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ABSTRACT

A Tiered Approach to Detect Metamorphic Malware with Hidden Markov Models

By Ashwin Kalbhor

Work on the use of hidden Markov models (HMM) to detect viruses has been carried out

previously with good results [2], but metamorphic viruses like MetaPHOR [27] and

metamorphic worms like MWOR [3] have proven to be able to evade detection techniques based

on HMMs. The dueling HMM approach looks to detect such viruses by training an HMM model

for each of the metamorphic virus / worm families. The tests and the results from these have

shown that this approach has been able to detect the metamorphic MetaPHOR virus with

reasonable accuracy but with significantly more overhead.

This paper presents a tiered approach that improves on this by achieving the same results

as the dueling approach but with significant performance improvement in terms of time.

Essentially the idea is to eliminate most putative malware with the threshold approach, reserving

the dueling HMM analysis for more difficult cases. We achieve accurate results with

significantly less performance overhead than the dueling HMM strategy. Furthermore, our

approach successfully detects MWOR worms with a high degree of accuracy.
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CHAPTER 1

Introduction

Malicious software or malware is software which is built with a malicious intent [5].

Malware is inevitable in the current connected world where a lot of information is stored

digitally. The intent of a malware can vary from covertly recording sensitive data to downright

harmful ones which will cause severe damage to the operating system.

Metamorphism is a technique in computer programs where the program continuously

changes its structure over successive generations, thus changing the structural appearance while

still retaining their original functionality.

A malware has an inherent need to stay undetected so as to continue what it is doing and

also to spread to other hosts. This requirement of a malware to stay hidden has driven malware

writers to actively explore techniques using which a malware can morph itself to several unique

forms to effectively evade detection. Traditionally malware has been detected by using a variety

of techniques like anomaly detection, change detection, and the most widely used signature

detection [6].

The signature detection technique looks to match signatures within a file with a stored

and verified set of known virus signatures. However, signatures are based on the byte patterns in

the body of the malware. If the structure of a malware keeps changing then the signature

detection technique will fail to come up with a common signature across all the structurally

different generations of the malware. Thus, changing the structure can allow a virus to

effectively evade detection. Later research into this field has led to the exploration of the use of

hidden Markov models (HMMs) to detect metamorphic malware [2].
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However, newer malware like MWOR [3] and MetaPHOR [27] [28] have been shown to

be able to evade detection techniques based on HMMs. The dueling HMM approach [4] looks to

detect such viruses by training an HMM model for each of the metamorphic virus / worm

families, improving accuracy but with significantly more processing overhead.

In our project we build on the research of the dueling HMM strategy [4]. In the dueling

HMM strategy an HMM model is trained for every malware family. This however, leads to an

increase in the amount of time that it takes to classify the file. This is due to the number of

HMMs that the file has to pass through until it can be classified. To reduce the time it takes to

classify a file we look at a tiered approach to increase the efficiency.

Furthermore, we refine the dueling HMM strategy by introducing a bias to the design,

that is, the HMM representing a given malware family is assigned a penalty compared to the

results of benign HMMs. This change allows us to adjust the false positive / false negative ratio

of our results more easily. This was not previously done with the dueling HMM strategy.

In this paper, Chapter 2 will describe malware and the classification of malware as well

as the different techniques used in detecting malware. Chapter 3 gives a detailed look at

metamorphic malware. In Chapter 4, we will have a look at hidden Markov models as well as the

threshold and dueling approaches using HMM. In Chapter 5 we will have a detailed look at the

design and implementation of this project. Chapter 6 will describe the experiments and the

results of the experiments. Chapter 7 will describe the conclusion and the future work.
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CHAPTER 2

Malware

Malware can be further divided into sub classes. Based on the characteristics of the malware, it

can mainly be subdivided into the following classes as described in [5],

1. Virus

2. Worm

3. Trojan Horse

4. Backdoor

5. Spyware

6. Adware

However we will be confining ourselves to viruses and worms. So let us discuss these two types

in more detail.

2.1 Virus

Fred Cohen defines a virus as a software program which has the ability to infect other programs

by replicating itself into other program files.  A virus can also possess the ability to mutate itself [7].

An alternate definition of a virus as mentioned in Peter Szor’s book, “The Art of Computer Virus

Research and Defense” [1] states that “A computer virus is a program that recursively and explicitly

copies a possibly evolved version of itself”. Fred Cohen’s informal definition of the virus doesn’t strictly

hold true. In recent times there are programs called companion viruses [1] which will not modify other

program files, but will use other means to execute themselves.

Viruses can further be divided into 4 main types as described in [1]: encrypted viruses,

oligomorphic viruses, polymorphic viruses and metamorphic viruses. We will look at these in more detail

in the following subsections.
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2.1.1 Encrypted Viruses

An encrypted virus consists of two parts: the actual virus body that is encrypted and the

decryption code section. Whenever a virus is to be executed, the decryptor code is executed and

it decrypts the encrypted virus body. Once this is done, the actual virus is executed.

Figure 1: Decryptor code block for Cascade [1]

Among the first encrypted viruses was a virus called Cascade [8] [7]. Figure 1 taken from

Peter Szor’s book [1] shows the decryptor for the Cascade virus. Cascade uses the XOR

operation to encrypt itself. This can be seen from the instruction ‘xor [si], si’ and ‘xor [si], sp’.

The loop containing these instructions will execute till all the bytes have been decrypted.

However, since the decryptor is constant throughout all the virus specimens, it is easy to detect

this virus since a detection string can be picked from the constant decryptor code.
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2.1.2 Oligomorphic viruses

Oligomorphic viruses try to remedy the shortcomings of the encrypted virus, namely the

constant signature due to the constant decryptor code. Oligomorphic viruses create mutations of

the decryptor in successive generations. Thus, the problem of same signatures was solved.

Figure 2: W95 / Memorial 1 [1]
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Figure 3: W95/ Memorial 2 [1]

One simple technique to do so, which was followed by W95 / Memorial, is to have more

than one decryptor and then to use a random decryptor to decrypt itself.

The first and the second code snippets are slightly mutated forms. The first decryptor

(Figure 2) uses the ‘jnz’ instruction to check whether all bytes have been decrypted; otherwise it

jumps to the “Decrypt” label.
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In the second decryptor (Figure 3), the ‘loop’ instruction is directly used. Thus, though

the first and the second code snippets appear to be different structurally, they perform the same

operation (i.e – Looping). This mutation helps to change the signature of the two variants of the

W95 / Memorial virus to generate two different signatures and hence help evade detection.

A virus is called Oligomorphic only when the decryptor can mutate to create a small

number of unique signatures.

2.1.3 Polymorphic viruses

Polymorphic viruses are similar to Oligomorphic viruses in the way that both techniques

use different decryptors. However polymorphic viruses have a large amount of unique decryptors

as opposed to Oligomorphic viruses which have a small amount of mutated decryptors. The large

amount of decryptors leads to a large no of detection signatures [6]. It can thus evade signature

based detection techniques.

