
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2015

INDEX STRATEGIES FOR EFFICIENT AND EFFECTIVE ENTITY INDEX STRATEGIES FOR EFFICIENT AND EFFECTIVE ENTITY

SEARCH SEARCH

Huy T. Vu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Vu, Huy T., "INDEX STRATEGIES FOR EFFICIENT AND EFFECTIVE ENTITY SEARCH" (2015). Master's
Projects. 396.
DOI: https://doi.org/10.31979/etd.t8kz-y8gn
https://scholarworks.sjsu.edu/etd_projects/396

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/396?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INDEX STRATEGIES FOR EFFICIENT AND EFFECTIVE ENTITY SEARCH

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirement of the Degree

Master of Science

by

Huy T. Vu

May 2015

The Designated Thesis Committee Approves the Thesis Titled

© 2015

Huy T. Vu

ALL RIGHTS RESERVED

INDEX STRATEGIES FOR EFFICIENT AND EFFECTIVE ENTITY SEARCH

by

Huy T. Vu

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2015

 __

 Dr. Thanh Tran Department of Computer Science

 __

 Dr. Tsau-Young Lin Department of Computer Science

 __

 Dr. Chris Tseng Department of Computer Science

ABSTRACT

The volume of structured data has rapidly grown in recent years, when data-entity

emerged as an abstraction that captures almost every data pieces. As a result,

searching for a desired piece of information on the web could be a challenge in term of

time and relevancy because the number of matching entities could be very large for a

given query. This project concerns with the efficiency and effectiveness of such entity

queries. The work contains two major parts: implement inverted indexing strategies so

that queries can be searched in minimal time, and rank results based on features that

are independent of the query itself.

ACKNOWLEDGEMENTS

I would like to thank my family for their great support throughout my study at San Jose

State University

I would like to express my gratitude to Dr. Thanh Tran, my thesis advisor, for his

supports and motivations in the completion of this project

I would like to thank my project committee member, Dr. Tsau-Young Lin and Dr. Chris

Tseng, for their contribution in the completion of this project

1

Table of Contents

1. Introduction .. 5

2. Related Works ... 7

2.1. Inverted Indexing ... 7

2.1.1. Vertical Indexing .. 8

2.1.2. Horizontal Indexing .. 9

2.1.3. Reduced Indexing .. 10

2.2. Learning To Rank .. 11

2.2.1. TF-IDF ... 11

2.2.2. Okapi BM25 ... 13

2.2.3. BM25F & Variants .. 14

2.3. Query-Independent Features .. 14

3. Project Design.. 15

3.1. Definition ... 15

3.1.1. Problem Formulation.. 15

3.1.2. Terminology ... 15

3.2. Technology .. 18

3.2.1. Apache Lucene .. 18

3.2.2. Solr & Java API .. 19

3.3. Query Efficiencies.. 19

3.4. Query Effectiveness .. 20

3.4.1. Simple Relevancy Score ... 20

3.4.2. Independent Features .. 21

4. Implementation .. 22

4.1. Solr Server Setup .. 22

4.1.1. Schema .. 22

4.1.2. Configuration ... 23

4.2. Index Time Implementation ... 23

4.2.1. Indexer ... 24

4.2.2. Analyzer ... 24

4.2.3. Payload Filter ... 25

4.3. Search Time Implementation ... 26

4.3.1. Search Handler .. 27

4.3.2. Scorer .. 27

4.3.3. Timer.. 28

4.3.4. Result Formatter .. 28

5. Performance .. 29

5.1. Query Types .. 29

5.1.1. Default Term Query ... 29

5.1.2. Term Query Over Single Field ... 29

5.1.3. Query Over Multiple Fields .. 30

5.2. Medicare Healthful Contacts Dataset .. 30

2

5.2.1. Examination of Ten Queries .. 31

5.2.2. Experiment in Depth .. 33

5.3. International Aiding Dataset .. 35

5.3.1. Examination of Ten Queries .. 36

5.3.2. Experiment in Depth .. 38

5.4. Discussion ... 39

5.5. Reduced Indexing Factor .. 40

6. Conclusion ... 44

References .. 45

3

List of Figures

Figure 1: Growth of data, projection into year 2020 .. 5

Figure 2: Illustration of inverted index.. 7

Figure 3: A sample entity object represented as document in Lucene 8

Figure 4: Lucene architecture and flow diagram ... 18

Figure 5: Solr architecture ... 19

Figure 6: A typical design of Solr schema ... 22

Figure 7: Configuration of one request handler ... 23

Figure 8: Separate storage location for indexer .. 24

Figure 9: Example of payloads in inverted index ... 26

Figure 10: Workflow of a search handler .. 27

Figure 11: Chosen query for experiment in depth on MHC ... 33

Figure 12: Indices for fastest retrieval time in MHC .. 35

Figure 13: Chosen query for experiment in depth on IA ... 38

Figure 14: Indices for fastest retrieval time in IA ... 39

Figure 15: Average retrieval time for different reduced indexing factors in MHC 42

Figure 16: Average retrieval time for different reduced indexing factors in IA 42

4

List of Tables

Table 1: Illustration of vertical design of inverted index ... 9

Table 2: Illustration of horizontal design of inverted index ... 10

Table 3: Illustration of reduced design of inverted index ... 10

Table 4: List of queries for MHC Dataset .. 31

Table 5: Retrieval time of relevancy scoring for MHC ... 31

Table 6: Retrieval time with extra fields for MHC .. 32

Table 7: Retrieval time with payloads for MHC ... 32

Table 8: Difference in results due to scoring scheme .. 34

Table 9: List of queries for IA Dataset ... 36

Table 10: Retrieval time of relevancy scoring for IA .. 37

Table 11: Retrieval time with extra fields for IA ... 37

Table 12: Retrieval time with payloads for IA .. 37

Table 13: Level of importance in Reduced index .. 41

Table 14: Average measurements of querying time with different levels of importance in

Reduced index for both MHC and IA dataset .. 41

5

1. INTRODUCTION

The outbreak of information technology in the 21st century have caused

exponential growth of data in a short time period. Information are collected from very

aspects making the volume of raw data extremely large. Social networks alone process

about a petabyte of data daily. The level is about the same as governmental and private

sector’s database. In addition, live streaming data are collected every second. The

problem is that despite tremendously huge amount of data, only a very tiny portion of

them are used at a certain time [7].

Data scientists have conducted numerous researches on methods to deal with

raw collected data, how they should be processed and stored in a way that once they

are requested, they are available in a reasonable amount of time. Then, another

question arises: given a huge amount of data, and thus high chances that a large

number of matching information can be found; in such case, how can data be ranked to

ensure that the highest relevant will get higher attention from users.

