
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

Text Summarization for Compressed Inverted Indexes and Text Summarization for Compressed Inverted Indexes and

Snippets Snippets

Mangesh Dahale
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Dahale, Mangesh, "Text Summarization for Compressed Inverted Indexes and Snippets" (2014). Master's
Projects. 361.
DOI: https://doi.org/10.31979/etd.ekkr-4urb
https://scholarworks.sjsu.edu/etd_projects/361

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/361?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Text Summarization for Compressed Inverted Indexes and Snippets

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Mangesh Dahale

May 2014

© 2014

Mangesh Dahale

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Text Summarization for Compressed Inverted Indexes and Snippets

by

Mangesh Dahale

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2014

Dr. Chris Pollett Department of Computer Science

Dr. Sami Khuri Department of Computer Science

Dr. Ronald Mak Department of Computer Science

ABSTRACT

Text Summarization for Compressed Inverted Indexes and Snippets

by Mangesh Dahale

 Text summarization is a technique to generate a concise summary of

a larger text. In search engines, Text summarization can be used for

generating compressed descriptions of web pages. For indexing, these can

be used rather than whole pages when building inverted indexes. For query

results, summaries can be used for snippet generation. In this project, we

research on several techniques of text summarization. We evaluate these

techniques for quality of the generated summary and time required to

generate it. We implement the technique chosen from the evaluation in

Yioop, an open source, PHP-based search engine.

ACKNOWLEDGEMENTS

 It gives me immense pleasure to present my acknowledgement, a

token of appreciation to all the persons involved directly and indirectly with

my project.

 I take this opportunity to express my profound sense of gratitude and

inestimable respect to my project advisor, Dr. Chris Pollett, for his

continuous guidance and support throughout the project.

 I am grateful to my committee members, Dr. Sami Khuri and Dr.

Ronald Mak, for their suggestions without which this project would not

have been possible.

1

Table of Contents

1. Introduction .. 5

2. Similarity measures .. 8

2.1. TextRank for Sentence Extraction .. 8

2.2. Cosine similarity measure .. 9

2.2.1. TF-IDF .. 11

3. Study different methods of Text Summarization ... 12

3.1. Intersection method ... 12

3.2. Centroid method .. 15

3.2.1. What is centroid? .. 15

3.3. TF-ISF method .. 16

3.3.1. Diversity ... 17

3.3.2. Coverage ... 17

3.3.3. Single Objective function .. 18

4. Implementing three methods to evaluate their performances 20

4.1. Intersection method ... 20

4.2. Centroid method .. 21

4.3. TF-ISF method .. 22

2

5. Evaluate the performance of these three methods to find the best

summarization method .. 23

5.1. Background ... 23

5.2. Evaluation.. 23

6. Integrating the centroid summarizer into Yioop search engine...................... 28

6.1. Integration ... 28

6.2. Word Cloud ... 31

6.3. Multi-language support .. 33

7. Experiments ... 35

7.1. Quality of the generated summary ... 35

7.1.1. Results .. 35

7.1.2. Example .. 37

7.2. Effect on crawl time ... 39

8. Conclusion and future work.. 40

Bibliography ... 42

Appendix .. 44

A. Additional experiment with HipHop Compiler for PHP 44

3

List of Figures

Figure 1: Sample graph build for sentence extraction using TextRank algorithm 14

Figure 2: Similarity scores between Human generated summary and summarizer

generated summary ... 25

Figure 3: Time required to generate the summary for each of the three methods . 26

Figure 4: Time required to generate the summary for Intersection and centroid

method .. 27

Figure 5: Yioop login page ... 29

Figure 6: Yioop admin manage account page .. 29

Figure 7: Yioop manage crawl page .. 30

Figure 8: Feature to switch between the two summarizers 30

Figure 9: Word cloud in Yioop search results page ... 32

Figure 10: Yioop search results page for Chinese language 33

Figure 11: Cosine similarity of summary generated by Basic and centroid

summarizer with Human generated summary.. 37

Figure 12: Summary generated by human for football Wikipedia web page 37

Figure 13: Summary generated by basic summarizer for football Wikipedia web

page .. 38

Figure 14: Summary generated by centroid summarizer for football Wikipedia

web page ... 38

Figure 15: Comparison between using Interpreter and Compiler for running

summarizers .. 46

4

List of Tables

Table 1: Document set used for experiments ... 24

Table 2: Similarity score between human generated summary and summarizer

generated summary ... 25

Table 3: Time required to generate the summary for each of the three methods .. 26

Table 4: Cosine similarity of summary generated by basic and centroid

summarizer with a human generated summary .. 36

Table 5: Comparison between using interpreter and compiler for running

summarizers .. 46

5

1. Introduction

 Search engines are often the first source of information when we want to do

any research. To get this information, a search engine should understand our query

and give results relevant to the query. Summarization is one of the key steps for

obtaining these relevant results from the system. We will implement this

summarization feature in a search engine to improve its ability to obtain these

relevant results from the system. The major challenge in summarization lies in

distinguishing the more informative parts of a document from the less informative

ones. Text summarization is a technique to generate a concise summary of a larger

text. In search engines, text summarization can be used for generating compressed

descriptions of web pages. For indexing, these can be used rather than whole

pages when building an inverted indexes. For query results, summaries can be

used for snippet generation.