Polymorphic viruses still need to decrypt the virus body before actually being able to

execute. This turns out to be an Achilles heel for these types of viruses. Emulation based

techniques can be used to detect these types of viruses.

The suspected file is run in a sandbox and the decryptor code is allowed to decrypt the

virus body. Once the virus has been decrypted all that remains is to match the signature of the

virus against a database [6]. This approach requires the suspected file to actually run before it

can be classified; hence the time required to classify the file also increases.

Figure 4, taken from “The Art of Computer Virus Research and Defense” [1], represents

different samples of the same polymorphic virus.

In Figure 4, shapes on the left represent the encrypted virus while the shapes on the right

represent what the virus will look like once decrypted.
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Figure 4 : Polymorphic virus [1]
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The virus remains the same while the decryptor changes, thereby changing the overall

appearance of the virus.

2.1.4 Metamorphic viruses

A metamorphic virus changes itself in every generation so as to create unique copies of

itself. This allows it to evade signature based detection techniques. We will discuss the different

techniques used by metamorphic viruses in more detail in Chapter 3.

2.2 Worms

A worm is self-replicating software which does not require the use of a host file to spread

from one host to another [9]. Some definitions of worms include worms as special types of

viruses, while others define them to be distinct from viruses. Worms can cause much more rapid

destruction as they can spread at much faster rates than viruses, thus effectively slowing down

networks by causing huge traffic. An example of this is the Slammer worm which infected 90%

of all the vulnerable hosts under 10 minutes [10]. A metamorphic worm like MWOR [3], if

carrying a destructive payload, could cause huge financial losses before any human intervention.

2.3 Malware Detection

Malware detection can be classified [6] into the following categories based on the

detection techniques used.

2.3.1 Signature detection

Signature detection uses a string to uniquely classify a virus. A signature is a common

pattern of bits which can be found in all occurrences of the malware. Signature detection is

efficient and fast. A drawback of signature detection techniques is that a huge database to the
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order of ten to a hundred thousand signatures needs to be maintained and every suspected file’s

signature is matched against every signature in the database [6].

Another drawback of the signature detection technique is that if there are small changes

in the structure of the malware, evasion is possible.

2.3.2 Change detection

In change detection, all the files on the system are constantly monitored for any change in

the bits that constitute them. Whenever a virus infects a file, it might need to change bits in the

file [6]. This fact is leveraged by the change detection technique. This type of technique will

have no false negatives but will have a reasonably large number of false positives since users too

will legitimately change files [6].

2.3.3 Anomaly detection

In the anomaly detection technique, a normal / baseline behavior of the user is defined.

After the baseline is defined all the activities on the system are monitored [11]. Whenever there

is any activity that is significantly deviant from the normal behavior, a red flag is raised. For this

type of detection technique the main dilemma is how to classify what behavior is normal and

what behavior is abnormal.

2.3.4 String matching using wildcards

String matching is a technique in which recorded samples of bytes (also called as a

string) from known viruses are matched against the strings from a file that needs to be scanned.

Often the string is not an exact match and instead there are slight variations in the string. To help

detect such strings, which differ from each other in a few bytes, wild cards are used. Wildcards
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allow the string to be matched even if it differs in the specified bytes. As an example, consider

the following order of bytes.

1223 45E8 5C15 9A65 231B

1223 45E8 5C2F 9A65 231B

A string containing wildcards that matches the above byte sequences is

1223 45E8 5C?? 9A65 231B

The interpreter will look to match all bytes one by one until the ‘5C’ byte and proceed

only if the bytes match. However, due to the ‘??’ wildcard, the interpreter will match any byte or

ignore the byte completely, and for the remaining bytes it will continue matching and proceed

only if there is an exact byte match.

2.3.5 Emulation

In code emulation, the suspected file is executed in a simulated environment that matches

the environment that the file would have executed in [30]. In this approach, every instruction is

executed individually and the changes it produces are observed to see whether the behavior is

similar to that of a virus file [31]. Emulators allow the detection of junk / dead code and can

defeat techniques like equivalent instruction substitution as demonstrated in [32].

2.3.6 Geometric detection

Geometric detection relies on detecting changes that are made to the structure of the file

by the virus [1]. Due to the method it uses to detect a virus, geometric detection technique

produces false positives.
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An example [1] of this is the W95 / Zmist virus [37]. Whenever ZMist infects a file there

is an increase of 32 KB in the data section of the infected file. This change is used by the

geometric detection technique to classify the file as malware. Changes in file size, however, are

never solely due to malware alone. There might be legitimate changes in the size of the file. Like

in the above example, the data section can increase in size in case of run time compressed file.

In the geometric detection technique these legitimate runtime compressed files will show up as

malware.
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CHAPTER 3

Metamorphic Malware

To evade detection, virus writers started using metamorphism to prevent anti-virus

programs from latching on to a common signature which could be used to detect the malware

effectively. A malware can be made metamorphic by the use of one or more of the techniques in

section 3.1. Figure 5 from “The Art of Computer Virus Research and Defense” [1] denotes

metamorphic malware.

Figure 5: Metamorphic Malware [1]
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As Figure 5 denotes, subsequent generations of the virus G (G1, G2, G3.......Gn) will

change their byte patterns to appear different from each other and thus evade detection by

signature based detection techniques.

In general, for successive generations of the virus to be able to completely evade

detection techniques it has to carry out the following steps [33] [34].

1. Decode – The metamorphic malware must first decode itself so that it can execute. To

stay undetected the malware needs to encrypt itself so that virus detection techniques

don’t latch on to constant signatures.

2. Deliver payload – Once the metamorphic malware has been decoded it will execute the

malicious code to fulfill the malicious intent with which it was constructed.

3. Morph itself – Once the payload has been delivered, the malware has to now take steps to

morph itself to look different in the next generation so as to evade detection techniques.

This can be done by a variety of techniques mentioned in the next sub section.

3.1 Techniques used to create metamorphic malware

The techniques used to make malware are discussed in more detail in the following sub

sections.

3.1.1 Subroutine Permutation

In sub routine permutation the malware body is divided into multiple subroutines. Over

successive generations the virus then rearranges these subroutines to form a unique static

structure [12]. The number of unique static structures possible will be directly proportional to the
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number of distinct sub routines comprising the virus. If a virus has n number of distinct

subroutines then the number of possible unique static structures will be given by n!

An example of a virus using sub routine permutation is the BadBoy [13] virus. The

BadBoy virus had eight unique subroutines. Hence BadBoy had 8! = 40320 unique

combinations. An example of subroutine permutation can be seen in Figure 6.  The subroutines

on the left are the original subroutines while the ones on the right are the permuted subroutines.

We can see that although the subroutines have been permuted, program execution will still start

at block marked as subroutine 1.

3.1.2 Dead Code Insertion

In this technique, the metamorphic virus uses the addition of dead code like NOP

instructions to evade detection [14]. Since the added code is dead / junk code, it doesn’t affect

the functionality of the malware. However, the addition of these instructions will tend to make

the program differ from its previous generations. The number of unique structures that can be

created are virtually endless.

