
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

Hunting for Pirated Software Using Metamorphic Analysis Hunting for Pirated Software Using Metamorphic Analysis

Hardikkumar Rana
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Rana, Hardikkumar, "Hunting for Pirated Software Using Metamorphic Analysis" (2014). Master's Projects.
345.
DOI: https://doi.org/10.31979/etd.8zg6-mk26
https://scholarworks.sjsu.edu/etd_projects/345

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/345?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Hunting for Pirated Software Using Metamorphic Analysis

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Hardikkumar Rana

May 2014

c○ 2014

Hardikkumar Rana

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Hunting for Pirated Software Using Metamorphic Analysis

by

Hardikkumar Rana

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2014

Dr. Mark Stamp Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. Thomas Austin Department of Computer Science

ABSTRACT

Hunting for Pirated Software Using Metamorphic Analysis

by Hardikkumar Rana

In this paper, we consider the problem of detecting software that has been pirated

and modified. We analyze a variety of detection techniques that have been previously

studied in the context of malware detection. For each technique, we empirically

determine the detection rate as a function of the degree of modification of the original

code. We show that the code must be greatly modified before we fail to reliably

distinguish it, and we show that our results offer a significant improvement over

previous related work. Our approach can be applied retroactively to any existing

software and hence, it is both practical and effective.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Mark Stamp for his continuous guidance

and support throughout this project and believing in me. I would also like to thank

him for giving me a chance to work on this topic. I would like to thank the committee

members Dr. Chris Pollett and Dr. Thomas Austin for monitoring the progress of the

project, their feedback and advice. Last but not least, I would like to thank my

parents and sister for their love and support.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 Metamorphic Malware/Software 4

2.2 Metamorphic Generator . 4

2.3 Techniques for Metamorphism . 6

2.3.1 Dead Code Insertion . 6

2.3.2 Code Permutation . 7

2.3.3 Insertion of Jump Instructions 7

2.3.4 Instruction Replacement 8

2.4 Hidden Markov Model . 9

2.4.1 Training . 11

2.4.2 Detection . 11

2.5 Opcode Graph Similarity . 12

2.6 Simple Substitution Distance . 14

2.6.1 Simple Substitution Ciphers 14

2.6.2 Fast Attack on Simple Substitution 15

2.6.3 Solution Using Hill Climbing Problem 15

2.6.4 Overview of Jackobsen’s Algorithm 15

2.7 Singular Value Decomposition . 18

2.7.1 SVD Algorithm . 20

vi

vii

2.8 Compression-Based Analysis . 23

2.8.1 Structural Entropy . 23

2.8.2 Classification Based on Compression 24

3 Implementation . 26

3.1 Implementation of Hidden Markov Model 26

3.2 Implementation of Opcode Graph Similarity 27

3.3 Implementation of Simple Substitution Distance 28

3.4 Implementation of Singular Value Decomposition 30

3.5 Implementation of Compression-Based Analysis 30

3.5.1 Creating File Segments . 31

3.5.2 Comparison Between Sequences 35

4 Experimental Results . 39

4.1 Hidden Markov Model . 39

4.2 Opcode Graph Similarity . 39

4.3 Simple Substitution Distance . 41

4.4 Singular Value Decomposition . 42

4.5 Compression-Based Analysis . 44

5 Conclusion and Future Work . 46

APPENDIX

ROC Curve . 52

A.1 ROC Curve for Hidden Markov Model 52

A.2 ROC Curve for Opcode Graph Similarity 55

viii

A.3 ROC Curve for Simple Substitution Distance 58

A.4 ROC Curve for Singular Value Decomposition 61

A.5 ROC Curv for Compression-Based Analysis 64

LIST OF TABLES

1 Dead Code Insertion . 7

2 Instruction Replacement . 9

3 Opcode Sequence . 13

4 Opcode Count . 13

5 Probability Table . 13

6 Simple Substitution Key . 14

7 Frequency Count . 17

8 Putative Key K . 17

9 Diagraph Distribution Matrix . 18

10 New Putative Key . 18

11 Corresponding Diagraph Distribution Matrix 19

12 Final File Segments . 35

13 Edit Matrix for Both Strings . 37

14 AUC - Hidden Markov Model . 40

15 AUC - Opcode Graph Similarity 41

16 AUC - Simple Substitution Distance 42

17 AUC - Singular Value Decomposition 44

18 AUC - Compression-Based Analysis 45

ix

LIST OF FIGURES

1 Metamorphic Generator . 5

2 Block Insertion . 6

3 Code Permutation . 8

4 Insertion of Jump Instructions . 8

5 Hidden Markov Model . 10

6 SVD on Matrix A, Matrix Transformation 20

7 File Segmentation . 24

8 Training and Scoring Phase of HMM 27

9 Process of Singular Value Decomposition 31

10 Sample File and It’s Hexdump . 31

11 Sample File and It’s Windows1 32

12 Sample File and It’s Windows2 32

13 Window Compression Ratio of Sample File 33

14 Wavelet Transform for 0 Iteration, 1 Iteration, 2 Iteration and 3
Iteration Respectively . 34

15 Hidden Markov Model AUC Plot 40

16 Opcode Graph Similarity AUC Plot 41

17 Simple Substitution Distance AUC Plot 43

18 Singular Value Decomposition AUC Plot 43

19 Compression-Based Analysis AUC Plot 45

A.1 ROC for HMM 10% morphing . 52

x

xi

A.2 ROC for HMM 20% morphing . 52

A.3 ROC for HMM 30% morphing . 52

A.4 ROC for HMM 40% morphing . 52

A.5 ROC for HMM 50% morphing . 53

A.6 ROC for HMM 60% morphing . 53

A.7 ROC for HMM 70% morphing . 53

A.8 ROC for HMM 80% morphing . 53

A.9 ROC for HMM 90% morphing . 53

A.10 ROC for HMM 100% morphing 53

A.11 ROC for HMM 200% morphing 54

A.12 ROC for HMM 300% morphing 54

A.13 ROC for HMM 400% morphing 54

A.14 ROC for OGS 10% morphing . 55

A.15 ROC for OGS 20% morphing . 55

A.16 ROC for OGS 30% morphing . 55

A.17 ROC for OGS 40% morphing . 55

A.18 ROC for OGS 50% morphing . 56

A.19 ROC for OGS 60% morphing . 56

A.20 ROC for OGS 70% morphing . 56

A.21 ROC for OGS 80% morphing . 56

A.22 ROC for OGS 90% morphing . 56

A.23 ROC for OGS 100% morphing . 56

A.24 ROC for OGS 200% morphing . 57

xii

A.25 ROC for OGS 300% morphing . 57

A.26 ROC for OGS 400% morphing . 57

A.27 ROC for SS 10% morphing . 58

A.28 ROC for SS 20% morphing . 58

A.29 ROC for SS 30% morphing . 58

A.30 ROC for SS 40% morphing . 58

A.31 ROC for SS 50% morphing . 59

A.32 ROC for SS 60% morphing . 59

A.33 ROC for SS 70% morphing . 59

A.34 ROC for SS 80% morphing . 59

A.35 ROC for SS 90% morphing . 59

A.36 ROC for SS 100% morphing . 59

A.37 ROC for SS 200% morphing . 60

A.38 ROC for SS 300% morphing . 60

A.39 ROC for SS 400% morphing . 60

A.40 ROC for SVD 10% morphing . 61

A.41 ROC for SVD 20% morphing . 61

A.42 ROC for SVD 30% morphing . 61

A.43 ROC for SVD 40% morphing . 61

A.44 ROC for SVD 50% morphing . 62

A.45 ROC for SVD 60% morphing . 62

A.46 ROC for SVD 70% morphing . 62

A.47 ROC for SVD 80% morphing . 62

xiii

A.48 ROC for SVD 90% morphing . 62

A.49 ROC for SVD 100% morphing . 62

A.50 ROC for SVD 200% morphing . 63

A.51 ROC for SVD 300% morphing . 63

A.52 ROC for SVD 400% morphing . 63

A.53 ROC for for CBA 10% morphing 64

A.54 ROC for for CBA 20% morphing 64

A.55 ROC for for CBA 30% morphing 64

A.56 ROC for for CBA 40% morphing 64

A.57 ROC for for CBA 50% morphing 65

A.58 ROC for for CBA 60% morphing 65

A.59 ROC for for CBA 70% morphing 65

A.60 ROC for for CBA 80% morphing 65

A.61 ROC for for CBA 90% morphing 65

A.62 ROC for for CBA 100% morphing 65

A.63 ROC for for CBA 200% morphing 66

A.64 ROC for for CBA 300% morphing 66

A.65 ROC for for CBA 400% morphing 66

CHAPTER 1

Introduction

Software piracy can be defined as the unauthorized reproduction of software, dis-

tribution of copyrighted software including downloading, sharing, selling, or installing

multiple copies of licensed software [30, 33]. The Business Software Alliance (BSA)

is a major anti-piracy organization. According to a 2010 BSA study, the commercial

value of pirated software increased 14% globally in 2010 to a record total of $58.8

billion [31]. They estimate that almost 41% of all software installed on personal

computers is pirated, and for every dollar of software sale, $3 to $4 revenue is lost to

local IT support and distribution service [32]. Thus, software piracy drains significant

revenue that might otherwise have been spent on salaries and innovation.

Pirated software is also a threat to security [32]. To defend against attacks,

software developers release fixes and patches. Software users who use pirated or unli-

censed copies of software are unable to benefit from patches and important updates,

which may decrease their security, as well as the security of other licensed users [32].

The goal of this research is to develop techniques that help to detect modified

pirated software. Detection of unmodified software is comparatively a trivial problem.

An attacker might modify software as a way to obtain the functionality, while trying

to maintain an air of legitimacy and also avoid copyright infringement issues [24].

Ideally, we would like to force the attacker to make major changes to the software

before we cannot reliably detect it.

The techniques developed here are designed to be used as an automated first

line of analysis. For example, if a company suspects their software has been illegally

1

copied and modified, they can compare the suspected variant to the original using

the techniques in this paper. A high score indicates that further (costly) investigation

is warranted, whereas a low score indicates that the suspect code differs significantly

from the original code, and hence, further analysis would be a waste of resources.

Here, we consider a variety of techniques, and for all techniques, we require access

to executable files only—no source code is used in the analysis. This is important,

because we are unlikely to have the source code of the suspect software. Some of our

techniques rely on assembly code, which can be extracted via disassembly, whereas

others apply directly to the executable.

