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ABSTRACT 

Application of Message Passing and Sinkhorn Balancing Algorithms for 

Probabilistic Graphical Models 

by Lakshmi Ananthagopal 

Probabilistic Graphical Models (PGMs) allow us to map real world scenarios to a 

declarative representation and use it as a basis for predictive analysis. It is a framework that 

allows us to express complex probability distributions in a simple way. PGMs can be applied to a 

variety of scenarios wherein a model is built to reflect the conditional dependencies between 

random variables and then used to simulate the interactions between them to draw conclusions. 

The framework further provides many algorithms to analyze these models and extract 

information. 

One of the applications of PGMs is in solving mathematical puzzles such as Sudoku. 

Sudoku is a popular number puzzle that involves filling in empty cells in an ‘N x N’ grid in such 

a way that numbers 1 to N appear only once in each row, column and ‘N
1/2

 x N
1/2

’
 
sub-grid. We 

can model this problem as a PGM and represent it in the form of a bipartite graph. The main 

concepts we employ to obtain an algorithm to solve Sudoku puzzles are factor graphs and 

message passing algorithms. In this project we attempt to modify the sum-product message 

passing algorithm to solve the puzzle. Additionally, we implement a solution using Sinkhorn 

balancing to overcome the impact of loopy propagation and compare its performance with the 

former. 
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CHAPTER 1 

Introduction 

 

There are many real world scenarios where a person or a system has to make use of 

available data to draw conclusions regarding the situation. There are numerous real world 

problems in fields such as Artificial Intelligence, Robotics, Computational Biology, Computer 

Vision etc., where the system or individual needs to extract useful information from highly 

complex yet structured data. In other words, we need to gain global real world insight from the 

limited local observations that we have.  

 To gain some perspective we can consider a few real world examples. If we were to visit 

a doctor, in order to diagnose the problem, he requires some additional information about the 

patient. This includes the patient’s symptoms, test results, food habits, known allergies, personal 

characteristics such as height and weight, etc. These data help the doctor narrow down on the 

possible disease and suggest a suitable course of action. This is achieved by mapping symptoms 

to a predefined model that defines the possible causes for those symptoms.  

This reference model that we build is usually declarative in nature. In this approach we 

construct a model of the real world scenario that we would like to study. The model encompasses 

our understanding and knowledge of the system in a machine readable form, so that this 

information can then be processed by various algorithms to answer questions. The main property 

of such a declarative representation is that it clearly separates the information from the 

reasoning. The representation is independent of the reasoning algorithms that will be applied on 

it and has its own clear semantics. Thus, models with declarative representations contain 
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knowledge in a format that may be manipulated, decomposed and analyzed by the various 

reasoning algorithms, independent of its content. 

 In order to understand this property better, let us go back to the example of the medical 

diagnosis we considered earlier. We could have a model where we represent our knowledge 

about different diseases and how they relate to various symptoms. The model could also contain 

various test result data. Now given this, we can use any reasoning algorithm which takes this 

model and the patient’s symptoms as input and then attempts to answer questions regarding the 

patient’s condition. Thus, the algorithms being developed can be generic and applied to any 

model within a broader class. Conversely, we can improve our model for a specific application 

domain without constantly modifying our reasoning algorithms [5]. 

 Another major property of the systems that PGMs are applied to is uncertainty. 

Uncertainty is a given condition when we are dealing with real-world applications due to many 

factors: partial observations, noisy data and difficulty in modeling the observations. For example, 

in the medical diagnosis example we see that quite often it is very tough to establish a concrete 

relationship between a disease and symptoms. There are many overlapping features that prevent 

us from defining universally true relationships between a disease and its symptoms or prognosis. 

Thus, uncertainty arises primarily due to our limited ability to observe the real world and model 

it accurately. 

 Given this ambivalence, in order to draw meaningful conclusions from these models, we 

employ probability theory which basically provides us with a framework to consider multiple 

possible outcomes and their probability. It allows us to consider options that are unlikely, but not 
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impossible, and sideline the multitude of exception scenarios which would otherwise increase 

our effort.  

1.1 Probabilistic Models 

 

A common characteristic of complex systems is the presence of many interrelated domains, 

which need to be considered during the reasoning phase. These domains are represented in terms 

of a set of random variables, whose values define a property of the system. Identifying these 

random variables is an important step during the design phase and it depends on the questions 

that we wish to have answered. The primary aim then of the reasoning algorithms is to 

probabilistically guess the values of a variable when observations about others may be given. To 

achieve this we construct a joint distribution over all the possible values of a set of random 

variables. 

Consider the following example [4]: 

Example 1.1: Suppose we choose to represent a student’s grades in a subject. The random 

variables that might be considered here are: 

Difficulty: D0 and D1 (where D0 represents that the subject is not difficult and D1 represents that it 

is difficult) 

Intelligence: I0 and I1 (where I0 represents that the student is not intelligent and I1 represents that 

the student is intelligent) 

Grade: G0 (A), G1 (B) and G3 (C) (where each represents the grade the student got in that 

subject) 
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Thus, in this example our probability space has 2x2x3=12 values corresponding to the 

values assigned to these 3 variables. 

Table 1: Joint Probability Distribution 

I D G Probability 
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Given such a joint distribution we can, for example, ask questions such as how likely is 

the student to get an A grade in the subject given that he is intelligent and the course is easy. 

P (Grade=A| Intelligent=True, Difficulty=False) 
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1.2 Probabilistic Graphical Models 

 

In Example 1.1, we have only 12 distinct possibilities. However, in the real world there 

might be hundreds of attributes to be considered. In such a scenario, we can use probabilistic 

graphical models to describe them compactly. 

 PGMs use a graph-based approach to compactly represent complex distributions with a 

large number of variables. In this form of representation, the nodes correspond to the random 

variables and the edges signify the interactions between them. 

  

    

 

 

 

 

Figure 1: Bayesian Network (Directed Graph) 

 

 

 

 

Figure 2: Markov Network (Undirected Graph) 

Intelligence Difficulty 

Grade SAT Scores 

LoR 

B D 

C 

A 



6 
 

The graphical representations primarily appear in two flavors – directed graphs called 

‘Bayesian Networks’ and undirected graphs called ‘Markov Networks’. Both however 

emphasize assertion of independence and factorization of the distribution. 

From Figure 1 we can see that the student’s intelligence is completely independent of the 

difficulty of the subject. The grade he obtains, however, is dependent on both the difficulty and 

the intelligence. The SAT score is only dependent on the intelligence and getting a letter of 

recommendation depends only on the grade. Additionally, the Joint Probability Distribution of 

the system can be obtained by factorizing the entire distribution for convenience. From the 

figure, we see that 

P (D, I, G, S, L) = P (D) P (I) P (G|I, D) P (S|I) P (L|G)   Eq. 1.1 

  Similarly in Figure 2, for example, we see that ‘A’ is independent of ‘C’ given ‘B’ and 

‘D’, and ‘B’ is independent of ‘D’ given ‘A’ and ‘C’. This form of representation also supports 

factorization where we can represent the joint probability distribution in the following way: 

P (A, B, C, D)  
 

 
 ɸ1 (A, B) ɸ2 (B, C) ɸ3 (C, D) ɸ4 (A, D)   Eq. 1.2 

Thus, the graph effectively represents the independencies in the system while also 

serving as a skeletal framework to help factorize the distribution. 

1.2.1 Representation, Inference and Learning 

 

One of the main perks of employing a graphical framework is that it highlights the 

property that variables in a system usually only interact directly with few others. This allows us 

to greatly simplify joint distributions that are immensely large and represent them in a very 
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transparent way.  We can also draw inferences effectively and efficiently by applying reasoning 

algorithms to these graph structures. Lastly, this framework supports learning from data models 

based on past observations.  

