udent, *tu*dent, *tu*ent, *tud*ent,
*tud*nt, *tude*nt, *tude*t, *tuden*, *tuden*t, *tudent,

tudent, s**dent, s**tudent, s**udent, s*t*dent, s*t*udent,
s*tu*dent, s*tu*ent, s*tud*ent, s*tud*nt, s*tude*nt,

s*tude*t, s*tuden*, s*tuden*t, s*tudent, s*tudent*, s*u*dent,
s*u*ent, s*ud*ent, s*ud*nt, s*ude*nt, s*ude*t, s*uden*,

s*uden*t, s*udent, s*udent*, st**dent, st**ent, st**udent,
st*d*ent, st*d*nt, st*de*nt, st*de*t, st*den*, st*den*t,

st*dent, st*dent*, st*u*dent, st*u*ent, st*ud*ent, st*ud*nt,
st*ude*nt, st*ude*t, st*uden*, st*uden*t, st*udent,

st*udent*, stu**dent, stu**ent, stu**nt, stu*d*ent, stu*d*nt,
stu*de*nt, stu*de*t, stu*den*, stu*den*t, stu*dent,

stu*dent*, stu*e*nt, stu*e*t, stu*en*, stu*en*t, stu*ent,
stu*ent*, stud**ent, stud**nt, stud**t, stud*e*nt, stud*e*t,
stud*en*, stud*en*t, stud*ent, stud*ent*, stud*n*, stud*n*t,
stud*nt, stud*nt*, stude**, stude**nt, stude**t, stude*n*,
stude*n*t, stude*nt, stude*nt*, stude*t, stude*t*, studen*,
studen**, studen**t, studen*t, studen*t*, student, student*,

student**

Semantic Search over Encrypted Data in Cloud Computing 7

Liu, Zhu, et al in [4] modified WFSC from [3] and proposed another

scheme called “Dictionary-based Fuzzy Set Construction (DFSC)”. Instead of

injecting keyword with the wildcard character, DFSC uses a dictionary to pull in

only the valid words that are within the range of the predefine edit distance to

form the modified keyword set. The authors showed the size of the index file

created by DFSC is much smaller than WFSC when the predefine edit distance

increased. Even DFSC shows better storage usage than WFSC, DFSC inherited

the search quality degradation problem because more unrelated keywords can

still be pulled into the modified key set from the dictionary as edit distance value

increases. Furthermore, DFSC does not support variations of newly invented

words or keywords that contain multiple typos because they are words that

cannot be found in the dictionary. This problem decreases the search coverage

of DFSC and makes it less accurate than WFSC.

 Beside the problem described above, the major weakness of the

previously proposed schemes is that they do not capture user’s true intention of

the search. The indexes created by both DFSC and WFSC are established using

only the actual keyword and variations of keyword computed which based on the

predefine edit distance value. These indexes can only support search with

keyword that has very minor difference with the original keyword in term of word

structure. These schemes do not support search with keyword that shares similar

meanings with the original keyword that has a very different word structure. For

example, when the user wants to search with keyword “paper”, WFSC will return

data files that contain keyword such as “paper”, “page”, or “papers”, but it will

ignore other keywords such as “article” and “thesis” that share similar meanings

with keyword “paper”. The article and thesis may be what the user actually was

searching for when he/she does not have exact knowledge of the uploaded data.

Another example would be verbs like “steal” and “stole” which are basically the

same word that would be ignored by the previously proposed schemes when the

predefine edit distance value is small. This problem has made the previous

proposed schemes impractical because they do not capture user’s true intention

of the search.

Wikipedia Similarity Matching in Content Targets Advertising

The problem of content-targeted advertising is the problem to associate ads

with a web page based on the content of the web page. The challenges in

content-targeted advertising are that the wordings used in ads are usually more

general than the web pages which typically very specific on a topic.

Semantic Search over Encrypted Data in Cloud Computing 8

Ribeiro-Neto, Cristo, et al in [6] proposed a scheme called “impedance

coupling strategies” to overcome the low keyword intersection problem between

the ads and the web page. The idea behind is to add new keywords to the web

page from pages that share common topic to increase the number of keywords

intersecting between the web page and the ads. The expansion technique is

referred as impedance coupling. The authors also purposed different strategies

to match the ads with the expanded web page and showed the accuracy of the

matching done with their scheme is higher than the traditional matching

strategies.

Pak in [5] has purposed another scheme called “Wikipedia Matching (WM)”

that takes advantage of the impedance coupling technique to resolve the

content-targeted advertising problem. Instead of using pages that share common

topic, WM select a set of Wikipedia articles to serve as a reference point between

the ad and the page. Term frequency-inverse document frequency (TF-IDF) is

being used to form the vector representation with the keywords for each page, ad,

and Wikipedia articles. With the vector representations, WM computes the cosine

similarity between each article to the page and each article to the ad. The

resulted cosine similarities will be used to compute the Euclidean distance and

the ad with the shorter distance to the page is say to has more relevance. The

author has shown the quality of the resulted pairs using WM is more accurate

than the traditional keyword matching technique and semantic matching

technique.

Wu, Xu, et al in [11] have purposed a similar scheme called “Selective

Wikipedia Matching (SIWI)” that uses Wikipedia articles as a reference point

between the page and the ads. The authors showed how different set of

Wikipedia articles being used as the reference point will affect the matching

accuracy. The authors also showed the number of Wikipedia articles used as the

reference point will have a direct effect on the matching accuracy.

III. System Architecture

In this section, we will give a high-level overview of our developed system

architecture and detail descriptions for each component. Figure 1 shows the

system architecture and all the major components of our developed system.

Semantic Search over Encrypted Data in Cloud Computing 9

System Architecture and Major Components

User Application

Cloud Computing Server

Cloud Storage Server

Application Request

Handler

Index Search

Handler

Cloud Storage Request

Handler Cloud Storage

User Request

Handler

Encryption/Decryption

Service

Index Building

Service

Keyword Modification

Service

Application Storage Request

Handler

Application Storage

Figure 1: Overview of our system architecture

Our developed system includes an user application, a cloud computing

server, and a cloud storage server. The user application is hosted and

maintained by the user party and is considered as a trusted component while the

Semantic Search over Encrypted Data in Cloud Computing 10

cloud computing server and the cloud storage server is hosted and maintained

by a third party CSP and are considered as non-trusted component. Any

communication channel between the user application and the cloud servers is

also considered as non-trusted because it can be targeted by other attackers.