In Figure 7, we can see dead code added to the body of the program to make it look

different. Lines 4 and 5 contain dead code in the form of NOP, which stands for no operation.

Thus, it has no effect on the functionality of the program but still serves to change the

appearance of the program.

Dead code can be such that it is never executed or it could be such that it gets executed

but has no effect whatsoever on the original functionality of the virus.
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Figure 6: BadBoy - Subroutine permutation [1]

Figure 7: Dead code insertion [15]
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3.1.3 Register Swap

The virus using the register usage exchange technique will execute using different

registers over different generations [1]. W95 / Regswap [8] is an example of a malware using

this technique.

Figure 8: Register Swap [1]

As can be seen in the first code snippet ‘move edi, 004h’ is replaced by the ‘move ebx,

004h’. Similarly, ‘move eax, 000Ch’ is replaced by ‘move edi, 000Ch’.

3.1.4 Equivalent Code Substitution

In equivalent code substitution the virus replaces an instruction or a set of instructions in

the virus body with an equivalent instruction or set of instructions. For example, something like
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‘inc eax’ is the same as ‘add eax, 1’. Similarly, instruction like ‘xor eax, eax’ can be substituted

by ‘move ax, 0’.

3.1.5 Random Jump Insertion

Another way to generate metamorphism is to introduce jumps at random places in the

code [1]. The jumps are inserted in such a way that although the jumps are always random the

sequence of the execution of the virus remains unchanged. Viruses like Zperm [29] use this

technique to remain undetected.

Figure 9: Zperm - Random Jump instructions [8]

In Figure 9, which is from Peter Szor’s paper [8], we can see three distinct ways in which

a Zperm virus will mutate itself by introducing random jumps, all the while maintaining

functional output.  In the first part, the first two instructions are in succession after which the

flow will jump to instruction 3 present after garbage instructions. The program flow will then go

to instruction 4 at the start of the code. This is different from the second sample where, after the

first instruction, the program flow will jump directly to the start of the code. Similarly, the third

code sample differs from the first two samples based on the jump source and jump destinations

which differ from previous generations.
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3.1.6 Code Transposition

Code transposition is a technique in which two blocks of code, which are not dependent

on each other, are rearranged [14]. This will change the static as well as the dynamic signature of

the virus and help evade detection. Take Tamboli’s [16] example:

ins1 [reg1] [reg2]

ins2 [reg3] [reg4]

If ins1 and ins2 are not interdependent (i.e. – the output of one operation has no effect on the

other) then the two instructions can be transposed as follows –

ins1 [reg3] [reg4]

ins2 [reg1] [reg2]

Other techniques used to make malware metamorphic include using non-normalizable

functions [17]. Often a single technique by itself might not be enough to help a metamorphic

malware evade detection completely. Hence, more than one of the above techniques are used in

conjunction.

There also exist virus construction kits which can be used by anyone to create

metamorphic malware. Some of the virus kits that are available to create metamorphic malware

include PS-MPC [46], G2 [18], NEG [47], NGVCK [19], MPCGEN [20].

The introduction of these virus construction kits considerably simplifies the virus creation

process. In some of the virus construction kits there are preloaded modules which can be selected
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to create a virus. This makes the virus creation process very simple and allows even individuals

not well versed with assembly language to write malware.
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CHAPTER 4

Hidden Markov Model

A hidden Markov model (HMM) is based on the use of statistics to detect patterns.

Hidden Markov models have been used in various areas including speech recognition, software

piracy detection, biological sequence analysis, study of three dimensional protein structure,

neuroscience, as well as electrocardiography characterization. In the past few years, research in

the use of HMMs to detect metamorphic malware is well documented [24] [12] [25] [26]. HMMs

are trained by using the op codes from known malware data. Once the HMM has been trained it

can then be used to score files. The result (log likelihood) can then be used to classify the

specimen [22].

4.1 Overview of Hidden Markov Models

HMMs are explained in the below subsections using an example from Stamp’s paper [23]

4.1.1 Notations

The notations for an HMM are based on [23] –

Let,

T be the observation sequence length

N be the number of states in the model

M be the number of observation symbols

Q = {q1, q2, q3…., qN-1} be the distinct states of the Markov process

V = {0, 1,…, M – 1} be the set of possible observations
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A be the state transition probabilities

B be the observation probability matrix

 be the initial state distribution

O = (O0, O1,…., OT-1)  be the observation sequence

Then a generic hidden Markov model can be modeled as follows [23]

Figure 10 : HMM Model [23]

In this model X0, X1…XT-1 denotes the hidden state sequence. The hidden Markov

process itself is shown above the hidden line while the observations O represent the observations

corresponding to the hidden states and are connected using B (the observation probability

matrix)

4.1.2 Example

Consider the example from Prof Stamp’s paper [23], imagine the following scenario.

Consider the problem where we want to determine the average annual temperature at a specific

geographic location over a period of time. To add to the challenge, let us assume that during the

period of time under question there was no accurate way to determine the temperature. As
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temperatures from the past are unavailable we try to look for an indirect sign which could

indicate the temperature prevalent at the time under consideration.

Let there be only two annual temperature descriptions, either ‘hot’ or ‘cold’. Suppose the

scientists have, through evidence, come up with the probability of 0.6 for a cold year to be

successively followed by a cold year as well as the probability of 0.7 for a hot year to be

successively followed by a hot year. This information can be denoted in matrix form as

Figure 11: State Transitions in Matrix form [23]

Hence our state transition matrix will look like

A = 0.7 0.30.4 0.6
The scientists further discover that there is a relation between the thickness of tree rings

for a year and the temperature prevalent at that time. The thickness of tree ring sizes is denoted

by Small (S), Medium (M) or Large (L), and using the information provided by the scientists we

can represent it as

Figure 12 : Observation information in matrix form [23]

Hence our observation probability matrix B will be
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B = 0.1 0.4 0.50.7 0.2 0.1
Suppose initial state distribution (i.e – Probability of starting in “hot” or “cold”) is denoted by

 = [ 0.6 0.4 ]
Now suppose we have a sequence of observations of tree ring thickness.

O = { S, M, S, L }

Let S = 0, M = 1, L = 2

Hence our observation sequence is

O = { 0, 1, 0, 2 }

Now, we want to find out the most likely sequences of annual temperatures that lead to this

observation sequence.

Consider a generic state sequence as follows:

X = { X1, X2, X3, X4 }

and the corresponding observations as

O = (  O0, O1, O2, O3 ).

With the above assumptions, the probability of sequence X occurring is given by

Figure 13: Probability of sequence X occurring [23]
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Where

X0 denotes the probability of the sequence starting in state X0

BX0 (O0) denotes the probability of the first observation being O0

ax0, x1 denotes the probability of the state transitioning from state X0 to X1

Substituting the values from A, B, and O IN the above equation, the probability of

finding a HCCC sequence is

P (HCCC) = 0.6 *(0.1)*(0.3)*(0.2)*(0.6)*(0.7)*(0.6)*(0.1) = 0.000091

We then calculate the probabilities for all the possible state sequences for the given

observation sequence. The result of all these, along with a separate column with normalized

values, is as shown in Table 1.