Thus, PGMs employ a data driven approach to model a real world scenario and draw 

meaningful information from it. In this effort, the three components – namely representation, 

inference and learning – play a very important role in enhancing the intelligence of the resulting 

system. The declarative representation allows us to convincingly model the real world; we are 

then able to draw inferences to answer a range of questions and finally when put together with 

other accumulated data and knowledge, we learn new information about the problem. 

 Probabilistic Graphical Models as a whole encompasses a lot of concepts. In the next 

chapters we cover only those aspects of PGMs that are relevant to this work. Chapter 4 then 

introduces the Sudoku problem and depicts how it can be modelled as a PGM. Chapter 5 details 

the three algorithms that can be used to solve the puzzle, while Chapter 6 focuses on the analysis 

and implementation details. In Chapter 7 we present some experimental results and finally the 

conclusion and future work scope is covered in Chapter 8. 
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CHAPTER 2 

Background Concepts 

 

2.1 Factors 

Factors are nothing but a function/table that takes all possible combinations of Random 

Variables (RVs) in the model and gives a result for each assignment of those RVs. These RVs or 

arguments are referred to as the scope of the factor. An example of a factor is any Joint 

Distribution or probability vector. 

2.1.1 Properties of Factors 

 

a) Factor Product – Given two factors ɸ1(A, B) and ɸ2(B, C) the factor product is given by 

ɸ1 (A, B) * ɸ2 (B, C) = ɸ3 (A, B, C)     Eq. 2.1 

 Example 2.1: If we have ɸ1 (A, B) and ɸ2 (B, C) as  

A1 B1 X1 

A1 B2 X2 

 

B1 C1 Y1 

B1 C2 Y2 

B2 C1 Y3 

B2 C2 Y4 

 Then ɸ3 (A, B, C) is given by 

A1 B1 C1 X1*Y1 

A1 B1 C2 X1*Y2 

A1 B2 C1 X2*Y3 

A1 B2 C2 X2*Y4 
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b) Factor Marginalization – Given factor ɸ1 (A, B, C), to reduce scope to ɸ2 (A, C) we 

marginalize ‘B’.  

Example 2.2:  

A1 B1 C1 X1 

A1 B1 C2 X2 

A1 B2 C1 X3 

A1 B2 C2 X4 
 

c) Factor Reduction - Given factor ɸ1 (A, B, C), we reduce it to a Conditional Probability 

Distribution where C1 is given. 

Example 2.3:  

A1 B1 C1 X1 

A1 B1 C2 X2 

A1 B2 C1 X3 

A1 B2 C2 X4 
 

2.2 Graphs 

A graph is a data structure that contains a set of nodes and edges. A pair of nodes ‘Xi’ and 

‘Xj’ is usually connected by an edge which can either be directed (Xi   Xj) or undirected        

(Xi   Xj). 

2.2.1 Basic graph concepts and definitions 

 

 

     Figure 3: Sample Graph [5] 

A1 C1 X1+X3 

A1 C2 X2+X4 

A1 B1 C1 X1 

A1 B2 C1 X3 
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Based on Figure 3 we can define the following terms. 

a) Child and Parent nodes – Whenever we have ‘Xi   Xj’ we say that ‘Xj’ is the child of 

‘Xi’ and ‘Xi’ is the parent of ‘Xj’.  

Example 2.4: A is the parent of C and C is the child of A. 

b) Neighbor and Adjacent nodes – When we have ‘Xi   Xj’ then ‘Xi’ and ‘Xj’ are 

considered neighbors. However all nodes connected to ‘Xi’ by either a directed or an 

undirected edge are considered adjacent nodes. 

Example 2.5: The only neighbor of C is D but its adjacent nodes are A, F, D and I. 

c) Degree and Indegree – The degree is the total number of edges from/to a node while the 

indegree is the number of directed edges to the node.  

Example 2.6: Degree of C is 4 and its indegree is 1. 

2.2.2 Subgraphs 

 

“A subgraph is a part of a graph that consists of only a subset of the nodes.” [5] 

a) Induced Subgraph – “A subgraph H of a graph G is said to be induced (or full) if, for 

any pair of vertices x and y of H, xy is an edge of H if and only if xy is an edge of G.” [7] 

Example 2.7: Figure 4 below shows an induced sub graph of Figure 3 

 

Figure 4: Induced Subgraph [5] 
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b) Cliques 

“A clique is a maximal fully connected sub graph.” [5] 

In other words, a Clique is a complete graph; it is defined as a graph where every vertex 

is adjacent to every other vertex. 

A maximal clique is a clique that cannot be extended by including one more adjacent 

vertex, that is, a clique which does not exist exclusively within the vertex set of a larger 

clique.  

A maximum clique is a clique of the largest possible size in a given graph. Maximum 

cliques are therefore maximal cliques (but not necessarily vice versa). 

2.2.3 Cluster Graphs 

The cluster graph is a data structure where each node is a cluster containing a subset of 

the variables. The nodes or clusters are connected by undirected edges when they both contain 

some intersecting variables. An example is shown in Figure 5. 

 

Figure 5: Example of Cluster Graph
 
[4] 
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2.2.3.1 Properties of Cluster Graphs 

 

Two main properties of Cluster Graphs are [4]: 

1. Family Preservation 

“Given a set of factors ɸ, we assign each ɸk to a cluster Cα (k) such that Scope [ɸk] is a 

subset of Cα (k).” 

2. Running Intersection 

“For each pair of clusters Ci, Cj and variable X   Ci   Cj there exists a unique path 

between Ci and Cj for which all clusters and sepsets contain X.” 

2.2.4 Factor Graphs 

 

Definition: “A factor graph is a bipartite graph representing the factorization of a function.”[8]
 

Thus, a factor graph, in summary, contains both regular variable nodes and factor nodes, 

and represents the dependencies between them. If a variable appears in the scope of a factor then 

an edge is introduced between the factor node and variable node. 

 

Figure 6: Example of a Factor Graph [8] 

In the next chapter we introduce the Belief Propagation algorithms and see how they are 

applied to factor graphs. 
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CHAPTER 3 

Algorithms and Concepts 

 

3.1 Belief Propagation Algorithms 

 

“Belief propagation algorithms are normally presented as message update equations on a 

factor graph, involving messages between variable nodes and their neighboring factor nodes and 

vice versa.” [9]
 

Generalized message passing between nodes/clusters is carried out as follows: 

1. We have an undirected Graph whose nodes are clusters and the edges between the nodes 

(termed as sepsets) contain the intersecting variables of the two clusters being connected. 

2. We are also given a set of factors (ɸ) which are assigned to one of the clusters such that 

the scope of the factor is a subset of the cluster. 

3. We then define the new factors associated with each cluster as the product of all the 

factors assigned to the cluster. This new factor is represented as         . 

4. Subsequently a message from cluster ‘i’ to cluster ‘j’ is defined by the product of the 

factor of cluster ‘i’ and the sum of all the incoming messages to cluster ‘i’, except the 

message from cluster ‘j’ to cluster ‘i’. 
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Figure 7: Example of Message Passing
 
[4]

 

 

3.1.1 Properties of Belief Propagation Algorithm 

 

1. Convergence of a Belief Propagation Algorithm implies Calibration 

First, let us define Calibration. Given that a Cluster belief is defined as  

βi (Ci)     ∏        k i                                                                               Eq. 3.1 

A cluster graph is calibrated if every pair of adjacent clusters Ci, Cj agree on their sepset 

(Si, j) (variables shared between the two clusters) i.e. 