The user application in our system is acting as the interface to handle all

communications between the user and the cloud computing servers. The user

application contains a small amount of local storage to hold different dictionaries

and Wikipedia Key Set (WKS) that needed for index creation and trapdoor

creation. The user application is responsible to create the index and encrypt the

data file when the data owner wants to upload the files to cloud storage. When

the user needs to do a search with a specific keyword, the user application is

responsible to modify the keyword into a trapdoor and submit the search to the

cloud computing server. The user application is responsible to decrypt the

returned index entries in order to retrieve the file information for the user when

the cloud computing server returned from the search. Table 3 gives descriptions

for each component in the user application.

Table 3: User application and its components

User Application

Components Descriptions

User Request Handler Handle and process different user request such as

UPLOAD, SEARCH, or DOWNLOAD

Encryption/Decryption

Service

Perform encryption and decryption services such as

secure hashing and symmetric-key encryption

Index Building Service Extract keyword from the data file and create the

index based on different schemes supported

Keyword Modification

Service

Modify the keyword into the modify keyword set

based on different schemes supported

Application Storage

Request Handler

Handle internal request from the application to

retrieve data stored in the local storage

Application Storage Local storage used to store different dictionaries and

Wikipedia Key Set that used by different schemes

Semantic Search over Encrypted Data in Cloud Computing 11

The cloud computing server is acting as a controller which decides how the

uploaded data file should be stored in the cloud storage server and retrieve the

data file from the cloud storage server. The cloud computing server also

performs the actual search operation using the trapdoor and the index file and

returns the index entries that fulfill the search requirements. Table 4 gives

descriptions for each component in the cloud computing server.

Table 4: Cloud computing server and its components

Cloud Computing Server

Components Descriptions

Application Request

Handler

Handle requests from the user application and

decide how the uploaded file should be stored in the

cloud storage server

Index Search Handler Perform search operation over the index file stored in

the cloud storage based on different schemes

supported

The cloud storage server is simply a storage server that used to store the

uploaded data. There can be more than one cloud storage server in the system

and the cloud computing server can be tuned to decide how the uploaded data

files should be stored across different cloud storage servers. Table 3 gives

descriptions for each component in the cloud storage server.

Table 5: Cloud storage server and its components

Cloud Storage Server

Components Descriptions

Cloud Storage Request

Handler

Handle requests from the cloud computing server to

store or retrieve the data in cloud storage

Cloud Storage Storage used to store the uploaded data and index

file

Semantic Search over Encrypted Data in Cloud Computing 12

IV. Semantic Search Schemes

In this section, we will describe three schemes we developed to enable

semantic search over encrypted cloud data. The three schemes are “Synonym-

Based Keyword Search (SBKS)”, “Wikipedia-Based Keyword Search (WBKS)”,

and “Wikipedia-Based Synonym Keyword Search (WBSKS)”.

Figure 2 shows an overview of our schemes for semantic search over

encrypted data in cloud computing.

An Overview of Semantic Search over Encrypted Data in Cloud Computing

Cloud Computing Server

Cloud Storage Server

Cloud Computing Server

stores and retrieves the

encrypted files and index

file from cloud storage

User Application

Data Owner Data User

User Application

encrypts the files

and create the index

with keywords in the

files

Data Owner wants to upload

the files to cloud storage

User Application uploads

both the encrypted files

and the index to cloud

Keyword

Trapdoor

Index Entry
User Application

modifies user

keyword to form

the trapdoor

based on the

index format

User Application

decrypts the

index entries to

retrieve the

result file ID

Index Entry

Index Entry

User Application

returns the

search results

back to the

users

Users want to

search for files

based on a

keyword

User Application submits the trapdoor to

Cloud Computing Server

Cloud Computing Server searches

the index using the trapdoor and

returns the matched index entries

1

2

3

4

5

6

7
8

9

10

Figure 2: An overview of semantic search over encrypted data in cloud computing

 Our developed schemes begin when the data owner wants to upload the

data files to the cloud storage. The data owner will first submit the data files and

a shared key to the user application. The user application will create an index file

with different formats based on each developed scheme. After created the index

file, the user application will encrypt the data files using a symmetric-key

algorithm with the shared key from the data owner. Both the index file and the

Semantic Search over Encrypted Data in Cloud Computing 13

encrypted data files will be uploaded together by the user application to the cloud

computing server. The cloud computing server will store the index file and the

encrypted data files in cloud storage server.

 When the data users want to conduct a search with a specific keyword,

they will submit the search keyword and the shared key to the user application.

The user application will modify the search keyword to form the trapdoor with

different formats based on each developed scheme. The user application will

then submit the trapdoor to the cloud computing server. The cloud computing

server will search the index with the trapdoor based on each developed scheme.

After searching through the whole index, the cloud computing server will return

all index entries that matched the trapdoor back to the user application. The user

application will decrypt the returned index entries and return the decrypted index

entries back to the data users. The data users can use the information from the

decrypted index entries to decide which data files should be retrieved from the

cloud storage.

Synonym-Based Keyword Search (SBKS)

The first scheme we developed is called “Synonym-Based Keyword

Search (SBKS)”. SBKS is an improved version of WFSC proposed in [3]. Instead

of expanding the keyword with wildcard character as in WFSC, SBKS expands

the keyword with the synonyms of the keyword. SBKS captures the user true

intention of the search by including keywords with similar meanings in the index

and the search.

The index construction of SBKS begins with the user application extracts

distinct keywords from each data files. The user application will use the Synonym

Set Construction (SSC) process to expand each extracted keyword into the

synonym keyword set. The SSC process will first add the keyword to the keyword

set and check the keyword against dictionary to determine if the keyword is

misspelled. If the keyword is misspelled, spell check will be performed on the

keyword to generate a list of keyword suggestions with correct spellings. Each

keyword in the list of keyword suggestions will be added to the keyword set. After

the spell check, the keyword set will go through synonym dictionary to retrieve all

synonyms of each keyword in the keyword set. The SSC process will return all

distinct synonyms retrieved and all distinct keywords in the keyword set to form

the synonym keyword set. Figure 3 shows an overview of the Synonym Set

Construction process.

