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ABSTRACT

Operational Semantics for Featherweight Lua

by Hanshu Lin

Lua is a small, embedded language to provide scripting in other languages. De-

spite a clean, minimal syntax, it is still too complex for formal reasoning because of

some syntactic sugar or specific syntax structures in Lua.

This thesis develops Featherweight Lua (FWLua), following the tradition of lan-

guages like Featherweight Java[1] and Featherweight JavaScript[2]. The goal is to

develop a core of language features that, while remaining simple enough for formal

reasoning, also remain faithful to the central characteristics of the language. Specifi-

cally for Lua, the core features that are essential for our modeling include:

∙ First-class functions

∙ Tables as the central data construct

∙ Metatables that provide various “hooks” to change the behavior of tables

To further validate this approach, we show how an extensive set of features

from the full Lua programming language can be reduced to FWLua. Finally, we

include a reference implementation written in Haskell as a tool for further testing and

experimenting with the language. With this research, we provide a basis for future

research into the Lua programming language.
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CHAPTER 1

Introduction of Lua

Lua is a scripting programming language. It is designed to support general

procedural programming with data description facilities [3]. Since it is designed to be

an embedded scripting language, it has a concise syntax. However, Lua is powerful

and fast, making it useful as a general purpose scripting language. Our core goal is to

develop a set of formal semantics for a minimal version of Lua. This set of semantics

allows us to formally reason about properties of the Lua language without becoming

needlessly mired in unimportant aspects of the full Lua language. In other words, we

are attempting to remove those syntactic features we think are less important and

thus keep the core features of Lua, facilitating future research into the language.

In our research on Lua [4], we have identified several features as central to Lua’s

character. First of all, Lua supports first-class functions. It provides syntax for

functions to fulfill specific tasks from users. In addition, Lua’s design is centered

on tables. Tables are the primary data structure in Lua since they are lightweight,

powerful, and can present many other data structures when combined with functions.

Furthermore, Lua has a special feature named “metatables”, which are reserved tables

with a set of functions to control the behaviors of tables in Lua. All of these features

make Lua different from other languages, and that is the reason why we identify them

as the core features of Lua.

In this paper, we first introduce the background of Lua in this chapter. We will

also introduce the syntax of Lua, and whose features we think are very important to

Lua in Chapter 2. Then, we will discuss about the syntax and operational semantics
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of Featherweight Lua – an exquisite language we create for further research of Lua

– in Chapter 3 and Chapter 4. What is more, in case of leaning Lua, we show how

we translate Lua to Featherweight Lua in Chapter 5. Finally, we will give a brief

introduction about our implementation in Chapter 6, and discuss about conclusion

and future work in Chapter 7.

1.1 History of Lua

Before talking about Lua, we give a brief introduction about the history of Lua

to elaborate on the reason why we think Lua is interesting and valuable to research.

At the beginning of the history, there was a programming language called “Sol”,

which was created for fulfilling some mundane tasks in a Brazilian oil company called

PETROBRAS. In 1993, there were already some lightweight languages, but none of

them provided data description; variables in these languages were unable to define

a data of key-value pair, such as tables or records. Therefore, Lua was created,

without the need of type declarations, to satisfy this need at the time [5]. With more

and more users leveraging Lua in their work, the demand for better performance

increased. Lua version 2 was released in February 1995. It brought many important

changes such as the simplification of the semantics for table constructors, the concept

of “fallbacks”—a set of programmer defined functions that are called whenever Lua

does not know what to do next, and some other important features. Version 3 of Lua

was published in July 1997. In this version, the concept of fallbacks was replaced

with tag methods. Because of this, developers using Lua 3 can now create their own

tags, and even associate tables and userdata to the tags to make them have their own

unique behaviors. Then, version 4 of Lua was released in November 2000. Besides a

set of new APIs, the for loop statement was introduced in Lua. Also, in February
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2002, Lua 4.1 introduced metatables and metamethods as the replacement for tag

methods and fallbacks [6].

1.2 Where to use Lua

Lua is often embedded in many applications to fulfill some simple and small

tasks due to its qualities. Usually, Lua is used to add extensions in large applications

that would be hard to change. Also, Lua can be used in many programs in different

domains that need extensions to make them flexible, especially for game developers

and UI designers. [7].

For instance, Lua is used to create user interface add-ons in the popular online

game called The World of Warcraft [8]. These add-ons are commonly used for assisting

players by adding some simple functionality in the game, such as timers, alerts, chat

reminders, action automations, dashboards and so on. Based on the add-ons website

Curse [9], there are more than 4600 different add-ons used in the game.

In the aspect of commodities, Lua has been embedded in many devices, including

the CHDK Lua interface for Canon cameras [10], UI designs for Photoshop Light-

room [11], and Logitech keyboards. Lua is also used for network security applications

in Cisco [12] and for extensions and add-ons in the MySQL Workbench. CloudFlare,

a content delivery network using Nginx, is trying further improve its performance

using Lua because of the benefits of Lua [13] and the speed of the LuaJIT engine [14].

1.3 Interesting features of Lua

Analyzing the right features is always important for learning a programming

language. In this section, we briefly introduce several features we think are interesting

of important in Lua. As an embedded language, there are several characters making
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Lua unique. Actually these mechanisms are all indispensable in Lua, beside basic

data types and data structures.

First of all, Lua supports first-class functions. An anonymous function can be

directly assigned to a variable in Lua just like any other value.

Also, metatables are used in Lua to control the behavior of tables. There are

several reserved functions in a metatable, which we can call “Metamethods”. Metat-

ables delivers a fast and clean programming method by defining behaviors in tables

and setting hooks for common operators, such as “+” or “*”.

In this paper, we keep these features and regard them as part of the core element.

We will specifically discuss them in each chapter.

1.4 Lua and JavaScript

Lua is similar in its design to the JavaScript programming language. Since

JavaScript is widely used in client-side scripting, it has received significantly more

attention than Lua, but many of the challenges are very similar.

One of the inspirations for this work was Featherweight JavaScript (FWJS) [2],

which also develops a core subset for a much larger language. JavaScript is similar to

Lua in that it also has first-class functions, but it differs in that it has a prototype-

based object system. Lua’s combination of tables and metatables provide similar

functionality, but with a noticeably different feel.

Guha et al. [16] show an alternate approach for reducing JavaScript to a core

calculus. The authors also give several models, desugaring processes, a small-step

operational semantics, and an implementation.
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1.5 Operational semantics

Operational semantics [17] are a set of rules defining the behavior of a language.

These rules are useful for verifying certain important properties for a programming

language, such as security. Operational semantics can be classified into two different

kinds: small-step semantics and big-step semantics. The former one describes each

individual step in the computation, while the latter one shows how the final result

of one statement is obtained after being fully executed. In this paper, we show the

big-step semantics of Featherweight Lua according to the research on Lua. Generally

speaking, writing operational semantics is more like programming in an abstract way.

To help validate and experiment with our approach, we also implement an interpreter

in Haskell that closely follows the semantics we have developed.

1.6 Featherweight Language

A Featherweight Programming Language is commonly used to research a pro-

gramming language. This is a valuable method if the programming language an

individual wants to research is so complex. For instance, Thomas H. Austin and

et al. have pointed out that “The full JavaScript language is quite complex and

difficult to reason about, and is a difficult foundation for proving formal security

guarantee” [2], and they then choose to design Featherweight JavaScript and use it

to research JavaScript in the aspects of security and information flows. This proves

several advantages that motivate us to establish a simpler featherweight programming

language in the research of Lua.

Generally speaking, featherweight languages are very simple in both syntax and

semantics. However, they all have to retain the essence of the target languages in case

of formal reasoning all features of original language. In the previous featherweight
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programming languages, Atsushi Igarashi shows that there are some main features still

remained in Featherweight Java, including classes, methods, fields, dynamic typecasts,

and inheritance [18]. In addition, Jeremy Siek also has introduced Featherweight

C programming language with stack-based allocation functions, pointers, and heap

allocation remained [19]. All of these previous featherweight language are made for

simplifying target language in case of research, and they provide complete feature

modeling from target language.
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CHAPTER 2

Full Version Lua

We introduce the syntax for the full version of Lua in this chapter. As mentioned

previously, Lua is an extension programming language, and therefore its syntax is

relatively simple. However, there are still several parts which can cause confusion in

Lua.

2.1 Syntax in Lua

Lua is a small extension language [20] with many similarities to JavaScript in its

structure. Every program of Lua can be thought as a block – a list of statements,

which are executed sequentially. Return statements can only be used in the end of a

block, although they are optional.

Next, we will discuss two important elements in Lua separately, which are expres-

sions and statements. Lua splits statements and expressions. They are separated, but

still partially independent. Although most programming languages allow expressions

to be put in the code individually, Lua does not allow that. Expressions must be

part of statements and cannot stand alone in a program. However, note that function

application is considered both statements and expressions.