∑          βi (Ci) = ∑          βj (Cj)                                                                    Eq. 3.2 

The algorithm has converged if the message at the next time stamp is equal to the 

message at the current time stamp: 

 i j (Si,j) =   i j (Si,j)                                                                             Eq. 3.3 

Thus, from this we can prove that the graph is calibrated as per the following proof [4]: 
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 δ'i→j    (Si, j)    ∑     ∏        { }        δ k→i )       Eq. 3.4 

 But based on Eq. 3.1, we can make the following substitution 

 δ’i→j (Si, j)   = ∑          (βi (Ci)) / δ j→i (Si, j) 

 That implies, δj→i (Si, j) * δ’i→j (Si, j)  = ∑          (βi (Ci)) 

 Similarly, δj→i (Si, j) * δ’i→j (Si, j)  = ∑          (βj (Cj)) 

 Thus,  ∑          (βi (Ci)) = ∑          (βj (Cj))         Eq. 3.5 

 Hence, Convergence of a Belief Propagation algorithm implies Calibration. 

2. Reparameterization 

This property basically implies that cluster graph beliefs are nothing but a different set of 

parameters that capture the original un-normalized measures that define our distribution. We 

see that the ratio of the Cluster beliefs to the Sepset beliefs is nothing but the original un-

normalized measure and hence can be reassured that no information was lost due to the belief 

propagation algorithm. 

Next, we move to the subject of ‘Reparameterization’ or no information loss due to Belief 

Propagation [4]: 
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We have beliefs of clusters defined in Eq. 3.1 and sepset belief is defined by the equation 

 μi, j (Si, j) =  j i  i j        Eq. 3.6 

If we divide the product of all beliefs by the products of all sepsets we get: 

       ( ∏   βi ) / (∏     μi, j ) = ( ∏   (Ψi * ∏      δ k→i ) ) / (∏       i j ) 

                = ∏   Ψi   ( Since each message expression appears exactly twice) 

Thus, ( ∏   βi ) / (∏     μi, j ) = Unnormalized measure   Eq. 3.7 

Hence, Belief Propagation does not lead to any information loss. 

3.1.2 Loopy Belief Propagation 

 

Loopy Belief Propagation occurs when we perform message passing in cyclic graphs. In 

such a scenario, due to the loop back property, information is counted twice leading to a bias in 

the belief.  

Assume we have three nodes ‘A’, ‘B’ and ‘C’ which are all inter-connected. When node 

‘A’ sends a message to node ‘B’, ‘B’ updates its belief and passes on the message to ‘C’. 

Similarly, ‘C’ updates its beliefs and forwards the message to ‘A’. When this message reaches 

node ‘A’, it is under the assumption that this is brand new information and uses it to update its 
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beliefs. However, in reality this message is diluted in value as it contains information originally 

passed by ‘A’. 

3.2 Sum-Product Algorithm 

 

The Sum-Product message passing algorithm can perform efficient and exact inference 

provided that the factor graph has no loops i.e. it is a tree. In case the graph contains loops then 

there is a possibility that the algorithm will never converge. 

The algorithm is defined as follows [4]: 

Sum Product Belief Propagation Algorithm 

Assign each factor ɸk ϵ Ф to a cluster Cα (k) 

Construct initial potentials:  Ψi Ci = ∏          ɸk     Eq. 3.8 

Initialize all messages to be 1 

Repeat 

 Select edge and pass message: δi→j    (Si, j)    ∑     ∏        { }        δ k→i ) 

End Repeat 

Compute Belief:  βi (Ci) = Ψi * ∏      δ k→i 
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3.3 Max-Product Algorithm 

 

The Max-Product Algorithm is a variant of the Sum-Product Algorithm where we replace 

the ‘summation’ function by the ‘max’ function. The main advantage of max product over sum 

product is seen when it is applied to cyclic graphs where sum-product algorithm faces the loopy 

propagation issue. 

The algorithm is defined as follows: 

Max Product Belief Propagation Algorithm 

Assign each factor ɸk ϵ Ф to a cluster Cα (k) 

Construct initial potentials:  Ψi Ci = ∏          ɸk 

Initialize all messages to be 1 

Repeat 

 Select edge and pass message: δi→j    (Si, j) = max (   ∏        { } δ k→i ) 

End Repeat 

Compute Belief:  βi (Ci) = Ψi * ∏      δ k→i 

 

The next chapter introduces the Sudoku problem and shows how it can be modelled as a 

PGM. We get acquainted with the various notations and definitions that we will be using 

throughout this work and also understand how the generic Belief Propagation algorithms that we 

presented in this chapter can be adapted to solve the Sudoku puzzle. 
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CHAPTER 4 

The Sudoku Problem 

 
 

4.1 What is the Sudoku problem? 

 

The traditional Sudoku problem is a logic based number puzzle. The main objective is to 

fill an ‘N x N’ grid (where N is the square of a number) with digits ranging from {1...N}, such 

that each digit appears only once in each row, each column and each of the N sub-grids which in 

turn are of size ‘sqrt (N) x sqrt (N)’.  

In a standard Sudoku problem, we deal with a ‘9 x 9’ grid which is partially filled with 

numbers ranging from 1 to 9. However, the puzzle can be scaled to any ‘N x N’ representation. 

In any case, a combination of the number of filled cells and the arrangement of filled cells 

determines the difficulty level of a puzzle.  

4.1.1 A brief introduction to the Mathematics of Sudoku. 

 

 Sudoku puzzles belong to a class of combinatorial mathematical problems. It deals with 

identifying a unique solution that satisfies all the set constraints. In a sense, the completed 

Sudoku puzzle can be viewed as a Latin Square, with the additional constraint of unique values 

in each of the N sub-grids. 

 The mathematical analysis of Sudoku primarily covers the possible solutions for different 

variants of the puzzle, the influence of the initial given values in the puzzle and the logic behind 

solving a puzzle. In this writing project the focus is on the third point. 
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 The general problem of solving an ‘N x N’ puzzle is known to be NP-Complete [11] [12]. 

As such, an approach to solve these puzzles will involve employing some sort of approximation, 

randomization, parameterization or heuristic algorithm. A computer can solve a ‘9 x 9’ Sudoku 

within seconds using such methods but on a larger scale it becomes quite impossible to check the 

vast number of potential combinations in reasonable finite time and even then there is no 

guarantee of finding a solution.  

In this project we map the Sudoku puzzle to a PGM and employ three algorithms that 

work on this model to arrive at a solution. All three algorithms can be classified as a type of 

probabilistic solver. This approach differs from the traditional solutions as it employs general 

rules of inference to solve the problem as opposed to specific human-like tricks. As such, this 

solution can be applied to a wide range of similar constraint satisfaction problems like the ‘Low 

Density Parity Check’ (LDPC) decoding problem. Interestingly, both the Sudoku and the LDPC 

problems take on the same form when modelled as a PGM; and hence the success of the BP 

approach in solving certain LDPC problems inspired a similar approach to solve the Sudoku 

puzzle [1]. 