Figure 1: Growth of data, projection into year 2020 [7]

6

This project offers a solution to such problem for entity search. In the scope of

this project, all data are structured entities that represent real-life objects. The main

goals are to get result as fast as possible and as accurate as possible given a query.

 This project examines three different indexing strategies that were introduced in

recent researches on big data mining, an interesting topic that has a lot of developing

potentials. This project extends one aspect of these indices and observes how this

modification can benefit from the original design.

This project examines three different ranking solutions and introduces an

implementation of query-independent features in entity search. Several tactics to store

such features are discussed, but the question of which way to store independent

features would yield better solution is not within the scope of this paper since it depends

on other setups such as engine configurations and local machine performance.

The system is evaluated with practical datasets, large enough to simulate how

professional search engine would work in a minimized scale. Several metrics are tested

to compare performances of the chosen strategies and scoring schemes.

This project aims to extend functionalities of Apache Solr, a popular search

framework that is built on top of Apache Lucene. The goal is to create a plugin to

Lucene indexer and Solr searcher that can index and search entities using their

designated methods.

Other concerns regard entity search is not within the scope of this project and

therefore will not be discussed in the paper.

7

2. RELATED WORKS

2.1. Inverted Index

Database Index is a type of data structure that is implemented into the database

to enhance the retrieving process. The main purpose of indexing is to quickly locate

data without using brutal force to search every entry. In a typical relational database,

index is usually created based on columns

Inverted index is a method of database indexing that maps the content to the

object it belongs to. This strategy requires extra processing during insertion to

database, but allow fast full text searching. In system that data are heavily filled with

text, this type of index is shown to be efficient. Generally, inverted index has two

variants: record level and word level. This project focus on the latter, which contains not

only the reference to documents for each word, but also their location in respective

document [2].

Figure 2: Illustration of inverted index

8

An extension of inverted index has a feature call payload, an internal storage

associated with each mapping. For instance, when a word in mapped to the document it

appears in, additional information can be saved such as the exact position of the word,

or the relative importance of the word to the content as a whole. Information in the

payload is usually used for ranking enhancement purpose and it does not speed up the

retrieval process.

There have been previous researches on web search engine algorithm for RDF

data retrieval, one of which is to index parallel text with alignment operator to avoid

ambiguous meaning of query terms. The idea aims to make indexing structure can be

built using a single MapReduce operation.

This project concerns three designs of inverted index, which are introduced

below. For a better illustration, consider this sample entity to see how it would be

indexed using different designs

Title: San Jose State University

Region: Northern California

Education: coed

Sector: public

Academic: four-year

Term: semester

Figure 3: A sample entity object represented as document in Lucene

2.1.1. Vertical Indexing

The term “vertical” reflect the by-column nature of this strategy. Indeed, this

indexing scheme is a straightforward design, in which an index term field is created for

each property of an entity. This requires extra storages for multiple indices, but grants

9

amazing fast query time as the engine simply needs to check the index correspond to

the fields that the query is interested in. Another advantage of this strategy is its ability

to restrict matching to a specific field. For example, field “genre” of entity “All Rise” (a

song) and field “color” of entity “Pacific Ocean” (an ocean) could contain the same value

“BLUE”, under this indexing, querying on “Blue” can distinguish the two entities by

giving the specific field to search.

Table 1: Illustration of vertical design of inverted index

Index Value

Title San Jose State U.

Region Northern California

Education Coed

Sector Public

Academic Four-year

Term Semester

2.1.2. Horizontal Indexing

This indexing scheme requires much less indices than the previous. Only two

indices are required: one to hold names of all fields of entities, and the other to carry

values of corresponding fields. Since the number of indices is constant-space

complexity, this strategy is somewhat more appealing than the previous. In certain

dataset where data also contain URI or structural properties, an additional field could be

added to store the anchor text or the extra information [2].

However, horizontal indexing has a downside: it could create ambiguity. This is

because each term field of horizontal indexing needs to store multiple values, and thus

ambiguity is inevitable. For instance, if there are two fields in a document contain the

10

same keyword, then when that keyword is search, the system may misrecognize it as

value of the other field.

Table 2: Illustration of horizontal design of inverted index

Index Value

Fields Title, Region, Education,
Sector, Academic, Term

Tokens San Jose State University, Northern California, Coed,
Public, Four-year, Semester

2.1.3. Reduced Indexing

This schema takes the advantages of the previous two to improve performance.

Starting out similar to vertical schema, Reduced indexing, provides more flexibilities by

grouping different indices in vertical design based on their level of importance [2]. The

scale is defined and adjusted for specific use. In this project, three levels are used,

denoting fields that are very important, neutral, and unimportant. Once grouped

together, information of fields in each group is stored similarly to the horizontal scheme.

An obvious advantage over vertical indexing is faster access during query time.

However, a big drawback of this method is the limitation of functionality, as it is not

effective for query that restricts matching to a particular fields

Table 3: Illustration of reduced design of inverted index

Index Value

Important Title: San Jose State University, Academic: Four-year

Neutral Sector: Public, Region: Northern California

Unimportant Education: Coed, Term: Semester

11

This design clearly is the combination of the previous two. In addition, it

introduces another degree of independence, called the reduced indexing factor. It notes

the ability to decide how many categories to implement and which property falls into

which category. Standards for such decision vary depends on the nature of data as well

as the purpose of the search engine. In practice, there could be more than three levels

of importance if the field space is large, and the number is between 1 and number of

fields [9]. Theoretically, the number of levels should assume some proportional relations

with the number of fields. This project introduces some ways to select the number of

fields for reduced strategy, but an algorithm for determining the most effective division is

out of scope of this paper.

2.2. Learning to Rank

Learning to rank is a technique used in many applications for information

retrieval, especially in machine-learned search engine. Due to large volume of data, a

two-stage ranking is often used to enhance retrieving speed. First, a much smaller

portion of potential matching entities are fetched from database using simple models,

making a top-N retrieval; then a much more complex ranking algorithm is used to

determine the final results [4]. This sections introduces several simple weighing

schemes that are used directly or indirectly in the project.

2.2.1. TF-IDF

Term frequency – Inverse document frequency, often referred to as TF-IDF, is a

numerical statistic indicates how significance an element is to a collection of elements,

often used as a weighing factor in text mining application. TF-IDF is variant among

12

search engines but the following basic principle must be satisfied: its value should

always be directly proportional to the number of occurrence of the element in the

collection.