Semantic Search over Encrypted Data in Cloud Computing 14

Synonym Set Construction (SSC)

Need to create

synonym set for

Keyword w

Add w to the

keyword set

Is w misspelled?

No

Use Spell Checker

to generate list of

suggested keyword

Add the suggested

keywords to the

keyword set

Processed

the last keyword

in the keyword

set?

Yes

Find all the synonyms

of the next keyword

In the keyword set

Add the synonyms

to the synonyms set

No

Add all the keyword from

the keyword set to

the synonyms set

Remove duplicate from

the synonyms set

Yes

Return the synonyms

set to the caller

Figure 3: Synonym Set Construction (SSC) process

Table 6 shows examples of the synonym keyword set returned by the

SSC process.

Semantic Search over Encrypted Data in Cloud Computing 15

Table 6: Examples of Synonym keyword set

Keyword Synonym Keyword Set

student bookman, educatee, pupil, scholar, scholarly person, student

dragon draco, dragon, firedrake, flying dragon, flying lizard, tartar

holllday

(misspell)

Holladay, holiday, holllday, vacation

 Each keyword in the synonym keyword set will be hashed with a secure

hash function to create a trapdoor. An index entry will be created for each

trapdoor the following format:

H(Synonym_Keyword)|Enc(List_of_File_ID|Shared_Key|Original_Keyword)

H(Synonym_Keyword) is the trapdoor created with the secure hash function.

Enc(List_of_File_ID|Shared_Key|Original_Keyword) contains the original

keyword that used to generate the synonym keyword set, the shared key

submitted by the data owner, and the list of data files ID that contains the original

keyword, and all these information will be encrypted by the symmetric-key

encryption with the shared key. For example, the following 4 index entries will be

created for keyword “holllday” that extracted from FILE1 and FILE2:

H(Holladay)|Enc(FILE1:FILE2|K|holllday)

H(holiday)|Enc(FILE1:FILE2|K|holllday)

H(holllday)|Enc(FILE1:FILE2|K|holllday)

H(vacation)|Enc(FILE1:FILE2|K|holllday)

The index construction will end when all the keywords extracted from the data

files have been processed with index entries created. All the index entries will

form an index file that will be updated to the cloud storage.

When the user want to search with a specific keyword, the user

application will use the SSC process to generate the synonym keyword set for

the search keyword. Each of the keyword in the synonym keyword set will be

Semantic Search over Encrypted Data in Cloud Computing 16

hashed by the secure hash function to generate the list of trapdoors. For

example, the keyword “student” will generate the following trapdoors:

H(bookman)|H(educate)|H(pupil)|H(scholar)|H(scholarly person)|H(student)

The list of trapdoors will be submitted to the cloud computing server. The cloud

computing server will search the index by comparing the trapdoor in each index

entry to each trapdoor in the list. The cloud computing server will return all

matched index entries back to the user application. The user application will

decrypt the information portion of the index entry and return the information to the

data users.

Wikipedia-Based Keyword Search (WBKS)

The second scheme we developed is called “Wikipedia-based Keyword

Search (WBKS)”. WBKS adopted the Wikipedia Similarity Matching technique

that was proposed recently to resolve the content-targeted advertising problem.

WBKS uses a set of Wikipedia articles which we called the “Wikipedia Key Set

(WKS)” as a reference point between the data files and the search keyword.

Unlike the schemes proposed previously, each index entry in WBKS indexes

each uploading data file instead of the keyword extracted.

To construct the index for WBKS, the data owner needs to pre-compute the

WKS using a set of Wikipedia articles. The arrangement of WKS will act as the

shared key to form the trapdoor when building the index and creating the search

trapdoor.

To pre-compute WKS, the user application will use the term frequency-

inverse document frequency (TF-IDF) to generate the vector representation for

each selected Wikipedia article. The following formula of TF-IDF will be used in

WBKS:

Semantic Search over Encrypted Data in Cloud Computing 17

The collection of vector representations of each Wikipedia articles will form the

WKS.

 To construct the Wikipedia index for WBKS, the user application first uses

TF-IDF to generate the vector representation for each uploading data files. With

the vector representations created, the user application will compute the cosine

similarity between the vector representation of each file and vector

representation of each Wikipedia articles in WKS. The following formula of cosine

similarity will be used in WBKS:

Each index entry for each data file will have the following format:

CS(FileN|a0)|CS(FileN|a1)|..CS(FileN|ai)|Enc(FileN|Shared_Key)

CS(FileN|ai) is the cosine similarity between File N and Wikipedia article i in WKS.

The list of the cosine similarity between the File N and each Wikipedia articles in

the entry is called similarity trapdoor. Enc(FileN|Shared_Key) contains the file ID

and the shared key submitted by the data owner, and this information is

encrypted by the symmetric-key encryption. The index construction will end when

all the data files have been processed with index entries created. All the index

entries will form an index file that will be updated to the cloud storage. Figure 4

shows an overview of the Wikipedia index construction process.

Semantic Search over Encrypted Data in Cloud Computing 18

Wikipedia Index Construction

Need to build an

Wikipedia Index

Processed

all data files?

No

Use TF-IDF to compute

vector representation

for the next data files

Processed all

TF-IDF vector

representation?

Yes

Return the resulted

Wikipedia Index

Yes

Compute the cosine

similarity between the

next vector representation

with each Wikipedia

articles in WKS

Append the encrypted file

ID and shared key to

the end of similarity

trapdoor to form the index

entry

No

Add the index entry to the

Wikipedia Index

Figure 4: Overview of the Wikipedia index construction

 When the user wants to search with a specific keyword, the user

application will use TF-IDF to generate the vector representation of the search

keyword. The user application will then compute the cosine similarity between

Semantic Search over Encrypted Data in Cloud Computing 19

the vector representation of the keyword and the vector representation of each

Wikipedia articles in WKS. The resulted list of cosine similarity will form the

similarity trapdoor and the user application will submit the similarity trapdoor to

the cloud computing server. The cloud computing server will compute the cosine

similarity between the similarity trapdoor and the similarity trapdoor in each index

entry to generate the similarity score for each entry. The index entries with the

higher similarity score will be returned to the user application. The user

application will decrypt the information portion of the index entry and return the

information back to the data users.