4.2 Representing the Sudoku puzzle as a PGM. 

 

4.2.1 Graph representation 

 

 The puzzle can be represented as a bipartite graph. A bipartite graph is defined as “a 

graph whose vertices can be divided into two disjoint sets S and C such that the graph’s edges 

connect vertices in S only to vertices in C and vice versa.” [1] 
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 Thus, all the cells in an ‘N x N’ puzzle can be mapped to set ‘S’ and all the constraints 

that need to be satisfied can be mapped to set ‘C’. All cells (Sn) are mapped to the set ‘S’ by 

assigning indexes from 1 to N
2 

in a row-wise scan order. Similarly, the different row, column and 

sub-grid constraints (Cm) are mapped to the set ‘C’ in that order. Once the two sets are defined, 

edges are introduced based on the relationship between a cell and a constraint. An (undirected) 

edge is present between a cell node and a constraint node if the constraint is applicable to that 

cell node. Figure 8 defines the relationships for various value cells and constraints in a ‘9 x 9’ 

puzzle. 

 

 C10 C11 C12 C13 C14 C15 C16 C17 C18 

C1 1 2 3 4 5 6 7 8 9 

C2 10 11 12 13 14 15 16 17 18 

C3 19 20 21 22 23 24 25 26 27 

C4 28 29 30 31 32 33 34 35 36 

C5 37 38 39 40 41 42 43 44 45 

C6 46 47 48 49 50 51 52 53 54 

C7 55 56 57 58 59 60 61 62 63 

C8 64 65 66 67 68 69 70 71 72 

C9 73 74 75 76 77 78 79 80 81 

 

 

Figure 8: Constraints for a ‘9 x 9’ Sudoku puzzle 

C19 C20 C21 

C23 C24 C22 

C25 C26 C27 
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The value/constraints matrix given in Figure 8 can be mapped to a bipartite graph as 

shown in Figure 9: 

   

Figure 9: Bipartite graph associated with the ‘9 x 9’ Sudoku puzzle [2] 

 

As can be observed from Figure 8 and Figure 9, an edge is present between a cell node 

and a constraint node if and only if Sn is involved in Cm. Thus, every cell node is connected to 

exactly 3 constraint nodes (one each for row, column and sub-grid constraint) and each 

constraint node is connected to 9 (in the case of ‘9 x 9’ puzzle) cell nodes since each row, 

column and sub-grid encompass 9 cells. 

4.2.2 Introducing the probability factor 

 

 As the name ‘Probabilistic Graphical Models’ suggests, any problem set in this class 

ideally needs to satisfy two main characteristics: a) The ability to be represented graphically and 

b) Represent some form of uncertainty in the system. Having shown how the problem can be 

mapped to a bipartite graph, we now introduce the probability factor. 
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 In an empty puzzle each cell in the grid can hold a value from 1 to 9 (again in the case of 

a ‘9 x 9’ Sudoku puzzle) with equal probability. However, as mentioned earlier a typical Sudoku 

puzzle comes with some cells prefilled with values. In any case, each cell node stores a factor of 

the form [2]. 

    pn = [P (Sn=1) P (Sn=2) … P (Sn=N)]   Eq. 4.1 

This factor is nothing but a probability vector associated with a cell node. If the cell 

already contains a value, say k (where k ϵ {1. . . N}), then the vector is initialized to have 1 in the 

k
th

 position and (N-1) zeroes in the other positions. If the cell is empty, then the probability is 

equally distributed among all contending values after eliminating the values that violate the three 

constraints that the cell is associated with. At any given point in time, the values in a cell’s 

probability vector always sum to 1 and in the case of a solved puzzle, we end up with a set of 

factors with 1 in the k
th

 position depending on the final cell value. 

4.3 Notations and Definitions 

 

 Some of the common terms and notations we need in subsequent sections are now 

defined [2]. All cases consider a standard ‘9 x 9’ Sudoku puzzle.  

1. As already mentioned, the values of each cell in the puzzle is denoted by Sn, where        

Sn ϵ {1, 2, . . . , 9} for n = 1 to 81. 

2. The probability vectors associated with each cell is given by Eq. 4.1 for n= 1 to 81 and 

N=9. 

3. A constraint Cm is always associated with 9 cell nodes. At any stage of the puzzle a 

constraint can hold only binary values based on whether it is satisfied or not satisfied. A 
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constraint is said to be satisfied if all the 9 cell nodes associated with it contain distinct 

values.  

 

Figure 10: Constraint Function definition [2] 

4. The factors associated with a constraint node Cm are denoted by qm. It represents the 

probability of a constraint being satisfied. A constraint is satisfied when all the cells 

associated with it hold a distinct value. So for example, if 5 out of the 9 cells in the 

constraint hold distinct values, then the probability associated with that constraint is 

given by: qm = (5/9) = 0.56 

This probability value is calculated using the information about the probability of a cell’s 

content from the cell nodes. 

5. We denote the set of indices of the cell nodes that participate in a given constraint Cm by 

Nm. For example, N1 contains the index values of all the cells in the grid that are a part of 

constraint 1 i.e. indices of all the cells in the first row of the grid. 

Thus, from Figure 8 we have N1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} 

Similarly N11 = {2, 11, 20, 29, 38, 47, 56, 65, 74} and N25 = {55, 56, 57, 64, 65, 66, 73, 

74, 75} 

6. We denote the set of indices of the constraint nodes that are connected to a cell node Sn 

by Mn. For example, M1 contains the index values of all the constraint nodes that are 
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associated with it i.e. the constraint associated with the first row, first column and first 

sub-grid. 

Thus, from Figure 8 we have M1 = {1, 10, 19} 

Similarly M11 = {2, 11, 19} and M25 = {3, 16, 21} 

7. We use a double subscript notation (Nm, n) to identify elements that have been removed 

from a set. This notation implies all the cells involved in constraint ‘m’ except cell ‘n’. 

For example, N25 = {55, 56, 57, 64, 65, 66, 73, 74, 75} and if we were to remove cell 64 

from this set it would be represented as N25, 64 = {55, 56, 57, 65, 66, 73, 74, 75}. 

4.3.1 Summary of terms and values 

 

Based on the definitions previously seen we can summarize the values associated with 

each of the terms and arrive at a general pattern that can be adapted for any ‘N x N’ Sudoku 

puzzle. 

Table 2: Summary of terms and values 

Term 4x4 

Puzzle 

9x9 

Puzzle 

16x16 

Puzzle 

NxN 

Puzzle 

Number of cell nodes 16 81 256 N
2
 

Number of constraint nodes 12 27 48 3N 

Size of probability vector associated with each cell node 4 9 16 N 

Dimensions of Nm matrix 12x4 27x9 48x16 3NxN 

Dimensions of Mn matrix 16x3 81x3 256x3 N
2
x3 

 

4.4 Missing Nodes and Value Nodes 

 

The initial distribution of values in a Sudoku puzzle greatly influences the outcome as 

well as the time it takes to arrive at a solution. In this context, when we are given a puzzle, the 
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cells that contain an initial value are called ‘Value Nodes’ and the empty cells are called 

‘Missing Nodes’. 

It has been shown that to arrive at a unique solution, the minimum number of required 

value nodes in a 9x9 puzzle is 17 [13]. Establishing this is of importance as the presence of 

multiple solutions hinders the convergence of the algorithms used. Thus, in our test data set we 

only use puzzles that have more than 17 value nodes and a unique solution. 

 In the next chapter, we describe in detail the three algorithms that we use to solve the 

Sudoku puzzles. We explain how each of the algorithms can be adapted specifically to the 

problem defined and also discuss potential shortcomings in each approach. 
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CHAPTER 5 

Solving the Sudoku puzzle 

 
Having represented the Sudoku problem as a probabilistic model, we employ different 

‘probability solver’ algorithms to arrive at a solution. Unlike the conventional methods which 

employ specific tricks to solve the problem, here we use the concept of general inference. The 

first two algorithms are variants of the belief propagation algorithm and the third is a solution 

based on Sinkhorn balancing. All three however, address the constraint satisfaction problem and 

can be applied to any problem that falls within that general class. 