Term frequency (TF) is defined as the number of occurrence of an element (in

this project, element is defined as a single word, and the collection is text that could be

correspond to multiple subject fields by default, or to a specific field) in the collection.

For a query phrase, term frequency is simply the sum of appearance frequency of each

word. In longer documents, augmented term frequency is used to prevent bias, utilizing

double normalization concept. This normalization is often used in today search engine,

with some variants to suit specific data types.

𝑇𝐹(𝑞𝑖, 𝐷) = 0.5 + 0.5
𝑓𝑞𝑖,𝐷

max(𝑓𝐷)

Nevertheless, some common words such as articles and transitions appear with

overwhelming frequencies, while do not semantically contribute to the query. This often

skews the term frequency calculation, as meaningful terms are less emphasized

compared to common English words such as “the, therefore, such…” Hence, the

concept inverse document frequency (IDF) is introduced to reflect the level of

significance of the information provided by the keywords. It tells whether a word is

common or rare, and through which it makes adjustments by increasing weights of

rarely apparent words while significantly decreasing or diminishing the weights of words

that have tremendously high appearance rate.

Generally, the IDF weight of a term is calculated by dividing the total count by

number of documents containing that term. However, just as TF calculation can become

13

biased in larger documents, IDF could be affected by large volume of documents and

hence, a logarithmic normalized factor is applied.

The final weight computation for TF-IDF is their product:

𝑤𝑒𝑖𝑔ℎ𝑡𝑇𝐹.𝐼𝐷𝐹 = 𝑇𝐹 × 𝐼𝐷𝐹

2.2.2. Okapi BM25

BM25 is a ranking function that sorts documents according to their relevance to a

specific query, first implemented with the Okapi information retrieval system. This

function ranks a set of documents based on the appearance of query terms in each

document. Since keywords are compared independently, the total weight is simply the

score summation [1].

BM25 employs two free parameters k and b that distinguish it from other ranking

methods. Note from the equation that b serves as a normalization probabilistic factor

14

and thus has value from 0 to 1. In practice, k is often within range [1.2, 2.0] and b = 0.75

for optimization.

2.2.3. BM25F and other variants

Blanco and Mika introduces BM25F, a variant of the Okapi ranking function that

takes structures and anchor texts into account. This is an important feature because it

could be used to establish relations between entities into entity graphs, which is useful

as today data on the web are highly linked [4].

Other variants include BM11 (when b=1) and BM15 (when b=0) at the extreme

end of b. They are the original designs of the BM weighing scheme, but are not

competent with the current BM25

2.3. Query-Independent Features

Besides the traditional ranking based on content relevance, there are other

approaches that stands independent from the query. One popular example is the use of

centrality, taking advantage of graph-like relationship of data. This method uses

algorithms such as PageRank to compute a global score for any page denoting the

likelihood of a user entering that page while surfing the nearby pages. In reality, a more

simple solution is often preferred. Features that are based on frequency can be used to

count the popularity of nodes and edges in the entity graphs [4], [15].

This project employs simple but mostly seen independent features: the recency

and popularity of an entity. Since they are independent factors, they could be designed

to serve solely the dataset. Most of the time, recency denotes the document age or the

time period after a document is indexed and before it is queried. In this project, recency

15

calculation is inspired by a study on query effectiveness optimization and therefore it is

not a linear value, but as a reciprocal function of the document age [14].

𝑟𝑒𝑐𝑒𝑛𝑐𝑦 =
𝑎

𝑚𝑥 + 𝑏

𝑤ℎ𝑒𝑟𝑒𝑥𝑖𝑠𝑡ℎ𝑒𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑔𝑒&𝑎,𝑚, 𝑏𝑎𝑟𝑒𝑡𝑢𝑛𝑖𝑛𝑔𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

 Popularity is a sensitive parameter that could change constantly, and is often

loosely defined. It can be the click-through rate, or the frequency at which an entity is

requested. Nevertheless, this quantity should be normalized to avoid skew result. For

instance, a web page that has few visits and a colossal site with millions of subscribers,

their native true value would result in skew computation. A common method to prevent

this is normalizing them with their maximum value.

16

3. PROJECT DESIGN

3.1. Definition

3.1.1. Problem Formulation

Given a large volume of data, how to store indices and formulate a ranking

method such that when a query is triggered, results are returned in an appropriate order

within minimal amount of time

3.1.2. Terminology

The following terms are widely used in the report:

 Entity: a concept or abstract that has a complete meaning by itself. In this project,

entity represents an object with unique id and properties. Entity may include, but

not limited to persons, subjects, records, concepts…

 Document: a concept of Lucene and Solr, represents a unit of data object or a

single entity. Documents of the same type should have uniform set of fields, even

though not all of them may contain a meaningful value

 Field/Property: an attribute of an entity. A field can either be indexed, stored or

both. It can contain multiple values for one entity, in which case it may be best

represented with a term vector.

 Token/Value: value of a field/property. It can assume any type, from primitive

type such as number, string, date… to more complicated ones. This this project,

besides number and date, all other types are modified on Lucene base type to

meet the goal.

17

 Reduced Factor: Number of defined levels for reduced indexing. It is default to 3

(important, neutral and unimportant) but with larger pools of fields, this factor can

increase to prevent the index from becoming too horizontal. This project limits the

range from 3 to 5.

 Default Field: a virtual field that exists only to hold all values of the entity. It is

used as a search field when a query does not specify any particular field

 Query: a user-input phrase in English that is passed into the search engine. This

raw query will be processed into a format readable by the search engine. A query

can simply be a plaintext that searches over default location or a structured

format with specified properties

 Similarity: denotes the relevancy between an entity and a query, as a numerical

value computed by a similarity functions. The higher the value, the more closely

an entity relates to the query. In this project, similarity can be used

interchangeably with relevancy

 Recency: the concept of entity age, which denoted by the chronological

difference from the entity’s indexing its retrieval moment. In this project, recency

is regarded as a discount factor that put less emphasis on older entities. The

highest value of this factor is 1 for recently indexed entities, while the very old

have their recency value close to 0.

 Popularity: the concept that measures the credential of the entity, how popular is

a particular entity compared to the common ground of all other entities. This

simulates the fact in reality that certain sources of information are more valuable

to others based on just the source identity itself. Popularity is a relative

18

measurement, ranging from 0 to 1, directly proportional to the usefulness of an

entity. Popularity gives independent information

3.2. Technology

3.2.1. Apache Lucene

Lucene is an open source information retrieval library, a powerful full-text search

engine for cross-platform applications. Lucene has been widely used to implement

Internet search engines, usually for single-site searching. In Lucene, entities are stored

as documents characterized by a number of fields. Document indices can be stored in a

single location or across multiple shards, in which requires the system to run in cloud

mode.