 Text summarization is usually described as a three-step process: selection

of salient portions of text, aggregation of the information for various selected

portions and abstraction of this information, and finally, presentation of the final

summary text. This process can be used in many applications such as information

retrieval, intelligence gathering, information extraction, text mining, and

indexing
[5]

.

6

 In this project, we experimented with three summarization techniques for

the Yioop search engine. Yioop is an open source, PHP search engine which is

designed to allow users to produce indexes of a web-site or a collection of web-

sites. In the initial stage of the project, research was done on the text

summarization topics to find out which methods are being used for text

summarization and study three methods in depth so that we can implement them.

Then, we evaluated the performance of three summarization techniques for which

we created a sample document set so that we can compare these three methods and

choose the one with high performance and which is best suited for Yioop search

engine. Finally, we performed some experiments to compare the new summarizer

with the previous summarizer in Yioop search engine. Also, we experimented the

effects on speed using compiler versus interpreter for running these summarizers.

 The rest of the report is organized as follows. Chapter 2 introduces the

similarity measures that we have used for summarization. Chapter 3 contains

detailed explanations of the three summarization techniques we have

implemented. Chapter 4 explains the implementation of those three summarization

techniques. In Chapter 5, we evaluated the performance of three summarization

techniques to choose the technique which has a good performance and is best

suited for the Yioop search engine. Chapter 6 contains the steps that we have

performed to integrate the chosen summarizer into the Yioop search engine.

7

Chapter 7 contains the experiments that we have performed on the integrated

summarizer. Chapter 8 concludes the project and also discusses about the future

work in this project.

8

2. Similarity measures

 A similarity measure gives us the degree of similarity between two

objects
[13]

. Summarization techniques often use similarity measures to find the

similarity between the sentences in the text. The three methods that we

implemented to select the best method to integrate in Yioop use similarity

measures to identify the more informative parts of the document from the less

informative parts.

 We used two similarity ranking algorithms in this project. The first

summarization technique, the intersection method, uses the TextRank
[8]

 algorithm

as a similarity measure. The second and third method, the centroid method and the

TF-ISF method, use the cosine ranking algorithm
[2]

 as a similarity measure.

2.1. TextRank for Sentence Extraction

 In this algorithm, we first represent the complete text as a graph. As we

have to get the similarity of each sentence with every other sentence in the text, we

represent the sentences as vertices of this graph. We measure the similarity

between sentences by examining the content overlap between every pair of

sentences. The content overlap can be simply measured by comparing the terms in

both sentences. This relation between two sentences is also known as process of

recommendation. When the contents of two sentences overlap that means they

9

share some common concepts, so one sentence recommends to the reader the other

sentence which also has the same concepts in it
[8]

.

 For the long sentences in the text, we use a normalization factor, where we

divide the result of the content overlap by length of each sentence. The result we

get after these operations is the similarity score of two given sentences. This

similarity score is represented on the graph as a weighted edge between two

vertices representing those two given sentences. After calculating the similarity

score of all the sentences, we get a highly connected graph as a result. For each

sentence, we add the similarity scores of that sentence with every other sentence in

the complete text to get a total score for that sentence. Finally, we sort the

sentences in descending order of their total score to get the sentences with highest

scores at the top. We include these sentences in our summary until the summary

length threshold is reached
[8]

.

2.2. Cosine similarity measure

 Cosine similarity measure
[2]

 is based on Bhattacharya's distance
[1]

, which

is an inner product of the two vectors divided by the product of their length. Given

two vectors, we calculate the similarity between these two vectors by comparing

the angle between them. The smaller the angle, the more similar the vectors
[13]

.

 Given two -dimensional vectors and

 ,

10

we have
[2]

,

where represent the inner product between the vectors. This dot product is

defined as
[2]

and the length of a vector can be computed by the Euclidean distance formula
[2]

Given the two vectors and , the cosine similarity is calculated

as
[2]

,

Cosine similarity measure value lies between 0 and 1. The higher the value, the

more similar are the two vectors
[2]

.

 In many search engines, cosine similarity measure is used for comparing

the query and documents to retrieve the documents which are similar to the query.

Another use of cosine similarity measure is to get the similar pages for a particular

page in the search results. In this case, we replace the query vector by document

vector
[2]

.