We have implemented and compared the three algorithms to see how they weigh against 

each other in terms of effectiveness and performance. Each algorithm tries to address some 

shortcomings in the previous algorithm, with the ultimate aim being finding a solution for the 

maximum number of puzzles. 

5.1 Solution using Belief Propagation 

 

The belief propagation algorithms are based on the concept of sending probabilistic 

messages between connected nodes in a graph. In the case of the Sudoku puzzle, a constraint 

node sends to its adjacent cell nodes, the probability that it is satisfied. It computes this value 

based on the information from the cell nodes participating in that constraint about the 

probabilities of their contents. On the other hand, given information about all the connected 

constraints, a cell node sends a message that essentially contains the probability vector associated 

with that cell. This exchange of messages continues until all constraints are met or a maximum 

number of iterations are reached.  
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 Before we get into the algorithm, we define four key terms that form the crux of the 

algorithm: 

1. Constraint to cell node message - rm,n (x) 

The message that constraint Cm sends to cell Sn is defined as:  

 rm,n (x) = P (Cm is satisfied | Sn = x) 

2. Cell node to constraint message - qn,m (x) 

The message that cell Sn sends to constraint Cm is defined as: 

 qn,m (x) = P (Sn = x | all constraints involving Sn except Cm are satisfied) 

3. A Priori probabilities - P (n = x) 

This is the probability vector associated with the cell nodes. 

4. A Posteriori beliefs - qn (x) 

This is the calculated cell vector value based on the messages sent and received. 

5.1.1 Solution using Sequential Message Passing Algorithm 

 

Sequential Message Passing Algorithm 

Initialization: Set the missing nodes to 0; Initialize Sn, Nm, Mn, Cm (See section 4.3) and define 

the initial probability vector distribution for Sn (called sVector) and Cm (called cVector) 

according to initial clues and uniformly in cells with no clues. Set count = 0 and maxIterations. 

Repeat: 

For each cell Sn, Perform a row wise scan and identify the first missing node. 

Send constraint to cell message: rm, n (x) = ∏              qn’, m (x))       Eq. 5.1 [1] 
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Calculate the a posteriori beliefs: qn (x) = P (n = x) ∏         rm, n (x)       Eq. 5.2 [1] 

Normalize the a posteriori belief  

Update the cell probability vector value 

Send cell to constraint message: qn,m (x) = P (n = x) ∏           rm, n (x)           Eq. 5.3 [1] 

End of Sn 

Update the cell values and check if a valid solution has been found. If yes, break with success. 

Increment count = count + 1. 

If count > maxIterations, break with failure. 

End Repeat  

 

5.1.1.1 Issues due to Loopy Belief Propagation 

 

If there were no cycles in the graph, then based on the belief propagation theory, after a 

certain number of iterations the resulting a posteriori belief would contain sufficient information 

from the constraints and the prior probability to give an exact solution. However, in the case of 

the Sudoku problem there exist many short cycles in the graph which bias the results. 

To understand the impact of loopy belief propagation let us consider the following simple 

example [1]: 

Example 5.1: Consider three cell nodes S1, S2 and S3 all of which are related under constraint C1. 

Node S1 will send a message to S2 through C1 about the probability of it taking on different 

values. Based on this information S2 reevaluates its probability vector distribution and passes that 
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on to S3 via C1 again. Similarly S3 will use the message from S2 to send a new message to S1 via 

C1. Now, S1 takes into consideration this new information and updates its probability vector. 

However, the message is biased as it contains information originally sent by S1. 

It is due to this reason that many puzzles are not solvable by the message passing 

technique. However, there is one minor advantage in the Sudoku problem. Since this puzzle is 

presented with a given set of value nodes, there will be no loopy belief propagation on the 

associated loops of these cells [1]. In the case of a value cell node with value k, the 

corresponding message vector or probability vector consists of a 1 in the k
th

 position and N-1 

zeroes. This is called a Kronecker delta function [1]. And since we normalize the message vector 

at each step, this forces the outgoing messages from those cell nodes to also be Kronecker delta 

functions irrespective of the input value it receives. Thus, no node in a cycle can receive looped 

back information via this node. Thus, we can see that the initial distribution and arrangement of 

value nodes and the order of visiting missing nodes has a great influence on the loopy belief 

propagation. In the case of the sequential algorithm, since the missing nodes are always scanned 

in a row wise manner it always encounters the same loops and falls prey to loopy belief 

propagation. 

5.1.2 Solution using Randomized Message Passing Algorithm 

 

The randomized message passing algorithm seeks to overcome the loopy belief 

propagation problem in the sequential method by visiting missing nodes in a random fashion. 

Visiting and resolving values in certain missing nodes could lead to a more favorable distribution 

of value nodes in the next iteration and could potentially avoid loopy belief propagation. 
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Randomized Message Passing Algorithm 

Initialization: Set the missing nodes to 0; Initialize Sn, Nm, Mn, Cm (See section 4.3); Define the 

initial probability vector distribution for Sn (called sVector) and Cm (called cVector) according to 

initial clues and uniformly in cells with no clues. Set count = 0 and maxIterations. 

Repeat: 

For each cell in S 

 Generate a random index from 1 to N
2
 and check if it is a missing cell. 

 If yes, check against visited cells stack to see if it has already been visited. 

 If no, then push cell index into the visited cells stack and perform the following steps 

Send constraint to cell message using Eq. 5.1 

Calculate the a posteriori beliefs using Eq. 5.2 

Normalize the a posteriori belief  

Update the cell probability vector value 

Send cell to constraint message using Eq. 5.3 

End of Sn 

Update the cell values and check if a valid solution has been found. If yes break with success. 

Increment count = count + 1. 

If count > maxIterations, break with failure. 

End Repeat  
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However, while the randomized message passing algorithm increases the chances of 

arriving at a solution, it is still dependent on the arbitrary selection of missing nodes and is hence 

not foolproof. 

5.2 Solution using Sinkhorn Balancing 

 

The solution based on Sinkhorn balancing is aimed at overcoming the issues faced by the 

belief propagation algorithms. It is similar to the BP algorithm in the sense that the contents of 

the puzzle are still modelled probabilistically leading to a reduced search space for potential 

solutions. However, this solution is based on the concept of grouping belief vectors within a 

constraint and arriving at doubly stochastic matrix from this initial condition. Thus, from the 

approach defined, the algorithm is quite evidently not affected by the presence of loops in the 

graph. 

5.2.1 What is Sinkhorn Balancing? 

 

 Sinkhorn Balancing, as shown in the example in Figure 11, is the procedure we follow to 

get a doubly stochastic matrix from an arbitrary matrix that has non-negative elements [3]. A 

doubly stochastic matrix is one whose rows and columns all sum to 1.  Thus, in order to achieve 

this result, we take the given matrix and normalize all rows and columns successively till we 

reach some predefined convergence criteria as defined in the algorithm shown in Figure 12.  

 

Figure 11: One iteration of Sinkhorn Balancing [1] 
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Figure 12: Sinkhorn Balancing algorithm [3] 

 

5.2.2 Applying ‘Sinkhorn Balancing’ to the Sudoku problem 

 

The application of Sinkhorn Balancing to the Sudoku problem is, as we mentioned 

earlier, based on the concept of doubly stochastic matrices. In the case of a solved Sudoku 

puzzle, the distribution of cell node probability vectors will contain a 1 and ‘N-1’ zeroes. Now, if 

we were to group the probability vectors of cells associated with every constraint into a matrix 
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then in the ideal case, if the constraint is satisfied, what we get should be a doubly stochastic 

matrix. Thus, this becomes one of the necessary conditions to represent a valid solution.  