Figure 4: Lucene architecture and flow diagram

19

3.2.2. Solr-Java API

Solr is a high-performance search platform based on core Lucene, and among

the most popular enterprise solution. Among its major features, full-text search and real-

time indexing are essential for this project. In addition, Solr also provides distributed

search and index replication, which is useful for running in scalable systems [16].

Figure 5: Solr architecture

This project uses SolrJ, an API for Java clients to access Solr. The library allows

development

3.3. Query Efficiency

Query efficiency is a performance metric to measure how fast a search engine

can retrieve data. Retrieval time is defined as the period after the query is accepted into

the search engine until the result is returned.

20

This project concerns three indexing strategies: vertical, horizontal, and reduced,

which definitions and logics have been introduced in the previous section. Retrieval time

shall be recorded to compare efficiency of each strategy.

While vertical and horizontal indexing strictly follow their definitions, there are

some flexibility in reduced indexing strategy. This project hypothesizes that larger set of

fields in a schema should be classified into more categories to maintain balances. Since

Reduced index is a mixture of both vertical and horizontal indices to take advantages of

both, it should be consistently balanced. Too small and it will acts like horizontal index,

while too large will make it behave like vertical. This project measure efficiency limiting

the range from 3 to 5.

3.4. Query Effectiveness

Query effectiveness is a performance metric to measure how relevant is the

search result to the query terms. This project considers some solutions in which

documents are ranked against each other.

3.4.1. Simple Relevancy Score

This is the standard ranking in any search engine. The scheme uses the classic

BM25F similarity function to weigh entities based on their relevance with the query

terms. This gives high accurate ranking of the results at the cost of computing TF-IDF

for each query. Results from this ranking solution are compared with those with query

independent features for their performance in term of effectiveness.

21

3.4.2. Independent Features

This scheme combines the weight computed by BM25F, and two additional

features that are independent from the query. Recency and popularity are features that

associated with the entities as soon as they are indexed into the database. They are

pre-computed and stored along with other features so that when the entity is retrieved,

the system does not need to compute values for popularity and recency again. The goal

is utilizing pre-computed values of each document to rank them, which could boost up

the process by a small fraction of time. In practice, every little time saved by employing

this mechanism could accumulate into a huge effectiveness.

There are two ways to employ pre-computed independent features into the

document index. The simple one is to store the information using payload that is directly

associated with the term. This information can be obtain easily by the scorer. Another

way is to use extra fields, specifically a date field to store recency and an external field

to store popularity (so that it can be constantly updated). This method proposes a

simple way to store information at index time, but at query time, it is difficult to obtain the

information from the fields. To overcome this, the field can stored as a pseudo-payload

to the actual index, so that the information can be extracted for scoring purpose.

22

4. IMPLEMENTATION

This is a summary of the implementation of the search engine described in the

previous section. It contains original designs and codes from the author

4.1. Solr Server Setup

Solr initial setup is important as it defines the system configuration and gives the

blueprint to the documents that shall be indexed into the system.

4.1.1. Schema

Schema contains all definitions and details about the entities to be indexed. The

crucial part of the schema is the declaration of all fields or properties of the documents,

and how they should be processed at indexing and querying time. In Solr 4, it is

possible to customize the type of a field and define how tokens should be filtered during

index creation. This is essential in storing recency information and how to use it for

ranking.

Each indexing strategy requires its own schema to employ its unique

implementation. The only common features between the strategies is the default search

field that contains every details about the document.

Figure 6: A typical design of Solr schema

23

4.1.2. Configuration

All parameters for automated Solr server configurations are contained in this file.

The heart of this setup lies in the definition of handlers, including create, update and

query requests. It is also important that an appropriate lock is defined to avoid any

synchronized writing errors to the index [16].

Since the same dataset is indexed three times into different strategies, it is

necessary to configure each of them on their own server, which is part of a general Solr

core container.

Figure 7: Configuration of one request handler

4.2. Index Time Implementation

This section describes the implementation of components that is used to index

documents. The full process begins with feeding documents to the index writer. They

will be analyzed with different filters before the final token stream is processed and then

index is created and stored in the database.

24

4.2.1. Indexer

This component determines whether to create a new index or modify an existing

one. The traditional Lucene index writer by default would duplicate the index and thus

one document could be stored as multiple entities. In some situation, it could be

beneficial to maintain multiplicity of a single entity, but in this project, this characteristic

is undesired and thus, the indexer is adjusted to overwrite an existing index

Indexer is the most important component for indexing documents as it dictates

the scheme to store indices. As indexer handles each document, it determines which

field to create and how to store data for that field, depending on the schema.

Figure 8: Separate storage locations for indexer

Indexer is specific for each strategy. Vertical implementation is straight forward,

while the other strategies require further data processing before inserting into the

indexer. Because indexer is strategy-specific, it would write indices to different storage

location. This is important because it would avoid any overwritten of same entity by

different indices.

4.2.2. Analyzer

This component is used to initialize an indexer. Documents are analyzed into token

stream and filtered before stored into the database. This customized analyzer employs

several filter functions and a random seed to generate a dummy popularity value for

25

each document. Lucene provides a collection of filters for document analysis, most of

which are often used in more complex structured entities. In this project, only three main

filters are considered:

 Whitespace Filter: a general word delimiter that tokenizes based on white space

 N-gram Filter (and its variant Edge N-gram Filter): tokenizes into contiguous

subsequence of the word, this filter enable partial term query.

 Stop-word Filter: during tokenization, this filter ignores stop-words predefined in

a list. These words are usually articles and preposition that would not make

sense in tokenizing information

 Lowercase Filter: this filter avoid case sensitive search by storing all text values

in lowercase

4.2.3. Payload Filter

Payload is an optional feature provided by Lucene. It is a metadata associated

with each occurrence of a term to give the token certain level of significance. A payload

is often used to store weights or other semantic information on specific terms

In this project, payload is used to store recency and popularity information of the

document. Since it operates at word level, the same information is stored for every word

in a document. This might seem to create unnecessary redundancies, but it could also

be an advantage. Although when a document is first the entire body contain the same

date and time information, when it is modified and re-indexed, only the changed text

should have their new recency information. Likewise, popularity could potentially be

different among the term in a document.

26

Unlike traditional methods in which payload data is statically defined within the

document, this system dynamically generates metadata to be stored into payload. In

other words, payload is only generated at indexing time. This feature allows live

indexing and re-indexing of documents, which is crucial in recording time that would be

used later for query-independent scoring.