For all of the techniques considered in this report, no special effort is required

at the time the software is developed and hence, the analysis presented here can be

applied retroactively to any executable. Consequently, the research in this paper

should not be confused with watermarking schemes, which require that a mark be

embedded in the executable. Although our approach has some superficial similarity to

software plagiarism detection, we suspect it may not be strong in such a scenario. We

analyze the software from a low level perspective with the emphasis on structural and

statistical properties, whereas plagiarism detection is generally focused on higher-level

semantics and stylistic issues [7, 17, 28].

The techniques we consider fit loosely in the realm of software birthmark analy-

sis [22, 39]. A software birthmark is a unique characteristic inherent to the software,

which can be used for identification. All the techniques we proposed in the paper

were previously used for metamorphic malware detection. We used these techniques

for completely different approach of software piracy detection. Some previous work

on the software piracy detection relied on statistical analysis, whereas, we used some

novel approaches based on compression based analysis and singular value decompo-

2

sition. For all the techniques, neither the original nor the suspected software are

executed. The results of our experiment indicate that software must be modified

extensively to make it undetectable.

The techniques we analyze in this paper were inspired by previous research on

metamorphic virus detection [13, 16, 26, 27, 44]. Metamorphic malware changes its

internal structure at each infection, while maintaining its essential function. Such

malware can easily evade signature-based detection and well-designed metamorphic

malware can also evade statistical-based detection. Malware detection provides some

parallels to the problem considered here, but there are also significant differences.

These similarities and differences will become clear in subsequent sections.

The remainder of this paper is organized as follow. Chapter 2 discusses back-

ground material on metamorphic malware (software), metamorphic generator and

metamorphism techniques. Also, it covers background information about all the

proposed techniques: hidden Markov model, opcode graph similarity, simple substi-

tution distance, singular value decomposition, and compression-based analysis. In

Chapter 3, we provide details on implementation. Experimental results and observa-

tion are explained in Chapter 4. Finally, Chapter 5 contains conclusions and future

work.

3

CHAPTER 2

Background

In this chapter, we will discuss background information required to understand

the project. Starting with metamorphic malware (software), then metamorphic gener-

ator and morphing techniques. After that we will cover background information about

all the proposed techniques named Hidden Markov Model, Opcode Graph Similar-

ity, Simple Substitution Distance, Singular Value Decomposition, and Compression

Based Analysis.

2.1 Metamorphic Malware/Software

Metamorphic malware changes its internal structure after each infection, but its

functionality remains the same. This technique is used by malware writers to evade

anti-virus [38].

Metamorphism has some positive sides too. It can be used to raise diversity for

the given software [36]. One can derive an interesting analogy between software and

the biological system [37]. Large amount of the population survives in case of attack

on biological system [37] due to diversity among the population. However, as software

can be seen as a monoculture [37], a successful attack on one software works almost

on every other software [37]. In the case of metamorphic software, no single attack

will be successful on every copy of the software [37].

2.2 Metamorphic Generator

A metamorphic generator can be implemented in any language using different

morphing techniques. We will discuss these techniques in the following section. We

4

Figure 1: Metamorphic Generator

have chosen the dead code insertion technique for morphing. Ideally, the control and

data flow of the code need to remain the same, and various jump statements can be

used to achieve it. But, it would be easier to detect virus because of many jump

statements. So, we did not try to maintain code execution sequence in same manner

for morphed files, which eventually make harder case.

Initially, the program asks for morphing percentage and the number of blocks

for dead code insertion. Suppose, that morphing percentage and number of blocks

are given as 20 and 4 respectively, and we have a base file of 100 opcode. Then, the

total number of opcode needed for dead code will be 20 and distributed 5 opcodes per

block. Next, using random function of JAVA, it generates 4 random numbers for the

position of dead code insertion. The output file will become the size of 120 opcode.

We can generate as many morphed files as required using metamorphic generator.

Morphing percentage is one of the measures to check the robustness of our detection

techniques. Here, we are simulating the way an attacker could have targeted any

piece of software using dead code insertion.

5

Figure 2: Block Insertion

2.3 Techniques for Metamorphism

In the following section, we discuss some common techniques to generate the

metamorphic code like dead code insertion, code permutation, insertion of jump in-

struction, and instruction replacement.

2.3.1 Dead Code Insertion

Dead code insertion is one of the simplest methods of morphing used by a meta-

morphic engine. In this method, a sequence of bytes is changed by inserting the dead

code [23]. Ideally, instructions used for the dead code should not have any effect on

the functionality of the original code [15]. Dead code is similar to a null operation [14].

The inserted dead code will never be executed, so it has no semantic effect on the

software [4]. This strategy could be used to evade signature based detection and is

succeeding against statistical based detection [3]. The example shown in Table 1,

demonstrates the dead code insertion.

6

Table 1: Dead Code Insertion

Original Code After Garbage Insertion

ADD 1055h, EAX ADD 1055h, EAX

SUB EAX JMP loc1234

POP EBX

PUSH EBX

PUSH EBX

POP EBX

loc1234 SUB EAX

In Table 1 we can see that, in the original code, execution of the ADD instruction

is followed by SUB, whereas in the code after garbage insertion, ADD is followed by the

JMP, which immediately transfers the control to the SUB. All the dead code between

ADD and SUB is eliminated by JMP instruction and the dead code does not have any

effect on the actual code execution.

2.3.2 Code Permutation

In this method, code is divided into small modules (frames). After dividing the

code, different modules are rearranged randomly by keeping the logic of the original

code as it is. Various jump statements are used to maintain the logic of the code.

Figure 3 illustrates the code permutation technique. So, this technique apparently

changes the appearance of the software by reordering the frame sequences. If we have

𝑛 frames of the software, then 𝑛! unique generations are possible [5].

2.3.3 Insertion of Jump Instructions

JMP is assembly language instruction. It carries out an unconditional jump. It

takes memory address, which are labeled in assembly language, as arguments [23].

7

Figure 3: Code Permutation

Figure 4: Insertion of Jump Instructions

JMP is used to change the address of targeted instruction. However, the flow of the

program remains the same [23]. Many JMP are more prone to detections as it provides

the identification.

2.3.4 Instruction Replacement

In this method, instruction or a set of instructions is replaced by equivalent

instruction or set of instructions. For example, different registers movements are

8

Table 2: Instruction Replacement

Original Code After Instruction Replacement

ADD EAX, 05H ADD EAX, 01H

MOV BL, AL ADD EAX, 05H

PUSH BL

POP AL

replaced by number of PUSH and POP sequences. Instructions like OR-TEST and XOR-

SUB can be used interchangeably [15]. Table 2 illustrates the instruction replacement

techniques. Here, in the code after instruction replacement, ADD is replaced with two

ADD instructions and MOV operation is performed using PUSH and POP operation. This

technique defends strongly against the signature base detection.

2.4 Hidden Markov Model

A hidden Markov model (HMM) is a machine learning techniques [35]. As the

name suggests, an HMM includes a Markov process and this process is the “hidden”

part of the HMM. That is, the Markov process is not directly observable. But we

do have indirect information about the Markov process via a series of observations

that are probabilistically related to the underlying Markov process. The utility of

HMMs derives largely from the fact that there are efficient algorithms for training

and scoring. HMM have been used in various fields like malware detection [19] and

speech recognition [25]. Following are the important notation to understand the

Hidden Markov Model [35]:

9

𝑇 = length of the observation sequence

𝑁 = number of states in the model

𝑀 = number of observation symbols

𝑄 = {𝑞0, 𝑞1, . . . , 𝑞𝑁−1} = distinct states of the Markov process

𝑉 = {0, 1, . . . ,𝑀 − 1} = set of possible observations

𝐴 = state transition probabilities

𝐵 = observation probability matrix

𝜋 = initial state distribution

𝒪 = (𝒪0,𝒪1, . . . ,𝒪𝑇−1) = observation sequence.

Markov process: 𝑋0 𝑋1 𝑋2 · · · 𝑋𝑇−1
-𝐴 -𝐴 -𝐴 -𝐴

?

𝐵

?

𝐵

?

𝐵

?

𝐵

Observations: 𝒪0 𝒪1 𝒪2 · · · 𝒪𝑇−1

Figure 5: Hidden Markov Model

Three matrices 𝐴, 𝐵 and 𝜋 are used to define hidden Markov model. HMM is

presented as 𝜆 = (𝐴,𝐵, 𝜋). There are three basic problems that can be answered

using hidden Markov model.

Problem 1: For a given model 𝜆 = (𝐴,𝐵, 𝜋) and a sequence of observations 𝒪, we

can determine 𝑃 (𝑂|𝜆). That is, we can score an observation sequence to determine

how well it fits a given model [35].

10

Problem 2: For a given model 𝜆 = (𝐴,𝐵, 𝜋) and a sequence of observations 𝒪,

we can determine an optimal state sequence for the Markov model. That is, we can

uncover the hidden part of the model [35].

Problem 3: For a given observation sequence 𝒪, and specific values of 𝑁 and 𝑀

we can determine a model. That is, we can train a model to fit a given observation

sequence [35].

There are two main phases in HMM—Training and Detection. Training phase

is to retrieve model that contains 𝐴, 𝐵, and 𝜋 matrices. This model will be used for

scoring files.

2.4.1 Training

In this phase, the opcode sequences are extracted from the base software. Using

these opcode sequences, various slightly morphed copies of the base software are

generated. These morphed copies are appended and finally hidden Markov model is

trained on it. The reason for using slightly morphed copies is to avoid over fitting the

training data for HMM [21]. At the end of the training phase, we retrieve 𝐴, 𝐵, and

𝜋.

2.4.2 Detection

In this phase, the opcode sequence from the suspected software is extracted.

This sequence is scored against the trained HMM, which was derived in the previous

phase. Then, score is compared against the previously calculated threshold value. The

score above threshold indicates that further investigation is needed because suspected

software is very similar to the base software. On the other hand, score below the

11

threshold signifies that suspected software is not similar to the base software. In

our case, we mainly interested in separation between benign files and suspected files.

Therefore, we did not bother about setting the threshold.

2.5 Opcode Graph Similarity

The paper [1] suggests one interesting graph based technique for malware detec-

tion. The same technique can be used for the software similarity detection. Firstly,

opcode sequence from the software is extracted to construct weighted directed graph.