To find the most probable sequence we need to look at each position independently and

find out which state H or C gives higher probability for that particular position. We then choose

the state with the highest probability as the optimal state for that position. As an example, the

choice of symbol for the first position in the sequence is either H or C. We add the normalized

probabilities of all sequences starting with H as well as for C (calculated as mod (1 – P (H))).

The one which has the higher probability is then chosen as the best choice for that position. From

Table 1 the sum of normalized probabilities for H is 0.188182, and hence that for C is (1 –

0.18812); which is 0.811818. The calculated probabilities for each position will be as shown in

Table 2.
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Table 1: Probabilities [23]

Table 2: Final Results [23]

Using Table 2, for each position we can now pick up the state with the highest possibility.

Hence the optimal state sequence will be CHCH.

4.2 Using HMM to detect malware

Wong and Stamp [2] have earlier explored the use of HMM’s to detect malware with

success. The hidden Markov models (HMMs) are first trained, and then are used to detect

malware. Wong and Stamp use the threshold approach [2] using HMM.
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The threshold model working can be summarized as follows –

1. Train a single HMM using known malware file op code sequences.

2. Observe the results over multiple runs and find a threshold value such that all files

scoring below the threshold can be classified as benign, while the ones scoring above the

threshold will be classified as malware.

3. Once the threshold has been defined, files to be classified are scored using the trained

HMM. On the basis of the score the file can be classified as either malware or benign.

4.3 Dueling HMM

While the threshold approach achieves good results against many metamorphic viruses as

demonstrated by Wong and Stamp in [2], others prove more problematic. In particular,

MetaPHOR [4] and MWOR [3] are able to defeat the threshold approach and blend in with

benign files.

The dueling HMM strategy addresses these challenges by introducing multiple HMMs.

Dueling HMM was first explored by Thomas Austin, Eric Filiol, Sebastian Jose and Mark Stamp

in “Exploring Hidden Markov Models for Virus Analysis: A Semantic Approach” [4]. The paper

further explores the idea of using HMM to detect malware.

The dueling HMM strategy [4] was developed to create more accurate results than the

threshold approach mentioned in section 4.2. The term dueling indicates that multiple HMMs are

fighting against each other in order to decide a winner. The dueling HMM strategy differs from

the threshold approach as the threshold approach relies on a single HMM to help classify the

files, while the dueling HMM relies on multiple HMMs to help classify the files.
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The mechanics of a dueling HMM strategy can be summarized as follows –

1. Train multiple HMMs (number of HMMs will be the same as the number of malware and

benign families). Thus there will be a corresponding HMM for every benign code as well

as for every malware family code.

2. The file to be classified is scored against each of the HMMs individually and the scores

are recorded.

3. The file is classified on the basis of the dueling HMM scores. The file is classified as

belonging to the code of the HMM which scored the highest.

As a result of a new file being needed to be scored against multiple HMMs, the time

required to classify the file increases as it needs to be compared against ‘N’ HMMs (where N is

the number of distinct HMMs in the dueling approach). The results for the dueling approach

improve as compared to the threshold approach.

One limitation of the dueling HMM strategy is that it does not easily allow for tuning.

The HMM that returns the highest probability is always used. In contrast, the threshold value in

the threshold approach can be adjusted in a straightforward manner to reduce either the false

positives or the false negatives.

In section 5.3 we illustrate how the dueling HMM strategy may be adjusted to allow for

better tuning of the results.
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CHAPTER 5

Design and Implementation

5.1 Introduction

We implement a tiered approach in which a file has to go through multiple layers of

trained HMMs. Previous research [4] has shown that the use of individual HMMs can improve

the results as compared to a single HMM threshold based approach. We explore this further by

introducing an HMM for every malware family. The goal is to use the threshold approach to help

reduce the number of files that are actually passed on to the dueling layer, thus increasing

efficiency.

With the introduction of additional HMMs in the layered approach, the efficiency in

terms of time decreases as the file needs to be tested against a greater number of HMM models to

classify it as either good or bad. The challenge is to reduce the time taken to classify the file;

using the threshold model, we filter out the “definitely good” and the “definitely bad” files

leaving a small number of files in the gray area which need to be evaluated with the dueling

HMM approach [4].

5.2 Design

To minimize the time taken to classify a file we came up with a tiered approach which is

illustrated in Figure 14. The approach consists of two distinct layers: the threshold tier and the

dueling tier. The file to be classified is initially processed by the first tier, the threshold HMM

tier, to see whether it can be classified. If the file cannot be eliminated, it is then sent to the

second tier, the dueling HMM tier for classification. The description of the tiers is given below.
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Tier 1:

Tier 1 will contain an HMM which will be trained with all of the malware families. The

goal of this tier is to quickly eliminate a good chunk of viruses by the use of the threshold

technique. The log likelihood per op code is determined for each file and is compared against the

threshold. The files that cannot be satisfactorily classified are passed on to the next tier.

Figure 14: Design

Tier 2:

This tier contains the highest number of HMMs. This tier will have individual HMMs for

each virus family as well as all benign code. Thus, each suspected file can now be inspected to
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see whether it belongs to a particular category. The file will belong to the category of the HMM

which will give it the highest score.

5.3 Biasing the Dueling HMM Strategy

As discussed in Section 4.3 we use biasing. Biasing provides the necessary flexibility to

fine tune the dueling model to produce better results in terms of false positives / false negatives.

We apply a biasing of -0.25 to the G2 HMM and a biasing of -0.44 to the MPCGEN HMM.

Table 3 and Table 4 show how the false positives and false negatives vary with different values

of biasing applied for the HMM. ‘0.0’ represents the case where no biasing is present.

Table 3: G2 - Results varying by applied bias

Bias False Positive False Positive
(%) False Negative False Negative

(%)
0.00 2/370 0.54 0/50 0

-0.05 2/370 0.54 0/50 0
-0.10 2/370 0.54 0/50 0
-0.15 1/370 0.27 0/50 0
-0.20 1/370 0.27 0/50 0
-0.25 0/370 0 0/50 0

In Table 3, we vary the bias applied from ‘0’ to ‘-0.25’ in increments of 0.5, to see how

the biasing changes the result. As can be seen in the Table 3 the false positives gradually

decrease from 2 to 0 while the false negative rates stay constant at 0.

Similarly, in Table 4, we see the results corresponding to the bias applied. The bias in

case of MPCGEN was varied from ‘0.0’ to ‘-0.44’ in increments of 0.05. The number of false

positives for MPCGEN decreases from 4 for no biasing to 0 with a biasing of ‘-0.44’.
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Table 4: MPCGEN – Results varying by applied bias

Bias False Positive False Positive (%) False Negative False Negative
(%)

0.00 4/370 1.08 0/50 0
-0.05 4/370 1.08 0/50 0
-0.10 3/370 0.81 0/50 0
-0.15 3/370 0.81 0/50 0
-0.20 2/370 0.54 0/50 0
-0.25 2/370 0.54 0/50 0
-0.30 2/370 0.54 0/50 0
-0.35 1/370 0.27 0/50 0
-0.40 1/370 0.27 0/50 0
-0.44 0/370 0 0/50 0

5.4 Implementation

This section includes what datasets were used, how they were generated and how the

HMMs are created.