Based on this idea, we use Sinkhorn balancing to convert the given constraint probability 

matrix to a doubly stochastic matrix. As shown in the algorithm defined in Figure 13, this step is 

repeated for each of the constraints in turn till either they are all satisfied or a maximum number 

of iterations is reached.  

 

  Figure 13: Sinkhorn Sudoku Solution Algorithm [3] 



35 
 

In this chapter, we introduced the three algorithms and studied their particularities. In the 

next chapter, we study their implementation details and try to analyze the performance of each. 

Additionally, we cover some of the heuristics that were considered to evaluate their relative 

performance. 
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CHAPTER 6 

Algorithm Implementation Details 
 

6.1 Data structures and notations 

 

All three algorithm implementations are based on the notations defined in section 4.3 and 

Table 2. The problem instance and its factors are represented by an array, as follows, for an      

‘N x N’ puzzle: 

 matrix=new int[N][N] 

 Nm= new int[3*N][N] 

 Mn= new int [N*N][3] 

 Sn = new int[N*N] 

 pn = new double[N*N][N] 

 Cm = new int [3*N] 

 qValue = new double [3*N] 

6.2 Flowcharts 

 

The flowchart for the Sudoku solver implemented based on the ‘Message Passing’ and 

‘Sinkhorn Balancing’ algorithms is shown in Figure 14. It defines the flow of the main function. 

Subroutine calls are expanded in subsequent flowcharts. These flowcharts are defined in Figures 

15 to 21. 
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Figure 14: Flowchart of Main Function 
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Figure 15: Sequential MP Flowchart 
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Figure 16: Randomized MP Flowchart 
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Figure 17: Flowchart of Constraint node to Cell node message 
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Figure 18: Flowchart of Node cell to Constraint cell message 
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Figure 19: Flowchart of Belief calculation 

 

Figure 20: Sinkhorn Sudoku Solution Flowchart 
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Figure 21: Sinkhorn balancing Flowchart 

 

 



44 
 

6.3 Sequential and Randomized Message Passing Algorithms 

 

6.3.1 Running Time [1] 

  

 In the original sum product and max product message passing algorithms [2] the message 

from the constraint nodes to the cell nodes is defined by Eq. 6.1.  

rm, n (x) = 
∑  {      }

                       

∏          ql, m (xl)) Eq. 6.1 

    

Hence, for each message, there are N! assignment of values to the cell nodes in that 

constraint and computing the message takes O (N! N
2
)  time. And for the 3N

2 
messages, the time 

complexity is O (N! N
4
). 

However, based on Eq. 5.1 provided in [1], we get a reduced time complexity of O (N
4
) 

to compute the message.  

6.3.2 Implementation Details 

 

Primary class: SudokuPGM 

Primary Methods and their descriptions:  

 public int sequential () - Method to solve the puzzle using the ‘Sequential MP’ algorithm. In this 

approach, the missing nodes are traversed using a sequential row wise scan and messages are 

passed to and from connected constraint nodes. 

 public int randomSolution () - Method to solve the puzzle using the ‘Randomized MP’ algorithm. 

In this approach, the missing nodes are visited in a random order during each pass and 

messages are passed to and from connected constraint nodes to update the probability vector. 
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 public void c2nMessage (int index)-  Method to pass message from connected constraint nodes 

to a cell node. 

 public void n2cMessage (int index) - Method to pass message from a cell node to the constraint 

nodes connected to it. 

 public void calcBelief () - Method to calculate the cluster/node belief. 

Some of the key points to note with respect to the implementation are: 

1. The implementation of the message passing algorithm employs Eq. 5.1 for constraint to 

cell messages. 

2. It was noted that in cases where the MP algorithms arrived at a solution, it took less than 

50 iterations to do so. However, the Sinkhorn Sudoku Solution algorithm had a more 

diverse convergence rate. Thus, in order to maintain a consistent maximum iteration 

limit, we have chosen the value of 1000. This value is optimal as it does not adversely 

affect the running time of the MP algorithm in situations where convergence does not 

happen and is also able to accommodate most of the SSS test cases.  

3. Initial probabilities for missing cell nodes are uniformly distributed over all ‘N’ 

possibilities. 

6.4 Sinkhorn Sudoku Solution Algorithm 

 

6.4.1 Running Time 

 

The Sinkhorn balancing function performs N row normalizations and N column 

normalizations for each of the rows and columns in the ‘N x N’ probability constraint matrix. 

This function is then repeated for each of the 3N constraints in the given puzzle. Thus, the time 

complexity of the algorithm is O (N
2
). 
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6.4.2 Implementation Details 

 

Primary class: SudokuPGM 

Primary Methods and their descriptions:  

 public int sinkhornSudokuSolution () - Method to solve the puzzle using the ‘Sinkhorn Sudoku 

Solution’ algorithm 

 public int sinkhornBalancing () - Method to perform Sinkhorn Balancing.  

Some of the key points to note with respect to the implementation are: 

1. Initial probabilities for missing cell nodes are uniformly distributed over all N 

possibilities. 

2. The maximum number of iterations was set to 1000. This is to maintain consistency with 

the Message Passing algorithms; to allow a fair comparison and understand their relative 

performance 

3. The tolerance value for convergence of Sinkhorn balancing was set to 0.001; this is an 

arbitrarily selected value between 0 and 1, based on trial and error. If the value is too 

high, then the Sinkhorn balancing algorithm of Figure 12 will converge too soon and if it 

is too low then it will never converge. Thus, we have chosen an optimal value based on 

our observations on how this value affects the running time and accuracy of the results. 

4. The maximum number of iterations for Sinkhorn balancing was set to 1000 in order to 

complement the tolerance value. If the value is too low then the tolerance limit function 

will never be satisfied and if it is too high the running time of the program increases. 
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6.5 Understanding the algorithms using an example 

 

6.5.1 Message Passing Algorithms 

 

The two message passing algorithms differ only in the order of visiting missing cells 

during belief propagation. We demonstrate the performance of both algorithms using an 

example. 

Example 6.1: Consider the ‘9 x 9’ Sudoku puzzle given in Figure 22. 

 

Figure 22: Problem instance for Example 6.1 

 

Based on the problem in Figure 22, we generate the initial probability vector distribution 

for the cell nodes. As mentioned earlier, in the case of missing cell nodes, the probabilities are 

equally distributed over all nine values. The initial probability vector distribution for the first 27 

cell nodes is shown in Figure 23. 
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Figure 23: Initial probability vector distribution 

 

In the first iteration, we visit each of the missing cell nodes and reevaluate their 

probability vectors. This is done based on the information known about the other cell nodes that 

they are associated with through a constraint. If we get strong evidence regarding the values of 

other cells in the constraint, then we can evaluate the value of a missing cell. As a result of this 

process, some of the missing cell nodes get populated and in turn contribute towards evaluating 

other missing cell values in successive iterations. 
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Figure 24: Updated values after first iteration 

 

The new matrix and probability vectors of the first 27 cell nodes are shown in Figure 24. 

Even though there are no new values in these cells, you can see that the first iteration filled 

values into other cells which in turn have affected the probability vectors of these cells. 

In this manner, we get additional information about the cells’ values, until at one point 

we either arrive at a solution or the algorithm fails to converge. 
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Figure 25: Matrix contents after each intermediate iteration 

 

As shown in Figure 25, after every loop we are able to fill additional cells in the puzzle. 