Each distinct opcode are assigned to the node in weighted directed graph. A directed

edge is linked from a node to all the possible successor node. Weight of a particular

edge gives the probability of corresponding successor node. The following example

demonstrates the process. We used one dummy sequence of the opcodes as shown in

the Table 3.

Using the Table 3, we obtained the counts for each digram of opcodes. These

counts are shown in the Table 4. For example, the opcode SUB is immediately followed

by the opcode JMP at 2 places (lines 10 and 20 in Table 3).

Using the digram frequency counts from Table 4, probability Table 5 is generated.

Each cell in Table 5 represents a probability for occurrence of the given opcode after

any opcode. Each entry in the Table 4 is divided by the sum of each entry of the

corresponding row. The resulting probability table is shown in the Table 5. For

example, JMP occurs 6 times in the table while (JMP, SUB) occurs 2 times. Therefore,

(JMP, SUB) entry in the Table 5 contains the probability 1/3.

Using the entries from the Table 5 opcode directed graph is prepared. This

directed probability graph is represented as adjacency matrix for ease of calculations.

12

Table 3: Opcode Sequence

1 CALL

2 JMP

3 ADD

4 SUB

5 NOP

6 CALL

7 ADD

8 JMP

9 JMP

10 SUB

11 JMP

12 ADD

13 NOP

14 JMP

15 CALL

16 CALL

17 CALL

18 ADD

19 JMP

20 SUB

Table 4: Opcode Count

ADD CALL JMP NOP SUB

ADD 0 0 2 1 1
CALL 2 2 1 0 0
JMP 2 1 1 0 2
NOP 0 1 1 0 0
SUB 0 0 1 1 0

Table 5: Probability Table

ADD CALL JMP NOP SUB

ADD 0/4 0/4 1/2 1/4 1/4
CALL 2/5 2/5 1/5 0/5 0/5
JMP 1/3 1/3 1/3 0/6 1/3
NOP 0/2 1/2 1/2 0/2 0/2
SUB 0/2 0/2 1/2 1/2 0/2

13

2.6 Simple Substitution Distance

Substitution cipher is one of the oldest cipher systems [36]. In this system, each

plaintext symbol is substituted by ciphertext symbol. These symbols could be letters,

digrams, or trigrams. There are many types of substitution ciphers. In the following

section, we briefly discuss simple substitution ciphers.

2.6.1 Simple Substitution Ciphers

Simple Substitution ciphers are one of the simplest form of substitution ci-

phers [36]. In this cipher, plaintext symbol maps to one ciphertext symbol [9, 18]. A

simple substitution key is shown in Table 6. In that, each ciphertext letter is obtained

by shifting the plaintext letter by 3 positions forward in the alphabetical order [36].

Hence, plaintext message HELLO is encrypted to KHOOR, if the key in Table 6 is used

for encryption [3].

Table 6: Simple Substitution Key

plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Simple substitution consists 26! possible keys if plaintext is in the English lan-

guage. To break the system attacker needs to try 287 keys on average [9]. If the

attacker has high computation power that can test 240 keys per second, then brute

force attack will take around 247 seconds (millions of years) [9]. It is impractical

to try such a huge key space. But attacker uses different approaches like English

monograph statistic to crack the ciphertext [9]. For example, most frequent cipher-

text letter maps to most frequent letter in the English text E, similarly second most

frequent letter maps to second most frequent letter in the English text T, and so on.

Using this technique, an attacker will be able to recover most of the plaintext very

14

fast. Then, he can guess for the remaining message [9].

2.6.2 Fast Attack on Simple Substitution

An algorithm to crack the simple substitution cipher is mentioned in [12]. It

initially guesses the key and modifies the key in each iteration by swapping elements

in key. Correctness of key is determined by checking the closeness between digram

matrix obtained from English plain text and decrypted text. The lower the score, the

higher the correctness of the key. This algorithm is explained in section 2.6.4.

2.6.3 Solution Using Hill Climbing Problem

Hill climb is a mathematical optimized technique that starts with some initial

solution and try to finds better solutions by doing minor changes to the putative solu-

tion. The new score is compared against the previous score. If the score improves, the

incremental changes are made [9]. This process is repeated until the better solution

is obtained [9, 43].

2.6.4 Overview of Jackobsen’s Algorithm

Jackobsen’s algorithm [12] make assumptions about plaintext and ciphertext. It

assumes that plaintext and ciphertext are in English and contains 26 alphabets. It

makes an initial guess about key using frequency of letters that is most frequent letter

in ciphertext maps to the most frequent letter in English text E, second most frequent

letter maps to T, and so on.

In the subsequent iterations, algorithm modifies the current key and uses it to

decrypt ciphertext. If putative plaintext is closer to the expected English text than

before, the new key is used for next iterations; otherwise the old key is modified in a

15

different way. This process is repeated around
(︀
26
2

)︀
times, so that every elements of

key are swapped at least once.

The scheme to modify the key is explained in [9]. Suppose that the putative

key is 𝐾 = 𝑘1, 𝑘2, 𝑘3, 𝑘4, . . . , 𝑘25, 𝑘26. Here, 𝐾 is permutation of english letters. At

beginning, the swapping takes place between adjacent elements. That is 𝑘1 with 𝑘2,

𝑘2 with 𝑘3 and so on. In the second iteration, elements away by two from each other

are swapped, that is 𝑘1 with 𝑘3, 𝑘2 with 𝑘4 and so on. Same way in third iteration,

elements away by three from each other are swapped. In the 𝑛𝑡ℎ iteration, elements

away by 𝑛 from each other are swapped. The process is presented diagrammatically

in [9] which is shown in (1).

round 1: 𝑘1|𝑘2 𝑘2|𝑘3 𝑘3|𝑘4 . . . 𝑘23|𝑘24 𝑘24|𝑘25 𝑘25|𝑘26
round 2: 𝑘1|𝑘3 𝑘2|𝑘4 𝑘3|𝑘5 . . . 𝑘23|𝑘25 𝑘24|𝑘26
round 3: 𝑘1|𝑘4 𝑘2|𝑘5 𝑘3|𝑘6 . . . 𝑘23|𝑘26

...
... . .

.

round 24: 𝑘1|𝑘24 𝑘2|𝑘25 𝑘3|𝑘26
round 25: 𝑘1|𝑘25 𝑘2|𝑘26
round 26: 𝑘1|𝑘26

(1)

where, ‘|’ means swap.

Using diagraph distribution matrix of putative key, the current key is modified [9].

This procedure is explained later in this section. To determine the closeness between

digraph distribution matrix of putative plaintext and English language, the following

scoring function (2) is used [9].

score(𝐾) = 𝑑(𝐷,𝐸) =
∑︁
𝑖,𝑗

|𝑑𝑖,𝑗 − 𝑒𝑖,𝑗| (2)

16

Table 7: Frequency Count

E T A O I N S R H D

11 9 5 4 4 6 3 5 2 12

Table 8: Putative Key K

Plaintext: E T A O I N S R H D

Ciphertext: D E T N A R I O S H

Where,

𝐷 = 𝑑𝑖𝑗 represents the putative plaintext digraph distribution matrix

𝐸 = 𝑒𝑖𝑗 represents the expected English language digraph distribution matrix

𝐾 = similarity between two matrices (𝐾 is always greater than or equal to zero)

Procedure for modifying 𝐾 is explained in [9]. We also mentioned it below. If we

have simple substitution cipher that is based on English letters, descending order of

plaintext symbols according to the frequency is

E, T, A, O, I, N, S, R, H, D

M, O, P, S, J, R, U, Y, B, K

Suppose the ciphertext is [27]

TNDEODRHISOADDRTEDOAHENSINEOARDTTDTINDDRNEDNTTTDDISRETEEEEEAA

The frequency count corresponding to the ciphertext is shown in Table 7 and the

initial putative key 𝐾 is shown in Table 8. Putative plaintext will be [9]

AOETRENDSHRIEENATERIDTOHSOTRINEAAEASOEENOTEOAAAEESHNTATTTTTII

17

Table 9: Diagraph Distribution Matrix

E T A O I N S R H D

E 3 1 2 1 0 3 1 1 0 0
T 2 4 1 1 1 0 0 2 0 0
A 2 2 2 1 0 0 1 0 0 0
O 2 2 1 0 0 0 0 0 1 0
I 1 0 0 0 1 1 0 0 0 1
N 1 1 1 1 0 0 0 0 0 1
S 0 0 0 2 0 0 0 0 2 0
R 1 0 0 0 3 0 0 0 0 0
H 0 0 0 0 0 1 1 1 0 0
D 0 1 0 0 0 0 1 0 0 0

Table 10: New Putative Key

Plaintext E T A O I N S R H D

Ciphertext E D T N A R I O S H

The digraph distribution matrix is shown in Table 9. Now, we will modify

putative key as we discussed in swapping procedure. First, we swap the first two

elements [9]. New putative key is shown in Table 10. Now, corresponding new

putative plaintext will be [9]

AOTERTNDSHRITTNAETRIDEOHSOERINTAATASOTTNOETOAAATTSHNEAEEEEEII

Diagraph distribution matrix of putative plaintext is shown in Table 11. From the

matrix, we can see that, by swapping corresponding row and column we can swap

the elements in key.

2.7 Singular Value Decomposition

Properly created metamorphic malware can avoid signature base detection, as

well as other detection techniques based on statistical analysis [3]. On the other hand,

some techniques based on compression rate, file entropy, and eigenvalue analysis seem

to be more precious for malware detection [13]. We want to use such techniques for

18

Table 11: Corresponding Diagraph Distribution Matrix

E T A O I N S R H D

E 4 2 1 1 1 0 0 2 0 0
T 1 3 2 1 0 3 1 1 0 0
A 2 2 2 1 0 0 1 0 0 0
O 2 2 1 0 0 0 0 0 1 0
I 0 1 0 0 1 1 0 0 0 1
N 1 1 1 1 0 0 0 0 0 1
S 0 0 0 2 0 0 0 0 2 0
R 0 1 0 0 3 0 0 0 0 0
H 0 0 0 0 0 1 1 1 0 0
D 1 0 0 0 0 0 1 0 0 0

software piracy detection.

Eigenfaces, a technique for facial reorganization is the foundation for this imple-

mentation [40]. Singular value decomposition [29] is factorization of the real matrix.

The main idea behind the SVD is to consider the high variable dataset and reduce it

to the lower dimension dataset in such a way that it clearly defines the substructure

of the original dataset [13]. The SVD of the real matrix 𝐴 yields a factorization of

the form

𝐴 = 𝑈𝑆𝑉 𝑇 .