11

2.2.1. TF-IDF

 The vectors we use to calculate the cosine similarity contains the TF-IDF

weights. Here TF is the Term Frequency. This function measures how common

the term is in the document and IDF is inverse document frequency which relates

the document frequency to the total number of documents in the corpus (N)
[2]

.

Formulas for calculating the TF and IDF is as follows
[2]

:

where, is the frequency of the term in document d and represents the

number of document containing the term .

 After calculating the TF and IDF, we save the TF IDF weight score into the

vector of the given document
 [2]

.

12

3. Study different methods of Text Summarization

 We researched the text summarization topic to find out which methods are

being used by the search engines for text summarization and studied three methods

in depth so that we could implement them and choose one which is best suited for

the Yioop search engine. The three methods are as follows: 1. Intersection method

2. Centroid method 3. TF-ISF method.

3.1. Intersection method

 We calculate the intersection between two given sentences by simply

counting the number of common tokens between them. The higher the common

tokens, better the intersection. This method works on the principle that if two

sentences have a good intersection, they probably hold the same information. So if

one sentence has a good intersection with many other sentences, it probably holds

some information from each one of them or in other words, this is probably a key

sentence in our text
[11]

. We use an intersection function to calculate the

intersection between two sentences and we create a key-value dictionary, where

the sentence itself is the key and the value is the total score.

 This method is based on “TextRank a graph-based approach for text

processing”
[8]

. We applied this model for sentence extraction for our summarizer.

For this, we need to build a graph associated with the text where the graph vertices

13

are representative for the units to be ranked. Here the goal is to rank all the

sentences which is why we add them as a vertex in the graph. Edges, in this graph,

are the similarity between two sentences where similarity is measured as the

function of their content overlap. The content overlap between two sentences can

be calculated by simply counting the number of common tokens between given

two sentences.
[8]

 For example, consider the following sentences:

3: BC-HurricaineGilbert, 09-11 339
4: BC-Hurricaine Gilbert, 0348

5: Hurricaine Gilbert heads toward Dominican Coast

6: By Ruddy Gonzalez

7: Associated Press Writer
8: Santo Domingo, Dominican Republic (AP)

9: Hurricaine Gilbert Swept towrd the Dominican Republic Sunday, and the Civil Defense alerted

its heavily populated south coast to prepare for high winds, heavy rains, and high seas.
10: The storm was approaching from the southeast with sustained winds of 75 mph gustingto 92

mph.

11: "There is no need for alarm," Civil Defense Director Eugenio Cabral said in a television

alert shortly after midnight Saturday.
12: Cabral said residents of the province of Barahona should closely follow Gilbert’s movement.

13: An estimated 100,000 people live in the province, including 70,000 in the city of Barahona,

about 125 miles west of Santo Domingo.
14. Tropical storm Gilbert formed in the eastern Carribean and strenghtened into a hurricaine

Saturday night.

15: The National Hurricaine Center in Miami reported its position at 2 a.m. Sunday at latitude
16.1 north, longitude 67.5 west, about 140 miles south of Ponce, Puerto Rico, and 200 miles

southeast of Santo Domingo.

16: The National Weather Service in San Juan, Puerto Rico, said Gilbert was moving westard at

15 mph with a "broad area of cloudiness and heavy weather" rotating around the center of the
storm.

17. The weather service issued a flash flood watch for Puerto Rico and the Virgin Islands until at

least 6 p.m. Sunday.
18: Strong winds associated with the Gilbert brought coastal flooding, strong southeast winds,

and up to 12 feet to Puerto Rico’s south coast.

19: There were no reports on casualties.
20: San Juan, on the north coast, had heavy rains and gusts Saturday, but they subsided during

the night.

14

21: On Saturday, Hurricane Florence was downgraded to a tropical storm, and its remnants

pushed inland from the U.S. Gulf Coast.
22: Residents returned home, happy to find little damage from 90 mph winds and sheets of rain.

23: Florence, the sixth named storm of the 1988 Atlantic storm season, was the second hurricane.

24: The first, Debby, reached minimal hurricane strength briefly before hitting the Mexican coast

last month.

We generate a graph for these sentences as follows:

Figure 1: Sample graph build for sentence extraction using TextRank

algorithm
[8]

15

3.2. Centroid method

 For this method, we start with the document we wish to summarize. This

method gives us a word cloud while generating a summary for that document. To

generate a word cloud, we use a technique called topic detection and tracking

which is used in MEAD (multi-document summarizer)
[9]

 to find all the documents

with same topic and adding them to a cluster.

3.2.1. What is centroid?

 "A centroid is a set of words that are statistically important to a cluster of

documents. As such, centroids could be used both to classify relevant documents

and to identify salient sentences in a cluster."
[9]

 In this method, we first find the centroid of the document, in other words,

we find the main topic of the document. Then we calculate the TF-IDF score of

each document in the cluster so that we can get the weight of that document in a

cluster.