5.4.1 System Details

The specifications of the host system used are given below.

Type Specification

Processor Intel Core i5-3210M CPU @ 2.5GHz

RAM 8.00 GB

System Type Windows 7, 64 – bit operating System

The Linux system that was used was running Ubuntu 12.04. Ubuntu was run on the host

machine using VMware player (version 5.0.2). The specifications for Ubuntu are as follows:
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Type Specification

Processor Intel Core i5-3210M CPU @ 2.5GHz

RAM 1.00 GB

System Type Ubuntu 12.04 , 64 – bit operating System

5.4.2 Data set

The data sets used in the implementation of this project include the benign data sets for

Clang [35], Cygwin [37], GCC [38], MingW [40], TASM [39], Turbo C [41] as well as the set of

benign files used by MWOR to insert dead code in order to morph.

We included benign data sets for GCC, MingW and Clang as these are the more popular

compilers that are used. We also included the dataset for TASM as MetaPHOR is compiled using

TASM. Additionally it also serves to help compare hand written code with compiled code. As

mentioned above, among other techniques, MWOR pulls code from 20 specific Linux

executables. Hence these Linux executables were disassembled and used as a data set. Previous

experiments [2] use Cygwin utility executables to test with NGVCK; hence the Cygwin dataset

was added as well. The benign datasets used were a part of previous experiments carried out by

Dr. Austin et al. [4]

The malware data set consisted of MetaPHOR [27], MPCGEN [20], G2 [18], NGVCK

[19], and MWOR [3], with padding ratios of 1, 2, 3 and 4, represented as MWOR (PR 1),

MWOR (PR 2), MWOR (PR 3), MWOR (PR 4) respectively. The malware sets used are from

previous experiments carried out under the guidance of Dr. Stamp [2] [3]. The MetaPHOR

dataset was used in previous experiments by Dr. Austin et al. in [4].
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We chose to include malware datasets G2, NGVCK and MPCGEN as these were

previously used in experiments by Wong and Stamp [2]. MetaPHOR was chosen since it is

particularly challenging in terms of the techniques used by it to remain undetected. Since

MWOR has been shown to be able to evade detection [3] by the threshold approach we decided

to include the MWOR dataset as well.

Table 5: File distribution

Benign Malware

Dataset
Number of

files
Dataset Number of files

Clang 73 G2 50

Cygwin 16 MPCGEN 50

GCC 74 NGVCK 200

MingW 72 MetaPHOR 60

TASM 56 MWOR (PR 1) 100

Turbo C 64 MWOR (PR 2) 100

Linux Utilities 16 MWOR (PR 3) 100

MWOR (PR 4) 100

Once the disassembled version of these files was obtained they were then processed to

give a sequence of numbers. This was done by assigning a fixed number to an op code and

whenever that op code was encountered during the processing it would be replaced by its

numerical equivalent.
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The number of files belonging to each dataset used in the project is shown in Table 5.

5.4.3 Training HMMs

To train HMMs we use the Jahmm library [43]. The HMM is trained using files from the

above datasets. Once the HMM has been trained it still needs some modifications to be made to

it so that it is feasible to use it. In order to account for the HMM giving odd results for op codes

not encountered in training, we smoothed the model. There are various ways in which smoothing

can be carried out including, but not limited to, Additive Smoothing / Laplacian smoothing [44],

exponential smoothing [45] etc. We use the additive smoothing method to smooth. We add a

small probability (1 * 10-6) and then divide every individual probability by the sum of the

changed probability.

The scores produced by the HMM at this point will be the log likelihood scores.

However, as explained by Sudarshan [3], log likely hood scores depend on the length of the

sequence as well. Hence, larger files will score higher. To mitigate this, we take the length of the

sequence into account. To make the scores independent of the length of the files we divide the

score by the number of op codes in the sequence, similar to the procedure followed by Sudarshan

in [3].

5.4.4 Clustering

A cluster consists of objects which are found to be similar and hence are grouped

together. As mentioned in “Algorithms for Clustering” [49], “A cluster is an aggregation of

points in the test space such that the distance between any two points in the cluster is less than

the distance between any point in the cluster and any point not in it”. It essentially means that

points in a cluster are closer to each other than they are to other points outside the cluster. The
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extent to which clustering can be helpful depends on the type of data as well. Clustering helps

surface patterns that are not directly visible. Clustering can be used to find similarities between

data points which consist of multiple dimensions.

We use K-means to cluster the files passed from tier 1 to tier 2. K-means is an easy and

fast way to cluster data. It uses Lloyd’s algorithm. K-means clustering works by ultimately

dividing the given dataset into K subsets. Each of these subsets is initialized either by using a

random point or using specific ways like uniform initialization. These points are the initial

centroids say (Ca1, Ca2, Ca3, Ca4…Cak).

For every record in the dataset, the distance of the record from each of the centroids is

calculated and the record is classified as belonging to the cluster whose centroid is at the least

distance from the point. Once the point has been added to the cluster the centroid of that cluster

is recalculated to adjust for the most recently added record. Once all the data points have been

classified we use the centroid values from the above process. Let the centroids that we get after

one iteration be (Cb1, Cb2, Cb3, Cb4…Cbk).

Each of the records from the dataset is then scored against these new centroids (Cb1, Cb2,

Cb3, Cb4…Cbk). At the end of each iteration new centroids are generated which are again used to

classify the records from the dataset. This readjusting of the centroids and the clusters around

them goes on till convergence is reached or if the change in centroid values is small.

The scikit-learn [48] library in Python was used to carry out K-means clustering. We

used Silhouette scores as a measure of quality of the clusters. In section 6.2.3.1 we have a look at

the results for k-means clustering with different number of centroids.
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CHAPTER 6

Experiments and Results

We experiment with three different approaches, the threshold approach [2], the dueling

approach [4] and the tiered approach. We also compare and contrast the results of the three

approaches in terms of execution time, as well as in terms of the false positives and false

negatives.

In our experiments we use five-fold cross validation. The data for each of the data sets is

divided into five parts. Out of these five parts we choose four parts to train the HMM and the

remaining part is used to test the trained HMM. We do this for every subset of data. Thus, we

carry out tests such that every one of the subsets is tested with an HMM that has been trained

with the other four subsets.

Using the four parts of the data the HMM is created using the k-means learner module.

We look at each of these in detail in the following sections.

6.1 Data sets

The data sets we use include the benign datasets of Cygwin utilities as well as Linux

executables. Linux utilities were included as MWOR pulls code from these files to disguise itself

as a benign file. These datasets are explained in more detail in Section 5.4.2.