This is done based on the messages that the cells receive from the constraints and vice versa. 
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Figure 26: Values after final iteration 

 

This puzzle was solved in 5 iterations and from Figure 26 we see that the resulting 

probability vectors take the form of a Kronecker Delta function. 

6.5.2 Sinkhorn Balancing algorithm 

 

 Recall that the Sinkhorn Sudoku Solution algorithm was given in Figure 13. We will 

demonstrate how the algorithm works using Example 6.2. 

Example 6.2: Consider the ‘9 x 9’ Sudoku puzzle given in Figure 22. 

The Sinkhorn Sudoku solution algorithm also generates an initial probability vector 

distribution for all the cell nodes based on the information given. In this distribution, the 

probabilities are distributed equally for the missing cells without considering the influence of 
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other value nodes. The initial probability vector distribution for the first row of the puzzle is 

shown in Figure 27. 

 

Figure 27: Initial probability distribution 

These vectors, when grouped together, form the probability constraint matrix for 

constraint ‘C1’ as shown in Figure 28. 

 

Figure 28: PCM before Sinkhorn Balancing 

Now we perform Sinkhorn Balancing on this matrix. This is essentially nothing but 

performing successive column and row normalizations till some convergence criteria is met. The 

resulting matrix is a doubly stochastic matrix as seen in Figure 29. 

 

Figure 29: PCM after Sinkhorn Balancing 
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We extract the new probability vectors from this matrix and then repeat the process for 

all the other constraints. At the end of the process, we guess the most probable value for each cell 

by taking the index of the largest probability value in its probability vector. Based on these 

assumptions we fill out the Sudoku grid and validate the result. If the solution is valid we 

terminate and update the probability vectors to take the form of Kronecker Delta functions, else 

we repeat the process for all the constraints.  

 

Figure 30: Final result of SSS algorithm 

 

The end result of this process either gives us a solved puzzle, as seen in Figure 30, or no 

result. In the next chapter, we provide an overview of the data used for testing the 

implementations and a detailed comparison of the results. 
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CHAPTER 7 

Test Data and Test Results 

7.1 Collection of test data 

 

The test data for the algorithms were collected from various websites [15] [16] [17]. The 

puzzles have been classified by the respective websites into various difficulty levels. Though the 

specific criteria for classification were not provided, in general it is based on a combination of 

number of prefilled cell nodes and the initial distribution of those nodes. 

The difficulty levels range from ‘Very Easy’ to ‘Impossible’, but for our analysis we 

have restricted ourselves to ‘Easy’, ‘Medium’ and ‘Hard’ puzzles only. Additionally, in order to 

avoid ambiguous results, we have examined only those puzzles that have unique solutions. The 

input data we use are a set of comma-delimited text files, where each file contains a Sudoku 

puzzle. 

Results presented in this chapter are based on tests that have been run on 15 ‘4 x 4’ 

puzzles, 150 ‘9 x 9’ puzzles, 100 ’16 x 16’ puzzles and 30 ‘25 x 25’ puzzles. Additional tests 

results (that are not included here) have also contributed to the final analysis.  

7.2 Comparison of the three algorithms 

 

 In all the algorithms, the initial probability distribution is set equally for all the missing 

nodes. We then follow several iterations of elimination to redistribute the probabilities, based on 

what we know about other cell nodes grouped in the same constraint. In order to avoid the 

adverse effects of biases due to large number of loops in the graph; and taking into consideration 
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the existing time complexity of the algorithms, we restrict the maximum number of iterations to 

a constant value (1000) in all three algorithms.  

 We note that the analysis we describe in the next section is based on a combination of the 

data presented and additional tests that were run.  

7.2.1 Sequential MP Algorithm 

 

Table 3: Results of Sequential message passing algorithm 

Puzzle size Difficulty level 
Number of 

puzzles 
Number of 

complete/correct solutions 
Percentage of 

accurate results 

4x4 Easy 15 15 100% 
9x9 Easy 50 2 4% 
 Medium 50 3 6% 
 Hard  50 7 14% 
16x16 Easy 50 0 0% 
 Medium and Hard 50 1 2% 
25x25 Easy  15 0 0% 
 Medium and Hard  15 0 0% 

 

 The Sequential Message Passing algorithm always visits the missing nodes in the same 

order. It traverses the matrix one row at a time from left to right. When a missing node is 

identified, we check for messages from the constraint nodes that it is associated with. These 

messages contain information from other cell nodes involved in that particular constraint; 

regarding the values they hold or can hold. If any of these cells’ value is already known, then an 

outgoing message from that cell will simply be the fixed probability vector, irrespective of the 

incoming messages. Also, this vector will always be a Kronecker delta function [1] [2]. This then 

avoids any loopy belief propagation in this particular loop.  

 Thus, it is clear that the distribution of value cell nodes greatly influences the degree of 

loopy belief propagation. If we were to visit a missing node that is associated with many value 
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nodes initially, then there is a greater possibility of resolving its value. It can then, in turn, assist 

in resolving the value of other missing nodes that it is associated with. Hence, the order in which 

we visit missing cell nodes is also of great importance and as expected the results that we see in 

Table 3 reinforce this theory. Most of the puzzles were caught in loops and never converged to a 

solution. 

7.2.2 Randomized MP Algorithm 

 

Table 4: Results of Randomized message passing algorithm 

Puzzle size Difficulty level 
Number of 

puzzles 

Number of complete/correct 
solutions 

(Average of 50 runs) 

Percentage of 
accurate 
results 

4x4 Easy 15 15 100% 
9x9 Easy 50 40 80% 
 Medium 50 38 76% 
 Hard  50 37 74% 
16x16 Easy 50 15 30% 
 Medium and Hard 50 7 14% 
25x25 Easy  15 1 6.66% 
 Medium and Hard  15 0 0% 

 

The Randomized Message Passing algorithm is aimed at overcoming the limitations of 

the Sequential algorithm. Since we saw that visiting missing cell nodes in the same order lead to 

biases due to loopy belief propagation, in this algorithm we visit the nodes in random order. In 

this manner we increase the chances of resolving missing cells associated with favorable value 

nodes first and they in turn can help identify other missing node values.  

Table 4 summarizes the results of running the Randomized MP algorithm multiple times. 

The reason for multiple runs is because this is still a randomized approach. It may or may not 

converge. If a problem has ‘m’ missing cell nodes then these nodes can be visited in ‘m!’ ways. 
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It is to be noted that the fixed order in which the Sequential MP algorithm visits the missing cells 

is one of these ‘m!’ possibilities.  

Thus, the Randomized MP algorithm too suffers from loopy belief propagation but has 

better chances of finding a solution due to its arbitrary approach. This is reflected in Table 4; we 

see a much better accuracy though the results are still not perfect. 

7.2.3 Sinkhorn Balancing Algorithm 

 

Table 5: Results of Sinkhorn balancing algorithm 

Puzzle size Difficulty level 
Number of 

puzzles 
Number of 

complete/correct solutions 
Percentage of 

accurate results 

4x4 Easy 15 15 100% 
9x9 Easy 50 50 100% 
 Medium 50 49 98% 
 Hard  50 41 82% 
16x16 Easy 50 6 12% 
 Medium and Hard 50 1 2% 
25x25 Easy  15 0 0% 
 Medium and Hard  15 0 0% 

 

 The Sinkhorn balancing approach is based on grouping belief vectors that are associated 

within a particular constraint. As was the case with the MP algorithms (and unlike the traditional 

solutions that perform logical elimination over a large search space), the Sinkhorn algorithm too 

makes use of a probabilistic representation and approach to solve the discrete constraint 

satisfaction problem. This greatly reduces the potential solution space to be considered. 