 After calculating weights, we calculate the cosine similarity between the

centroid (main topic of the document) and given document by the following

formula
[9]

:

k kk k

k kk

cd

kidfcd
CDsim

22)()(

))((
),(

16

where kd represents the weight of the given term k in document D and

kc represents the weight of the given term in centroid C.

 After getting similarity score between the centroid and each document, we

add the document which have the score within a threshold to the cluster.

3.3. TF-ISF method

 In this method, we represent the document as a weighted vector of TF ISF

as we did in centroid method. We then calculate the cosine similarity of each

sentence with every other sentence from the document by using the following

formula
[2]

:

where ikw represents the weight of the term k in the sentence i .

 With cosine similarity scores, we also calculate the coverage and the

diversity of the summary. We enforce coverage and diversity

to make the

summary more informative and concise by ensuring that it covers all the topics

from the document and removes redundant information from the summary.

nji

ww

ww
sssim

m

k jk

m

k ik

m

k jkik

ji ,....,1, ,),(

1

2

1

2

1

17

3.3.1. Diversity

 In diversity
[10]

, we ensure that the sentences selected do not have the same

information. Diversity is an important issue since sentences from different

documents might convey the same information. A high quality summary should be

informative and compact
[10]

.

 We model diversity with the following objective function
[10]

:

 Higher values of fdiver(·) correspond to lower overlaps in content between

sentences si and sj
[10]

.

3.3.2. Coverage

 In coverage
[10]

, we ensure that the sentences in the summary cover all the

topics from the document. We attempt to find a subset of the sentences

S = {s1, s2,....,sn} that covers the main content of the document collection
[10]

.

 Generally, a document contains a variety of information centered on a main

topic, and covers different aspects of the main topic. In coverage, we ensure that

all these subtopics are covered in the resulting summary
[10]

18

Here O and O
S
 denote the centers of the collection S = {s1, s2,..., sn} and the

summary

respectively, where xi denotes a binary variable of the presence of sentence si in

the summary and is the concatenation operation. Sentence concatenation is an

operation of joining the sentences end-to-end. Higher values of fcover(·) correspond

to higher content coverage of summary
[10]

.

The k
th

 coordinate ok of the mean vector O is calculated as
[10]

:

and the k
th

 coordinate
 of the mean vector O

S
 we define as

[10]
:

where |S| denotes the number of sentences in summary S and k = 1, . . ., m.
 [10]

3.3.3. Single Objective function

 In general, in a multi-objective optimization problem it is not possible to

find a single solution that optimizes all the objectives simultaneously. Therefore,

we construct a single objective function
 [10]

.

19

maximize

subject to

where 'L' is the length of the summary, 'li' is the length of the sentence 'si' and

 [0, 1] is the weighting parameter, specifying the relative contributions of the

arithmetic and harmonic means to the hybrid function.
 [10]

20

4. Implementing three methods to evaluate their performances

 After studying the above mentioned three methods in depth, we started

coding these three methods so that we can evaluate their performance in order to

choose the best. Following is the explanation of those three methods:

4.1. Intersection method

 For implementation of this method, we divide the complete text into

sentences and then all those sentences into terms. For storing all the ranks of each

sentence, we created a sentence dictionary which is a collection of key value pairs

where key is the sentence itself and value is score of that sentence.

 We have implemented the intersection function to calculate the intersection

(I) between each sentence and every other sentence in the document as follows
[11]

:

 The score is calculated based on this intersection. The score of a sentence is

the sum of all the intersections between that sentence and every other sentence in

the document
 [11]

.

 To decide the length of the summary, we implemented a graphical slider so

that we can specify the length of the summary we want. Now, we start to add the

21

sentences with the highest scores to the summary until the specified summary

length is reached.

4.2. Centroid method

 For implementation of this method, we started with formatting the

document to remove special characters. This method also generates a word cloud

which contains the terms that covers the main theme of the document. Therefore,

we have to remove stop words from the document. Then, we have calculated

weights of each term in sentences based on term-frequency (TF) and inverse

sentence frequency (ISF). Here TF-ISF is a modified version of TF-IDF where

every sentence is treated at a document. Each sentence is represented as a

weighted vector of TF-ISF scores.

 After calculating weights, we took ten terms which have the highest score

and showed them on the user interface by changing their font sizes based on their

weights in document so that the term having highest weight will appear the biggest

among all the other terms.

 These ten terms are the centroid of the document. For scoring all the

sentences in the document, we calculated the similarity measure between centroid

vector and sentence vector. To specify the length of the summary, we also

implemented the graphical slider similar to the slider implemented in the

intersection method. To generate our final summary, we keep adding the sentences

22

with the highest similarity according to the centroid method in the summary until

the specified summary length is reached.