Payload can be used to store any type of metadata for scoring purposes. In this

project, two pieces of information, Recency and Popularity, share their spots in the

payload as a byte representation of string. They are separated by a hyphen. This design

is scalable, for any number of independent features.

Figure 9: Example of payloads in inverted index

4.3. Search Time Implementation

This section describes the implementation of components that is used during

query time. Input query is analyzed into token stream. It is then used to search for

matching documents and then used by the scorer to rank result before a final list is

returned to the front-end. This portion also measures retrieval time for each

configuration.

27

4.3.1. Search Handler

After an input text is accepted by the system, it is immediately processed into

tokens. These tokens are used to determine what type of query the system should

handle (simple, single field…). The search handler might need to apply additional sub-

queries. After that, the tokens are checked against all documents.

Figure 10: Workflow of a search handler

4.3.2. Scorer

A scorer calculates the final score for any entities based on query. A scorer

contains all functions to compute the similarity between a query and an entity. More

relevant results in higher score. In addition, the scorer also contains two discount

factors, ranging from 0 to 1, to indicate the degree of recency and popularity.

In the no-scoring scenario, the scorer simply returns a constant for all

computation, rendering all documents in different for any input query identical. In this

case, the result would be listed in the same order the indices are stored. In the

28

extended version of BM25, the score function is modified to retrieve and apply recency

and popularity information from payload.

4.3.3. Timer

This utility measures retrieval time, denoted as the chronological difference from

the moment the query is accepted to the moment the result list is returned. The timer

has the uncertainty level of one hundredth of a second. Results of the timer can be used

to determine the efficiency of an indexing strategy.

4.3.4. Result Formatter

Results are put into a list in order of descending score, and returned in a format

that contains only necessary information such as entity properties, score and retrieval

time.

29

5. PERFORMANCE

After the system is established in accordance of previous section, its

performance is tested against different datasets

5.1. Query Type

A query, as defined previously, is an English text understandable by human. In

this project, however, queries shall not follow regular grammar and punctuation.

Instead, raw-text queries are strictly structured in a specific format.

5.1.1. Default Term Query

Term query accepts simple inputs, which could be a single word or a phrase of

multiple words separated by whitespace. This text is searched over the default field.

This makes large result pool because as long as the query terms appear in any part of

the entity, it would be a match.

For queries that contain multiple terms, each would be searched separately to

obtain multiple result lists. Then, they are selectively filtered, and only those that appear

in all lists (entities that match all keywords) will be kept in the final result.

5.1.2. Term Query Over Single Field

Query over the default field return all entities that contain the terms, but majority

of them are not really relevant. The result pool can be narrowed by giving a specific

search field. This query is expected to give more desired result as it enhances accuracy

by narrowing search fields. In addition, it is also expected to be faster due to much

smaller search space.

30

A typical query of this time contains a single pair: a field and a set of terms

separated by colon. Terms are whitespace separated

5.1.3. Query Over Multiple Fields

This is a free-form composition of the previous two. This type captures the most

general query. A query may contain one or more pairs that are comma-separated. A

pair contains 2 parts, a field and set of terms separated by colon, and field can be

omitted. Set of terms are whitespace separated.

This type of query can be seen as a combination of multiple sub-queries, each of

which is searched over a field. Results of each sub-query are then combined into a

single list and ordered by the specified ranking function.

5.2. Medicare Helpful Contacts Dataset

Medicare Helpful Contacts (MHC) is a relatively small dataset taken from the

governmental database for healthcare. The dataset is 10 megabytes in size, contains

approximately 5,000 records, and with up to 15 features but only 6 useful fields are

used for indexing purpose [6].

This dataset is too small such that all queries happen within a fraction of a

second. Therefore, it is not objective to draw any conclusion regard efficiency and

effectiveness of the engine. However, there are some interesting patterns and

observations that are shown to be useful when evaluating the system.

31

5.2.1. Examination on Ten Queries

Ten queries have been selectively chosen (see Table 4) to account for all three

query types explained in the previous section. Each of these queries is run 3 times with

each of the indexing strategies for each ranking scheme. All results are recorded in

Table 5, 6, and 7 to be used as reference for this examination. The retrieval time

measurements are in seconds.

Table 4: List of queries for MHC Datasets

No. Query

Q1 Hospital

Q2 medical assistance

Q3 washington health insurance

Q4 "State":California

Q5 "Organization Name":insurance program

Q6 "State":california,"Agency Name":healthcare research

Q7 "Organization Name":financing,"Agency Name":surgical
facilities,"State":California