Figure 1 shows the complete list of Lua expressions, and Figure 2 shows the

available statements for Lua. We give a brief introduction about the important parts

of Lua in the next section. Those parts include expressions, statements, functions,

tables, and metatables. We will talk about how the full version of Lua may be

desugared to our core language in Chapter 5.
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2.2 Expressions

As we mentioned above, expressions cannot be used individually. However, it

still plays a key role in Lua since there are many evaluation rules for expressions. An

expression evaluates to a value. We consider this as the main difference to statements,

which might not produce a value.

Figure 1 shows the expressions for Lua. Values present some constant value

like booleans or integers. Prefix expressions include variables, function calls, and

parenthesized expressions. Since tables are the central data structure in Lua, getting

variables from tables is an important aspect of the language. In Lua, variables can

either be names (x), direct table selects (e.x), or computed table selects (e[e])1. Lua

supports the usual mathematical binary and unary operators. Finally, Lua includes

blocks in function definitions, which are sequences of statements. However, we will

give the specific definition of blocks in Figure 2, since they look more related to

statements.

2.3 Statements

Figure 2 shows the syntax for statements in Lua. We can see many common

types of statement that appear in lots of programming languages, such as assignment

statements and function applications. One unusual aspect of Lua is that only state-

ments may stand alone in a Lua program. Therefore, all functions are considered to

be both statements and expressions.

There are 3 parts in the syntax of statements. They are statements, blocks, and

functions. In the following, we will mainly introduce them.
1Note that direct table selects are syntactic sugar for computed table selects.

8



𝑒, 𝑓 ::= Expressions
nil nil
𝑣 value
𝑝 prefix expression
... vararg expression
function (𝑒𝑖) 𝑏𝑙𝑜𝑐𝑘 end lambda function definition
{[𝑣𝑖] = 𝑒𝑖} table constructor
𝑒 𝑏𝑖𝑛𝑜𝑝 𝑒 binary operation
𝑢𝑛𝑜𝑝 𝑒 unary operation

𝑣 ::= Values
𝑛 number
true boolean true
false boolean false
𝑠 string

𝑝 ::= Prefix Expressions
𝑥 variable
𝑓(𝑒𝑖) function call
(𝑒) prefix expression

𝑥 ::= Variables
𝑛 name
𝑝[𝑒] computed table select
𝑝.𝑠 direct table select

𝑏𝑖𝑛𝑜𝑝 ::= + | − | * | / |ˆ| % | .. | > | >= | Binary operators
< | <= | == | = | and | or

𝑢𝑛𝑜𝑝 ::= − | not | * Unary operators

𝑏𝑙𝑜𝑐𝑘 Blocks

Figure 1: Expressions in Lua

Assignment statements are used to assign a value to a specific variable in the

global store. However, this syntax in Lua works a little differently than in other

languages. First of all, it is not possible to chain assignments, so that x = y = 3

is a syntax error. However, Lua allows users to assign multiple values to multiple
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variables with only one statement by using expression lists on both side of ‘=’. This

looks like what we called “Destructuring Assignment” in JavaScript [21]. Section 5.2

rises an example showing this. It is very convenient and interesting, but is not that

indispensable. Therefore we decide to remove it in FWLua, regard it as a syntactic

sugar, and find a way to translate them.

In addition, Lua provides a bunch of statements for control flow. There is an

if statement in the syntax that works as in most languages. In Lua, users have 3

different ways to implement and control a loop, which are while statements, for

statements and repeat statements. Lua’s for statement has a different but efficient

syntax comparing to other common programming languages. We will talk about it

in the Section 5.4. Since loops and conditional statement are both straightforward,

we will not discuss them further.

As we mentioned, blocks are a sequence of statements, which may optionally

include a return statement as the last statement in the block. Therefore, the return

statement will be illegal outside of blocks, or before the last statement in a block,

2.4 Functions

A function is made up of a set of statements and expressions in Lua. The

reason we choose to further introduce functions is that they could be used as either

expressions or statements. This section discusses those differences in more detail.

Based on the research [20], we believe that there are at least two main purposes of

using functions in programming languages: to produce some side effects, or to return

a value after being computed. According to this, we can use a function application

as a statement in the former case and regard it as an expression in the latter one.

However, a given function application may serve both purposes, depending on the

10



𝑠 ::= Statements
; empty statement
𝑥𝑖 = 𝑒𝑗 assignment statement
local 𝑛𝑖 = 𝑒𝑗 local assignment statement
function 𝑓(𝑛𝑖) 𝑏 end function definition
𝑓(𝑒𝑖) function call
:: 𝑛 :: label
break break
goto 𝑛 goto
do 𝑏 end do
if 𝑒 then 𝑏 else 𝑏 end if statement
while 𝑒 do 𝑏 end while statement
repeat 𝑏 until 𝑒 repeat statement
for 𝑛 = 𝑒1, 𝑒2, 𝑒3 do 𝑏 end for statement

𝑏 ::= Blocks
𝑠𝑖 return 𝑒𝑖 block statements

𝑓 ::= Function Names
𝑛 name
𝑛.𝑓 name2
𝑓 : 𝑛 name3

𝑛 Names
𝑒 Expressions
𝑥 Variables

Figure 2: Statements in Lua

function’s definition.

Lua provides anonymous functions, which means that a function definition ex-

pression will return itself as the result. Basically, a function in this case is an expres-

sion that evaluates to a closure.

One important aspect of functions in Lua is that they are first-class values,

meaning that it is possible to support functional programming. We see this behavior

of Lua as one of its core characteristics.
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2.5 Metatables and Metamethods

Metatables are one of the most unusual features in Lua. The functions in metat-

ables are called “metamethods”. Metamethods are automatically called when the

specific condition is satisfied. They are usually called “hooks” in many programming

languages. The primary goal of metatables is to control the basic behavior of tables.

For instance, if we want to find a value with a key that does not exist in the table,

the __index metamethod in the metatable of this table will automatically execute

instead of reporting a crash.

There are several default functions in the metatable. They include hooks for

behavior controlling (also called Fallbacks in the previous version of Lua), and

functions for binary operations. In addition, these metamethods can be redefined by

programmers. As a set of automatically executing functions, metatables can be very

powerful and a nice convenience for Lua programmers.

Lua has a set of reserved functions for metatables such as getmetatable() and

setmetatable(). By analyzing these, we can further understand the behavior of

metatables. We use these functions for our research in the project since we think

metatables plays a key role in the language design of Lua. Meanwhile, more rules

about metatables can be found in the Lua Reference Manual [4].

2.6 Tables

From Figure 1, we can see that there is an expression for table constructors,

which creates a new table as a value. Basically, there are many ways of telling the

program how to deal with a table and also to specify the values in it. However, the

purpose of the different syntax would all be the same: to store a key-value pair in the

specific table.
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Therefore, the basic syntax of tables is simple in Lua. Users can just assign a

new empty table to a variable, assign a value to a variable in this table, or update

some values in it, just like:

tbl = {}
tbl[1] = 2

Also, you can create a table by using a set of expressions like:

table = { x = 1; y = 2, z = 3 }

And this statement can be translated into a set of expressions; we will treat this

as a part of translation in Section 5.3.

Tables in Lua are the primary data structure. Almost every type of data structure

can be represented with tables in Lua in an efficient way, such as arrays, records or

sets. One interesting thing is that arrays and lists are usually used as the basic data

structure in other languages. We can easily implement these structures using Lua

tables. However, we don’t take this as necessary since tables are much more powerful

than them.

In this section, we illustrate several examples showing how to implement other

data structure with tables and metatables. These examples will also make both tables

and metatables easier to be comprehended.

The first instance we want to show is about arrays. We know that an array is

made up of a set of values and keys, where keys are index numbers. Therefore, giving

an array using a table is not an issue, as we show in the following code:

array = {}
for i=1, 100 do

array[i] = 0
end
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In this program, the array would return the value of Nil instead of 0 if the index

number is out of the range (1 to 100).

Objects are very important data structures in object-oriented programming lan-

guages. Lua does not provide objects by default, but it is easy to build them in Lua

using a combination of tables and metatables.

Before we write the example, we first introduce some basic qualities about ob-

jects. According to Jung and Brown [26], objects and tables have a lot of similar

qualities. Tables have a state, an identity that is independent of their values, and

also have a specific life cycle when being created. All of these are behaviors shared

with objects.

However, objects also have some unique qualities that make them different from

tables such as inheritance. To properly implement this, we rely on metatables to

change the behavior of tables to act like objects.

We create a table with the table constructor in the following code:

parent = {firstName = "Max", lastName = "Lin"}
child = {firstName = "Mary"}

And we now have two tables. These tables are similar to objects because they

share a similar structure. Now, we use metatables to model inheritance using a

prototype-based approach [27]. As we know, the child object inherits all the data

from its parent. Therefore, when we miss a key from the child, we will get back the

value from the parent. Here is the code:

setmetatable(child,{__index = parent})
print(child.lastName)
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In the code, the method setmetatble(t, mt) sets the table mt to t as its metat-

able. In the table mt, the method __index tells the child table to index the specific

table when the key is missing. Hence, we now deliver basic inheritance for our ob-

jects. In this program, the result would be the value Lin since the key lastName is

available in the parent object.
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CHAPTER 3

Featherweight Lua

Although Lua has a minimal syntax compared to most other programming lan-

guages, it is still too complex for formal reasoning. For instance:

x = 54
function foo(x)

local x = 18
print(x)

end;

foo(36); --what does this print?