4.3. TF-ISF method

 For implementing this method, we formatted the document and removed

stop words like we did in centroid method. Then, we calculated the TF-ISF scores

where TF is the term frequency of the term and ISF is the inverse sentence

frequency of the term. After calculating the weights of each term for each

sentence, we calculated the similarity of each sentence with every other sentence

in the document.

 This method also enforces coverage and diversity measures to the

summary. So, we calculated these two measures separately at first and then created

a single objective function which mixes them and generates a summary which has

good score. To implement a single objective function, we have used a simple

genetic algorithm where we generated an initial population and generated next

generation populations based on the coverage and diversity scores from the

previously generated population.

23

5. Evaluate the performance of these three methods to find the best

summarization method

5.1. Background

 There are several methods to evaluate the text summarization techniques.

Generally, evaluation methods for text summarization falls into two main

categories: intrinsic and extrinsic
[7]

. Intrinsic evaluations mainly assess the

informativeness and coherence of summaries. Extrinsic evaluations tests the

impact of summarization on some other task. We evaluated the three

summarization methods using intrinsic evaluation where we compared the

summarizer generated summary with the human generated summary
 [7]

.

5.2. Evaluation

 To evaluate the performances of these methods, we took ten documents

related to sports from the Wikipedia and wrote a summary for each document by

using our own judgment so that it can be considered as a human generated

summary. Then, we ran all three methods on same set of documents. Now, we

have both human generated and machine generated summary of each document.

Then, we calculated the cosine similarity between the human generated summary

and the summary generated by all three methods.

24

 The above procedure gave us the performance of each method for same set

of documents. While comparing these methods, we considered two factors, speed

and quality of the summary.

 The documents we have used for these experiments are as follows:

Doc No. Document Name Document Length (in characters)

1 Hockey 98707

2 Cricket 266223

3 SJSU 282666

4 Football 306395

5 Volleyball 216200

6 Cycling 179671

7 Wrestling 135080

8 Shooting 80583

9 Boxing 255909

10 Karate 261855

Table 1: Document set used for experiments

25

Doc No.
Document

Name

Similarity score with Human generated

summary

Intersection

Method

Centroid

method

TF-ISF

method

1 Hockey 0.62 0.76 0.61

2 Cricket 0.27 0.67 0.26

3 SJSU 0.63 0.70 0.51

4 Football 0.57 0.73 0.52

5 Volleyball 0.37 0.55 0.22

6 Cycling 0.51 0.52 0.50

7 Wrestling 0.76 0.78 0.51

8 Shooting 0.69 0.70 0.70

9 Boxing 0.42 0.42 0.42

10 Karate 0.55 0.68 0.45

Table 2: Similarity score between human generated summary and

summarizer generated summary

Figure 2: Similarity scores between Human generated summary and

summarizer generated summary

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Si
m

ila
ri

ty
 S

co
re

Document Name

Similarity scores between Human generated

summary and summarizer generated summary

Intersection

Centroid

TF-ISF

26

Doc

No.
Document Name

Time required to extract the summary

Intersection

Method

Centroid

method

TF-ISF

method

1 Hockey 0.18 0.28 4.74

2 Cricket 1.33 1.35 21.99

3 SJSU 0.68 1.01 27.73

4 Football 0.68 0.89 19.26

5 Volleyball 0.80 0.85 20.36

6 Cycling 0.77 1.36 32.47

7 Wrestling 0.25 0.43 7.90

8 Shooting 0.01 0.02 0.13

9 Boxing 0.71 1.27 23.85

10 Karate 1.05 1.91 29.17

Table 3: Time required to generate the summary for each of the three

methods

Figure 3: Time required to generate the summary for each of the three

methods

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

T
im

e
(s

e
c
)

Document Name

Time required to generate the summary for each of

the three methods

Intersection Method

Centroid method

TF-ISF method

27

 Time required to generate the summary by TF-ISF method was not

practical, so we compared only intersection and centroid method.

Figure 4: Time required to generate the summary for Intersection and

centroid method

 In terms of speed, intersection method is at the top and in terms of quality

of the summary, centroid method is at the top. Also, the centroid method has the

feature of creating a word cloud which can be used to show in search results which

will help users to identify the main theme of the webpage in the result.

 According to the above performance analysis, we have decided to

implement centroid method for Yioop search engine.

0.00

0.50

1.00

1.50

2.00

2.50

T
im

e
(s

e
c
)

Document Name

Time required to generate the summary for

Intersection and centroid method

Intersection Method

Centroid method

28

6. Integrating the centroid summarizer into Yioop search engine

6.1. Integration

 After evaluating performances of three methods and choosing the right

method for Yioop, we started integrating the centroid based summarizer. While

integrating this summarizer we needed to make sure we are not disturbing the

current summarizer in Yioop. We implemented a feature to switch between the

two summarizers, Basic (the previous summarizer in Yioop) and Centroid (the

new summarizer).