6.2 Experiments

In the following sections we look at how the experiments were carried out for the

different approaches.
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6.2.1 Threshold Approach

In this approach, for every malware family code we train an HMM using four subsets of

the malware code and then use the trained HMM to score the fifth subset of the malware code as

well as all the benign code. Once the file has been scored in terms of LLPO the score is checked

to see where it stands in relation with the threshold. The closer the score is to zero, higher the

probability of the file being a malware file. If the score is above the threshold value (towards the

direction of zero value) the file is classified as a malware and if the score is below the threshold

the file is classified as benign.

Table 6: Results for Threshold Approach

Results in Table 6 show that the threshold approach does better for G2 and MPCGEN,

with MetaPHOR being particularly hard to detect. These results are different from Wong’s and

Stamp’s [2] results due to the fact that we use a benign dataset which is different from the one

used in their experiments.

Threshold

False
Positives

False
Positives

(%)

False
Negative

False
Negative

(%)
Threshold Total time

(milliseconds)

G2 62/370 16.75676 4/50 8 -2.66659 548.224
MPCGEN 89/370 24.05405 0/50 0 -2.90398 495.467

MetaPHOR 198/370 53.51351 10/60 16.67 -2.65207 538.665
NGVCK 166/370 44.86486 16/200 8 -3.57961 550.97
MWOR
(PR 1) 0/370 0 0/100 0 -2.6251 866.268

MWOR
(PR 2) 1/370 0.27027 0/100 0 -2.5394 964.157

MWOR
(PR 3) 4/370 1.081081 0/100 0 -2.63274 1152.988

MWOR
(PR 4) 4/370 1.081081 0/100 0 -2.60028 1341.365
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6.2.2 Dueling Approach

In the dueling approach an HMM is trained for the malware code as in the threshold

approach. Additionally, we build similar HMMs for every benign dataset. Once the HMMs have

been built, every file is scored against the malware HMM as well as the benign HMMs. The file

will have multiple scores, each associated with one HMM. The file is then classified on the basis

of the HMM that generated the highest score for that file. Once the HMM which generates the

highest score for the file being classified is identified, if the HMM was built from malware data

then the file is classified as malware otherwise it is classified as a benign file.

In case of G2 and MetaPHOR we add a penalty / bias of ‘-0.25’ and ‘-0.44’ respectively,

to all scores generated by the malware HMM, in order to eliminate any false positives that may

be generated.

Table 7: Results for the Dueling Approach with biasing

Dueling

Family False
Positives

False
Positives

(%)

False
Negatives

False
Negatives

(%)

Average time
(millisec) Bias

G2 0/370 0 0/50 0 1030.566 - 0.25

MPCGEN 0/370 0 0/50 0 981.1332 - 0.44
MetaPHOR 4/370 1.081081 9/60 15 1113.473 -

NGVCK 2/370 0.540541 75/200 37.5 1155.605 -
MWOR
(PR 1) 0/370 0 0/100 0 2019.35 -

MWOR
(PR 2) 0/370 0 0/100 0 2413.054 -

MWOR
(PR 3) 0/370 0 0/100 0 2897.533 -

MWOR
(PR 4) 0/370 0 0/100 0 3433.045 -
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Table 7 shows that the results improve considerably in terms of the false negatives and

the false positives. However, as a side effect of each file being scored against multiple HMMs

the files take longer to be classified.

6.2.3 Tiered Approach

In the tiered approach we use the threshold approach in conjunction with the dueling

approach to achieve comparable results. The aim is to eliminate as many files as can be

eliminated using the threshold approach (Tier 1), thus needing the dueling approach (Tier 2) to

classify a smaller number of files, leading to considerable gain in terms of the execution time to

classify the file.

We first use the threshold approach to score the files and eliminate any “definitely good”

files, files which score below the threshold. The threshold is different for different malware code.

The files which cannot be eliminated using the threshold approach are then scored using the

dueling HMM approach.

Table 8: Results for Tiered Approach

Tiered

False
Positive

False
positive

(%)

False
Negative

False
Negative

(%)
Threshold Eliminated

at tier1 Bias Time
(millisecs.)

G2 0/370 0 0/50 0 -2.6739625 249/420 -0.25 613.258992

MPCGEN 0/370 0 0/50 0 -2.9039755 281/420 -0.44 603.359175

MetaPHOR 4/370 0.1 9/60 15 -2.7918600 152/430 - 860.566666

NGVCK 2/370 0.5405 75/200 37.5 -3.6203424 209/570 - 736.999253

MWOR
(PR 1) 0/370 0 0/100 0 -2.6251045 370/470 - 1512.64964

MWOR
(PR 2) 0/370 0 0/100 0 -2.5393950 369/470 - 1968.82529

MWOR
(PR 3) 0/370 0 0/100 0 -2.6096006 366/470 - 2531.71884

MWOR
(PR 4) 0/370 0 0/100 0 -2.5927906 366/470 - 3187.04291
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For this approach, the threshold for Tier 1 was chosen in such a way that there were no

false negatives except in the case of MetaPHOR and NGVCK, and hence they differ from the

thresholds chosen in the standalone threshold approach.

Table 9: Threshold tier in the tiered approach

Threshold

False
Positive

False
Positive

(%)

False
Negative

False
Negative

(%)
Threshold Eliminated Total

time(millisec)

G2 NA/370 0 0/50 0 -
2.6739625 249/420 548.224

MPCGEN NA/370 0 0/50 0 -2.903975 281/420 495.467

MetaPHOR NA/370 0 0/60 0 -2.791860 152/430 538.665

NGVCK NA/370 0 2/200 1 -3.620342 209/570 550.97
MWOR
(PR 1) NA/370 0 0/100 0 -2.625104 370/470 866.268

MWOR
(PR 2) NA/370 0 0/100 0 -2.539395 369/470 964.157

MWOR
(PR 3) NA/370 0 0/100 0 -2.632744 368/470 1152.988

MWOR
(PR 4) NA/370 0 0/100 0 -2.600275 368/470 1341.365

6.2.3.1 Cluster Analysis

In this section we analyze the results of clustering for files passed to tier 2 from tier 1.

Results with different centroid numbers are available in Appendix D. For clustering with 5

centroids, the distribution of malware files and benign files is given in Table 10. The detailed

information of how every file is clustered is represented in Table 11.

Table 10: 5 Centroids, Benign - Malware Distribution by Clusters

Cluster ->
Type

0 1 2 3 4

Benign 421 3 152 4 11
Malware 4 396 60 98 162



42

Table 10 shows that there were 4 malware files which are clustered into cluster 0 while there are

421 benign files which were clustered into the same cluster.

Table 11: 5 Centroids, Detailed distribution by Cluster

Zero One Two Three Four

Linux_Utilities 0 3 0 0 0

Clang 266 0 0 0 0

GCC 148 0 45 0 0

MinGW 0 0 87 0 0

TASM 3 0 8 2 10

Turbo C 4 0 12 0 1

G2 0 0 0 50 0

MetaPHOR 0 0 60 0 0

MPCGEN 0 0 0 50 0

MWOR (PR 1) 1 99 0 0 0

MWOR (PR 2) 1 99 0 0 0

MWOR (PR 3) 1 99 0 0 0

MWOR (PR 4) 1 99 0 0 0

NGVCK 0 0 0 0 162

Figure 15: 5 Centroids, Classification by family
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In Table 11, cluster 3 has 3 Linux_Utility files and 396 MWOR files clustered together as

MWOR inserts dead code pulled from these Linux Utility files. Clusters 1, 3 and 4 mostly

contain mainly contains malware files while clusters 0 and 2 mainly contain all benign files. The

distribution of the files among clusters is illustrated in Figure 15 and Figure 16.