In this example, it is not immediately obvious whether the local variable, the

global variable, or the parameter will print.There are also some other problems like

this, making Lua complex for analyzing.

Another instance will be adding information flow controls to Lua. In building

these, we may think about whether our additions to the language present secrets from

leaking. There might be some functions about this issue, for example, makeSecret(e)

or something like this. While using FWLua, we only need to reason about FWlua.

Therefore, we further simplify the syntax from the full version Lua. We call

the new, simplified language Featherweight Lua (FWLua). In FWLua, we remove

unnecessary syntax and reduce the language to its essential.

In this chapter, we first introduce how we deal with several primary parts in

Lua — expressions and statements. Then, we are going to talk about functions

and metatables, which are both key elements of Lua, in more detail in the chapter.
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Meanwhile, we give the full syntax and evaluation rules after all the elements in

FWLua have been specifically introduced.

3.1 Expressions in FWLua

As mentioned before, Lua splits statements and expressions, though they may

overlap due to function applications. As the consequence, we merge expressions and

statements, and treat both of them as expressions in FWLua. In this section, we

discuss expressions in FWLua and why we think these simplifications can remain the

true spirit of Lua.

3.1.1 Lua’s Expressions

We keep constant values in the language. These types include Number, String

and Boolean representing values in the original syntax. There is also a special ex-

pression nil, similar to null in Java and to both null and undefined in JavaScript.

For simplicity, we treat nil as a constant in our evaluation rules.

In the original syntax, there are several different ways for getting variables. To

make it concrete, we show a program using all three ways for getting variables:

tbl
tbl.x
tbl["y"]

The first case references a variable name. The second is a direct table select,

using ‘.’. This variable expression directly gets the value referenced by the key “x”

in the specified table “tbl”. The last case is an example of a computed table access.

It is similar to the second case, except that Lua allows an expression to dynamically

determine the key in the table.
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The computed table access case can simulate the other approaches. Referring

to tbl.x is identical to tbl["x"]. In the version of Lua 5.2, there is a new feature,

which is using a reserved variable _ENV to represent the table of global environment.

Therefore, instead of referring to x, we can use _ENV.x.

As a consequence, variables are now represented by a more common format:

e1[e2], which we call it table select. In this format, we only look up the variable e2 in

the table e1 and return the value (or nil if it doesn’t exist). And we can use reserved

word “_ENV” to represent the global environment. Specifically,

tbl

equals to

_ENV["tbl"]

A table constructor constructs a new domain with some scoped mutable variables

within. When we invoke “{}”, the compiler allocates a new scope and creates a new

anonymous table, similar to how new works in JavaScript.

Lua supports both unary operators and binary operators, though it is straight-

forward to treat unary operators as binary operators with two expressions e1 and e2

where e1 is nil. As a result, we eliminate unary operators from the syntax of FWLua.

The syntax of expressions in Featherweight Lua is presented and discussed in

Section 4.1

3.1.2 Lua’s Statements

According to Roberto Ierusalimschy [20], statements in Lua include assignment,

control structures, function calls, and variable declarations.

18



Our strategy for simplifying statements is to classify them into some syntactic

groups, and then choose a basic syntactic format for each of them. We also remove

blocks from our syntax since we can desugar sequences of statements easily, and

implement block using lambda function.

We first discuss assignment statements. Every assignment statement will change

the store since it assigns a value to a variable. Also, Lua is built to be a dynamic typed

programming language, which means type declarations are not needed in assignment

statements. Due to this factor, we can merge all types of assignment statements into

one single form. According to the original syntax, there might be some differences in

local assignment statements. For instance:

a = 3; --A single assignment statement
b, c, d = 1, 2, 3; --Destructuring assignment
e, f = ‘hello’, {}; --Destructuring assignment for different types

There is also a format of assignment that allows using a list of expressions as ei-

ther variables or values to complete “Destructuring Assignment”. However, we choose

the basic assignment form without lists or local scope. The other forms can be pro-

duced with syntactic sugar. In Chapter 5 we review the desugaring process in more

depth.

Lua also features a large number of control structures. However, these can be

represented with functions, following patterns established for the lambda calculus [23].

For instance, the following are some different kinds of control structures in Lua:
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x = 0
while x ~= 10 do --A while loop

x = x + 1
print(x)

end

i = 0
repeat --A repeat loop

i = i + 1
print(i)

until
i == 10

if (x == 0) then
print("HelloWorld") --An if statement

else
print("ByeWorld")

end

Also, they can be represented using a set of lambda functions. We will further

discuss it in the Chapter 5. Consequently, we eliminate these control statements from

FWLua.

3.2 Integration of Expressions and Statements in Lua

Finally, we treat every statement as an expression for simplicity in FWLua.

However, this means that FWLua is not a true subset of Lua. Consider the following

expressions:

3; --A constant value
x; --A variable
a = b = 10; --Multiple statements

Lua does not allow constants or variables as stand-alone statements, and chained

assignments are not supported in Lua. While these are departures from Lua, we feel

that they are minor discrepancies between the languages.
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Not being a proper subset of Lua may also cause a risk: the translated code in

FWLua might not run in Lua. To avoid this issue, our implementation rules carefully

produce code that is valid for both FWLua and Lua, though it may look strange.

Also, another issue is that users basically have to understand “another programming

language” when they are researching Lua using our way. Therefore, we try to make

FWLua as simple as possible, in case of being valuable for research on Lua.

3.3 Functions

Functions are used to complete a set of computations and return a value. To

define a function in Lua, each of the following statements can be used:

function foo(x) x = x + 1 return x end --normal function definition
foo = function (x) x = x + 1 return x end --assign a first-class function

We can invoke this function as follows:

foo(4);

In addition, functions in the full version of Lua provide multiple expressions in

the function, both in defining arguments and returning values. For example:

function inc(x, y)
x = x + 1;
y = y + 1;
return (x, y);

end

We can see that a function can both take more than one argument and return

multiple values.
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However, we want to keep the syntax for FWLua as simple as we can. Therefore,

we represent multiple expressions through desugaring, which we discuss later in this

chapter.

Based on the examples above, we then choose to use the syntax of anonymous

functions as our primary function syntax in FWLua. Since we have already come

up with the syntax of assignment statements, we will combine it with anonymous

function definition to define a function with a name. Besides, we restrict functions

to one argument and one return value for decreasing unnecessary complexity in the

syntax.

However, we have also raised the issue against one special statement called “re-

turn statements”. As we mentioned above, return statements cannot really be called

statements. Although Lua allows it appear individually like statements, return state-

ments can only appear as the last statement in a block, and that is the reason why we

need to treat them as a special cases in functions. In solving this issue, we decide to

make the reserved word return as the tail in the function and will use return nil

instead of no return statement in the block.

As the result, the syntax of function would be like the following:

function x return e end

In the syntax, x represents the argument a function takes (only one allowed), and e

represents the function body. Functions in FWLua still allow multiple expressions in

the body of function through desugaring, outlined in Chapter 5.

We will talk about some key factors related to functions in the following sections,

using some examples to make them easier to comprehend.
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3.3.1 Scoping

Before talking about closures in Lua and FWLua, we will show some examples

to help understand closures in functions.

x=42
function foo()

print(x)
end
function bar()

local x=100
foo()

end
bar() --will print 42

The above example shows that Lua uses static or lexical scoping. Lexical scoping

means that a stack containing variables in one’s outer scope is defined once a function

or a block is declared. On the other hand, with dynamic scoping, the compiler goes

throughout the whole scope link, and then locates the variable that is being called.

The above example is testing Lua’s scoping mechanism. Once the function foo()

is invoked in function bar(), Lua finds the value of variable x from the stack of

function foo(), and then find its outer scope. It means the scope in Lua is static

and immutable. That is the reason why we also call this “static scope”. In contrast,

if Lua used dynamic scoping, the above example would print 100.

3.3.2 Closures

Closures in a programming language enable functions to access variables in their

outer scope. Closures is as important as scoping. It is commonly discussed together

with scoping.

For a concrete understanding of closures, consider the following example:
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function foo()
local x = 0;
return

function()
x = x + 1;
return x;

end;
end
bar = foo();
print(bar()) --return 1
print(bar()) --return 2
print((foo())()) --return 1

This shows closures in Lua. In the example, once the variable bar is declared,

a stack storing scoping information is created. In the condition, calling bar and

foo() seems the same. However, they will point to two independent stack in inner

environment, just as the above instance shows. In other words, the function foo()

returns a closure.

For setting variables, we need very exact directions of where FWLua should set

values. This is a very interesting and important character in FWLua. We will discuss

this issue more in Section 4.2, and then introduce our translation from Lua to FWLua

in Chapter 5.