 Yioop will use the selected summarizer while crawling the web pages from

the internet. When the summarizer is set to "Centroid", all the web pages will be

fed to the centroid based summarizer which will create a concise summary and a

word cloud from it. This word cloud also gets stored with the summary and is used

on the search results page besides the URL of the web page.

29

To change the summarizer in Yioop, you can follow the steps listed below:

1. Login into Yioop

Figure 5: Yioop login page

2. Click on "Manage Crawl"

Figure 6: Yioop admin manage account page

30

3. Click on the "Options" link in "Create Crawl" section to modify the crawl

options.

Figure 7: Yioop manage crawl page

4. Select the "Centroid" in Summarizer dropdown list as shown in figure.

Figure 8: Feature to switch between the two summarizers

31

6.2. Word Cloud

 Word cloud can be defined as a visual representation of keywords from the

webpage
[4]

. These keywords are the important words from the webpage which

describes the complete webpage just by displaying some keywords from that

webpage. We often do not want to read the complete webpage to get the idea

about the theme of the content. The word cloud helps us to get the overall picture

of the complete webpage so that we don't need to read the complete webpage.

These words in the word cloud are shown in different styles to show their

importance in that webpage. Suppose there are five words in the word cloud. To

show the importance of each word in the webpage we use different font sizes

and/or colors. The word with highest importance is displayed with biggest font

size among those five or given a darkest color
[4]

.

 A weighted list is a type of word cloud used in geographic maps which

represents the relative sizes of countries and cities with relative font sizes.

Different font sizes and colors are used to show the association between words and

features in map.
[6]

32

 The following screenshot shows how used the word cloud in the Yioop

search results page.

Figure 9: Word cloud in Yioop search results page

 Here the user will get the theme of the webpage even before clicking on the

link. There are top ten results on a search page and a word cloud associated with

each one. After entering the query, user can look at all these ten word clouds and

choose the most relevant page for given query.

 Word clouds also has a hyperlink associated with them to search that

particular word on the Yioop search engine. This feature also helps the user to get

the synonyms or words closely related to the word they searched for.

33

6.3. Multi-language support

 Centroid summarizer also supports any other languages than English. We

are using special regular expressions in the implementation of centroid

summarizer to preserve the Unicode characters. For example, instead of using

[a-z] in a regular expression, we used p{L} so that it will search for a letter not

only from English language but from any language in the text. We have tested the

centroid summarizer on Chinese, Marathi, German etc. languages. For testing this,

We crawled the Wikipedia's databases for that particular language and queried the

database to check the summary and word cloud. Following is the screenshot of the

search results page for Chinese language.

Figure 10: Yioop search results page for Chinese language

34

 In the screenshot above, we queried for word "Wikipedia" and got the

Wikipedia pages in the search results and word cloud for each returned web page.

The word cloud also contains the important words from the web pages like

"Wikipedia", "Encyclopedia", "Internet" etc.

35

7. Experiments

 After integrating the centroid summarizer in the Yioop search engine, we

performed some experiments to see the effectiveness of the new summarizer on

the search engine. We evaluated the summarizer on basis of quality of the

generated summary and time required to crawl 10,000 documents.

7.1. Quality of the generated summary

7.1.1. Results

 The main purpose of doing this project was to improve the quality of the

summary which will also improve the search results. To evaluate the summary

generated by the summarizer, we carried out some experiments. For better

evaluation, we made a set of ten documents of various lengths and generated a

summary for each document using our own judgment so that it can be considered

as human generated summary. Then, we generated the summary for these ten

documents by the basic summarizer and centroid summarizer. Now, we have

calculated the cosine similarity between the human generated summary with the

summary generated by two summarizers, basic and centroid, one at a time.

36

Following are the results from this experiment:

Doc

No.

Document

Name

Document

Length (in

characters)

Similarity score with Human

generated summary

Basic Method Centroid Method

1 Hockey 98707 0.69 0.76

2 Cricket 266223 0.65 0.67

3 SJSU 282666 0.65 0.70

4 Football 306395 0.69 0.73

5 Volleyball 216200 0.51 0.65

6 Cycling 179671 0.45 0.62

7 Wrestling 135080 0.69 0.78

8 Shooting 80583 0.70 0.70

9 Boxing 255909 0.39 0.42

10 Karate 261855 0.66 0.68

Table 4: Cosine similarity of summary generated by basic and centroid

summarizer with a human generated summary

37

Figure 11: Cosine similarity of summary generated by Basic and centroid

summarizer with Human generated summary

7.1.2. Example

 Here we present the example summaries generated by basic summarizer,

centroid summarizer and human.