Here, matrix 𝑈 is the left singular vector of matrix 𝐴. 𝑈 is calculated by the

eigenvectors of 𝐴𝐴𝑇 . Also, matrix 𝑉 is the right singular vector of matrix 𝐴. 𝑉

is calculated by the eigenvectors of 𝐴𝑇𝐴. Matrix 𝑆 is the diagonal matrix. It is

calculated by taking the square root of eigenvalues, which is common to both the

matrix 𝑈 and 𝑉 . 𝑈𝑈𝑇 and 𝑉 𝑇𝑉 are two identity matrices. The eigenvectors of

the matrix 𝑈 is called singular vector because the eigenvector of the matrix 𝑈 are

normalized. Normalization is done by dividing every eigenvector by square root of

corresponding eigenvalue. Matrix 𝑈 contains all eigenvectors as per the singular

19

Figure 6: SVD on Matrix A, Matrix Transformation

values of the matrix 𝐴. SVD on matrix 𝐴 is shown in Figure 6 [13].

2.7.1 SVD Algorithm

SVD algorithm can be described in two phases. Training phase followed by

testing phase. In the training phase, weights of the input files are determined by

projecting them onto eigenspace. In the testing phase, suspected files and benign files

are projected onto the eigenspace and their weights are determined. Finally, euclidean

distance between the weights of training files and testing files are calculated. Step by

step procedure of training phase and testing phase are described below.

2.7.1.1 Training Phase

First, we extract raw bytes from all the input files, and for each of these input

files, we construct column vector. Then, the eigenvectors of the covariance matrix

were determined. Eigenvectors with low eigenvalues are ignored as they are less

important. Then, on eignespace, we project all the files to get weight. This phase is

explained as below.

20

∙ Get 𝑀 number of files for training and extract raw bytes. Construct matrix 𝐴

using the vector of all files.

𝐴 = [𝜑1𝜑2𝜑3 . . . 𝜑𝑀]. (3)

Suppose, 𝑁 is the maximum number of bytes an individual file contains, among

all files, then matrix 𝐴 will have 𝑁 rows. Zeros are appended to column vectors,

which contains less than 𝑁 bytes. To identify variance between different files,

eigenvectors of covariance matrix 𝐶 is determined by

𝐶 =
1

𝑀

𝑀∑︁
𝑖=1

𝜑𝑖𝜑
𝑇
𝑖

= 𝐴𝐴𝑇

(4)

In equation (4), 𝑀 is the number of files.

∙ Dimensions of matrix 𝐴 and 𝐶 are 𝑁×𝑀 and 𝑁×𝑁 accordingly. It is very hard

to find the eigenvectors of such a large matrix. So alternatively we can calculate

eigenvectors for another matrix 𝐿 of dimension 𝑀 ×𝑀 . 𝐿 is calculated using

𝐴𝑇𝐴. In following equation (5) 𝑣𝑖 is the eigenvector of 𝐿 and it is calculated

using

𝐿𝑣𝑖 = 𝜆𝑖𝑣𝑖

𝐴𝑇𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖

(5)

Here, 𝑣𝑖 is eigenvector and 𝜆𝑖 is eigenvalue. If we multiply the above equation (5)

with 𝐴, it will give eigenvectors of matrix 𝐶

𝐴𝐴𝑇𝐴𝑣𝑖 = 𝜆𝑖𝐴𝑣𝑖

𝐶𝐴𝑣𝑖 = 𝜆𝑖𝐴𝑣𝑖

(6)

where 𝐴𝑣𝑖 is the eigenvector of 𝐶. This is called reduce singular value decom-

position. Now, according to the eigenvalues, sort the eigenvectors in descending

order, because eigenvectors with higher eigenvalues are more important.

21

∙ We took 𝑀 ′ eigenvectors out of 𝑀 , where 𝑀 ′ is less than 𝑀 . We project

these eigenvectors into the space and space spanned by these vectors are called

eigenspace. We can create original software replicate from𝑀 ′ vectors by adding

their corresponding weight. Suppose, for software file 𝑉 in the training set

having eigenvectors 𝑢𝑖, we can generate software file as

𝑉 = 𝑤1 × 𝑢1 + 𝑤1 × 𝑢1 + . . . + 𝑤𝑀 ′ × 𝑢𝑀 ′

𝑉 =
𝑀 ′∑︁
𝑖=1

𝑤𝑖𝑢𝑖

(7)

Then we can get weight of each file as shown in equation (8) and we can represent

set of weight as

𝑤𝑖 =
𝑀 ′∑︁
𝑖=1

𝑢𝑇
𝑖 𝑉 (8)

Ω𝑇
𝑖 = [𝑤𝑖, 𝑤2, 𝑤3, . . . , 𝑤𝑀 ′] (9)

∙ The weights of all software files together ∆ is shown in equation (10). Weights

of all the files together on eigenspace will be the output of the training phase.

∆ = [Ω1,Ω2,Ω3, . . .Ω𝑀] (10)

2.7.1.2 Testing Phase

In this phase, we project column vector of each test files on eigenspace. We

append zeros to the file that has less than 𝑁 bytes and remove bytes from the file

that is more than 𝑁 bytes.

𝑤𝑖 =
𝑀 ′∑︁
𝑖=0

𝑒𝑇𝑖 𝑉𝑛 (11)

Ω𝑇
𝑛 = [𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑀 ′] (12)

Once we have weight for test files, we compare them with a weight vector of

training files. Then, we can calculate euclidean distance between these vectors. If Ω𝑖

22

is weight vector for training file then euclidean distance will be

distance =
√︁

(𝜔2
1 − 𝑤2

1) + (𝜔2
2 − 𝑤2

2) + . . . + (𝜔𝑀 ′
1 − 𝑤𝑀 ′

1) (13)

where 𝜔 is weight of test file and 𝑤 is weight of training file.

2.8 Compression-Based Analysis

Utilizing structural entropy analysis is one of the novel approaches for software

piracy detection. It has been already used against code obfuscation yielding positive

results in [2, 34]. It uses the structural entropy to find variations within the files

and calculate a similarity measure. This technique has two major phases: file seg-

mentation followed by sequence comparison. The file segmentation includes entropy

measurement with wavelet analysis. Finally, similarity is measured using levenshtein

distance.

2.8.1 Structural Entropy

Structural entropy was originally proposed in [34]. It has produced good results

for polymorphic malware and metamorphic malware [2, 16]. Unlike other techniques,

this technique will not work on opcode sequence; it works on raw byte of the file.

The proposed technique for detection of software piracy is an extension of the

technique presented in [2, 16]. Our technique can be divided into two major parts: file

segmentation and sequence comparison. File segmentation achieved using Shannon’s

formula, where entropy is calculated. Once entropy is calculated, wavelet transform is

applied [16]. Figure 7 gives the pictorial representation of segmentation process. For

sequence comparison, edit distance algorithm is used [16]. Finally, using the similarity

formula, the result of the algorithm is compared against the pre-defined threshold.

23

Figure 7: File Segmentation

2.8.2 Classification Based on Compression

Previous research [8] has been done using compression for malware detection. It

is based on the principle: given two similar strings, they can be compressed more

together than compressed separately. One unknown string is compared against sev-

eral known strings. Each known string represents unique family. Unknown file is

considered of the family with which it best matches [16]. The detection framework is

described in the Algorithm 1 and is mentioned in [8].

Detection framework is highly successful. However, the drawback is, memory

usage [8] increases rapidly as the size of software increases, which could be a problem

in case of very big software.

One another technique based on compression is described in [45]. It depends on

detection framework, which uses a learning engine for training on malware and benign

code. Using this partial matching phenomenon, two compression models are created.

One of these represents the malware code and other represent the benign code. For

24

Algorithm 1 Kolmogorov Complexity Based Detection Framework

1: Input : (1) Training set 𝑇𝑅 = {𝑇𝑅+, 𝑇𝑅−}, where 𝑇𝑅+ is set of malware
instance, and 𝑇𝑅− is set of benign code instances. (2) Test set , 𝑇𝐸 =
{𝑇𝐸1, . . . , 𝑇𝐸𝑛}, where 𝑇𝐸𝑖 is the 𝑖𝑡ℎ (𝑖 = 1 . . . 𝑛) code instance. (3) Estimating
function for Kolmogorov complexity, denoted by 𝐾.

2: Output: Classification 𝐶𝐿(𝑇𝐸𝑖)𝜖{+,−}, which corresponds to a benign or mal-
ware instance.

3: 𝑀+← 𝐾(𝑇𝑅+);
4: 𝑀− ← 𝐾(𝑇𝑅−));
5: for i=1 to n do
6: 𝑀1

𝑖 −𝐾(𝑇𝐸𝑖 ∪𝑀+);
7: 𝐵𝑖𝑡𝑠(𝑇𝐸𝑖,𝑀+) = 𝑠𝑖𝑧𝑒𝑜𝑓(𝑀1

𝑖);
8: 𝑀2

𝑖 = 𝐾(𝑇𝐸𝑖 ∪𝑀−);
9: 𝐵𝑖𝑡𝑠(𝑇𝐸𝑖,𝑀−) = 𝑠𝑖𝑧𝑒𝑜𝑓(𝑀2

𝑖);
10: 𝐶𝐿(𝑇𝐸𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝜖{+,−}𝐵𝑖𝑡𝑠(𝑇𝐸𝑖,𝑀𝑐)
11: end for

Algorithm 2 PPM Based Classification

1: Input : Training set 𝑇 = 𝑇+ ∪ 𝑇−, test set 𝑃 = {𝑋1, . . . , 𝑋𝑛}, and the order of
the Markov model in PPM, 𝑘.

2: Output: Classification of 𝑐(𝑋𝑖)𝜖{+,−} of 𝑋𝑖𝜖𝑃 , for 𝑖 = 1, . . . , 𝑛.
3: 𝑀+ ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑃𝑀(𝑇+);
4: 𝑀− ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑃𝑀(𝑇−);
5: for all 𝑋𝜖𝑃 do
6: 𝐵𝑖𝑡𝑠(𝑋,𝑀+) = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑖𝑡𝑠(𝑋,𝑀+);
7: 𝐵𝑖𝑡𝑠(𝑋,𝑀−) = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑖𝑡𝑠(𝑋,𝑀−);
8: 𝑐(𝑋) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝜖{+,−}𝐵𝑖𝑡𝑠(𝑋,𝑀𝑐);
9: end for

any suspected file, average numbers of bits are used to encode it using aforementioned

compression model. The suspected file is then classified by the compression rate.