Q8 children,"State":california

Q9 cancer society, ca

Q10 "Organization Name":nurse,program

Table 5: Retrieval time with relevancy scoring for MHC

 Measure 1 Measure 2 Measure 3

V H R V H R V H R

Q1 0.007 0.013 0.005 0.005 0.012 0.005 0.005 0.013 0.004

Q2 0.008 0.015 0.007 0.008 0.015 0.008 0.006 0.015 0.007

Q3 0.009 0.016 0.008 0.008 0.016 0.010 0.016 0.015 0.009

Q4 0.016 0.012 0.013 0.015 0.014 0.013 0.015 0.017 0.009

Q5 0.009 0.012 0.003 0.007 0.013 0.004 0.007 0.014 0.007

Q6 0.012 0.013 0.011 0.009 0.010 0.012 0.014 0.019 0.013

Q7 0.022 0.029 0.019 0.023 0.028 0.023 0.012 0.018 0.013

Q8 0.012 0.009 0.013 0.012 0.010 0.012 0.011 0.012 0.009

Q9 0.012 0.008 0.013 0.012 0.009 0.010 0.007 0.010 0.008

Q10 0.013 0.018 0.011 0.012 0.014 0.003 0.012 0.008 0.006

32

Table 6: Retrieval time with extra fields for MHC

 Measure 1 Measure 2 Measure 3

V H R V H R V H R

Q1 0.018 0.017 0.018 0.017 0.026 0.015 0.012 0.016 0.017

Q2 0.019 0.026 0.019 0.018 0.028 0.014 0.010 0.018 0.018

Q3 0.020 0.021 0.014 0.019 0.025 0.019 0.017 0.018 0.016

Q4 0.016 0.019 0.013 0.016 0.020 0.015 0.013 0.019 0.014

Q5 0.017 0.019 0.013 0.016 0.016 0.012 0.017 0.017 0.013

Q6 0.025 0.023 0.017 0.024 0.018 0.017 0.015 0.016 0.023

Q7 0.023 0.021 0.018 0.023 0.020 0.019 0.018 0.021 0.022

Q8 0.014 0.022 0.011 0.013 0.021 0.013 0.016 0.021 0.013

Q9 0.013 0.019 0.012 0.014 0.019 0.013 0.013 0.010 0.013

Q10 0.013 0.018 0.013 0.013 0.019 0.014 0.013 0.010 0.013

Table 7: Retrieval time with payloads for MHC

 Measure 1 Measure 2 Measure 3

V H R V H R V H R

Q1 0.047 0.066 0.033 0.032 0.053 0.025 0.029 0.048 0.028

Q2 0.042 0.057 0.030 0.032 0.049 0.034 0.026 0.053 0.029

Q3 0.032 0.044 0.022 0.022 0.041 0.029 0.021 0.034 0.019

Q4 0.031 0.026 0.014 0.021 0.024 0.016 0.013 0.022 0.012

Q5 0.017 0.052 0.014 0.023 0.089 0.011 0.017 0.051 0.014

Q6 0.017 0.018 0.019 0.016 0.019 0.019 0.017 0.017 0.018

Q7 0.024 0.034 0.013 0.019 0.034 0.015 0.014 0.022 0.016

Q8 0.024 0.034 0.019 0.024 0.032 0.014 0.014 0.021 0.015

Q9 0.014 0.024 0.018 0.015 0.023 0.014 0.014 0.022 0.013

Q10 0.009 0.012 0.008 0.007 0.012 0.005 0.008 0.015 0.006

Although all query runtimes are less than a tenth of a second, it can be seen that

there is a clear difference in result between searching using relevancy scoring (Table

A.2) and the other two schemes. This is expected because there are substantially less

computations needed. Meanwhile, apart from several outliers, results for the other two

scoring schemes do not show much differences in general.

33

Another important observation is that certain queries show favorable indexing

strategy. For instance, queries over default field performs better with Reduced index for

single terms, but as the number of terms increases, it favors Horizontal index. On the

other hand, queries over specific field work better with Vertical index. In addition, more

complex query performs better with Reduced index

5.2.2. Experiment in Depth

This section examines more closely a single query. This query is search over

multiple fields and is sophisticatedly structured.

Figure 11: Chosen query for experiment in depth on MHC Dataset

The chosen query is generic and complex enough to represent almost any

queries for this data set and thus can be used to evaluate the system performance in

depth. This query has 3 parts, each of which is a featured sub-query. Part 1 is searching

for a single term in a field, part 2 is searching for multiple terms in a fields, and part 3 is

searching for multiple terms in general.

Below is the results returned by searching the query using BM25F scheme and

Query Independent scheme. Since both solution using payloads and extra fields would

yield the same result, it is only listed once in this table

“State”:California,“Topic Name”:medicare

options,health plan choices

34

Table 8: Difference in results due to scoring schemes

Result using Query
Independent scheme

Result using BM25F
scheme

1/Doc: 1460

…
5/Doc: 4619

…
18/Doc: 4566
19/Doc: 4568
20/Doc: 4569

…
25/Doc: 4577

…
42/Doc: 4457
43/Doc: 4458
44/Doc: 4459

1/Doc: 1460
2/Doc: 4457
3/Doc: 4458
4/Doc: 4459

…
15/Doc: 4566
16/Doc: 4568
17/Doc: 4569

…
22/Doc: 4577

…
26/Doc: 4619

The only entity remains its top position is document 1460, which has a large

score margin compared to the rests. The others documents have same BM25F scores,

tiebreaking by the order they are indexed. Using Query Independent scheme would

adjust this score with the popularity payload (which is completely random at indexing

time). In practice, payload is a much better tiebreaker than a random generator or pre-

order tiebreaker because it actually gives more information about the entity.

Next, the query is run 1000 times using Query Independent scheme, each time

notes the index strategy with the fastest retrieval time.

35

Figure 12: Indices for fastest retrieval time in MHC Dataset

*** NOTE: the sum of all counts is 1109, exceeding 1000. This is because there are occasion
where more than 2 indices yields the fastest time.

More than half of the time, Reduced index shows its superiority over the others.

Vertical and horizontal index appear to be equally efficient for complex query. The

distribution could have been more favorable for vertical or horizontal index if a less

sophisticated query is used instead.

5.3. International Aiding Dataset

International Aiding (IA) is distributed by AidData, an online portal for information

on global scale development and finance. IA contains resources of international aiding

project of the modern world since 1945 with variety of finance-funded activities, include

those that do not fit the ODA definition [8].

284

228

597

Fastest Index for Query
“State”:California,“Topic Name”:medicare options,health plan

choices

Vertical Horizontal Reduced

36

This is a large dataset with over one millions records, approximately 1GB of text.

The raw data contain over 100 columns but have been processed to capture the 35

most important features as fields. Any missing fields are padded with empty strings.

This dataset is sufficiently large for testing on single node and is expected to give

more realistic, reasonable and accurate results.

5.3.1. Examination on Ten Queries

Ten queries have been selectively chosen (see Table) to account for all three

query types. Similar to the previous experiment, each of these queries is run 3 times

with each of the indexing strategies for each ranking scheme. Table should be used as

reference for this examination. The retrieval time measurements are in seconds.