Football refers to a number of sports that involve, to varying degrees, kicking a

ball with the foot to score a goal. The various codes of football share certain

common elements. Players in American football, Canadian football, rugby union

and rugby league take-up positions in a limited area of the field at the start of the

game. The Ancient Greeks and Romans are known to have played many ball

games, some of which involved the use of the feet. Games played in Mesoamerica

with rubber balls by indigenous peoples are also well-documented as existing

since before this time, but these had more similarities to basketball or volleyball,

and since their influence on modern football games is minimal, most do not class

them as football. A game known as "football" was played in Scotland as early as

the 15th century: it was prohibited by the Football Act 1424 and although the law

fell into disuse it was not repealed until 1906. King Henry IV of England also

presented one of the earliest documented uses of the English word "football".

Figure 12: Summary generated by human for football Wikipedia web page

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

C
o
si

n
e
 S

im
il

a
r
it

y

Document Name

Cosine similarity of summary generated by Basic

and Centroid summarizer with a human

generated summary

Basic

Centroid

38

Various forms of football can be identified in history, often as popular peasant

games. Contemporary codes of football can be traced back to the codification of

these games at English public schools in the eighteenth and nineteenth centuries.

[2] [3] The influence and power of the British Empire allowed these rules of

football to spread to areas of British influence outside of the directly controlled

Empire, [4] though by the end of the nineteenth century, distinct regional codes

were already developing: Gaelic Football, for example, deliberately

incorporated the rules of local traditional football games in order to maintain

their heritage. [5] In 1888, The Football League was founded in England,

becoming the first of many professional football competitions. During the

twentieth century, several of the various kinds of football grew to become among

the most popular team sports in the world. [6] .. The various codes of football

share certain common elements.

Figure 13: Summary generated by basic summarizer for football Wikipedia

web page

Football.

Football refers to a number of sports that involve, to varying degrees, kicking a

ball with the foot to score a goal. The most popular of these sports worldwide is

association football, more commonly known as just "football" or "soccer".

Unqualified, the word football applies to whichever form of football is the most

popular in the regional context in which the word appears, including association

football, as well as American football, Australian rules football, Canadian

football, Gaelic football, rugby league, rugby union, and other related games.

Association football, Australian rules football and Gaelic football tend to use

kicking to move the ball around the pitch, with handling more limited. In most

codes, there are rules restricting the movement of players offside, and players

scoring a goal must put the ball either under or over a crossbar between the

goalposts. It is widely assumed that the word "football" or "football "references

the action of the foot kicking a ball.

Figure 14: Summary generated by centroid summarizer for football

Wikipedia web page

39

7.2. Effect on crawl time

 To evaluate the effect of centroid summarizer on time required to crawl the

web pages, we crawled 10,000 pages by basic and centroid summarizer. We

downloaded the Wikipedia database
[12]

 to make sure we are crawled the same set

of pages.

 Crawling 10,000 pages with basic summarizer took 28 minutes while

crawling the same set of pages with centroid summarizer took 39 minutes.

40

8. Conclusion and future work

 We researched the text summarization topic to find out which methods are

being used for text summarization and studied three methods in depth so that we

can implement them and choose one which is best suited for the Yioop search

engine. We created a sample document set by which we can compare these three

methods and chose the one with high performance and which is best suited for

Yioop search engine.

 According to the performance analysis done, we have found that

intersection method is the fastest method among the three and the centroid method

generates the best summary among the three. We calculated the quality of

summary by comparing it with a human generated summary. Also, the centroid

method generates a word cloud which helps the user to understand the main topic

of the document by just looking at the word cloud. The TF-ISF method also

generated a good summary. However, it is not practical in terms of speed. After

doing this performance analysis, we have decided to implement centroid method

for Yioop search engine.

 We implemented the centroid summarizer and integrated it into Yioop.

After integrating, we performed several experiments to test the performance and to

see improvements in results and quality of summary.

41

 Currently, centroid summarizer removes stop words from English web

pages only. In future, we can implement the stop words remover for other

languages so that the word cloud will contain only informative words.

42

Bibliography

[1] Bhattacharyya, A. (1946). On a measure of divergence between two

multinomial populations. Sankhyā: The Indian Journal of Statistics, 401-406.

[2] Büttcher, S., Clarke, C. L., & Cormack, G. V. (2010). Information retrieval:

Implementing and evaluating search engines. Mit Press.

[3] Dinu, L.P.; Ionescu, R.-T., "A Rank-Based Approach of Cosine Similarity

with Applications in Automatic Classification," Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), 2012 14th International

Symposium on , vol., no., pp.260,264, 26-29 Sept. 2012

[4] Halvey, M. J., & Keane, M. T. (2007, May). An assessment of tag

presentation techniques. In Proceedings of the 16th international conference

on World Wide Web (pp. 1313-1314). ACM.