3.3.3 Recursion

Recursion means that a function can call itself in its body. Here, we give an

example of a recursive function in Lua, factorial(n).
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function factorial(n)
if n == 0 then

return 1;
else

return n * factorial(n-1);
end

end

print(factorial(5)); --results 120

In the example, we can see that only defining the function factorial(n) is

not simply enough. For implementing the factorial, it must be called with different

argument in the body of itself, and this would be the classic recursive function.

Lua uses a call stack to store local variables in one function, and thus implement

recursive functions [26]. Theoretically, when a function itself is called in its body, the

interpreter will automatically treat it as just a variable and will further finish it after

the function is done. In other words, multiple calls to the same function can be active

at the same time without the crashes reporting “undefined” in Lua.

This quality in Lua is very helpful for us to give the further abstract syntax

in FWLua about function, since functions in FWLua would be more like lambda

calculus. Next, we will briefly introduce lambda calculus.

3.3.4 Lambda calculus

The restriction of allowing a function in FWLua to only take one argument

comes from the lambda calculus. Lambda calculus is a formal language representing

computations based on functions. Function abstraction and function application are

the two main parts in the syntax of lambda calculus.

There are several advantages using lambda calculus: it can capture the essence
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of functional programming language; it has a minimal syntax while is able to build a

very complex features. Functions in FWLua will use the system of lambda calculus.

It is because lambda calculus is so powerful that enables us to remove many features,

which can be represented using lambda calculus, from the full version of Lua. We

will further show the detail in Section 5.4.

In the very basic lambda calculus, the symbol ‘𝜆’ means a function, the letter

appears after ‘𝜆’ means the argument this function takes. Besides, lambda calculus

uses another expression as the body of function to form the function abstraction. In

representing a function application, there is also an extra letter behind the function

abstraction meaning “the parameter this function applies”. We can represent functions

in FWLua using lambda calculus. For instance, the following is a function application

in FWLua:

(function(x) return x end)(a)

This can be represented as a function application (𝜆x.x a) using lambda cal-

culus. In the example, the expression 𝜆x.x means the function abstraction, taking

argument x and returning x as the result. Furthermore, the letter a shows the variable

that this function applies.

Meanwhile, functions taking multiple arguments in Lua are very common.

Lambda calculus also gives the solution about this. Based on the syntax, the function

taking 2 arguments (x and y) can be shown as 𝜆x.𝜆y.y. However, functions in Lua

are far more complex than this, since there may be many features need to be taken

into the consideration, such as scoping, closure, or outer environment. We will further

talk about how we implement the syntactic desugaring according to the basic lambda

calculus in Chapter 5.
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3.4 Metatables and metamethods

Metatables allow us to define behaviors as fallbacks when Lua cannot handle

an operation. These operations even include symbols whose behavior we think of as

being fixed, such as “+” or “-”. Also, metamethods in metatables can be automatically

invoked once the relative conditions are satisfied. In other words, the behaviors of

tables can be further controlled to follow our new rules in the program by using

metatables. That is the reason why metatables are such an important characteristic

of Lua.

However, metatables can only be set for tables. We cannot assign a metatable

to some constant values, like numbers or strings. Those data types are too basic,

and changing behaviors of some operator for them will cause the chaos. At least, the

authors do not want an equation “1 + 1” results in 3.

Although metatables are a core element in Lua, we represent their behavior as

part of the desugaring process, rather than bringing it into the basic semantics of

FWLua. It is because we want to make FWLua as clean and simple as possible. We

encode metatables in the translation phase, which means metatables can be further

translated as a special inner table when we desugar Lua into FWLua.

3.4.1 Introduction about metatables

Lua constructs a table without any metatable by default. However, we can

set a metatable to tables. There are two reserved functions related to metatables:

setmetatable() and getmetatable(). These two functions are used for setting and

getting a metatable of a table. Lua allows users to set any table as a metatable of

other tables. Or, there is a need of C code to manipulate the metatables using other

types. However, we will skip studying C in the paper and only discuss the former
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condition.

3.4.2 What’s in metatable

Metamethods are reserved functions with a set of special names in a metatable.

These functions can be automatically triggered; hence they are called “hooks”. Actu-

ally, all the computations during programming can be thought as hidden functions.

One of the purposes of metamethods is to let developers change the behavior of the

programming language to a certain degree.

Furthermore, there are 4 different kinds of metamethods in Lua [20]: arithmetic,

relational, library-defined, and table-access. According to their names, each of them

carries functions toward different fields. The arithmetic and relational metamethods

are mostly responsible for binary operations, and the other two are often for tables and

reserved functions. Generally, values in Lua can only take arithmetic and relational

metamethods, since what they defined would not change the normal behavior of the

programming language. On the other hand, table-access metamethods will possibly

change the behavior of tables for several situations.

Figure 3 introduces several metamethods we think are important for the research

of Lua. In this figure, the name of reserved functions are shown at the left hand side,

while the information flows about specific functions are shown at the right hand side.

Additionally, information flow means what type of value this function will take and

result – the last word of type in each equation shows its result, and others will show

its arguments.
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Table-Access Metamethods

__index(𝑔𝑒𝑡) :: 𝑡𝑎𝑏𝑙𝑒 → 𝑠𝑡𝑟𝑖𝑛𝑔 → 𝑣𝑎𝑙𝑢𝑒
__newindex(𝑠𝑒𝑡) :: 𝑡𝑎𝑏𝑙𝑒 → 𝑠𝑡𝑟𝑖𝑛𝑔 → 𝑣𝑎𝑙𝑢𝑒 → nil

Arithmetic Metamethods

__add(+) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒
__sub(−) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒
__mul(*) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒
__div(/) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒

__mod(mod) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒
__pow(∧) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒

Relational Metamethods

__eq(==) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒
__ne(∼=) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒

__lt(<) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒
__le(<=) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒

__gt(>) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒
__ge(>=) :: 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒 → 𝑣𝑎𝑙𝑢𝑒

Figure 3: Metatable Event Types
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CHAPTER 4

Operational semantics for Featherweight Lua

The operational semantics of Featherweight Lua are deliberately minimal. No

hooks, fallbacks or control structures are included in the semantics.

FWLua can be very helpful in analyzing Lua, since it provides easy way of

transferring important features, which are first-class functions, table structures and

metatables in Lua into FWLua. In FWLua, functions are treated as first-class values,

meaning they can be assigned to a variable. Also, tables in FWLua are the primary

data structure, just the same as in Lua. Finally, we don’t provide any default metat-

ables built in FWLua. Instead, we can easily build a structure like metatables and

metamethods in FWLua via translation, which we will discuss in Chapter 5.

4.1 Syntax for Featherweight Lua

We now give the complete syntax of FWLua. In this section, we introduce the

syntax for FWLua in Section 4.1 and the corresponding semantics in Section 4.2.

We have given some figures showing the syntax of expressions and statements

separately, and have introduced them in detail before. Statements do not return any

value after being evaluated, while expressions always evaluate to a value. We simplify

our language by having statements always return a value just like expressions. While

this is a difference from the full version of Lua, we feel it is a minor change that

greatly simplifies the complexity of our semantics.

The full syntax of Featherweight Lua is given by Figure 4. We can see that

there are both old version expressions such as constants and binary operations, and
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statements. For expressions, we keep registers, constants, and new allocations. In-

stead of variable-like syntax e1[e2], we use a function-like syntax for getting variable

rawget(e1, e2), where e1 is the table and e2 is the key in that table. The reason

is that rawget is an important reserved function in Lua, which can get a variable

without any hooks. Therefore, table select in Lua can be desugared using rawget in

FWLua. A set of hooks also exists in the table assignment statements, so we instead

use the raw function rawset(e1, e2, e3), where e1 also means the table, e2 means

the key, and e3 means the value that we want to assign.

Finally, we add the syntax for functions, that is function x return e end with

only one argument x and body of function e. However, for brevity we adopt the

lambda calculus symbol 𝜆 for a simpler syntax representation to make it easier to read.

In other words, the syntax “𝜆x.e” means “function x return e end” in FWLua.

We define it as the function abstraction being used as function definition for the

reasons we have mentioned before.

Also, there is the syntax of function application, and the structure is pretty

simple: e1(e2), where e1 presents the name of function and e1 means the value this

function applies.

Not that there is no Boolean value in the list of constants. Because functions are

similar to lambda calculus, the value of true and false can be encoded into specific

functions. Rojas [22] talks about what these functions look like.