Wikipedia-based Synonym Keyword Search (WBSKS)

The third scheme we developed in this project is called “Wikipedia-based

Synonym Keyword Search (WBSKS). It is a hybrid of SBKS and WBKS. The

Key of WBSKS is to take advantage of SSC from SBKS and the Wikipedia index

from WBKS to expand the search to cover synonyms of the search keyword

while maintaining small index.

WBSKS uses the same procedure to construct the Wikipedia index as in

WBKS. When the data user wants to do a search with a specific keyword, the

user application converts the keyword into the modified keyword set using the

same SSC process from SBKS. SSC process corrects the possible typos in the

keyword and pull in the synonyms of the keyword from the dictionary. The user

application then uses TF-IDF to form the vector representation of the modified

keyword set and computes the similarity trapdoor between the modified keyword

set and WKS. With the similarity trapdoor, the cloud server computes the

similarity score between the similarity trapdoor and each index entries and

returns entries with higher similarity score.

V. Test Implementation

In this section, we will describe the implementation of our test system. We

will also describe the different tests we have conducted to collect experimental

data that we will analyze in the next section.

Our test system is implemented in Java including a fully functional user

application and a cloud server simulator with all the required functions as

described in Section III. The user application supports our developed schemes

(SBKS, WBKS, and WBSKS) and WFSC from [3]. WFSC is implemented and is

used as the benchmark in our tests. We have implemented our keyword extractor

to filter out common stop words such as “the”, “which”, “is”, and “in” when

Semantic Search over Encrypted Data in Cloud Computing 20

extracting keywords from the data file. We have used the Data Encryption

Standard (DES) algorithm for all our symmetric-key encryption and decryption,

and we have used the MD5 Message-Digest Algorithm as our secured hash

function. We used the Basic Suggester Java software, provided by

SoftCorporation, LLC, as the spell checker and the WordNet® lexical database,

provided by Princeton University, as the synonym dictionary. Java API for

WordNet Searching (JAWS) is being used to access the WordNet® lexical

database.

For Wikipedia articles, we have extracted all 3807 featured articles from the

Wikipedia dump created as of February 25th, 2013. The Wikipedia featured

articles are considered as the best articles in the Wikipedia that are selected from

different categories with careful review to ensure the content is complete and

accurate. All 3807 featured articles will be pre-computed to form the WKS used

in WBKS and WBSKS.

We conducted tests using our developed schemes and WFSC with

predefine edit distance value equals 1 (WFSC-ED1) and 2 (WFSC-ED2). We

measured the size of the indexes and the performance of index construction by

uploading our data files collection through our user application. Our data file

collection contains 50 short English literatures such as “The Little Match Girl” and

“The Elves and the Shoemaker”. We have randomly selected 20 distinct

keywords from the data files and performed searches using each selected

keywords to measure the search performance. We also carefully examined the

index files and the trapdoors created by our developed scheme to measure the

data security for our schemes. At last, we measured the search quality by

classifying the search results returned from the searches for WFSC-ED1, WFSC-

ED2, and SBKS. We only compared the SBKS with WFSC because they return

results in similar manner based on the keywords. Results returned by WBKS and

WBSKS are based on the data file; therefore, different tests will be conducted to

measure the search quality for WBKS and WBSKS. To measure the search

quality for WBKS and WBSKS, we added 10 randomly selected Wikipedia

articles to our collection as target articles and performed searches using the title

of each target articles to determine how likely the target articles will return with

similarity score in the top 3.

All our tests are conducted on a Desktop PC with Intel® Core™ i5-750 CPU

and 12.0 GB RAM.

Semantic Search over Encrypted Data in Cloud Computing 21

VI. Test Data and Analyses

In this section, we will review the data collected from our tests and present

our analysis in term of storage requirements, performances, data security, and

search quality. Appendix A, Test Data, of this paper presents the actual data

values that used to generate all the figures presented in this section.

Storage Requirements

In our tests, we uploaded different number of files in our data file collection

using the user application and measured the changes in the size of the index file

and the number of index entries in the index when the number of files uploaded

equals to 10 (5004 distinct keywords), 20 (9067 distinct keywords), 30 (10732

distinct keywords), 40 (11649 distinct keywords), and 50 (13137 distinct

keywords). Figure 5 shows the comparison of the sizes of the indexes that were

created by each supported schemes.

Figure 5: Comparison of the sizes of the index files

According to our data in Figure 5, the index files created by our developed

schemes are smaller than both the index files created by WFSC-ED1 and

WFSC-ED2. The data show the index file of SBKS has an average of 23% size

reduction if compared to WFSC-ED1 and an average of 92% size reduction if

compared to the WFSC-ED2. The data show the index files of WBKS and

Semantic Search over Encrypted Data in Cloud Computing 22

WBSKS have an average of 94% size reduction if compared to WFSC-ED1 and

an average of 99% size reduction if compared to WFSC-ED2. The data also

show the index files of WFSC has an average of 974% size increase by simply

increasing the edit distance from 1 to 2.

Beside the actual size of the index files, we also measured the number of

index entry in each index files created in our tests. Figure 6 shows the

comparison of the number of index entry in the indexes that were created by

each supported schemes.

Figure 6: Comparison of the numbers of index entry in the index

According to our data in Figure 6, the index files created by our developed

schemes contain lesser index entry than the index files created by both WFSC-

ED1 and WFSC-ED2. The data show SBKS has an average of 29% reduction in

the number of index entry if compared to WFSC-ED1 and an average of 92%

reduction if compared to WFSC-ED2. The data show the numbers of index entry

in the index files created by WBKS and WBSKS have an average of more than

99% reduction if compared to both WFSC-ED1 and WFSC-ED2. The data also

show the increase in the numbers of index entry in WBKS and WBSKS are

Semantic Search over Encrypted Data in Cloud Computing 23

depending only on the number of data files while WFSC and SBKS are

depending on the number of distinct keywords in the data files.