[5] Jones, K. (2007) Automatic summarising : a review and discussion of the

state of the art. University of Cambridge Computer Laboratory.

[6] Krygier, J., & Wood, D. (2013). Making maps: a visual guide to map design

for GIS. Guilford Press.

[7] Mani, I. (2001). Summarization evaluation: An overview.

[8] Mihalcea, R., and Tarau, P. (2004) TextRank: Bringing order into texts.

InProceedings of EMNLP.

[9] Radev, D. R., Jing, H., Styś, M., & Tam, D.(2007) Centroid-based

summarization of multiple documents. Information Processing &

Management, 40(6), 919-938.

43

[10] Rasim M. Alguliev, Ramiz M. Aliguliyev, Nijat R. Isazade. (2007)

Formulation of document summarization as a 0–1 nonlinear programming

problem. Computers & Industrial Engineering, Volume 64, Issue 1 ISSN

0360-8352.

[11] The Tokenizer. Retrieved on Aug 30, 2013, from website:

http://thetokenizer.com/2013/04/28/build-your-own-summary-tool/

[12] Wikipedia:Database download Retrieved on Apr 10, 2013, from web site:

http://en.wikipedia.org/wiki/Wikipedia:Database_download

[13] Ye, J. (2011). Cosine similarity measures for intuitionistic fuzzy sets and

their applications. Mathematical and Computer Modelling, 53(1), 91-97.

[14] Zhao, H., Proctor, I., Yang, M., Qi, X., Williams, M., Gao, Q., ... & Tu, S.

(2012, October). The HipHop compiler for PHP. In ACM SIGPLAN

Notices (Vol. 47, No. 10, pp. 575-586). ACM.

http://thetokenizer.com/2013/04/28/build-your-own-summary-tool/

44

Appendix

A. Additional experiment with HipHop Compiler for PHP

A.1. PHP Background

 PHP is a scripting language developed in 1995, mainly used for dynamic

web pages. It is an object oriented language and today its use is not limited to web

development. Some key features of PHP includes: dynamic typing, dynamic name

binding, dynamic name resolution, dynamic symbol inspection, reflection,

dynamic code evaluation
[14]

.

A.2. Standard PHP Implementation

The standard implementation of PHP is an interpreter to support all the dynamic

features of PHP. This interpreter is called Zend which is a bytecode interpreter

which uses a lower level program implementation called the Zend bytecode
[14]

.

 For a new file invoked, Zend parses that file and translates it into bytecode.

It loads various program components during execution. This feature is called

dynamic loading. It is expensive for classes which requires composing class

methods, properties and constants. When interpreter needs access to a symbol, it

finds the symbol name in the lookup table. This process has a runtime cost called

as dynamic lookups. Dynamic loading, dynamic lookups and dynamic typing are

the major overhead in Zend interpreter
[14]

.

45

A.3. HipHop Compiler

 HipHop is a static compiler developed by Facebook which is different from

the PHP's standard implementation. The main differences includes: First, HipHop

compiler needs all source code to be known in advance which boosts the

performance. Second, HipHop doesn't support all features of the PHP like

dynamic code evaluation. HipHop also does not support the automatic promotion

from integer to floating point numbers in case of overflow. Third, HipHop

analyzes, compiles and loads all the symbols in advance. Finally, a small amount

of change in a code can result in rebuilding the system which reduces programmer

productivity. Facebook addresses this problem by combining the use of HipHop

for production code with the use of PHP's standard interpreter for code

development
[14]

.

A.4. Experiment

 After studying the high performance of HipHop compiler, we decided to

run all three summarizer methods on HipHop compiler and compare the time

required to generate the summary with time required on the Zend interpreter.

 We have used a set of ten documents for this experiment. Average size of a

document in that set was 50KB. We ran each summarizer on ten documents at a

time to compare the HipHop compiler and Zend interpreter.

46

Following is the table showing the results of the experiment:

Zend

Interpreter

HipHop Facebook

Compiler

Improvement in

speed

Intersection 7.57 0.8 5.22 0.7 2.36 0.10

Centroid 21.25 1.0 12.12 0.5 9.12 0.50

TFISF 59.24 1.9 54.65 1.0 4.60 0.9

Table 5: Comparison between using interpreter and compiler for running

summarizers

Figure 15: Comparison between using Interpreter and Compiler for running

summarizers

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Intersection Centroid TFISF

T
im

e
 (

se
c
)

Summarization technique

Comparison between using Interpreter and

Compiler for running summarizers

Interpreter

HipHop Compiler

No. of Docs: 10
Average size: 50KB

	Text Summarization for Compressed Inverted Indexes and Snippets
	Recommended Citation

	tmp.1400910609.pdf.9ev34