Algorithm 2 describes this process.

25

CHAPTER 3

Implementation

In this section, we discuss about implementation of all techniques. We started

with implementation of Hidden Markov Model, followed by Opcode Graph Similarity,

Simple Substitution Distance, Singular Value Decomposition, and Compression Based

Analysis.

3.1 Implementation of Hidden Markov Model

For training the Hidden Markov Model, we extracted opcode sequences from the

base software. Then, we generated five 5% morphed copies of base software using

metamorphic generator. All these five files were merged to obtain long observation

sequences [20, 44].

Five-fold cross validation was used in this technique. It means, that we divided

all files into five subsets. Four subsets were used for training the HMM and remaining

one was used as test data [20]. This process is repeated five times; each time testing

subset and training subset changes accordingly [20, 44]. Training and scoring phase

of HMM is shown in Figure 8.

Secondly, we scored 100 files of each case, that is, 10% morphing to 400% mor-

phing. Then, we scored benign files for comparison. Finally, we plotted ROC curve

and AUC.

26

Figure 8: Training and Scoring Phase of HMM

3.2 Implementation of Opcode Graph Similarity

Our goal is to develop the similarity measure from the extracted opcode se-

quences [26]. First, we extracted the opcode sequence and prepared the weighted

directed graph. So far, our technique is similar to the technique used in [1]. But,

instead of using graph kernels to generate scores, we directly compared the opcode

graphs [26].

Let 𝑁 be the total number of the distinct opcode from the extracted opcode

sequences. We map this opcode to 0, 1, 2, 3, . . . , 𝑁 − 1. Let 𝐴 = 𝑎𝑖𝑗 and 𝐵 = 𝑏𝑖𝑗 be

the two edge weighted matrices corresponding to the two executable files (in our case,

base software and suspected software), same as Table 5. Note that, both 𝐴 and 𝐵 are

of size 𝑁 ×𝑁 and both have the same opcode numbering [26]. It means, 𝑎𝑖𝑗 and 𝑏𝑖𝑗

represent the opcode 𝑖 is followed by opcode 𝑗 corresponds to 𝐴 and 𝐵 [26]. In case

of different number of distinct opcode in both opcode sequences, we take the superset

of distinct opcodes from both sequences. Now, for comparing these matrices, we used

27

following equation.

score(𝐴,𝐵) =
1

𝑁2

(︃
𝑁−1∑︁
𝑖,𝑗=0

|𝑎𝑖,𝑗 − 𝑏𝑖,𝑗|

)︃2

(14)

If 𝐴 and 𝐵 are equal, then minimum score 0 is obtained. If 𝑎𝑖𝑗 = 1 and 𝑏𝑗𝑘 = 1,

for 𝑗 ̸= 𝑘, then maximum possible row sum

𝑁−1∑︁
𝑗=0

|𝑎𝑖,𝑗 − 𝑏𝑖,𝑗| = 2 (15)

is obtained [26]. Maximum possible score of 4 is achieved if maximum row sum is

achieved for all rows and hence, 0 ≤ score(𝐴,𝐵) ≤ 4.

3.3 Implementation of Simple Substitution Distance

For software piracy detection, we used hill climb technique analogous to Jack-

obsen’s algorithm [12]. The basic idea is that we train the detection system on a

sequence of opcodes extracted from a five 5% morphed files and the trained system

will be used to score suspected software to determine whether it is pirated or not. In

the remainder of this section, we discuss the design of this technique in detail.

We extracted the opcode sequence from suspected software and base software.

Using base software we created five 5% morphed files for training. Then, we con-

structed two digraph distribution matrices, one using suspected file and other using

training files. We mapped opcodes to indices 0, 1, 2, 3, . . . , 𝑛 − 1. Any opcode other

than the top n that occurs in the suspected files or the benign files are grouped to-

gether under the same opcode category “Unknown”. Let 𝐷 = 𝑑𝑖𝑗 and 𝐸 = 𝑒𝑖𝑗 be

the two digraph distribution matrices of suspected file and training files respectively.

The size of both the matrices will be (𝑛 + 1× 𝑛 + 1). Both 𝑑𝑖𝑗 and 𝑒𝑖𝑗 represent the

probability of opcode 𝑖 followed by opcode 𝑗 in the suspected file and training files.

We selected initial key 𝐾, which best matches with monographic statistics of

28

opcode in the training files. For the experiment, we considered five copies of slightly

morphed base software. We assume that most frequent opcode in the training files

maps to the most frequent opcode in suspected software, also the second most fre-

quent opcode in training files maps to the second most frequent opcode of suspected

software, and so on. We created the 𝐷 matrix using initial key 𝐾, then normalized

it by dividing each cell with sum of all cells in matrix.

For constructing 𝐸 matrix, suppose 𝑚 denotes number of slightly morphed base

files. Then, we can construct𝑚matrices of size (𝑛+1)×(𝑛+1). We create matrix 𝐹 (0)

with diagraph frequency counts of opcode in training file 0, and 𝐹 (1) with diagraph

frequency counts of opcode in training file 1 and so on. We normalized all the matrices

by same way we normalized 𝐷 matrix [9]. We created 𝐸 matrix as:

𝐸 = {𝑒𝑖,𝑗} =
(︁
𝐹

(0)
𝑖,𝑗 + 𝐹

(1)
𝑖,𝑗 + . . . + 𝐹

(𝑚−1)
𝑖,𝑗

)︁
/𝑚 (16)

Finally, to compare 𝐷 and 𝐸, we used following equation:

score(𝑘) = 𝑑(𝐷,𝐸) =
∑︁
𝑖,𝑗

|𝑑𝑖,𝑗 − 𝑒𝑖,𝑗| (17)

In the iterated loop, by swapping the opcode in the key

𝐾 = opcode0, opcode1, opcode2, opcode3, . . . , opcode𝑛−1, opcodeunknown

we changed the putative key, and the swapping is done the same way as in Jackobsen’s

method [12]. In first iteration, all the opcode away from a distance of one are swapped,

that is opcode0 with opcode1 and so on. In the second iteration, all the opcode away

from a distance of two are swapped, that is, opcode0 with opcode2, and so on. Finally,

in the 𝑛𝑡ℎ iteration, all the opcode away from distance of 𝑛 are swapped, that is,

opcode0 with opcode𝑛. After each swapping, we computed the score by comparing

𝐷 matrix with 𝐸. If the score improves, we update the putative key and start over

29

again from the first iteration [9]. If the score does not improve, then we do other

modification with the old key. We continue swapping for
(︀
𝑛
2

)︀
iterations to ensure all(︀

𝑛
2

)︀
pairs of opcodes in key are swapped at least once [9, 27]. Finally, we scored, 100

files of each cases, that is 10% morphing to 400% morphing and plotted ROC curve

and AUC.

3.4 Implementation of Singular Value Decomposition

We extracted raw bytes from the text section of training files and constructed

a training input matrix 𝐴. If we have 𝑀 files for training and Maximum number of

bytes among all files is 𝑁 then matrix 𝐴 will be of size 𝑁 ×𝑀 . Zeros are append

to the files, which has fewer bytes than 𝑁 and first 𝑁 bytes are taken from the files

that have more than 𝑁 bytes.

This matrix is passed to the JAMA API (JAVA Matrix Package), which is devel-

oped in JAVA for the calculation of singular vectors and singular values. Using these

singular vectors, we have calculated the weights of training files [13]. Weights for

the testing files are calculated by projecting their column vectors on singular space.

Once we have the weights for both training set files and testing set files, we can mea-

sure the euclidean distance between the calculated weights. Figure 9 is the graphical

representation of the process.

3.5 Implementation of Compression-Based Analysis

Implementation of compression based analysis has two major phases, File Seg-

mentation followed by Sequence Comparison. File Segmentation phase measures the

data complexity throughout the file using structural entropy and Sequence Compar-

ison measures the similarity between files.

30

Figure 9: Process of Singular Value Decomposition

Figure 10: Sample File and It’s Hexdump

3.5.1 Creating File Segments

In this section we discuss about splitting the files into windows and then cal-

culating the compression ratio for each window. Finally, wavelet transformation is

applied in order to get smoothed data.

3.5.1.1 Splitting Files Into Byte Windows

First of all, this technique splits file into byte windows. These windows are strings

of consecutive bytes, nearly the same size in terms of bytes. As we are considering

file as a single stream of data, we should overlap windows to some extent. Window

size and its slide size are determined experimentally [16]. As shown in the hex dump

of sample file in Figure 10 [16], the file contains 103 bytes.

For example, the window size is 10 bytes and windows slide size is 5 bytes. The

first window is shown in Figure 11 and the second window is shown is Figure 12.

31

Figure 11: Sample File and It’s Windows1

Figure 12: Sample File and It’s Windows2

All the remaining windows are measured the same way. If the final window contains

fewer bytes than the window size, null byte are appended [16].

In reality the windows size should be larger to derive any meaningful information

from compression analysis. On the other hand, size should not be too large that it

could allow attackers to mask any malicious code.

3.5.1.2 Compression Ratios for Windows

Having numbers of window, we need to calculate their compression ratio. The vi-

tal part is that, windows with low entropy data should have higher compression ratio

and windows with high entropy data should have lower compression ratio. There-

fore, without having actual code, compression ratio gives us information about the

underlying part of the file.

To calculate compression ratios, we used the software application named gzip.

The main algorithm behind the gzip is lempel-ziv (LZ77) [16]. This algorithm mea-

sures the distribution of unique byte sequence in the window. Figure 13 show, the

compression ratio derived from an example file.

32

Figure 13: Window Compression Ratio of Sample File

3.5.1.3 Wavelet Transform Analysis

In the Figure 13, we can see that data can vary rapidly and it would be very hard

to compare sets of plot. Using wavelet transformation, data can be smoothed where

highly variations occur. In our implementation, we choose discrete Haar wavelet

transform [16] from various wavelet transforms. We decided to choose it from previous

work [2, 34]. This transforms gives simple and efficient results. Suppose, we have 𝑁

values: 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁). Here, 𝑁 is even number. 𝑠𝑘 and 𝑑𝑘 will be determined

as

𝑠𝑘 =
𝑥2𝑘−1 + 𝑥2𝑘

2
(18)

and

𝑑𝑘 =
𝑥2𝑘 − 𝑥2𝑘−1

2
(19)

respectively. Discrete Haar wavelet transform can then be determined by [10]

𝑥 = (𝑥1, ..., 𝑥𝑁)→ (𝑥|𝑑) = (𝑠1, . . . , 𝑥𝑁/2|𝑑1, . . . , 𝑑𝑁/2) (20)

33

Figure 14: Wavelet Transform for 0 Iteration, 1 Iteration, 2 Iteration and 3 Iteration
Respectively

The 𝑠𝑘 contains set of values, known as pair-wise averages. We can perform

discrete haar wavelet transform recursively and arbitrary times of iteration. The

transform can only be applicable to sets, which contains even values. For the set,

which contains an odd value, we need to pad last value to pretend as original data.