4.2 Semantics for Featherweight Lua

The full big-step semantics of Featherweight Lua (evaluation rules) is shown by

Figure 5. In the semantics, there are 5 kinds of runtime variables: store, table,

function, value, and name. The variable “store” is mapping of registers to tables.
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𝑒 ::= Expressions
𝑎 register
𝑐 constant
{} new allocation
rawget(𝑒1, 𝑒2) table select
rawset(𝑒1, 𝑒2, 𝑒3) table update
𝑒 binop 𝑒 binary operation
𝜆𝑥.𝑒 abstraction
(𝑒)(𝑒) function application

𝑐 ::= Constants
𝑛 number
𝑠 string
𝑛𝑖𝑙 nil value

𝑎 Registers
𝑥 Variables

𝑜𝑝 ::= + | − | * | / | .. | > | >= | < | <= | Binary operators
== | = | 𝑎𝑛𝑑 | 𝑜𝑟

Figure 4: Full Syntax of Featherweight Lua

Since we have mentioned that the table is the primary data structure in FWLua, all

tables will be stored in the store with specific addresses, which are also “registers”.

Secondary, the variable “table” is a table that maps keys and values. “Function” is

used as functions. The variable “value” means all types of values in FWLua. There

is also a variable called “name” to represent some names using strings.

In the basic evaluation rules, we can see FWLua takes current expressions and

stores before evaluating and will return a value and manipulated store when it is

done.

FW-VALUE: This rule takes the value and returns it, with no other side effects.
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FW-NEW: This rule allocates a new memory location in the store for a new,

empty table {}. This table is added to the store (register to table), with the key of

the new address. The new address is the resulting value.

FW-RAWGET: This semantic shows an interesting character of FWLua be-

cause it is very different with many common syntax in other language. In this evalua-

tion rule, FWLua takes 2 arguments: table and key, for getting a variable in the right

place. The first expression in this rule presents a direction, and the second expression

is string type token, representing the name of variable in this table. What is more,

because there are not any reserved words in FWLua, users may possibly need to use

a recursive rawget() syntax in the first argument for locating the target table.

FW-RAWSET: rawset() is similar to rawget(): it evaluates its 3 arguments

in the body and returns them as a table, key, and value at the first step and then

attempts to find that table in the store as the second step. The difference is that the

executer then adds the pair with key and value into this table if this table exists in

the store. Since Lua merges variable declaration and assignment statement into one,

rawset() now can represent both as the user needs: if the key in the rawset function

does not already exist in the table, it will be created automatically.

FW-BINOP: The evaluation rule for binary operations takes the two operands

of the operator, evaluates them to values, and then calculates the final result depend-

ing on the expected behavior of the operator1. However, different operators may be

used in different data types, like .. for strings and + for numbers. Therefore, there

are two functions used for the type checking against operands: validL(c, op) for

the left hand side and validR(c, op) for another side. The evaluation will be done
1The behavior for most of these operators is straightforward; for the sake of brevity, we do not

provide exact definitions.
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only if the types of both operands are valid. What is more, the operands in FWLua

must be a constant (Number, Boolean, String). It is because tables in Lua need

metatables to control their behavior in binary operations. We will place this issue in

the desugaring phase and further talk about how we transfer binary operations for

table in Lua into FWLua in the section 5.3.

FW-FUNC-APP: This rule evaluates a function application in FWLua. At the

beginning, it evaluates an expression to a function. Then it evaluates the argument

of this function. Finally, it evaluates the function body with the substitution from

arguments to values.

The substitution step is also like evaluating. Actually, it walks through every

node in an expression, and then substitutes values to arguments based on different

type of node. A recursive call might be needed due to some specific type of node in

an expression. What is more, there is possibly a special condition called function

renaming appearing in a function when the nested function has some same-name

arguments with the outer function. The substitution function considers this condition

by a set of algorithms. The Appendix B shows the details of substitution function

written in Haskell.
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Runtime Syntax:

𝜎 ∈ 𝑆𝑡𝑜𝑟𝑒 = 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 → 𝑡𝑎𝑏𝑙𝑒
𝑇 ∈ 𝑇𝑎𝑏𝑙𝑒 = 𝑠𝑡𝑟𝑖𝑛𝑔 → 𝑣𝑎𝑙𝑢𝑒
𝑓 ∈ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ::= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑎 ∈ 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 ::= 𝑠𝑡𝑟𝑖𝑛𝑔
𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ::= 𝑛𝑢𝑚𝑏𝑒𝑟 | 𝑠𝑡𝑟𝑖𝑛𝑔
𝑣 ∈ 𝑉 𝑎𝑙𝑢𝑒 ::= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 | 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 | 𝑓
𝑥 ∈ 𝑁𝑎𝑚𝑒 ::= 𝑠𝑡𝑟𝑖𝑛𝑔

Evaluation Rules: 𝑒, 𝜎 ⇓ 𝑣, 𝜎′

[FW-VALUE]
𝑣, 𝜎 ⇓ 𝑣, 𝜎

[FW-NEW]

𝑎 /∈ 𝑑𝑜𝑚(𝜎)
𝜎′ = 𝜎 + (𝑎 := {})

{}, 𝜎 ⇓ 𝑎, 𝜎′

[FW-RAWGET]

𝑒1, 𝜎 ⇓ 𝑎, 𝜎1 𝑒2, 𝜎1 ⇓ 𝑥, 𝜎′

𝑇 = 𝜎′(𝑎) 𝑣 = 𝑇 (𝑥)

rawget(𝑒1, 𝑒2), 𝜎 ⇓ 𝑣, 𝜎′

[FW-RAWSET]

𝑒1, 𝜎 ⇓ 𝑎, 𝜎1 𝑒2, 𝜎1 ⇓ 𝑥, 𝜎2 𝑒3, 𝜎2 ⇓ 𝑣, 𝜎3

𝑇 = 𝜎3[𝑎] 𝑇 ′ = 𝑇 + (𝑥 := 𝑣)
𝜎′ = 𝜎3[𝑎 := 𝑇 ′]

rawset(𝑒1, 𝑒2, 𝑒3), 𝜎 ⇓ 𝑎, 𝜎′

[FW-BINOP]

𝑒1, 𝜎 ⇓ 𝑐1, 𝜎1 𝑒2, 𝜎1 ⇓ 𝑐2, 𝜎
′

validL(𝑐1, 𝑜𝑝) validR(𝑐2, 𝑜𝑝)
𝑐 = 𝑐1 𝑜𝑝 𝑐2

𝑒1 𝑜𝑝 𝑒2, 𝜎 ⇓ 𝑐, 𝜎′

[FW-FUNC-APP]

𝑒1, 𝜎 ⇓ 𝜆𝑥.𝑒, 𝜎1 𝑒2, 𝜎1 ⇓ 𝑣1, 𝜎2

𝑒[𝑥 := 𝑣1], 𝜎2 ⇓ 𝑣, 𝜎′

(𝑒1)(𝑒2), 𝜎 ⇓ 𝑣, 𝜎′

Figure 5: Full Semantics of Featherweight Lua
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CHAPTER 5

Lua to Featherweight Lua

We have introduced the full syntax and semantics of FWLua in Chapter 4. We

can see that FWLua is a much smaller language than the full version of Lua, with

many differences between them. However, our purpose is to let FWLua capture the

essence of Lua with only these core features. In this chapter, we discuss how FWLua

works like Lua by showing how syntactic desugaring can be used to convert between

FWLua and Lua. Since there are many additional features in Lua, we first discuss

how to desugar in Lua to let the code fit FWLua. Secondly we give some translation

rules from Lua to FWLua.

There are several important parts we focus on in desugaring Lua. First of all,

getting variables is taken into consideration. Secondly, Lua allows many different ways

of representing variable updates and declarations in different conditions and scopes.

We also consider functions because there are some different qualities for functions in

the full Lua language. Tables, in addition, need to be discussed since they are the

primary data structure with metamethods and metatables. Finally, we discuss how

we may desugar control statements.

Finally, we will discuss those parts in detail, along with examples, in the following

sections. All the figures about desugaring below are not translated into FWLua

completely, but can be finally translated by following the all the figures. The only

reason doing this is to make the translation rules clearer to understand.
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5.1 Variable select

Selecting variables is used for computations to get a user defined value. Gen-

erally speaking, getting variables in a common programming language is easy and

straightforward: users simply write a variable as the key for getting its value. For

example, the following expressions used in Lua would stand for “getting a value”:

x ---get the value of x
t["x"] ---value of key "x" in table t
t.y ---value of key "y" in table t

Every variable in Lua has its own field. The first line of the example has no

associated table. To normalize it, we need to give a table name to that variable to

make it clear. Lua provides a reserved table, _ENV to represent the global environment.

Therefore, every variable now can have a table.

The normal format, in Lua, is e["e"]. The expression t.y is syntactic sugar with

key y since the key is the string type in the table. After we desugar these expressions,

all variable select expressions in Lua can be represented as the format e[e], such as

the following:

_ENV["x"] ---get the value of x
t["x"] ---value of key "x" in table t
t["y"] ---value of key "y" in table t

Lua provides metamethods and metatables in table constructors. The

metamethod __index points to a fallback table. If the key that users want to in-

dex is not available in the current table, this metamethod is triggered. However,

there is a reserved function rawget(t, k) in Lua, which will index the key k in the

table t and ignore the hook in its metatable.
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5.2 Variable update & declaration

Variable update and declaration are two key procedures in a programming lan-

guage. In these two different procedures, one or more variables are declared or up-

dated in the specific scope. There are many ways of defining variables in Lua, even

including declaring multiple variables in one statement. Before we discuss desugar-

ing, the following example program gives each way of doing variable declaration and

updating.

x = 11 ---declare a variable x
x = 12 ---update x since it has existed
t.y = 63 ---key variable declarations in table
a,b,c,d = 1,2+3,4,5 ---destructuring assignment statement
local f = "Hello" ---local variable declaration in scope

Direct table select in Lua is treated as a syntactic sugar, and we desugar it to

computed table select. Multiple variable declarations can be represented using a set

of single assignment statements. The local variable declaration is more complicated.