However, as mentioned in [3], the Sinkhorn method has an added advantage over belief 

propagation as it is not affected by graph cycles and loopy belief propagation. It also has a lower 

time complexity. While the MP algorithms seem to produce good results only for the easier 
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problems, the Sinkhorn balancing approach is able to solve most of the problem except the 

extremely difficult ones.  

While the Sinkhorn algorithm almost always converges to a solution, the rate of 

convergence is greatly influenced by multiple factors such as the puzzle size, difficulty level and 

choice of tolerance function during Sinkhorn balancing. The higher the value of any of these 

factors, the more number of iterations it takes for the algorithm to converge. The results 

presented in Table 5 are not completely bias-free as the maximum number of iterations was 

capped at 1000 to keep it consistent with the MP algorithms. While this limit was enough to 

accommodate most of the ‘9 x 9’ puzzles, it was not sufficient for the larger puzzles. However, 

when the maximum iteration count was increased to 100000, an additional 18 puzzles in the ’16 

x 16 Easy’ category, 3 puzzles in the ’16 x 16 Medium and Hard’ category and 1 puzzle in the 

’25 x 25 Easy’ category were solved.  

Similarly, for the experiment documented in Table 5, we used a tolerance function of 

0.001 and a maximum iteration count of 1000 during Sinkhorn balancing. As described in Figure 

12, the tolerance function (ϵ) acts as the convergence criterion for the Sinkhorn Balancing 

algorithm. Varying this value also affects the convergence rate of the Sinkhorn Sudoku Solution 

algorithm. The number of iterations to solve the puzzle is directly proportional to the tolerance 

function and inversely proportional to the number of Sinkhorn iterations.  

Based on the results obtained, we have summarized the relative performance of the three 

algorithms in Figure 31. 
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Figure 31: Comparison of 3 algorithms 

 

 Based on Figure 31, we see that for all puzzles the Sequential MP algorithm fairs quite 

poorly, whereas the Randomized MP shows much better performance. The algorithm based on 

Sinkhorn Balancing shows the best performance for all difficulty levels within the standard ‘9 x 

9’ puzzle set. Also, considering additional results not documented here, the SSS algorithm was 

found to produce valid solutions more consistently than the other two algorithms. 
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7.3 Convergence rate of the three algorithms 

 

 The general trend observed in the convergence rates of the three algorithms shows that, in 

the case of MP algorithms, if a solution is obtainable then, the number of iterations to reach that 

solution is not greatly affected by the size or difficulty level of the problem. On the other hand, 

the Sinkhorn algorithm’s convergence rate is quite closely related to the nature of the problem. 

These observations are depicted in the figures that follow. Figures 33 and 35 compare the effect 

on convergence rate due to the difficulty level and Figure 37 highlights the impact on 

convergence rate when the size of the puzzle is increased. In all three figures, the horizontal axis 

shows the number of iterations and vertical axis shows number of unsatisfied constraint. 

a) Standard ‘9 x 9’ puzzle 

 

Figure 32: Given puzzle - '9 x 9' Easy 
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Figure 33: Convergence rate for given puzzle. 

 We see from Figure 33 that the Sinkhorn Sudoku Solution algorithm has a better 

convergence rate for a standard ‘9 x 9’ puzzle. Also, while both MP algorithms take the same 

number of iterations to solve this particular problem instance, the rate at which the constraints 

are satisfied varies. 

b) Hard ‘9 x 9’ puzzle 

 

Figure 34: Given puzzle - '9 x 9' Hard 
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Figure 35: Convergence rate for given puzzle. 

We see from Figure 35 that for a hard ‘9 x 9’ puzzle, the Sinkhorn Sudoku Solution 

algorithm is still able to arrive at a solution, even though the convergence rate is higher than that 

of a standard ‘9 x 9’ puzzle. The MP algorithms on the other hand fail to arrive at a valid 

solution due to the biases introduced by loopy belief propagation in the bipartite graph. 

c) Standard ‘16 x 16’ puzzle 

 

 

Figure 36: Given puzzle - '16 x 16' Easy 
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Figure 37: Convergence rate for given puzzle 

 

 Figure 37 shows the convergence rates of the three algorithms when given a standard   

’16 x 16’ puzzle as input. Keeping the difficulty level the same, if we were to increase the puzzle 

size, we see that the Sinkhorn Sudoku Solution takes longer to converge. However, it is still able 

to arrive at a valid solution. The MP algorithms on the other hand take a fewer number of 

iteration to solve the puzzle.  

 Thus, based on Figures 33, 35 and 37 we see that MP algorithms are affected by the 

difficulty level of the puzzle. However, in cases where they do converge the size of the puzzle 

does not affect the number of iterations to find a solution. On the other hand, the algorithm based 

on Sinkhorn Balancing is far more consistent and is able to find a valid solution in most cases. 

However, its convergence rate is affected by both the size and difficulty level of the puzzle. 
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Figures 38, 39 and 40 depict the convergence of the Sequential MP, Randomized MP and 

SSS algorithms for 15 puzzles from the ‘9 x 9 Easy’ category. The horizontal axis shows the 

number of iterations and the vertical axis depicts the number of unsatisfied constraints. All three 

algorithms had the same maximum iterations limit of 100 and the Sinkhorn tolerance limit was 

set at 0.001. 

 

Figure 38: Convergence of Sequential MP algorithm 

 

 The Sequential Message Passing algorithm fails to arrive at a valid solution for most 

puzzles, as shown in Figure 38. For the few instances where the puzzle is solved, the number of 

iterations it takes does not vary greatly. 
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Figure 39: Convergence of Randomized MP algorithm 

 

 The Randomized Message Passing algorithm shows much better performance than the 

Sequential MP algorithm, as shown in Figure 39. However, the convergence rate is consistent 

with the other Message Passing algorithm. 

 In Figure 40, we have shown the convergence rate of the Sinkhorn based solution. As can 

be observed, it shows the best performance in terms of arriving at a valid solution. But unlike the 

MP algorithms, the SSS algorithm has a bigger and more diverse convergence rate. 



66 
 

 

Figure 40: Convergence of SSS algorithm 

 

 Having seen the various test results, in the final chapter we summarize our findings and 

define the scope of future work. 
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CHAPTER 8 

Conclusion and Future work 

 

 

Sudoku, being a NP-Complete problem, there is no optimal technique that runs in 

polynomial time to solve these puzzles. However, the search space can be largely reduced by 

avoiding special tricks and instead taking an algorithm that performs general inference. The three 

algorithms compared in this work can be applied to any similar constraint satisfaction problem. 

Based on the results discussed in this work, the next question that arises is regarding the 

best choice of algorithm among these three. This decision is largely dependent on the problem at 

hand. While the MP algorithm, especially the Randomized MP algorithm, might appear more 

effective for larger puzzles, it is possible that it was influenced by the test data set used and the 

fact that it is an averaged result of multiple runs of the algorithm. Similarly, the SSS algorithm 

was definitely influenced by the choice of maximum iterations limit. It is to be noted that the 

presence or absence of loops tend to greatly affect the results of the MP algorithms, whereas 

Sinkhorn balancing bypasses this issue and can hence be considered more consistent as 

compared to the MP algorithms.  

In the case of the MP algorithms, addressing the influence of loopy belief propagation 

and biases is the primary focus area for future work. On the other hand, Sinkhorn balancing 

offers great scope in terms of addressing multiple constraint problems similar to the Sudoku 

puzzle. It is a straightforward approach that can be adapted to other areas of study such as the 

LDPC decoding problem, especially ones whose Tanner graphs have many cycles [3]. 
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