Figure 14 shows the effect of three iterations on data.

3.5.1.4 Creation of File Segment

Next, we want to form the file segments. For that, we need threshold, which

determine that which is high entropy and which is a low entropy [16]. In our experi-

ment, we decided 0.65 as a threshold after examining calibration experiment [16]. So,

values of compression ratio greater than 0.65 considered low entropy and values less

than 0.65 are considered high entropy [16].

34

Table 12: Final File Segments

Segment # Segment Length Segment Value

1 1 0.820
2 1 0.640
3 3 0.897
4 2 0.575
5 3 0.903

Now, every segment has a length and value associated with it. Segment length

represents all the values of compression ratio, contributing to a particular segment.

The mean of all associated ratios are considered as the segment value. For example,

suppose the final wavelet transformed values are 0.82, 0.64, 0.79, 0.90, 1.00, 0.60,

0.55, 0.93, 0.88, 0.90. Considering threshold of 0.65, Table 12 shows the resulting

segment.

3.5.2 Comparison Between Sequences

The final sequence of segments represents a particular file. Now, the problem

of file similarity becomes the problem of sequence comparison. For comparison, we

used the levenshtein distance based algorithm. Finally, to determine the similarity

we used the distance between the sequences. This approach is derived from [2, 34].

3.5.2.1 Levenshtein Distance

To measure the difference between two files, a string metric named levenshtein

distance is used [42]. It is also called the edit distance. Specifically, the levenshtein

distance is the number of operations that need to be performed like insertion, deletion

and substitution to convert 𝑎 into 𝑏 [6]. Lesser the operation, the more similar strings

are. For demonstration, we took two string abcde and azbcy. Assume the cost of

each operation, insertion, deletion and substitution as 1. Then, to convert abcde to

35

azbcy,

abcde → azbcde (insert z)

azbcde → azbcye (substitute d for y)

azbcye → azbcy (delete e)

Since three operations are the minimum number of edits required to convert abcde

to azbcy, the Levenshtein distance between these two strings is considered as three.

Various combinations of operation is possible.

To generalize the process, if two sequences are 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑌 =

(𝑦1, 𝑦2, . . . , 𝑦𝑚), and cost of the functions are predefined than we can obtain the matrix

of elements. Using the following recursion (21) elements of the matrix

𝐷(𝑛+1)×(𝑚+1) = {𝑑𝑖,𝑗}

are computed as [2]

𝑑𝑖,𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑖 = 𝑗 = 0
𝑑0,𝑗−1 + 𝛿𝑦(𝑗) if 𝑖 = 0 and 𝑗 > 0
𝑑𝑖−1,0 + 𝛿𝑥(𝑖) if 𝑖 > 0 and 𝑗 = 0
𝑑𝑖−1,𝑗−1 if 𝑥𝑖 = 𝑦𝑗

min

⎧⎨⎩
𝑑𝑖,𝑗−1 + 𝛿𝑦(𝑗)
𝑑𝑖−1,𝑗 + 𝛿𝑥(𝑖)
𝑑𝑖−1,𝑗−1 + 𝛿𝑋,𝑌 (𝑖, 𝑗))

if 𝑥𝑖 ̸= 𝑦𝑖

(21)

Here,

𝛿𝑌 (𝑗) = cost of insertion

𝛿𝑋(𝑖) = cost of deletion

𝛿𝑋,𝑌 (𝑖, 𝑗) = cost of substitution

Considering the cost of 𝛿𝑌 , 𝛿𝑌 and 𝛿𝑋,𝑌 as 1 and using it with equation (21) for

calculating the levenshtein distance for abcde and azbcy example, we get the matrix

as shown in Table 13. The 𝑑𝑛,𝑚 gives the final score of the distance.

36

Table 13: Edit Matrix for Both Strings

a b c d e
0 1 2 3 4 5

a 1 0 1 2 3 4
z 2 1 1 2 3 4
b 3 2 1 1 2 3
c 4 3 2 1 2 3
y 5 4 3 2 2 3

3.5.2.2 Sequence Alignment

Suppose we have 𝑋 and 𝑌 , two different files for similarity calculation. Then we

derived respective segment 𝑥𝑖 for 𝑖 = 1, 2, 3, . . . , 𝑛 and 𝑦𝑖 for 𝑗 = 1, 2, 3, . . . ,𝑚 as per

the segmentation process. We used the cost function mentioned in [2, 34] to account

for size differences.

cost𝜎(𝑥𝑖, 𝑦𝑗) =
|𝜎(𝑥𝑖)− 𝜎(𝑦𝑗)|
𝜎(𝑥𝑖) + 𝜎(𝑦𝑗)

(22)

Here, 𝛿𝑌 (𝑗) is size of segment 𝑥𝑖 and 𝛿𝑋(𝑖) is size of segment 𝑦𝑗.

The possible range of cost function is between 0 and 1 inclusively. We use follow-

ing cost function mentioned in [2, 34] with respect to compression ratio differences.

cost𝜖(𝑥𝑖, 𝑦𝑗) =
1

1 + 𝑒−4|𝜖(𝑥𝑖)−𝜖(𝑦𝑗)+6.5| − 0.001501 (23)

Here, 𝜖(𝑥𝑖) and 𝜖(𝑦𝑗) = compression ratios of respective segments. Two constant

6.5 and 0.001501 helps to produce the value of 𝑐𝑜𝑠𝑡𝜖 between 0 and 1 [2]. Using

equations (22) and (23), the final version of the cost function is

cost(𝑥𝑖, 𝑦𝑗) = 𝑐𝜎 cost𝜎(𝑥𝑖, 𝑦𝑗) + 𝑐𝜖 cost𝜖(𝑥𝑖, 𝑦𝑗) (24)

Here, 𝑐𝜎 is constant for size and 𝑐𝜖 is constant for entropy cost.

The cost function (24) applies to sequence alignment algorithm, which is based

on levenshtein distance. Using dynamic programming, two-dimensional array similar

37

to Table 13 is created. Finally, got the last element for cost calculation between two-

segment sequences [16]. To use, equation (21) for calculating elements of the array,

we make 𝜏 = 0.3 and prepared functions

𝛿𝑌 (𝑗) = 𝜏 log 𝜎(𝑦𝑗−1)

𝛿𝑋(𝑖) = 𝜏 log 𝜎(𝑥𝑖−1)

𝛿𝑋,𝑌 (𝑖, 𝑗) = cost(𝑥𝑖−1, 𝑦𝑗−1) log

(︂
𝜎(𝑥𝑖−1) + 𝜎(𝑦𝑗−1)

2

)︂ (25)

The functions in (25) are derived in [2]

3.5.2.3 Similarity Calculation

Once we have calculated edit distance using equation (21) with penalty func-

tions (25), we can calculate similarity between file 𝑋 and 𝑌 using [16]

similarity = 100

(︂
1− 𝑑𝑛,𝑚

costmax

)︂
(26)

Here, costmax is worst case penalty and it is calculated in a special way as follow by

considering penalty functions (28).

costmax = 𝑑′0,𝑚 + 𝑑′𝑛,0 (27)

𝛿′𝑌 (𝑗) = 𝛿𝑌 (𝑗)

𝛿′𝑋(𝑖) = 𝛿𝑋(𝑖)

𝛿′𝑋,𝑌 (𝑖, 𝑗) = 2𝜏 (log 𝜎(𝑥𝑖−1) + log 𝜎(𝑦𝑗−1))

(28)

38

CHAPTER 4

Experimental Results

In all of the techniques we experimented, our main goal is to verify that, whether

our techniques are able to distinguish between pirated software and legitimate soft-

ware. We experimented with 10% of morphed files to 400% of morphed files. For each

technique, we tried to find the point (morphing percentage) where techniques stop

giving the ideal results. Finally, we plotted receiver operating characteristic curve

(ROC) and area under the curve (AUC) for each case. We used cygwin utilities files

as benign files and generated morphed copies using the metamorphic generator.

4.1 Hidden Markov Model

In our experiment, we found that up to 70% of morphing HMM is able to distin-

guish between pirated software and legitimate software. From 80% onwards, technique

is not able to distinguish properly. It happens because, as we add more deadcode,

morphed files become more similar to the benign files and less similar to the original

base software. We can clearly observe this in Table 14 of the AUC.

4.2 Opcode Graph Similarity

In our experiment, we found that up to 80% of morphing this technique is able

to distinguish clearly between pirated software and legitimate software. This means

that AUC remains 1 till 80% of morphing. For 90% and 100% of morphing AUC

remains in the range of 0.9, which shows that this technique is able to distinguish

until 100% of morphing. From the 300% onwards the technique is failing totally. It

happens because, as we added more number of deadcode, morphed files start losing

39

Table 14: AUC - Hidden Markov Model

Morphing Percentage(%) AUC

10 0.80937
20 0.745
30 0.71937
40 0.62313
50 0.6125
60 0.51562
70 0.51
80 0.51
90 0.3575
100 0.38813
200 0.20313
300 0.15188
400 0.1325

Figure 15: Hidden Markov Model AUC Plot

its originality from base software. We can clearly observe this in Table 15 for the

AUC.

40

Table 15: AUC - Opcode Graph Similarity

Morphing Percentage (%) AUC

10 1
20 1
30 1
40 1
50 1
60 1
70 1
80 1
90 0.96562
100 0.90250
200 0.17625
300 0
400 0

Figure 16: Opcode Graph Similarity AUC Plot

4.3 Simple Substitution Distance

In our experiment, we found that up to 100% of morphing this technique is able

to clearly distinguish between pirated software and legitimate software. This means

41

Table 16: AUC - Simple Substitution Distance

Morphing Percentage (%) AUC

10 1
20 1
30 1
40 1
50 1
60 1
70 1
80 1
90 1
100 1
200 0.996
300 0.896
400 0.856

that AUC remains 1 until 100% of morphing. From 200% to 400% morphing AUC

remains in the range of 0.9 - 0.8, which shows that the technique is able to distinguish

up to that range. So, in our experiment up to 400% of morphing, which is the highest

percentage of morphing we experimented with, the technique is not failing completely.