Lua actually finds out which scope, or which table, should the variable be set in a

fixed order.

Local variable is a very interesting point in setting variable. Actually, local

variable, as its name, is a key-value pair that only can be accessed in the local or

inner scope. There is a need to allocate a table for recording every local variable in

a specific scope. What is more, there are only 2 places allowed for setting a local

variable using reserved word “local” in Lua: blocks and functions, while we can

easily translate a block into a set of lambda functions. As the result, we can handle

the local variable in translating functions in Lua and thus will mainly discuss it in

Section 5.4.
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There is also a reserved function in Lua, rawset, to get rid of effects of metatables

in setting variables, which is rawset(t, k, v). This is the reason we build our syntax

in FWLua using this format, and will then desugar Lua to FWLua, followed by telling

mechanisms in Lua. An example of decoding assignments in Lua to FWLua is shown

below.

t.x = 12 -- Lua, in the table of t
rawset(rawget(_ENV, "t"), "x", 12) --translated in FWLua

Figure 6 shows how we desugar syntax about variables in Lua, using FWLua. We

can also call this step “Normalizing” since this is the first step of handling variables

in tables for the translation. The main purpose is to remove all syntactic sugars in

dealing with variables. Next, we will talk about translating tables and metatables

based on this section.

5.3 Tables and Metatables

Based on the full version of Lua, table constructors are used as expressions to

assign a set of pairs with key and value in the specific table. Instead of it, there is

only one syntax in FWLua called “new allocation” to allocate and then be evaluated

as a new address in the store. However, the syntax rawset(t, s, v) in FWLua will

also be evaluated as an address, just as this function does in Lua. We thus can assign

pairs with values and keys, or changing behaviors using some kinds of expressions

about this table. In other words, we will completely decompose the whole syntax of

“table constructor” in to a set of single expressions in FWLua.

To make it more concrete, we will show several examples about variable handling

of table in Lua. First, consider the following example code:

table = {x=1, y=2}

39



Based on the above example, we first need to allocate a memory for this table.

The table constructor “{}” in FWLua is regarded as a type of value. We therefore can

just assign a table constructor to the variable, just like assign a constant, by using

variable setting syntax in FWLua. The next step will be pretty straightforward. Only

we need to do is to assign every key-value pair to into this table by using the same

syntax. As the result, following shows the translated code, written in FWLua:

rawset(_ENV, "table", {}) ---new allocation
rawset(rawget(_ENV, "table"), "x", 1)
rawset(rawget(_ENV, "table"), "y", 2)

Or, because rawset in FWLua can also return that address, we can use a sequence

of rawset expression, like a recursive function application:

rawset(rawset(rawset(_ENV, "table", {}) , "x", 1), "y", 2)

However, metatables and metamethods have to be considered. In Section 2.6,

we have discussed that tables can be used as different data structures by chang-

ing metatables or defining some functions. Therefore, we reserve a table with the

name of _metatable to represent metatables in Lua. There are also two functions,

setmetatable(t, mt) and getmetatable(t), highly related to table constructor.

We can desugar them by using rawset, rawget, and _metatable in FWLua. Just

like the following example:

t = {};
mt = {};
setmetatable(t, mt);
getmetatable(t);

This can be translated into FWLua like the following:
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rawset(_ENV, "t", {})
rawset(_ENV, "mt", {})
rawset(rawget(_ENV, "t"), "_metatable", rawget(_ENV, "mt"))
rawget(rawget(_ENV, "t"), "_metatable")

What is more, we have mentioned the reserved metamethods about binary oper-

ations for table. To finish binary operations for table in FWLua, we can easily get the

reserved functions in the table _metatable and then apply it with the two arguments

in an binary operation.

Finally, getting and setting an variable in table is a key point. As we mentioned,

some metamethod, like __index or __newindex, will automatically be triggered when

we are missing the key in getting or setting variables. Therefore, in Lua, getting or

setting variables in Table is actually a set of algorithms, which will look for the

fallback table when there is no matched key-value pairs in current table.

Figure 6 show how to translate Lua into FWLua about table constructors. It

is noteworthy that, rawset expressions in both Lua and FWLua return an address,

while an assignment statement in Lua returns nothing.

5.4 Functions and control structures

Before desugaring functions in Lua, we first introduce those differences between

functions in Lua and in FWLua. Since functions in FWLua are similar to lambda

calculus, there is an obvious difference, which is that each function in FWLua always

takes exactly one argument as its perimeter. Therefore, we are going to make every

function in Lua as the style of multiple functions in FWLua, or in lambda calculus.

For instance, consider a simple Lua function:

function (x,y) return e end
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Variable Select:
𝑒.𝑥

𝑑𝑒𝑓
=== 𝑒[“𝑥”]

Variable Declaration & Update:

𝑒1.𝑥 = 𝑒2
𝑑𝑒𝑓
=== 𝑒1[“𝑥”] = 𝑒2

𝑒𝑖 = 𝑒𝑗
𝑑𝑒𝑓
=== 𝑒𝑖 = 𝑒𝑗;

Table:

𝑇.𝑡 = {𝑒𝑖 = 𝑣𝑗}
𝑑𝑒𝑓
=== rawset(...rawset(rawset(𝑇, “𝑡”, {}), 𝑒1, 𝑣1)...)

setmetatable(𝑡,𝑚𝑡)
𝑑𝑒𝑓
=== rawset(𝑡, “_𝑚𝑒𝑡𝑎𝑡𝑎𝑏𝑙𝑒”,𝑚𝑡)

getmetatable(𝑡)
𝑑𝑒𝑓
=== rawget(𝑡, “_𝑚𝑒𝑡𝑎𝑡𝑎𝑏𝑙𝑒”)

𝑡1 op 𝑡2
𝑑𝑒𝑓
=== ((rawget(rawget(𝑎, “_𝑚𝑒𝑡𝑎𝑡𝑎𝑏𝑙𝑒”), op))(𝑡1))(𝑡2)

𝑒1[𝑒2]
𝑑𝑒𝑓
=== 𝜆𝑒1.𝜆𝑒2.

if rawget(𝑒1, 𝑒2) ∼= nil then

rawget(𝑒1, 𝑒2)
else

local 𝑓 =
rawget(getmetatable(𝑒1), __index);

if 𝑓 == nil then

nil

else

𝑓(𝑒1, 𝑒2)
end

end

𝑒1[𝑒2] = 𝑒3
𝑑𝑒𝑓
=== 𝜆𝑒1.𝜆𝑒2.𝜆𝑒3.

if rawget(𝑒1, 𝑒2) == nil then

rawset(𝑒1, 𝑒2, 𝑒3)
else

local 𝑓 =
rawget(getmetatable(𝑒1), __newindex);

if 𝑓 == nil then

nil

else

𝑓(𝑒1, 𝑒2, 𝑒3)
end

end

Figure 6: Translation rules of Variables and Tables
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An equivalent function can be written in a style closer to FWLua as follows:

function (x) return
function (y) return

e
end

end

Return statements in Lua functions are optional, which means a function might

not return a value. However, return statements are required in every function in

FWLua. Furthermore, a function in Lua might have its own scope and supports local

variables. Since we don’t provide local variables to functions in FWLua, we now treat

the local scope as a temporary table. Now, we discuss details about functions in Lua.

To capture other additional information about Lua functions, we translate every

function in Lua to a table with fields for basic information about the function. To

implement the scope, there are four arguments that must be taken into the consider-

ation when we translate a function in Lua into FWLua: _local for variables in the

local environment; _arg for storing the arguments of the function; _outer for the

outer scope; and _call is a function to store the body of the function. There is an

example in Appendix A.

In the structure, we only bring two new keys in the table, which are argument and

body, at the time when we declare a function. However, we keep the outer scope and

local scope as the inner variable in the body function to decrease the complexity in

translating function application. In translating function body, we will assign a table

as the local scope and will record the outer scope and argument. In other words, the

information about outer scope and argument names should be recorded along with

local variables in the local scope. By doing this, we can easily roll back to find further

outer scopes by a recursive function application.
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Finally, one of the key points in the function application is to distinguish the

scope of the current variable, for example:

x = 40
function (x) return

local x = 10
x = 20
return x

end

Based on our test, when get a variable in a function without any prefix. There

is a fixed order in locating the scope of this variable. This order is exactly like the

following algorithm, and it will stop going when there is match key-value pairs:

1. Check local scope
2. Check argument
3. Repeat this algorithm in the outer scope.

In the step 3, this algorithm will be repeated. Therefore there is a recursive func-

tion application in getting and setting variables in the function. Figure 7 shows details

about this algorithm in FWLua. To get more details in FWLua, see Appendix C.