These significant size reductions and index entry reductions proved our

developed schemes are more efficient than WFSC in terms of storage

requirements.

Beside the index file in cloud storage, we also measured the storage

requirements for items, such as the dictionaries and WKS that are taking up local

storage. These items are only taking up storage in the user application and can

be shared among different users. Table 7 shows the sizes of items that take up

space in local storage. The total amount of local storage used in our test system

is 82MB.

Table 7: Sizes of items that take up space in local storage

Items in Local Storage Sizes

WordNet® lexical database 36 MB

Basic Suggester Java software 1 MB

WKS with 3807 articles 45 MB

Since [11] suggested that the accuracy of the Wikipedia matching can be

improved by using more Wikipedia articles as the reference point, we have

measured the changes in WKS when number of articles increases. Figure 7

shows the changes in WKS size when the number of the Wikipedia articles

changes, and it shows the sizes of the Wikipedia articles before they are

converted to WKS.

Semantic Search over Encrypted Data in Cloud Computing 24

Figure 7: Comparison of Wikipedia articles sizes and WKS sizes

According to the data in Figure 7, the conversion from the Wikipedia

articles to WKS has an average of 45.68% size reduction if compared to the

original articles. The data also show an average of 6813 KB size increase in

WKS for every 600 articles added.

Figure 8 shows the changes in the size of the index file for 50 data files as

the number of articles included in the WKS increases.

Semantic Search over Encrypted Data in Cloud Computing 25

Figure 8: Index file size increases when the number of articles in WKS increases

According to the data in Figure 8, the index file increases as the number of

articles in WKS increases. The data show the index size is increasing

approximately 390KB for every 1000 articles we added to the WKS.

With the small increases in WKS size and index file size, the data

suggested we can increase the number of Wikipedia articles in WKS to further

improve the search quality without having a huge increase in the size of the index

file.

Performance

While measuring the size of the index files, we have also captured the

time used for index construction with each schemes when the number of files

uploaded equals to 10 (5004 distinct keywords), 20 (9067 distinct keywords), 30

(10732 distinct keywords), 40 (11649 distinct keywords), and 50 (13137 distinct

keywords). Figure 9 shows the changes in average time used for index

construction when the number of file uploaded increases.

Semantic Search over Encrypted Data in Cloud Computing 26

Figure 9: Comparison of average time used to construct the index files

 According to the data shown in Figure 9, the performance of index

construction for our developed scheme is lower than both WFSC-ED1 and

WFSC-ED2. The data demonstrate the time used for index construction with

SBKS has an average of 2367% increase if compared to WFSC-ED1 and an

average of 856% increase if compared to WFSC-ED2. The data show the time

used for index constructions with WBKS and WBSKS have an average of

12861% increase if compared to WFSC-ED1 and an average of 4882% increase

if compared to WFSC-ED2. The degradation in performance of index

construction is expected because our developed schemes request to query

multiple data against various dictionaries and WKS that reside in the local

storage during index construction while WFSC requires only simple string

modification.

 Besides measuring the performance of index construction, we also

measured the time used for the cloud computing server to search against the

uploaded index files with a keyword. We have performed searches with 20

Semantic Search over Encrypted Data in Cloud Computing 27

randomly selected keywords against indexes that created when the number of

files uploaded equals 10 (5004 distinct keywords), 20 (9067 distinct keywords),

30 (10732 distinct keywords), 40 (11649 distinct keywords), and 50 (13137

distinct keywords). Figure 10 shows the changes in average times used to

search the index when the number of files uploaded increase.

Figure 10: Comparison of average times used to search the index

 According to the data in Figure 10, our developed schemes demonstrated

higher search performance than WFSC-ED1 and WFSC-ED2. The data show

SBKS has an average of 3% reduction in average time used to search the index

if compared to WFSC-ED1 and 97% reduction if compared to WFSC-ED2. The

data show WBKS and WBSKS have an average of 95% increase in average time

used to search the index if compared to WFSC-ED1, but an average of 94%

reduction if compared to WFSC-ED2. The data also indicate the times used for

WBKS and WBSKS are staying in a constant range of around 4 seconds even

with the number of data files increased while the times used in SBKS and WFSC

are increasing linearly.

 Although the index construction performance of our developed schemes is

lower than WFSC, our developed schemes show an average of more than 95%

reduction in time used to search the index if compared to WFSC-ED2. Since the

Semantic Search over Encrypted Data in Cloud Computing 28

number of search execution is far greater than index construction, our developed

schemes are more efficient than WFSC in terms of overall performance.

 Beside the index construction and search, we also measured the time

used to pre-compute the WKS in our tests. Figure 11 shows the time used to pre-

compute the WKS with different numbers of Wikipedia articles.

Figure 11: Average time used to pre-compute WKS increases as the number of Wikipedia

articles increases

 According to the data in Figure 11, the average time used to pre-compute

WKS increases as the number of Wikipedia articles increases. The data show an

average of 28 seconds increase for every 600 articles added to WKS.

Data Security

In our analysis, we have examined the index entries and trapdoor

generated in each of our developed schemes to determine the data security of

our developed schemes. Table 8 shows examples of index entry that are

generated by our test system in each of our developed schemes. In our

examples, the <TP> tag indicates the beginning of the trapdoor for SBKS and

similarity trapdoor for WBKS and WBSKS, and the <FE> tag indicates the

beginning of the encrypted file information.

Semantic Search over Encrypted Data in Cloud Computing 29

Table 8: Index entries that are generated by our developed schemes

Schemes Index Entry Generated

SBKS <TP>jvavB£»ãVž§?Ûì!<FE>9D00ypbDl1e8vNgFcTVg88rcpG

8/2EGD2CVN9/mkJQWPzODmT3nV/EonFzt6ffjE

WBKS/WBSKS <TP>:0.11065:0.12282:0.07326:0.39366:0.06878:0.10882:0.