We can clearly observe this in Table 16 for the AUC.

4.4 Singular Value Decomposition

In our experiment, we found that up to 50% of morphing, this technique is able

clearly to distinguish between pirated software and legitimate software. This means

that the AUC remains 1 until the 50% of morphing. From 60% to 400% morphing

AUC remains in the range of 0.99 - 0.91, which shows that this technique is still

able to distinguish in that range with clarity. So, in our experiment up to 400% of

morphing, which is the highest percentage of morphing we experimented with, the

technique is giving good results. We can clearly observe this in Table 17 for the AUC.

42

Figure 17: Simple Substitution Distance AUC Plot

Figure 18: Singular Value Decomposition AUC Plot

43

Table 17: AUC - Singular Value Decomposition

Morphing Percentage (%) AUC

10 1
20 1
30 1
40 1
50 1
60 0.99999
70 0.99769
80 0.98834
90 0.97959
100 0.97665
200 0.96776
300 0.95406
400 0.91427

4.5 Compression-Based Analysis

In our experiment, we found that up to 90% of morphing this technique is able

to clearly distinguish between pirated software and legitimate software. This means

that AUC remains 1 until 90% of morphing. From 100% to 400% morphing AUC

remains in the range of 0.9 - 0.8, which shows that the technique is able to distinguish

up to that range. So, in our experiment up to 400% of morphing, which is the highest

percentage of morphing we experimented with, the technique is not failing completely.

We can clearly observe this in Table 18 for the AUC.

Roc curves for all the methods are shown in the Appendix.

44

Figure 19: Compression-Based Analysis AUC Plot

Table 18: AUC - Compression-Based Analysis

Morphing Percentage (%) AUC

10 1
20 1
30 1
40 1
50 1
60 1
70 1
80 1
90 1
100 0.97823
200 0.84218
300 0.83129
400 0.80136

45

CHAPTER 5

Conclusion and Future Work

All the techniques we discussed in the paper were previously used to detect

metamorphic malware. In this paper, we proposed these techniques for the completely

different approach of software piracy detection. We wrote our own metamorphic

generator to replicate suspected software. Input to the metamorphic generator are

numbers of the suspected software and amount of morphing percentage, and it will

replicate suspected software accordingly. We used cygwin utilities files as benign files.

First three techniques that are based on statistical analysis work on the disassembled

files whereas last two techniques work directly on raw bytes of the file.

Our experimental results show that all the techniques are robust in detecting

pirated software. The Hidden Markov Model is able to distinguish between pirated

software and legitimate software up to 70% of morphing. The AUC for HMM falls

gradually with morphing percentage. The opcode graph similarity method is able to

distinguish up to 100% of morphing, Up to 80% it is distinguishing with 0% false

positive and 0% false negative, which means AUC is 1 up to 80% . Over 100% of

morphing AUC falls exponentially. Simple substitution distance is able to distinguish

clearly up to 100% of morphing, that is with 0% false positive and 0% false negative.

In singular value decomposition AUC is 1 up to 50% and in the range of 0.9 from

60% onward. Lastly, in Compression-based analysis AUC is 1 up to 100% and start

falling from 200% onward.

For future work, one can try other morphing techniques than dead code insertion,

like code permutation and instruction replacement. Morphing using the instruction

46

replacement technique could be hard to detect because instead of changing the code

sequence or inserting some dead code, it actually changes the code. In addition, one

can experiment with different types of files. Throughout our project, we experimented

with executable files (.exe files), but one can experiment with other types like byte

code. Various new metamorphic malware are coming into the market daily, so by

observing them one can generate some challenging suspected software to experiment

with.

This project can be extended by combining both static and dynamic birthmarks.

All the techniques we experimented with are considered as static birthmark as they

work on statistically available information. In contrast, dynamic birthmark work on

information gathered by executing the program.

Finally, the results of all the techniques, we experimented with can be improved

for a higher amount of morphing.

47

LIST OF REFERENCES

[1] Anderson, B.: Graph-Based Malware Detection Using Dynamic Analysis. Jour-
nal in Computer Virology, 7(4) 247–258 (2011).

[2] Baysa, D., Low, R.M., Stamp, M.: Entropy And Metamorphic Malware. Journal
of Computer Virology and Hacking Techniques, 9(4) 179–192 (2013).

[3] Borello, J., Me, L.: Code Obfuscation Techniques For Metamorphic Viruses.
Journal in Computer Virology, 4(3) 30–40 (2008).

[4] Cesare, S.: Fast Automated Unpacking And Classification Of Malware. Masters
Thesis, Central Queensland University. Retrieved from http://acquire.cqu.

edu.au:8080/vital/access/manager/Repository/cqu:7351

[5] Computer Virus Creation kit. Retrived from http://www.informit.com/

articles/article.aspx?p=366890&seqNum=6

[6] Cormode, G., Muthukrishnan, S.: The String Edit Distance Matching Prob-
lem With Moves. Journal in Association for Computing Machinery Transac-

tions on Algorithms, 3(2) (2007). Retrieved from http://dimacs.rutgers.edu/

~graham/pubs/papers/editmoves.pdf

[7] Costello, F., Bleakley, C., Aliefendic, S.: Using Whitespace Patterns To De-
tect Plagiarism In Program Code. Retrieved from http://www.csi.ucd.ie/

content/using-whitespace-patterns-detect-plagiarism-program-code

[8] Deng, W., et al: A Malware Detection Framework Based On Kolmogorov
Complexity. Journal of Computational Information Systems, 7(8) 2687–2694
(2011). Retrieved from http://www.jofcis.com/publishedpapers/2011_7_8_

2687_2694.pdf

[9] Dhavare, A., Low, R., Stamp, M.: Efficient Cryptanalysis Of Homophonic Sub-
stitution Ciphers. Cryptologia, 37(3) 250–281 (2013).

[10] Fleet, P.: The Discrete Haar Wavelet Transformation. Joint Mathematical Meet-

ings, (2007). Retrieved from http://cam.mathlab.stthomas.edu/wavelets/

pdffiles/NewOrleans07/HaarTransform.pdf

[11] Gao, X., Stamp, M.: Metamorphic Software For Buffer Overflow Mitiga-
tion. In Proceedings of the 2005 Conference on Computer Science and its Ap-

plications, Retrieved from http://www.cs.sjsu.edu/faculty/stamp/papers/

BufferOverflow.doc

48

http://acquire.cqu.edu.au:8080/vital/access/manager/Repository/cqu:7351
http://acquire.cqu.edu.au:8080/vital/access/manager/Repository/cqu:7351
http://www.informit.com/articles/article.aspx?p=366890&seqNum=6
http://www.informit.com/articles/article.aspx?p=366890&seqNum=6
http://dimacs.rutgers.edu/~graham/pubs/papers/editmoves.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/editmoves.pdf
http://www.csi.ucd.ie/content/using-whitespace-patterns-detect-plagiarism-program-code
http://www.csi.ucd.ie/content/using-whitespace-patterns-detect-plagiarism-program-code
http://www.jofcis.com/publishedpapers/2011_7_8_2687_2694.pdf
http://www.jofcis.com/publishedpapers/2011_7_8_2687_2694.pdf
http://cam.mathlab.stthomas.edu/wavelets/pdffiles/NewOrleans07/HaarTransform.pdf
http://cam.mathlab.stthomas.edu/wavelets/pdffiles/NewOrleans07/HaarTransform.pdf
http://www.cs.sjsu.edu/faculty/stamp/papers/BufferOverflow.doc
http://www.cs.sjsu.edu/faculty/stamp/papers/BufferOverflow.doc

[12] Jakobsen, T.: A Fast Method For The Cryptanalysis Of Substitution Ciphers.
Cryptologia, 19 265–274 (1995).

[13] Jidigam, R., et al: Metamorphic Detection Using Singular Value Decomposition.
Master’s Project, San Jose State University, Paper 330, (2013). Retrieved from
http://scholarworks.sjsu.edu/etd_projects/330

[14] Kazi, S., Stamp, M.: Hidden Markov Models For Software Piracy Detection.
Information Security Journal: A Global Perspective, 22(3) 140–149 (2013).

[15] Konstantinou, E.: Metamorphic Virus: Analysis and Detection. Technical Re-
port, Royal Holloway, University of London. Retrieved from http://www.ma.

rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf

[16] Lee, J.: Compression-Based Analysis Of Metamorphic Malware. Master’s
Projects, San Jose State University, Paper 329, (2013). Retrieved from http:

//scholarworks.sjsu.edu/etd_projects/329

[17] Lukashenko, R., Graudina, V., Grundspenkis, J.: Computer-Based Plagiarism
Detection Methods And Tools: An Overview. In Proceedings of the 2007 Inter-

national Conference on Computer Systems and Technologies, (2007).

[18] Mathai, J.: History Of Computer Cryptography And Secrecy System. Retrieved
from http://www.dsm.fordham.edu/~mathai/crypto.html

[19] Muhaya, F., Khan M. K., Xian, Y.: Polymorphic Malware Detection Using Hi-
erarchical Hidden Markov Model. In Proceedings of the 2011 IEEE Ninth Inter-

national Conference on Dependable, Autonomic and Secure Computing, 151–155
(2011).

[20] Mungale, M.: Robust Watermarking Using Hidden Markov Models. Master’s
Projects, San Jose State University, Paper 179, (2011). Retrieved from http:

//scholarworks.sjsu.edu/etd_projects/179

[21] Mungale, M., Stamp, M.: Software Similarity and Metamorphic Detection.
In Proceedings of 2012 International Conference on Security and Management,
(2012).

[22] Myles, G., Collberg, C.: Detecting Software Theft Via Whole Program Path
Birthmarks. Information Security ISC 2004 7th International Conference, 404–
415 (2004).

[23] Rad, B., Masrom, M.: Metamorphic Virus Variants Classification Using Opcode
Frequency Histogram. In Proceedings of the 14th WSEAS International Confer-

ence on Computers, 147–155 (2010).