Figure 16: 5 Centroids, Cluster Composition
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the tiered approach. The dueling approach, as expected, is the slowest of the three. The execution

time for the dueling approach is on average two to three times the execution time of the threshold

approach. The tiered approach lies snugly in the middle with the execution time ranging from 1.1

times – 2.5 times the time taken by the threshold approach, with most of the execution times for

the tiered model approaching the execution time for the threshold model.

Table 12: Comparison - Performance in terms of time

Timing comparison (in Seconds)
Family Threshold (sec) Dueling (sec) Tiered (sec)

G2 548.224 1030.566 613.25899
MPCGEN 495.467 981.133 603.35918

MetaPHOR 538.665 1113.473 860.56667
NGVCK 550.970 1155.605 736.99925

MWOR (PR 1) 866.268 2019.350 1512.64965
MWOR (PR 2) 964.157 2413.054 1968.82529
MWOR (PR 3) 1152.988 2897.533 2531.71885
MWOR (PR 4) 1341.365 3433.045 3187.04291

6.3.2 Comparison: False Positive and False Negative

Table 13: Comparison - False positives and false negatives

Approach Threshold Dueling Tiered

FP FN FP FN FP FN
G2 62/370 4/50 0/370 0/50 0/370 0/50

MPCGEN 89/370 0/50 0/370 0/50 0/370 0/50
MetaPHOR 198/370 10/60 4/370 9 /60 4/370 9/60

NGVCK 166/370 16/200 2/370 75/200 2/370 75/200
MWOR (PR 1) 0/370 0/100 0/370 0/100 0/370 0/100
MWOR (PR 2) 1/370 0/100 0/370 0/100 0/370 0/100
MWOR (PR 3) 4/370 0/100 0/370 0/100 0/370 0/100
MWOR (PR 4) 4/370 0/100 0/370 0/100 0/370 0/100
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Table 13 shows how the different approaches compare against each other in terms of

false positives and false negatives for different malware families. The results from Table 13

show that in terms of false positives and false negatives, the tiered approach is as good as the

dueling approach with the exception of MetaPHOR where the tiered approach succeeds in

eliminating all false positives. Surprisingly, the threshold approach eliminates the files which

might cause the dueling approach to cause false positives.

6.3.3 Consolidated Comparison

Table 14, clearly shows that the threshold approach is the best approach in terms of time with

the tradeoff being the performance in terms of the false positives and false negatives. The

dueling model is much more accurate than the threshold model however the execution time

required is large. The tiered model on the other hand takes the best from both approaches and

comes close to matching the time performance of the threshold while providing false positive /

false negative performance which is comparable to the dueling approach.
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Table 14: Consolidated comparison - False positives (FP), false negatives (FN), time

Approach Threshold Dueling Tiered

Malware
Family FP FP (%) FN FN (%) Time (millisec.) FP FP

(%) FN FN
(%)

Time
(millisec.) FP FP

(%) FN FN
(%)

Time
(millisec.)

G2 62/370 16.75676 4/50 8 548.223929 0/370 0 0/50 0 1030.56631 0/370 0 0/50 0 613.259

MPCGEN 89/370 24.05405 0/50 0 495.466803 0/370 0 0/50 0 981.13317 0/370 0 0/50 0 603.359

MetaPHOR 198/370 53.51351 10/60 16.67 538.664901 4/370 1.08 9/60 15 1113.47348 4/370 0.1 9/60 15 860.567

NGVCK 166/370 44.86486 16/200 8 550.969502 2/370 0.54 75/200 37 1155.60505 2/370 0.54 75/200 37 736.999

MWOR
(PR 1) 0/370 0 0/100 0 866.268014 0/370 0 0/100 0 2019.34958 0/370 0 0/100 0 1512.65

MWOR
(PR 2) 1/370 0.27027 0/100 0 964.157236 0/370 0 0/100 0 2413.05431 0/370 0 0/100 0 1968.825

MWOR
(PR 3) 4/370 1.081081 0/100 0 1152.98839 0/370 0 0/100 0 2897.53263 0/370 0 0/100 0 2531.719

MWOR
(PR 4) 4/370 1.081081 0/100 0 1341.365078 0/370 0 0/100 0 3433.04472 0/370 0 0/100 0 3187.043
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CHAPTER 7

Conclusion and Future Work

This project proposed the idea of combining different approaches in order to detect

malware in a more efficient way in terms of time. In this experiment, we implemented the

threshold model from Wong and Stamp [2] as well as expanded the dueling HMM [4] approach

to include an HMM for each malware family code. We also implemented a tiered model which

uses the threshold approach along with the dueling approach. Finally, we illustrated how to apply

a bias to the dueling HMM strategy, allowing for tuning of the results.

The experiments were carried out on a metamorphic malware like MetaPHOR and

MWOR with different padding ratios, as well as virus construction kits including G2, NGVCK,

and MPCGEN.

The tiered model takes the best from both approaches in an effort to help detect malware

efficiently. The results from the experiments that were carried out during the course of the

project show that the tiered approach is always faster than the dueling approach. The

improvement ranges from almost 40% improvement to a minimum improvement of 8% percent

in terms of time.

Although the tiered model is faster, unlike the threshold model, it does not sacrifice on

accuracy. The accuracy for the tiered approach is the same as the dueling HMM approach.

The tiered approach was able to correctly identify the malware files with an accuracy of

89.07% while keeping the false positive rate to a minimum. Thus we are able to achieve the

results comparable to dueling HMM without sacrificing on the performance in terms of time.
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An additional way to speed up the tiered approach would be to find a way that would also

be able to eliminate the ‘definitely bad’ files. ‘Definitely bad’ is a file such that it’s LLPO score

is so close to zero that it can definitely be classified as being a malware file.
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APPENDIX A

Scatter Plots for Threshold Approach Results

Figure A.1: G2 with threshold = -2.66659
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Figure A.2: MetaPHOR with threshold = -2.65207
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Figure A.3: MPCGEN with threshold = -2.90398
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Figure A.4: MWOR (PR 1) with threshold = -2.6251
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Figure A.5: MWOR (PR 2) with threshold = -2.5394
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Figure A.6: MWOR (PR 3) with threshold = -2.63274
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Figure A.7: MWOR (PR 4) with threshold = -2.60028
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Figure A.8: NGVCK with threshold = -3.57961
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APPENDIX B

Charts for the Dueling Approach

Figure B.1: G2 with bias = -0.25
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Figure B.2: MetaPHOR

Figure B.3: MPCGEN with bias = -0.44
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Figure B.4: MWOR (PR 1)

Figure B.5: MWOR (PR 2)
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Figure B.6: MWOR (PR 3)