09187:0.06852:0.09960:0.03527:0.04153:0.15833:0.04637…

(the rest of the cosine similarity vector)

<FE>9D00ypbDl1e8vNgFcTVg88rcpG8/2EGDRg9jWibg/lw=

The index entry example of SBKS shows the keyword indexed by this

entry is concealed into a trapdoor with the secure hash function. The data file

information in SBKS entry is concealed by the symmetric-key encryption. For the

WBKS and WBSKS index entry example, the similarity trapdoor that representing

a data file is a vector of cosine similarity values and no information will be

revealed without knowing the Wikipedia articles arrangement in the WKS. The

data file information in WBKS and WBSKS is also concealed by the symmetric-

key encryption. These examples show the index entries created by our

developed schemes do not reveal any information of the data files uploaded.

Table 9 shows examples of trapdoor used for search that are generated

by our test system in each of our developed schemes.

Table 9: Trapdoors that are generated by our developed schemes for search

Schemes Trapdoors Created for Search

SBKS <TP>2_ ® ñ©®`…õJl¹+—<TP>Só]—Û † K ¼¹ †<TP>´ ¿?œ

òõý : Y<TP> íûÚï„<u?;[5]9‹`Ô

WBKS 0.00000:0.00000:0.00000:0.00000:0.00000:0.00000:0.00000:

0.00000:0.00304:0.00000:0.00000:0.00000:0.00000:0.00000:

 … (the rest of the cosine similarity vector)

WBSKS 0.00000:0.00000:0.00000:0.00000:0.00000:0.01054:0.00251:

0.00000:0.00124:0.00000:0.00000:0.00383:0.00000:0.00000:

 … (the rest of the cosine similarity vector)

Semantic Search over Encrypted Data in Cloud Computing 30

Our example for SBKS shows the list of trapdoors generated for the

modified keyword set from SCC that will be used by the cloud computing server

for search. All keywords in the modified keyword set are concealed by the secure

hash function similar to the trapdoor in the index entry. The WBKS and WBSKS

examples also show the similarity trapdoor is a vector of cosine similarity values

and no information will be revealed without knowing the Wikipedia articles

arrangement in the WKS. These examples show the trapdoor and similarity

trapdoor generated for search in our developed schemes do not reveal any

information of the data files uploaded if WKS remains hidden.

Using our examples, we shows the index entries and the trapdoors

created by our developed schemes are secured unless the shared key or WKS

arrangement is compromised. These examples show our developed schemes

are preserving the data security and privacy of the uploaded data file if the

shared key and the WKS arrangement remain hidden.

Search Quality

 To measure the search quality, we analyzed the resulted data from

searches that were conducted under each supported schemes. We have first

compared the result data collected from SBKS and WFSC searches because

both of them return their search result in the keyword level. The search quality of

WBKS and WBSKS will be analyzed separately from SBKS and WFSC because

the results from WBKS and WBSKS search are in the form of similarity score on

the data file level.

WFSC and SBKS

 We have randomly selected 20 keywords from our data files collection and

conducted 20 searches against each schemes using each keywords to collect

search result data. The average length of the randomly selected keywords is 5.

We have measured the search quality of SBKS and WFSC based on the number

of keyword returned from each search and the quality of the returned keywords.

Figure 12 shows the average number of distinct keywords returned from a search.

Semantic Search over Encrypted Data in Cloud Computing 31

Figure 12: Comparison of average number of distinct keywords returned from a search

 According to the data in Figure 12, WFSC-ED1 returns an average of 2.9

keywords from each search while WFSC-ED2 returns an average of 20.2

keywords. These data indicate the search coverage of WFSC-ED1 is too narrow

while the search coverage of WFSC-ED2 is too board. The data also show SBKS

returns an average of 14 keywords from each search.

 To analyze the quality of the search results, we have classified keyword

returned from the searches by their relationships to the search keyword. Table 10

describes the search result classifications that we used.

Table 10: Search result classifications

Classification Types Descriptions

Type 1 The returned keyword is an exact match or

shared same word stem with the search keyword

Type 2 The returned keyword belongs to the keyword

synonym set of search keyword

Type 3 The returned keyword shares the same synonym

Semantic Search over Encrypted Data in Cloud Computing 32

with the search keyword

Type 4 The returned keyword is unrelated to the search

keyword

 For example, a search with search keyword “happy” was returned with

keywords “happy”, “blessed”, “hallowed”, and “unknown” as the results. Keyword

“happy” will be classified as Type 1 because it is an exact match with the search

keyword. Keyword “blessed” will be classified as Type 2 because it is contained

by the synonym set of keyword “happy”. Keyword “hallowed” will be classified as

Type 3 because it is not in the synonym set of “happy”, but it is sharing a

common synonym “blessed” in their synonym set. Keyword “unknown” will be

classified as Type 4 because it is not related to keyword “happy” in any ways.

All returned keywords should fall into Type 1, 2, or 3, and any keywords fall into

Type 4 degrade the search quality. Figure 13 shows the comparison in the

search result classifications.

Figure 13: Comparison of search result classifications

According to the data in Figure 13, the quality of the search results

returned by SBKS is higher than both WFSC-ED1 and WFSC-ED2. The data

Semantic Search over Encrypted Data in Cloud Computing 33

show WFSC-ED1 has 51.72% of the keywords fall into Type 1 and 48.28% of the

keywords fall into Type 4. The data show WFSC-ED2 has 7.43% of the keywords

fall into Type 1, 0.50% of the keywords fall into Type 2, and 92.08% of keywords

fall into Type 4. The data also show SBKS has 10.71% of the keywords fall into

Type 1, 9.29% of the keywords fall into Type 2, and 78.57% of the keywords fall

into Type 3. These data indicates 100% of the keywords returned by SBKS are

somehow related to the search keyword while WFSC-ED2 has 92.08% of

keywords returned and WFSC-ED1 has 48.28% of keywords are considered as

unrelated. The high percentages of keywords returned by WFSC-ED1 in Type 1

are due to the way we selected our search keywords. In our tests, we selected

our keywords directly from the data files; therefore, there is at least 1 keyword

will return in the result.

We have demonstrated that search results returned from SBKS is better

than both WFSC-ED1 and WFSC-ED2 and we have shown the search coverage

for WFSC is either too narrow or too board with different edit distance values;

therefore, the search quality of SBKS is better than WFSC.