49

http://scholarworks.sjsu.edu/etd_projects/330
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
http://scholarworks.sjsu.edu/etd_projects/329
http://scholarworks.sjsu.edu/etd_projects/329
http://www.dsm.fordham.edu/~mathai/crypto.html
http://scholarworks.sjsu.edu/etd_projects/179
http://scholarworks.sjsu.edu/etd_projects/179

[24] Raysman, R., Brown, P.: Copyright Infringement Of Computer Software And
The Altai Test. New York Law Journal, 235(89) (2006).

[25] Rigoll, G.: Maximum Mutual Information Neural Networks For Hybrid Connec-
tionist HMM Speech Recognition Systems. IEEE Transactions on Speech and

Audio Processing, 175–184 (1994).

[26] Runwal, N., Low, R., Stamp, M.: Opcode Graph Similarity And Metamorphic
Detection. Journal in Computer Virology, 8(1-2) 37–52 (2012).

[27] Shanmugam, G.: Simple Substitution Distance And Metamorphic Detec-
tion.Journal of Computer Virology and Hacking Techniques, 9(3) 159-170 (2013).

[28] Si, A., Leong, H.V., Lau, R.W.H.: A Document Plagiarism Detection System.
In Proceedings of the 1997 Association for Computing Machinery Symposium on

Applied Computing, 70–77 (1997).

[29] Singular Value Decomposition. Wolfram MathWorld, Retrived from http://

mathworld.wolfram.com/SingularValueDecomposition.html

[30] Software Piracy. Retrived from http://www.bsa.org/anti-piracy

[31] Software Piracy Study. Retrived from http://globalstudy.bsa.org/2010/

downloads/study_pdf/2010_BSA_Piracy_Study-Standard.pdf

[32] Software Piracy On The Internet: A Threat To The Security. Retrived from
http://portal.bsa.org/internetreport2009/2009internetpiracyreport.

pdf

[33] Software Piracy. Retrived from http://www.microsoft.com/en-us/piracy/

default.aspx

[34] Sorokin, I.: Comparing Files Using Structural Entropy. Journal in Computer

Virology, 7(4) 259–265 (2011).

[35] Stamp, M.: A Revealing Introduction To Hidden Markov Models. (2004). Re-
trived from http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[36] Stamp, M.: Information Security: Principles And Practice, Second Edition, Wi-
ley (2011).

[37] Stamp, M.: Risks Of Monoculture. Communications of the Association for Com-

puting Machinery Homeland Security, 47(3) 120 (2004).

[38] Sudarshan, M.S., Stamp, M.: Metamorphic Worm That Carries Its Own Mor-
phing Engine. Journal in Computer Virology, 9(2) 49–58 (2013).

50

http://mathworld.wolfram.com/SingularValueDecomposition.html
http://mathworld.wolfram.com/SingularValueDecomposition.html
http://www.bsa.org/anti-piracy
http://globalstudy.bsa.org/2010/downloads/study_pdf/2010_BSA_Piracy_Study-Standard.pdf
http://globalstudy.bsa.org/2010/downloads/study_pdf/2010_BSA_Piracy_Study-Standard.pdf
http://portal.bsa.org/internetreport2009/2009internetpiracyreport.pdf
http://portal.bsa.org/internetreport2009/2009internetpiracyreport.pdf
http://www.microsoft.com/en-us/piracy/default.aspx
http://www.microsoft.com/en-us/piracy/default.aspx
http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[39] Tamada, H.S., Okamoto, K., Nakamura, M., Monden, A., Matsumoto, K.-I.:
Dynamic Software Birthmarks To Detect The Theft Of Windows Applications.
In International Symposium on Future Software Technology, (2004).

[40] Turk, M.A., Pentland, A.P.: Eigenfaces For Recognition. Journal of Cognitive
Neuroscience, 3(1) 71–86 (2007).

[41] Venkatesan, A., Stamp, M.: Code Obfuscation And Virus Detection. Master’s
Project, San Jose State University, Paper 116 (2008). Retrived from http://

scholarworks.sjsu.edu/etd_projects/116

[42] Wagner, R.A., Fischer, M.J.: The String-To-String Correction Problem. Jour-
nal of the Association for Computing Machinery, 21(1) 168–173 (1974). Re-
trived from http://www.inrg.csie.ntu.edu.tw/algorithm2013/homework/

Wagner-74.pdf

[43] Wikipedia, Hill Climbing Retrived from http://en.wikipedia.org/wiki/

Hill_climbing

[44] Wong, W., Stamp, M.: Hunting For Metamorphic Engines. Journal in Computer

Virology, 2(3) 221–229 (2006).

[45] Zhou, Y., Inge, M.: Malware Detection Using Adaptive Data Compression. Pro-
ceedings of the 1st Association for Computing Machinery Workshop on AISec,
53–60 (2008).

51

http://scholarworks.sjsu.edu/etd_projects/116
http://scholarworks.sjsu.edu/etd_projects/116
http://www.inrg.csie.ntu.edu.tw/algorithm2013/homework/Wagner-74.pdf
http://www.inrg.csie.ntu.edu.tw/algorithm2013/homework/Wagner-74.pdf
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Hill_climbing

APPENDIX

ROC Curve

A.1 ROC Curve for Hidden Markov Model

Figure A.1: ROC for HMM 10% mor-
phing

Figure A.2: ROC for HMM 20% mor-
phing

Figure A.3: ROC for HMM 30% mor-
phing

Figure A.4: ROC for HMM 40% mor-
phing

52

Figure A.5: ROC for HMM 50% mor-
phing

Figure A.6: ROC for HMM 60% mor-
phing

Figure A.7: ROC for HMM 70% mor-
phing

Figure A.8: ROC for HMM 80% mor-
phing

Figure A.9: ROC for HMM 90% mor-
phing

Figure A.10: ROC for HMM 100%
morphing

53

Figure A.11: ROC for HMM 200%
morphing

Figure A.12: ROC for HMM 300%
morphing

Figure A.13: ROC for HMM 400%
morphing

54

A.2 ROC Curve for Opcode Graph Similarity

Figure A.14: ROC for OGS 10% mor-
phing

Figure A.15: ROC for OGS 20% mor-
phing

Figure A.16: ROC for OGS 30% mor-
phing

Figure A.17: ROC for OGS 40% mor-
phing

55

Figure A.18: ROC for OGS 50% mor-
phing

Figure A.19: ROC for OGS 60% mor-
phing

Figure A.20: ROC for OGS 70% mor-
phing

Figure A.21: ROC for OGS 80% mor-
phing

Figure A.22: ROC for OGS 90% mor-
phing

Figure A.23: ROC for OGS 100% mor-
phing

56

Figure A.24: ROC for OGS 200% mor-
phing

Figure A.25: ROC for OGS 300% mor-
phing

Figure A.26: ROC for OGS 400% mor-
phing

57

A.3 ROC Curve for Simple Substitution Distance

Figure A.27: ROC for SS 10% morph-
ing

Figure A.28: ROC for SS 20% morph-
ing

Figure A.29: ROC for SS 30% morph-
ing

Figure A.30: ROC for SS 40% morph-
ing

58

Figure A.31: ROC for SS 50% morph-
ing

Figure A.32: ROC for SS 60% morph-
ing

Figure A.33: ROC for SS 70% morph-
ing

Figure A.34: ROC for SS 80% morph-
ing

Figure A.35: ROC for SS 90% morph-
ing

Figure A.36: ROC for SS 100% mor-
phing

59

Figure A.37: ROC for SS 200% mor-
phing

Figure A.38: ROC for SS 300% mor-
phing

Figure A.39: ROC for SS 400% mor-
phing

60

A.4 ROC Curve for Singular Value Decomposition

Figure A.40: ROC for SVD 10% mor-
phing

Figure A.41: ROC for SVD 20% mor-
phing

Figure A.42: ROC for SVD 30% mor-
phing

Figure A.43: ROC for SVD 40% mor-
phing

61

Figure A.44: ROC for SVD 50% mor-
phing

Figure A.45: ROC for SVD 60% mor-
phing

Figure A.46: ROC for SVD 70% mor-
phing

Figure A.47: ROC for SVD 80% mor-
phing

Figure A.48: ROC for SVD 90% mor-
phing

Figure A.49: ROC for SVD 100% mor-
phing

62

Figure A.50: ROC for SVD 200% mor-
phing

Figure A.51: ROC for SVD 300% mor-
phing

Figure A.52: ROC for SVD 400% mor-
phing

63

A.5 ROC Curv for Compression-Based Analysis

Figure A.53: ROC for for CBA 10%
morphing

Figure A.54: ROC for for CBA 20%
morphing

Figure A.55: ROC for for CBA 30%
morphing

Figure A.56: ROC for for CBA 40%
morphing

64

Figure A.57: ROC for for CBA 50%
morphing

Figure A.58: ROC for for CBA 60%
morphing

Figure A.59: ROC for for CBA 70%
morphing

Figure A.60: ROC for for CBA 80%
morphing

Figure A.61: ROC for for CBA 90%
morphing

Figure A.62: ROC for for CBA 100%
morphing

65

Figure A.63: ROC for for CBA 200%
morphing

Figure A.64: ROC for for CBA 300%
morphing

Figure A.65: ROC for for CBA 400%
morphing

66

	Hunting for Pirated Software Using Metamorphic Analysis
	Recommended Citation

	Introduction
	Background
	Metamorphic Malware/Software
	Metamorphic Generator
	Techniques for Metamorphism
	Dead Code Insertion
	Code Permutation
	Insertion of Jump Instructions
	Instruction Replacement

	Hidden Markov Model
	Training
	Detection

	Opcode Graph Similarity
	Simple Substitution Distance
	Simple Substitution Ciphers
	Fast Attack on Simple Substitution
	Solution Using Hill Climbing Problem
	Overview of Jackobsen's Algorithm

	Singular Value Decomposition
	SVD Algorithm

	Compression-Based Analysis
	Structural Entropy
	Classification Based on Compression

	Implementation
	Implementation of Hidden Markov Model
	Implementation of Opcode Graph Similarity
	Implementation of Simple Substitution Distance
	Implementation of Singular Value Decomposition
	Implementation of Compression-Based Analysis
	Creating File Segments
	Comparison Between Sequences

	Experimental Results
	Hidden Markov Model
	Opcode Graph Similarity
	Simple Substitution Distance
	Singular Value Decomposition
	Compression-Based Analysis

	Conclusion and Future Work
	ROC Curve
	ROC Curve for Hidden Markov Model
	ROC Curve for Opcode Graph Similarity
	ROC Curve for Simple Substitution Distance
	ROC Curve for Singular Value Decomposition
	ROC Curv for Compression-Based Analysis