Figure B.7: MWOR (PR 4)

0

20

40

60

80

100

120

Linux
Utilities
HMM

Clang
HMM

Cygwin
HMM

GCC
HMM

MinGW
HMM

TASM
HMM

Turbo C
HMM

MWOR
(PR 4)
HMM

N
um

be
r o

f f
ile

s

HMM

MWOR (PR 3)

MWOR (PR 4)

Turbo C

TASM

MinGW

GCC

Cygwin

Clang

Linux Utilities

0

20

40

60

80

100

120

Linux
Utilities
HMM

Clang
HMM

Cygwin
HMM

GCC
HMM

MinGW
HMM

TASM
HMM

Turbo C
HMM

MWOR
(PR 4)
HMM

N
um

be
r o

f f
ile

s

HMM

MWOR (PR 4)

MWOR (PR 4)

Turbo C

TASM

MinGW

GCC

Cygwin

Clang

Linux Utilities



66

Figure B.8: NGVCK
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APPENDIX C

Charts for Tiered Approach

Figure C.1: G2, Tiered approach - Threshold Tier, Threshold = -3.2128274404

Figure C.2: G2, Tiered Approach – Dueling Tier, Bias =-0.25
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Figure C.3: MetaPHOR, Tiered Approach - Threshold tier, Threshold = -2.791860013

Figure C.4: MetaPHOR, Tiered Approach – Dueling tier
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Figure C.5: MPCGEN, Tiered Approach, Threshold tier, Threshold = -2.903975532

Figure C.6: MPCGEN, Tiered approach - Dueling Tier, Bias = - 0.44

0
10
20
30
40
50
60
70

N
um

be
r o

f f
ile

s

HMM

MPCGEN, Tiered Approach - Dueling Tier,
Bias = 0.44

MPCGEN

Turbo C

TASM

MinGW

GCC

Cygwin

Clang

Linux Utilities



70

Figure C.7: NGVCK, Tiered Approach - Threshold Tier, Threshold = -3.620342489

Figure C.8 NGVCK, Tiered Approach - Dueling Tier
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Figure C.9: MWOR (PR 4), Tiered Approach - Threshold Tier, Threshold = -2.539395038

Figure C.10: MWOR (PR 4), Tiered Approach - Dueling Tier

0

20

40

60

80

100

120

Linux
Utilities

Clang Cygwin GCC MinGW TASM Turbo C MWOR
(PR 4)

N
um

be
r o

f f
ile

s

HMM

MWOR (PR 4), Tiered Approach - Dueling layer

Turbo C HMM

TASM HMM

MinGW HMM

GCC HMM

Cygwin HMM

Clang HMM

Linux Utilities HMM

MWOR (PR 4) HMM



72

APPENDIX D

K-Means Clustering Results

A. Centroids = 3, Silhouette = 0.625796768

Table D.1: 3 Centroids, Benign - Malware Distribution by Clusters

Cluster ->
Type

0 1 2

Benign 3 485 103
Malware 396 15 309

Table D.2: 3 Centroids, Detailed distribution by clusters

Zero One Two Three

Linux_Utilities 3 0 0 0

Clang 0 266 0 0

GCC 0 192 1 0

MinGW 0 14 73 0

TASM 0 5 18 0

Turbo C 0 8 9 0

G2 0 0 50 0

MetaPHOR 0 11 49 0

MPCGEN 0 0 50 0

MWOR (PR 1) 99 1 0 0

MWOR (PR 2) 99 1 0 0

MWOR (PR 3) 99 1 0 0

MWOR (PR 4) 99 1 0 0

NGVCK 0 0 162 0
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Figure D.1: 3 Centroids, Family classification

Figure D.2: 3 Centroids, Cluster Composition
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B. Centroids = 4, Silhouette = 0.599853077

Table D.3: 4 Centroids, Benign - Malware Distribution by Clusters

Cluster ->
Type

0 1 2 3

Benign 145 3 428 15
Malware 60 396 4 260

Table D.4: 4 Centroids, Detailed distribution by clusters

Zero One Two Three

Linux_Utilities 0 3 0 0

Clang 0 0 266 0

GCC 38 0 155 0

MinGW 87 0 0 0

TASM 8 0 3 12

Turbo C 12 0 4 1

G2 0 0 0 50

MetaPHOR 60 0 0 0

MPCGEN 0 0 0 50

MWOR (PR 1) 0 99 1 0

MWOR (PR 2) 0 99 1 0

MWOR (PR 3) 0 99 1 0

MWOR (PR 4) 0 99 1 0

NGVCK 0 0 0 162
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Figure D.3: 4 Centroids, Family classification

Figure D.4: 4 Centroids, Cluster Composition
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C. Centroids = 7, Silhouette = 0.553054408

Table D.5: 7 Centroids, Benign - Malware Distribution by Clusters

Cluster ->
Type

0 1 2 3 4 5 6

Benign 5 111 3 234 0 228 10
Malware 162 60 396 4 51 0 47

Table D.6: 7 Centroids, Detailed distribution by clusters

Zero One Two Three Four Five Six

Linux_Utilities 0 0 3 0 0 0 0

Clang 0 0 0 205 0 61 0

GCC 0 5 0 26 0 162 0

MinGW 0 87 0 0 0 0 0

TASM 4 8 0 3 0 0 8

Turbo C 1 11 0 0 0 5 0

G2 0 0 0 0 1 0 49

MetaPHOR 0 60 0 0 0 0 0

MPCGEN 0 0 0 0 50 0 0

MWOR (PR 1) 0 0 99 1 0 0 0

MWOR (PR 2) 0 0 99 1 0 0 0

MWOR (PR 3) 0 0 99 1 0 0 0

MWOR (PR 4) 0 0 99 1 0 0 0

NGVCK 162 0 0 0 0 0 0
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Figure D.5: 7 Centroids, Family classification

Figure D.6: 7 Centroids, Cluster Composition
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D. Centroids = 6, Silhouette = 0.547637992

Table D.7: 6 Centroids, Benign - Malware Distribution by Clusters

Cluster ->
Type

0 1 2 3 4 5

Benign 234 3 11 111 228 4
Malware 4 396 162 60 0 98

Table D.8: 6 Centroids, Detailed distribution by clusters

Zero One Two Three Four Five

Linux_Utilities 0 3 0 0 0 0

Clang 205 0 0 0 61 0

GCC 26 0 0 5 162 0

MinGW 0 0 0 87 0 0

TASM 3 0 10 8 0 2

Turbo C 0 0 1 11 5 0

G2 0 0 0 0 0 50

MetaPHOR 0 0 0 60 0 0

MPCGEN 0 0 0 0 0 50

MWOR (PR 1) 1 99 0 0 0 0

MWOR (PR 2) 1 99 0 0 0 0

MWOR (PR 3) 1 99 0 0 0 0

MWOR (PR 4) 1 99 0 0 0 0

NGVCK 0 0 162 0 0 0
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Figure D.7: 6 Centroids, Family classification

Figure D.8: 6 Centroids, Cluster Composition
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