WBKS and WBSKS

To measure the search quality of WBKS and WBSKS, we have randomly

added 10 different Wikipedia articles with various topics into our data files as

target articles. By extracting a keyword from the title of each target articles, we

form the regular keyword set with 10 keywords. We also formed the typo

keyword set by randomly replacing 1 character of each keyword in the regular

keyword set and formed the related keyword set by replacing each keyword in

the regular keyword set with a related keyword. With the 3 different keywords set,

we conducted search using each keyword in the 3 keywords set to determine

how likely the corresponding target article will return with similarity score in the

top 3. Figure 14 shows the percentages of target articles returned with similarity

score in the top 3.

Semantic Search over Encrypted Data in Cloud Computing 34

Figure 14: Comparison of search hit rate with different keywords set

According to the data in Figure 14, both WBKS and WBSKS have 100% hit

ratio to return the target articles with similarity score in the top 3 when the

searches were done using the regular keyword set. The data show the WBKS

has 0% hit rate while WBSKS has 60% hit rate when searches were done using

the typo keyword set. This indicates WBKS will not work properly when there is

typo in the search keyword. The search failures from the typo keyword set in

WBSKS were due to the spell checker didn’t correct the typo correctly. Typo

keywords that failed are proper noun such as “Samsung” and “Batman” that are

not contained in our dictionaries. The data also shows both WBKS and WBSKS

have 80% hit rate when searches are done using the related keyword set. The

search failures with related keyword set are due to the related keyword is used

commonly by other data files. We do see the target articles returned in the failed

searches and ranked as the 4th and 5th most relevant in the result.

Our analysis shows both WBKS and WBSKS are very accurate when the

search keyword used is error-free and fairly accurate when handling related

keywords. The analysis also shows WBSKS can handle typo in search keyword

based on the quality of the dictionaries implemented in our scheme.

VII. Conclusion and Recommendations

In this project, we have developed a system to support semantic search

over encrypted data in cloud computing with three different schemes. We

Semantic Search over Encrypted Data in Cloud Computing 35

reviewed several schemes that were proposed in previous literatures to support

keyword search over encrypted data in cloud computing and identified the

problems existing in each of the schemes. After we reviewed the related

literature, we gave a high level overview of our developed system and described

in detail the functions of each major component in our system. We further

explained our three schemes to enable semantic keyword search over encrypted

data in cloud computing. The three schemes that we have developed in this

project are: “Synonym-Based Keyword Search (SBKS)”, “Wikipedia-Based

Keyword Search (WBKS)”, and “Wikipedia-Based Synonym Keyword Search

(WBSKS)”. SBKS used the Synonym Set Construction (SSC) process to expand

the keyword with synonyms of the keyword to ensure words with similar

meanings will be covered by the searching order to capture user’s true intention

of the search. WBKS adopted the Wikipedia Similarity Matching technique to

create a reference point with a set of Wikipedia articles called Wikipedia Key Set

(WKS) between the uploaded data files and the search keyword. WBSKS took

advantages of WBKS and SBKS to further increase the keyword intersections

between the uploaded data files and the search keyword.

We have implemented our developed schemes and conducted various

kinds of test to collect experimental data for comparison and analysis. We have

also implemented the “Wildcard-based Fuzzy Set Construction (WFSC)”

proposed in [3] with predefine edit distance 1 (WFSC-ED1) and 2 (WFSC-ED2)

as our benchmark. With careful analyses over the collected test data, we have

illustrated our developed schemes perform better than WFSC in terms of storage

requirements, performance, and search quality while preserving the data security

and privacy of the uploaded data. In terms of storage requirements, our

developed schemes show an average of 95% reduction in index size if compared

to WFSC-ED2. In terms of performance, our developed schemes have illustrated

an average of 95% reduction in time used to search the index if compared to

WFSC-ED2. In terms of security, we have exhibited our developed schemes is

preserving the data security and privacy of the uploaded data if the shared key

and the WKS arrangement remain hidden through careful analysis over the index

entries and trapdoors created by our developed schemes. In terms of search

quality, we compared SBKS with WFSC and the comparison showed 100% of

the results returned by SBKS were related to the search keyword while only

51.72% returned by WFSC-ED1 and only 7.93% returned by WFSC-ED2 related

to the search keyword. We have demonstrated the search quality of WBKS and

WBSKS were high with 100% hit rate to return the target data file when

searching with an error-free keyword. We also illustrated how WBSKS can

Semantic Search over Encrypted Data in Cloud Computing 36

handle typo keyword to certain extend depending on the dictionaries

implemented with the scheme. With all these improvements showed in our

analyses, we can conclude that our developed schemes are more efficient and

more practical than WFSC.

During our test, we have noticed some limitations in our developed

schemes that can be further improved in the future. One problem we experienced

in WBKS and WBSKS is an indexing problem when the keywords between the

data file and the WKS were not intersecting. Any keywords contained in the data

files but not contained in any of the Wikipedia articles in WKS will not be indexed

by the index file so any attempt to search using these keywords will fail. This

problem is reducing the usability of WBKS and WBSKS. One suggestion to

resolve this problem would be implementing a data-oriented Wikipedia articles

selection scheme in order to select different Wikipedia articles for WKS based on

the content of the uploading file. The challenge of this data-oriented Wikipedia

articles selection scheme is to select a set of articles from all the Wikipedia

articles within a short period of time. The articles selected by this scheme should

include all of the keywords in the data file and share a common topic with the

data file. Another good improvement for future work would be to take advantage

of SSC process to expand keywords in the uploading data file so the synonyms

of the keyword will be considered when constructing the Wikipedia index. In this

project, we have actually attempted to use our implemented SSC to expand each

keyword into the modified keyword set and use it to construct the Wikipedia index

in order to increase the keyword intersections between the data file and WKS.

However, our attempts show degradation in accuracy due to the modified

keyword has destroyed the term frequency of the keywords. We may need some

strategies to expand the keyword with synonyms in a way that will not alter the

term frequency of the keyword too much. These two improvements will be some

good candidates for future works.

Semantic Search over Encrypted Data in Cloud Computing 37

References

[1] Khorshed, M.T., Ali, A.S., Wasimi, S.A. “Monitoring Insiders

Activities in Cloud Computing Using Rule Based Learning”, Security

and Privacy in Computing Communications (TrustCom), 2011 IEEE

10th International Conference on, 2011, pp 757-764.