Table 9: List of queries for IA Datasets

No. Query

Q1 united nations

Q2 world bank lead frank woerden

Q3 "donor":imf

Q4 "long_description":education investment

Q5 "year":2000,"donor":united states

Q6 "recipient":viet nam,"donor":thailand

Q7 greater mekong,"commitment_amount_currency":usd

Q8 "borrower":goverment,water

Q9 "source":website,health ministry

Q10 "title":goods,"plaid_sector_name":industrial
development,retailing network

37

Table 10: Retrieval time with relevancy scoring for IA

 Measure 1 Measure 2 Measure 3

V H R V H R V H R

Q1 0.957 1.093 0.992 0.990 1.152 1.025 1.043 1.066 1.028

Q2 1.528 1.695 1.502 1.493 1.662 1.418 1.467 1.420 1.344

Q3 1.084 1.160 1.039 1.050 1.070 0.965 1.045 1.036 1.003

Q4 1.328 1.452 1.286 1.305 1.265 1.240 1.284 1.267 1.232

Q5 1.003 0.971 0.946 0.957 0.949 0.925 0.990 0.980 0.965

Q6 0.940 0.966 0.954 0.994 0.962 0.953 0.992 1.011 0.953

Q7 0.925 0.884 0.878 0.985 0.944 0.881 0.946 0.963 0.878

Q8 1.115 1.053 1.229 1.056 1.032 1.089 1.035 1.056 1.131

Q9 1.355 1.550 1.252 1.103 1.220 1.085 1.120 1.129 1.094

Q10 1.028 0.904 1.048 1.007 0.836 0.939 0.991 0.917 0.929

Table 11: Retrieval time with extra fields for IA

 Measure 1 Measure 2 Measure 3

V H R V H R V H R

Q1 2.209 2.274 2.262 2.158 2.060 2.098 2.125 2.067 2.150

Q2 1.753 1.697 1.723 1.712 1.667 1.694 1.722 1.690 1.725

Q3 1.466 1.586 1.544 1.524 1.490 1.495 1.485 1.553 1.513

Q4 2.341 2.407 2.261 2.248 2.338 2.259 2.273 2.222 2.209

Q5 2.178 2.226 2.142 2.167 2.147 2.102 2.128 2.132 2.093

Q6 1.676 1.804 1.599 1.669 1.747 1.642 1.669 1.708 1.642

Q7 1.859 1.818 1.772 1.833 1.767 1.753 1.820 1.766 1.724

Q8 1.911 1.878 1.894 1.902 1.868 1.908 1.903 1.861 1.913

Q9 2.567 2.515 2.413 2.410 2.399 2.340 2.427 2.384 2.387

Q10 1.743 1.698 1.641 1.693 1.669 1.632 1.765 1.679 1.628

Table 12: Retrieval time with payloads for IA

 Measure 1 Measure 2 Measure 3

V H R V H R V H R

Q1 2.616 2.519 2.597 2.528 2.508 2.484 2.469 2.437 2.435

Q2 1.791 1.771 1.785 1.986 1.674 1.785 1.884 1.768 1.911

Q3 1.604 1.706 1.592 1.597 1.594 1.591 1.601 1.638 1.605

Q4 2.327 2.903 2.223 2.312 2.489 2.007 2.244 2.543 2.190

Q5 3.219 2.539 2.078 2.603 2.717 2.308 2.504 2.611 2.281

Q6 1.657 2.598 2.014 1.703 2.096 1.953 2.005 1.902 1.688

Q7 1.690 2.553 2.102 1.682 1.655 1.643 1.661 1.667 1.608

Q8 2.612 2.298 2.363 2.012 1.986 1.985 1.981 1.977 1.984

Q9 3.014 2.687 3.089 2.731 3.187 2.452 3.064 3.181 2.566

Q10 1.828 1.803 2.007 1.809 1.780 1.778 1.808 1.774 1.776

38

This dataset shows more realistic results. Similar patterns from the previous

observation can be seen in this dataset as well. In addition, there appears to be a clear

line between BM25F and Query Independent scheme, with the latter taking more time to

search. This is expectable as the data volume grows, it takes more time to compute

payload factor. However, the difference is not significant compared to how much No-

scheme is faster than BM25F, which is almost a factor of 2. This indicates that most of

computational time is used to determine query specific feature, and query-independent

features only account for a small portion of query time.

Another important observation is that Vertical index efficiency drop significantly.

From making around 3 fastest out of 10 queries in the small dataset, it now can only

make 1 fastest time. Obviously, there are no sufficient evidence to support due to small

number of measurements, but this is an indication that Vertical index might not be as

efficient at this size of data

5.3.2. Experiment in Depth

Similar to the MHC Dataset, a query is selectively chosen to examine how

indexing strategies behave in large database. This query is similarly structured as its

MHC counterpart.

Figure 13: Chosen query for experiment in depth on IA Dataset

“title”:goods,“plaid_sector_name”:industrial

development,retailing network

39

The query is also run 1000 times to determine which indexing strategy on

average would yield the fastest query time.

Figure 14: Indices for fastest retrieval time in IA Dataset

** Again, there are occasion where 2 or more indices give best result

The chart is a solid evidence showing how Reduced index becomes

predominantly efficient in this large dataset. Meanwhile, Horizontal index appears

indifferent and Vertical index becomes less efficient compared to their performance in

small dataset

5.4. Discussion

It is clearly observed that the average time when using only relevancy score is

much less than when deploying query independent features. This is expected as in the

more calculations the system needs to compute, the longer it takes to retrieve

information. In the third scenario, even though Recency and Popularity information have

been pre-computed and stored with the payloads, the algorithm takes slightly more

137

243

686

Fastest Index for Query
“title”:goods,“plaid_sector_name”:industrial

development,retailing network

vertical horizontal reduced

40

time. This is important because it shows that the system spends most of its time

computing relevancy and only requires a small amount of time to embed more

information into the ranking. Hence, it shows the prominent result of using query

independent features.

This result suggests that more accurate results can obtained by injecting pre-

calculated independent features and used them as either a discount factor or an

additive at query time. These pieces of information do not require extra time during

indexing, and their required spaces are relatively small if they are stored as payloads

instead of additional storage fields.

However, there is one big limitation. Pre-calculated values cannot adjust

themselves to the future changing conditions. The only feature that is self-adjusted is

timestamp-based recency but this is only checked during query time. One way to

resolve this is re-indexing, which allows a one-time update to every feature and their

respected payloads.

5.5. Reduced Indexing Factor

 This is an additive and independent experiment from the above, focusing solely

on reduced indexing strategy. It is seen in the previous sections that Reduced index in

the most efficient method in the long run. A question arises that how the reduced

indexing factor could affect its performance. Consider these three scenarios for different

level of importance in Reduced index:

41

Table 13: Level of importance in Reduced index

3 levels

 Important

 Neutral

 Unimportant

4 levels

 Very Important

 Important

 Neutral

 Unimportant

5 levels

 Very Important

 Important

 Neutral

 Unimportant

 Useless

 Supposed there is a known way to classify all fields equally into these categories

in Reduced index. Then, running the same 10 queries above for both dataset for 100

times would give the following average results:

Table 14: Average measurements of querying time with different levels of importance in

Reduced index for both MHC and IA dataset

 Medicare Helpful
Contacts

International Aiding

Level 3 4 5 3 4 5

Q1 0.025 0.028 0.037 2.597 2.540 2.520

Q2 0.034 0.030 0.032 1.785 1.763 1.770

Q3 0.029 0.027 0.032 1.592 1.612 1.480

Q4 0.016 0.020 0.021 2.223 2.320 2.016

Q5 0.011 0.014 0.017 2.078 2.197 1.923

Q6 0.019 0.021 0.021 2.014 1.963 1.952

Q7 0.015 0.016 0.020 2.102 2.059 2.036

Q8 0.014 0.016 0.016 2.363 2.161 2.264

Q9 0.014 0.015 0.017 3.089 2.949 2.756

Q10 0.005 0.009 0.009 2.007 2.101 1.957

42

Figure 15: Average retrieval time for different reduced indexing factors in MHC

Figure 16: Average retrieval time for different reduced indexing factors in IA

 There are no clear distinctions between three lines in both graphs, indicating that

number of level divisions does not affect much to the outcome. However, there are

some interesting patterns can be observed from the graphs:

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Average Retrieval Time Reduced index for MHC

3 levels 4 levels 5 levels

1

1.5

2

2.5

3

3.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Average Retrieval Time Reduced index IA

3 levels 4 levels 5 levels

43

 In MHC graph (smaller set with fewer fields), 3-level model tends to perform

better than 5-level

 In IA graph (larger set with more fields), 5-level performs slightly better

 4-level model in both graphs appears to swing slightly between the other models.