Also, global environment is very interesting based on this algorithm. Consider

the following code in Lua:

local a = 11; ---local variable in _ENV
print (a); ---result nil
a = 20
print(a) ---result 20
local a = 14
print(a) ---still result 20

Therefore, local variables in global environment can be declared, but can never

be goten. This is a very interesting point in Lua and is worth to notice.
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Reserved Functions:

getValue == 𝜆_𝑙𝑜𝑐𝑎𝑙.𝜆_𝑣𝑎𝑟.
(𝜆_𝑜𝑢𝑡𝑒𝑟.𝜆_𝑎𝑟𝑔.
if rawget(_𝑙𝑜𝑐𝑎𝑙,_𝑣𝑎𝑟) ∼= nil then

rawget(_𝑙𝑜𝑐𝑎𝑙,_𝑣𝑎𝑟)
else

if rawget(_𝑎𝑟𝑔,_𝑣𝑎𝑟) ∼= nil then

rawget(_𝑎𝑟𝑔,_𝑣𝑎𝑟)
else

if _𝑜𝑢𝑡𝑒𝑟 == _ENV then nil

nil

else

getValue(_𝑜𝑢𝑡𝑒𝑟,_𝑣𝑎𝑟)
end

end

end)(_𝑙𝑜𝑐𝑎𝑙._𝑜𝑢𝑡𝑒𝑟,_𝑙𝑜𝑐𝑎𝑙._𝑎𝑟𝑔)

setValue == 𝜆_𝑙𝑜𝑐𝑎𝑙.𝜆_𝑣𝑎𝑟.𝜆_𝑣𝑎𝑙𝑢𝑒
(𝜆_𝑜𝑢𝑡𝑒𝑟.𝜆_𝑎𝑟𝑔.
if rawget(_𝑙𝑜𝑐𝑎𝑙,_𝑣𝑎𝑟) ∼= nil then

rawset(_𝑙𝑜𝑐𝑎𝑙,_𝑣𝑎𝑟,_𝑣𝑎𝑙𝑢𝑒)
else

if rawget(_𝑎𝑟𝑔,_𝑣𝑎𝑟) ∼= nil then

rawset(_𝑎𝑟𝑔,_𝑣𝑎𝑟,_𝑣𝑎𝑙𝑢𝑒)
else

if _𝑜𝑢𝑡𝑒𝑟 == _ENV then nil

nil

else

setValue(_𝑜𝑢𝑡𝑒𝑟,_𝑣𝑎𝑟,_𝑣𝑎𝑙𝑢𝑒)
end

end

end)(_𝑙𝑜𝑐𝑎𝑙._𝑜𝑢𝑡𝑒𝑟,_𝑙𝑜𝑐𝑎𝑙._𝑎𝑟𝑔)

Figure 7: Reserved Functions in Translation rules

Lambda function applications can be used to represent a sequence of statements.

We therefore translate sequences of statements into functions in FWLua. Lambda

functions can also be used to represent control structures and boolean values, which

we discuss in the next section.
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Figure 8 gives the rules for translating functions. As above, the results of the

translations are all in FWLua syntax, or in other constructs that we define.

5.4.1 Control structures

Control structures can be defined in terms of a set of lambda functions. Following

the standard pattern used in the lambda calculus, we can treat the constant true

as a function taking 2 parameters1 and returning the first value, and treat false

as a function taking 2 parameters and returning the second value. The syntax is as

follows:

function (x) return
function (y) return

x
end

end --True

function (x) return
function (y) return

y
end

end --False

Using these constructs for true and false, we now can translate the basic control

structure in Lua, the if statement, into a complicated reserved lambda function in

FWLua. Pierce [23] shows us the details about translating control structure state-

ments into lambda functions.

According to our analysis, using a set of conditional statements and recursive

function calls can represent all forms of loop statements in Lua. For example:

x = 0;
1More strictly speaking, true is a function that takes one parameter and returns another function

that takes one parameter and returns the argument passed to the outer function.
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while x <= 10 do x = x+1; end

The above code is a loop statement. It increments the variable x by one each

time, until it equals 10. We can see that, a recursive computation and a conditional

statement are in the loop: the program tests whether x is equal to 10, and then

recursively executes this computation. Therefore, they can be represented as the

following:

function while()
if x <= 10 do

x = x+1; while()
else

return nil
end

end; while()

Hence all different kind of loop statements can be desugared using conditional

statements. Figure 8 gives other desugaring rules.
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Function:

𝑒1; 𝑒2
𝑑𝑒𝑓
=== (𝜆𝑑.𝑒2)(𝑒1) 𝑤ℎ𝑒𝑟𝑒 d /∈ 𝑒2

function 𝑓(𝑥𝑖) 𝑒 end
𝑑𝑒𝑓
=== 𝑓 = {“_arg” = {}, “_call” = 𝜆_𝑎𝑟𝑔.

(𝜆_𝑜𝑢𝑡𝑒𝑟.𝜆_𝑙𝑜𝑐𝑎𝑙.𝑒)(
{“_outer” = _𝑜𝑢𝑡𝑒𝑟, “_arg” = _𝑎𝑟𝑔},
_𝑙𝑜𝑐𝑎𝑙′

)
}

𝑓(𝑣𝑖)
𝑑𝑒𝑓
=== (𝑓._𝑐𝑎𝑙𝑙)({𝑥𝑖 = 𝑣𝑖})

local 𝑥 = 𝑒
𝑑𝑒𝑓
=== rawset(_𝑙𝑜𝑐𝑎𝑙, “𝑥”, 𝑒)

𝑥
𝑑𝑒𝑓
=== getValue(_𝑙𝑜𝑐𝑎𝑙, 𝑥)

𝑥 = 𝑒
𝑑𝑒𝑓
=== setValue(𝑥, 𝑒,_𝑙𝑜𝑐𝑎𝑙)

Control Structure:

True
𝑑𝑒𝑓
=== 𝜆𝑥.𝜆𝑦.𝑥

False
𝑑𝑒𝑓
=== 𝜆𝑥.𝜆𝑦.𝑦

if 𝑒1 then 𝑒2 else 𝑒3 end
𝑑𝑒𝑓
=== (((𝑒1)(𝜆𝑑.𝑒2))(𝜆𝑑.𝑒3))(𝜆𝑥.𝑥) 𝑤ℎ𝑒𝑟𝑒 d /∈ 𝑒2, 𝑒3

while 𝑒1 do 𝑒2 end
𝑑𝑒𝑓
=== function 𝑓()

if 𝑒1 then 𝑒2; 𝑓() else return nil end

end; 𝑓()

repeat 𝑒1 until 𝑒2
𝑑𝑒𝑓
=== while not 𝑒2 do 𝑒1 end

for 𝑥 = 𝑒1 , 𝑒2 , 𝑒3 do 𝑒4 end
𝑑𝑒𝑓
=== function 𝑓()

local 𝑥 = 𝑒1;
while 𝑥 <= 𝑒2 do 𝑥 = 𝑥+ 𝑒3; 𝑒4 end

end; 𝑓()

Figure 8: Translation Rules of Lua’s Functions
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CHAPTER 6

Implementation: Interpreter in Haskell

Our implementation is an interpreter written in Haskell, which is a popular

functional programming language.

Haskell provides a static type system, a fast runtime speed; since it treats com-

putations as a set of expressions of mathematical functions, and this will possibly

avoid mutable variables.

Haskell also has simple memory allocation due to the research [28]. As the

trade off, Haskell does not allow mutable variables, and this would obviously differ in

building interpreter between object-oriented language and functional language.

In this chapter, we discuss the structure of our interpreter, and introduce how

each component works in the structure. In addition, Appendix D shows an instance

program using FWLua and the result interpreted by our implementation.

6.1 Structure

According to the reference [29], we want our interpreter to be loosely-coupled [30].

This term means that the program can be treated as several components. In addition,

each component in the program is totally independent, with little or no shared infor-

mation or definitions with other parts. This term was introduced in case of keeping

program adaptive, especially in designing compiler of interpreter. In other words, a

loosely-coupled interpreter can handle different kinds programming language by only

changing specific key components in it.

Therefore, we design our interpreter to be loosely-coupled by splitting it into
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several parts. Basically, there are three main parts in the program, and we will make

files for each of them. The file ParserTD.hs is built for the front tier of our interpreter.

Its purpose is to parse the code we write from the top down, and thus translate it

into an abstract syntax tree (AST) with all defined node by us.

Secondly, the file Executor.hs is the backend of the interpreter and is used for

evaluating the AST that the parser produces. In doing this, all the results Lua returns

will be from the executer, after being evaluated.