[2] Koletka, R., Hutchison, A. “An Architecture for Secure Searchable

Cloud Storage,” Information Security South Africa (ISSA), 2011, pp

1-7.

[3] Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W. “Fuzzy

Keyword Search over Encrypted Data in Cloud Computing,” in

INFOCOM, 2010 Proceedings IEEE, pp 1-5.

[4] Liu, C., Zhu, L., Li, L., Tan, Y. “Fuzzy keyword search on encrypted

cloud storage data with small index,” Cloud Computing and

Intelligence Systems (CCIS), 2011 IEEE International Conference

on, 2011, pp 269-273.

[5] Pak, A. “Using Wikipedia to Improve Precision of Contextual

Advertising,” Human Language Technology, Challenges for

Computer Science and Liguistics, Lecture Notes in Computer

Science, 2011, Vol 6562/2011, pp 533-543.

[6] Ribeiro-Neto, B., Cristo, M., Golgher, P.B., Moura, E.S. “Impedance

Coupling in Content-Targeted Advertising.” Proc. SIGIR 05,

Salvador, Brazil, August 15–19, pp 496–503., ACM Press,

NewYork.

[7] Rocha, F., Correia, M. “Lucy in the Sky without Diamonds: Stealing

Confidential Data in the Cloud,” Dependable Systems and

Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st International

Conference on, 2011, pp 129-134.

[8] Salem, M., Stolfo, S. “Modeling user search-behavior for

masquerade detection,” Recent Advances in Intrusion Detection, in

Proceedings of the 14th International Symposium on, Heidelberg:

Springer, 2011, pp 1–20.

[9] Stolfo, S., Salem, M., Keromytis, A. “Fog Computing: Mitigating

Insider Data Theft Attacks in the Cloud”, Security and Privacy

Workshops (SPW-2012), 2012 IEEE Symposium on, 2012, pp 125-

128.

Semantic Search over Encrypted Data in Cloud Computing 38

[10] Voris, J., Boggs, N., Stolfo, S. “Lost in Translation: Improving

Decoy Documents via Automated Translation”, Security and

Privacy Workshops (SPW-2012), 2012 IEEE Symposium on, pp

129-133.

[11] Wu, Z., Xu, G., Zhang, Y., Dolog, P. “An Improved Contextual

Advertisting Matching Approach based on Wikipedia Knowledge,”

Special Focus on Engineering Knowledge and Semantic Systems,

The Computer Journal 2012, pp 277-292.

Semantic Search over Encrypted Data in Cloud Computing 39

Appendix A: Test Data
Table 11: Test data used to generate Figure 5

Actual Index Size (KB)

Files (Keywords) 10(5004) 20(9067) 30(10732) 40(11649) 50(13137)

WFSC-ED=1 6538 12878 15686 17575 21258

WFSC-ED=2 51117 110429 133078 148121 433944

SBKS 5302 9905 11923 13383 16084

WBKS/WBSKS 298 596 894 1192 1490

Table 12: Test data used to generate Figure 6

Number of Index Entries

Files (Keywords) 10(5004) 20(9067) 30(10732) 40(11649) 50(13137)

WFSC-ED=1 76688 142260 169354 184536 210524

WFSC-ED=2 603320 1185989 1412736 1541958 2206898

SBKS 59414 101409 117253 125617 148975

WBKS/WBSKS 10 20 30 40 50

Table 13: Test data used to generate Figure 9

Index Build Time (millisecond)

Files (Keywords) 10(5004) 20(9067) 30(10732) 40(11649) 50(13137)

WFSC-ED=1 1761 2616 2929 3058 3240

WFSC-ED=2 2848 5969 6760 7312 18966

SBKS 33997 59259 67716 74172 110227

WBKS/WBSKS 140684 299362 387588 461296 552645

Table 14: Test data used to generate Figure 10

Average Search Time (millisecond)

Files (Keywords) 10(5004) 20(9067) 30(10732) 40(11649) 50(13137)

WFSC-ED=1 1200 2112 2513 2826 3208.00

WFSC-ED=2 39453 76697 93556 102553 151683.00

SBKS 1215 2119 2485 2524 2913.00

WBKS 3980 3984 4045 4026 4187.00

WBSKS 4181 4653 4549 4155 4452.00

Semantic Search over Encrypted Data in Cloud Computing 40

Table 15: Test data used to generate Figure 11

Average Time Used to Pre-Compute WKS (Millisecond)

Number of Wiki Articles 600 1200 1800 2400 3000 3600

Average Time Used 30383 58155 85466 115023 138459 170624

Table 16: Test data used to generate Figure 7

Size of the WKS (KB)

Number of Wiki Articles 600 1200 1800 2400 3000 3600

Original Articles 14547 26844 38269 50418 63052 76847

WKS 7850 14487 20800 27471 34428 41918

Reduction Rate 46.04% 46.03% 45.65% 45.51% 45.40% 45.45%

Table 17: Test data used to generate Figure 8

Size of the Index (KB) with different Wikipedia Key Set

Number of Wikipedia Articles 1000 2000 3000 3807

WBKS/WBSKS 394 784 1175 1409

Table 18: Test data used to generate Figure 13

Classification of the Search Result

Techniques WBFKS-ED=1 WBFKS-ED=2 SBKS

Type1 51.72% 7.43% 10.71%

Type2 0.00% 0.50% 9.29%

Type3 0.00% 0.00% 78.57%

Type4 48.28% 92.08% 0.00%

Semantic Search over Encrypted Data in Cloud Computing 41

Table 19: Test data used to generate Figure 12

Average number of distinct search result returned

Schemes Average number of distinct result

WFSC-ED=1 3

WFSC-ED=2 20

SBKS 14

Table 20: Test data used to generate Figure 14

WBKS and WBSKS target article hit rate

Schemes Regular Typo Related

WBKS 100% 0% 80%

WBSKS 100% 60% 80%

The End

	Semantic Search over Encrypted Data in Cloud Computing
	Recommended Citation

	tmp.1400641807.pdf._LPzQ