Its average performance is somewhat in between

 The gaps between the lines in IA is less than in MHC, and the lines in IA form

similar shapes

 Some of these observations are explainable. Since fields are randomly and

equally distributed into 3, 4, and 5 categories, the number of information contain in each

category become N/3, N/4 and N/5 respectively (with N is the number of fields for a

document). MHC has only 6 indexed fields and thus N/4 and N/5 make it behaves like a

vertical index. Meanwhile, IA has 30 indexed fields, and thus using 3, 4, and 5 levels

would yields 10, 8, and 6 fields each, and thus 5 levels with 6 fields each would be more

balanced in term of creating and searching an index.

 Therefore, the more balanced it is during indexing, the faster the average

retrieval time will be. As a result, larger set of fields means more categories in Reduced

index to balance the load. However, because these categories are also used to

measure level of importance for each field, it does not make sense if there are too many

of them. Indeed, the fewer the number of fields, the less storage for payload information

needed, which explain why horizontal index tends to outperform vertical in simple query

with multiple terms. Overall, this result gives an insight of how this factor can affect

performance based on dataset volume. However, discussion of how to obtain the

optimized Reduced index factor is out of scope for this paper.

44

6. CONCLUSION

This project implements a Lucene-Solr full-text based search engine with three

different indexing strategies. Although their performances are very similar, it is suggests

that Reduced index is a better choice, for its flexibility in the number of categories.

There are no predominant strategy in general, but instead, index design should be

based on the volume (number of records) and the cardinality (number of fields) of the

data. Vertical index may work best for system that mainly supports simple query.

Meanwhile, if a system is expected to receive complex query then horizontal and

Reduced index will be a better choice, given that the number of fields is reasonably

small. In practice, Reduced index uses categories for implementing level of importance,

and thus the load those may not be as equal as it is in this project. Nevertheless, the

number of categories for Reduced index should be engine-oriented or dataset-specific

to ensure highest performance; and it should be limited to avoid becoming vertical

index. Results from this project also promote the use of query independent features in

ranking. With small tradeoff time margins, using these features to enhance accuracy is

more effective than the similarity functions themselves. There are many way to store

and use these features, but using payloads has been shown by this project to be among

the most effective, and another alternative is using extra fields.

This project could be further developed with other aspect of entity search such as

query suggestion and recommendation. There are projects on this topic that use similar

technology, which could potentially be integrated with the solution proposed in this

paper.

45

REFERENCES

[1] Aguera, Jose. Arroyo, Javier. “Using BM25F for Semantic Search” Proceedings

of the 3rd International Semantic Search Workshop. ACM Press, New York, USA,

2010

[2] Blanco, Roi. Mika, Peter. Vigna, Sebastiano. “Effective and Efficient Entity

Search in RDF Data” International Semantic Web Conference (ISWC 2011),

Germany, 23-27 October 2011. p83-97

[3] Catena, Matteo. Macdonald, Craig. “On Inverted Index Compression for Search

Engine Efficiency”. Advances in Information Retrieval. Gran Sasso Science Institute.

Volume 8416, 2014, pp 359-371

[4] Dali, Lorand. Fortuna, Blaz. Tran, Thanh. Mladenic, Dunja. “Query-Independent

Learning to Rank for RDF Entity Search” Extended Semantic Web Conference

(ESWC 2012), Greece, 27-31 May 2012. p484-498

[5] Fontoura, Marcus. Gurevich, Maxim. “Efficiently Encoding Term Co-occurrences

in Inverted Index” Proceedings of the 20th ACM international conference on

Information and knowledge management ACM Press, New York, USA, 2011. P307-

316

[6] Government Medicare Data. Internet. data.medicare.gov/data/medicare-s-helpful-

contacts. 10 Janurary 2015.

[7] Gupta, Vineet. “Indian Union Budget 2015 – The Other Perspective”. Internet.

vineetguptablog.wordpress.com 6 March 2015

[8] International AidData. Data Hub. Internet. datahub.io/dataset/aiddata. 15 March

2015

[9] Josifovski, Vanja. “Comparison of Similarity Search Algorithms Over Inverted

Indexes”. Stanford University. 27 September 2010

[10] Miller, Mark. “Query Parsing Tips & Tricks in Solr”. ApacheCon Europe 2012.

Rhein-Neckar-Arena, Sinsheim, Germany. 5-8 November 2012.

[11] MIMIC II: Clinical Database Overview. Internet. www.physionet.org/mimic2. 2

April 2015

[12] Peng, Jie. Ounis, Iadh. “Selective Application of Query Independent Features in

Web Information Retrieval”. Glassglow, United Kingdom. 2009

[13] P´erez-Ag¨uera, J.R., Arroyo, J., Greenberg, J., Iglesias, J.P., Fresno, V. “Using

BM25F for semantic search.” International Semantic Search Workshop (2010). ACM

Press, New York, USA, 2010. p1-8

[14] Potter, Timothy. “Boosting documents by Recency, Popularity, and User

Preferences”. San Francisco. 25 May 2011

46

[15] Mika, Peter. “Distributed Indexing for Semantic Search”. International Semantic

Search Workshop (2010). ACM, 2010. p1-4

[16] Solr Tutorial. Internet. cwiki.apache.org. 20 December 2014

[17] Vercoustre, Anne-Marie. Thom, James. Pehcevski, Jovan. “Entity Ranking in

Wikipedia” ACM Symposium on Applied Computing (2008). ACM Press, New York,

USA, 2008. p1101-1106

	INDEX STRATEGIES FOR EFFICIENT AND EFFECTIVE ENTITY SEARCH
	Recommended Citation

	tmp.1432239202.pdf.bIhnG