There is also an intermediate tier that we call the “Symbol Table”. This tier

stores any information we need in the interpreter such as variable types, reserved

words, type definitions and so on. While either the parser or the executer is running,

they will visit the symbol table and get information they need to run.

Above all, the structure of our FWLua interpreter is shown in the Figure 9. We

also introduce the detail in the following sections.

6.2 ParserTD.hs

Fortunately, there is a package named Text.ParserCombinators.Parsec in

Haskell, providing a set of functions for parsing tokens and thus building parsers.

We will use this package to build the parser. Reference [31] shows the details of this

package.

The key role in a functional programming language is recursive functions. Basi-

cally, this package allows us to parse token one by one recursively and thus control

the data flow. According to this, the parser uses parsec for passing tokens and it

takes strings as tokens. Then it returns a tree –an abstract syntax tree (AST). The

AST is made up of different types of nodes. Technically, all nodes in the AST will
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Figure 9: Structure of the interpreter

exactly represent the whole program. Every time it parses a token, AST should be

modified (even could be “do nothing”).

The parser cares about the syntax of FWLua. In other words, there are no

evaluations or storage manipulations in the parsing phase. The only purpose in this

block is to sort the inputs by using the structure of the tree, and thus bring the
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cleaner AST to the executer. The AST is completely created by parser. It also means

that we can handle different kinds of inputs by using different parsers with the same

executor.

6.3 Symbol Table

Haskell is a strongly-typed programming language. Everything we want to define

needs to have a type, and Haskell strictly follows this type. The tier of the symbol

table stores all new types we define and it is used as a user-defined library.

There are two ways declaring new data types in Haskell: data and type. The

token type allows us to define a new type with one single format, while the token data

defining a new variable type in multiple formats with different tokens. For instance,

the part of code in the symbol table is shown:

type Store = Map Register Table
type Argument = String
data Value =
VNil
| VArg String
| VFunc Argument Expression
| VResFunc String
| VReg Register
| VInt Integer
| VBool Bool
| VStr String
| VTrue
| VFalse
deriving (Show)

The type Store and Argument have the single typing paradigm. They don’t need

a specific token to be distinguished. On the contrary, the data Value has multiple

cases and thus needs different tokens (such as VArg, VFunc and VInt in the code

above).
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6.4 Executor.hs

Executor.hs represents the semantics of FWLua that we have given above. The

function evaluate() is the main function in the file. It takes different kinds of

nodes in the AST for evaluating, then returns values and the manipulated store as

the final result. There are also some other assisting reserved functions for helping the

evaluation rules such as address allocation, key pointing, binary operation application

and so on. At the beginning, the global store is supposed to be empty.

6.5 Run and Runfile

We have also built a run file to test if our interpreter works as intended. What

is more, this file links all components that we introduced before. In the run file, we

treat inputs as a string flow. Then it will parse it, execute the AST and finally output

the results. The results include the desugared code, detail of the AST, the summary

of store, and final results. Since it shows all the information that we need, we can

debug our interpreter due to the outputs from this run file.
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CHAPTER 7

Conclusion & Future work

This paper shows the syntax and semantics of the full version of Lua, and thus

a simpler version of Lua called Featherweight Lua (FWLua). FWLua removes a lot

of elements and only retains the key components from Lua. We have focused on the

exotic and important features, which are metatables and metamethods. During the

research, we found that those factors are very powerful for Lua since they can change

the behavior of the programming language. They can even model many different

kinds of data structures combining the primary data structure in Lua — tables.

In addition, we also give an approach to desugar Lua into FWLua. Due to this,

users can gain a clearer understanding of the full version of Lua through this core

language. We also give an interpreter implemented in Haskell as the implementation.

This implementation proves to be very useful during our studying about the relation-

ship between Lua and FWLua. With this implementation, we are able to test and

verify our translations and semantics.
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APPENDIX A

Lua to FWLua: functions

A.1 Code in Lua

function foo()
local x = 0;
return

function()
x = x + 1;
return x;

end;
end;
bar = foo();
bar();
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A.2 Code in FWLua

rawset(_ENV, "foo", rawset(rawset({}, "_arg", {}), "_call",
function (_arg) return

(function (_outer) return
(function (_local) return

(function () return

rawset(rawset({}, "_arg", {}), "_call",
function (_arg) return

(function (_outer) return
(function (_local) return

(function () return
((rawget(_ENV, "getValue"))("x"))(_local)

end)(
(((rawget(_ENV, "setValue"))("x"))

(
(

(
rawget(_ENV, "getValue")

)("x")
)(_local) + 1

)
)(_local)

)
end
)(rawset(

rawset({}, "_outer", _outer), "_arg", _arg))
end)(_local)

end)

end)(
rawset(_local, "x", 10)

)
end)(rawset(rawset({}, "_outer", _outer), "_arg", _arg))

end)(_ENV)
end)

);

rawset(_ENV, "bar", (rawget(rawget(_ENV, "foo"), "_call"))({}));
(rawget(rawget(_ENV, "bar"), "_call"))({});
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APPENDIX B

Substitute function in Haskell

substitute :: Expression -> String -> Value ->
Either ErrorMsg Expression

substitute expr a v = do
case expr of

Seq expr1 expr2 -> do
expr1’ <- substitute expr1 a v
expr2’ <- substitute expr2 a v
return $ Seq expr1’ expr2’

Val value -> do
case value of

VFunc arg body -> do
body’ <- substitute body a v
return $ Val $ VFunc arg body’

VArg arg -> do
case (arg == a) of

True -> return $ Val v
False -> return $ Val value

otherwise -> return expr
New -> return expr
Rget table key -> do

table’ <- substitute table a v
key’ <- substitute key a v
return $ Rget table’ key’

Rset table key val -> do
table’ <- substitute table a v
key’ <- substitute key a v
val’ <- substitute val a v
return $ Rset table’ key’ val’

Opraw expr1 op expr2 -> do
expr1’ <- substitute expr1 a v
expr2’ <- substitute expr2 a v
return $ Opraw expr1’ op expr2’

Funcall func expr -> do
case func of

(Val (VFunc arg e)) -> do
case (arg == a) of

True -> do
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expr’ <- substitute expr a v
return $ Funcall func expr’

False -> do
func’ <- substitute func a v
expr’ <- substitute expr a v
return $ Funcall func’ expr’

otherwise -> do
func’ <- substitute func a v
expr’ <- substitute expr a v
return $ Funcall func’ expr’
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APPENDIX C

Reserved functions in FWLua

rawset(_ENV, "if",
function(cond) return

function(t) return
function(f) return

((cond)(t))(f)
end

end
end);

rawset(_ENV, "getValue",
function(_var) return

function(_local) return
(function(_arg) return

(function(_outer) return

((((rawget(_ENV, "if"))
(rawget(_local, _var) ~= nil))(
function() return

rawget(_local, _var)
end))(
function() return

((((rawget(_ENV, "if"))
(rawget(_arg, _var) ~= nil))(
function() return

rawget(_arg, _var)
end))(
function() return

((((rawget(_ENV, "if"))
(_local == _ENV))(
function() return

nil
end))(
function() return

((rawget(_ENV, "getValue"))
(_var))
(_outer)

end)
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)()
end)

)()
end)

)()

end)(rawget(_local, "_outer"))
end)(rawget(_local, "_arg"))

end
end

);

rawset(_ENV, "setValue",
function(_var) return

function(_value) return
function(_local) return

(function(_arg) return
(function(_outer) return

((((rawget(_ENV, "if"))
(rawget(_local, _var) ~= nil))(
function() return

rawset(_local, _var, _value)
end))(
function() return

((((rawget(_ENV, "if"))
(rawget(_arg, _var) ~= nil))(
function() return

rawset(_arg, _var, _value)
end))(
function() return

((((rawget(_ENV, "if"))
(_local == _ENV))(
function() return

rawset(_local, _var, _value)
end))(
function() return

(((rawget(_ENV, "setValue"))
(_var))
(_value))
(_outer)

end)
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)()
end)

)()
end)

)()

end)(rawget(_local, "_outer"))
end)(rawget(_local, "_arg"))

end
end

end
);
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APPENDIX D

Lua to FWLua: functions

D.1 Program of Featherweight Lua

rawset(_ENV, "x", 1);
rawset(_ENV, "foo", function (x) return x + 1 end);
(rawget(_ENV, "foo"))(rawget(_ENV, "x"));

D.2 Abstract Syntax Tree

Seq (Rset (Val (VReg "_ENV")) (Val (VStr "x")) (Val (VInt 1)))
(Seq (Rset (Val (VReg "_ENV"))

(Val (VStr "foo"))
(Val (VFunc "x" (Opraw (Val (VArg "x")) Plus (Val (VInt 1))))))

(Funcall (Rget (Val (VReg "_ENV")) (Val (VStr "foo")))
(Rget (Val (VReg "_ENV")) (Val (VStr "x")))))

D.3 Store Information

"x":=VInt 1
"foo":=VFunc "x" (Opraw (Val (VArg "x")) Plus (Val (VInt 1)))
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