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ABSTRACT

Cryptanalysis of Classic Ciphers Using Hidden Markov Models

by Rohit Vobbilisetty

Cryptanalysis is the study of identifying weaknesses in the implementation of

cryptographic algorithms. This process would improve the complexity of such algo-

rithms, making the system secure.

In this research, we apply Hidden Markov Models (HMMs) to classic cryptanaly-

sis problems. We show that with sufficient ciphertext, an HMM can be used to break

a simple substitution cipher. We also show that when limited ciphertext is avail-

able, using multiple random restarts for the HMM increases our chance of successful

decryption.
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CHAPTER 1

Introduction

A Hidden Markov Model (HMM) includes a Markov process with hidden or

unobserved states. That is, the states of the Markov process are not directly visible

to the observer, although a series of observations (dependent on the states) are visible.

The states are related to the observations by discrete probability distributions [23],

also called emission probabilities.

The HMM training process can be viewed as a (discrete) hill-climb on the param-

eter space consisting of state transition probabilities and observation probabilities.

Consequently, we are only assured of a local maximum. Also, in general, we only

obtain the global maximum when we start sufficiently close– within its “attraction

basin”. Therefore, if we train multiple HMMs, each with a separate random initializa-

tion, we expect to obtain a stronger model, particularly in cases where the available

training data is limited.

In this project, we propose to use HMM analysis to cryptanalyze various classic

ciphers. We will quantify the effectiveness of multiple random restarts [2] with respect

to the amount of data available, and compare it with the results obtained from the

Jakobsens [10] algorithm. We also attempt to leverage the processing power of the

Graphics Processing Unit [21] by implementing the Baum-Welch algorithm for Hidden

Markov Models, and compare the performance with its equivalent single-threaded

implementation on CPU.

Initially, we analyze the Simple Substitution Cipher using HMMs with multiple

random restarts by varying the data size of ciphertext. This includes the Caesar
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cipher and the generic case, where a symbol from the plaintext can map to one of the

symbols from the ciphertext assuming there is a one-to-one relationship. We define

accuracy as the number of symbols correctly deciphered by this method, and compare

accuracies for increasing data sizes. We also compare accuracy with increasing data

size, and increasing random restarts.

This paper is organized as follows. In Chapter 2, we provide background infor-

mation on cryptography, cryptanalysis, various types of ciphers and Hidden Markov

Models. Chapter 3 provides the detailed process of performing Hidden Markov Models

with random restarts. Chapter 5 outlines the results obtained from our experiments.

We finally conclude the report by providing the conclusion in Chapter 6, followed by

future work and enhancements in Chapter 7.

2



CHAPTER 2

Background

In this section we will briefly discuss about Cryptography, Cryptanalysis and

finally Simple and Homophonic substitution ciphers. We then cover the basics of

Hidden Markov Models and describe the Baum-Welch [23] algorithm in detail. Lastly,

we cover the basics of Graphics Processing Unit and the CUDA [16] (Compute Unified

Device Architecture) programming language.

2.1 Cryptography

Cryptography is the art of securing communication in the presence of third par-

ties. The main aspects are data confidentiality, data integrity, authentication and

non-repudiation.

2.2 Cryptanalysis

Cryptanalysis is the study of analyzing cryptographic algorithms and other sys-

tems to uncover the hidden aspects of the systems. This includes identifying weak-

nesses in the design and implementation of cryptographic algorithms [24]. This pro-

cess may involve executing many experiments with varying parameters, making it

computationally intensive.

In cryptography, a substitution cipher is the method of substituting each unit of

the plain text with its associated unit of cipher text, according to a defined system.

The unit can consist of single or multiple characters, based on the complexity of the

algorithm. The decryption is the exact reverse of the encryption method, where the

cipher unit is substituted with its associated plain text unit. Such ciphers are similar

3



to transposition ciphers, except that the units within the plaintext are rearranged in

a complex manner, keeping the units unchanged. In case of Substitution ciphers, the

sequence of units is not altered.

There are several types of substitution ciphers. If the unit being substituted is a

single letter, it is called a Simple Substitution Cipher. It implies that there is a one

to one mapping between the plaintext symbol and the cipher text symbol.

In case of Homophonic Substitution Ciphers, multiple plain text symbols can

map to the same ciphertext symbol and vice-versa, making it complex to decipher

using frequency analysis. This is also called polyalphabetic substitution ciphers.

2.3 Simple Substitution Cipher

In case of Simple Substitution Cipher, a single plain text symbol is mapped to

a single cipher text symbol. This is the simplest case of substitution ciphers, making

it susceptible to cryptographic attacks.

In the case of English language, there are 26 distinct symbols that can map to

26 distinct cipher symbols. A total of 26! keys can be computed using this approach.

The work factor for decipherment would be 26!, making this approach infeasible.

An improved approach to attack this cipher is using letter frequencies. Each letter

in the English language has an associated frequency, making it easier to decipher the

text. During decryption, matching the letter frequencies obtained from the cipher

text, with the ones associated with the plain text would yield the decryption key.

e.g. the letter ‘E’ in English has the highest letter frequency, which can be matched

against the letter with the highest frequency from the cipher text [6, 13].

4



2.3.1 Caesar Cipher

This is also known as the shift cipher, and is one of the widely known techniques

of encryption. In this method, each plain text symbol is replaced with a cipher

symbol, which is a number of alphabetic positions behind or ahead. This cipher is

similar to the ROT13 [13] system, where the shift is of size 13. The Caesar Cipher [24]

is insecure and has no application in the field of security [6, 13].

Figure 1: ROT 13 - A Caesar Cipher with Shift 13
.

Encryption of a letter 𝑥 by a shift 𝑛, can be described mathematically as,

𝐸𝑛(𝑥) = (𝑥+ 𝑛) mod 26 (1)

Decryption is performed similarly,

𝐷𝑛(𝑥) = (𝑥− 𝑛) mod 26 (2)

where, let A = 0, B = 2, C = 3, ..., Z = 25.

2.4 Homophonic Substitution Cipher

The homophonic substitution ciphers are comparatively harder to decipher using

frequency analysis. In this case, a single plaintext symbol maps to multiple ciphertext

5



symbols [6]. This would ensure that the frequencies are flattened across all symbols,

making it harder to decipher using frequency analysis. But, each cipher text symbol

can represent only one plain text symbol.

Based on the Jakobsen algorithm [10], an efficient attack exists to determine the

key for homophonic substitution cipher. This algorithm consists of three layers, outer

layer, random key layer, and inner layer [28].

2.5 Jakobsen’s Algorithm

This section would describe the Jakobsen’s Fast attack on Simple Substitution

ciphers. This is also applicable to Homophonic substitution ciphers.

2.5.1 Digram Frequencies

Digrams are sequences of 2 letters for a given language. In case of the English

language, there are 262 possible digrams. The digram sequence ‘th’ has the highest

occurrence and constitutes to 1.5 percent of the total digrams associated with the

English language. Table A.11 lists the most common digrams for English language

(Computed using 40,000 words). Table A.12 lists the digram frequency counts com-

puted using “Brown Corpus” [25]. Ideally, these counts need to be normalized by

dividing it by the number of characters.

Jakobsen [10] provides a fast attack on substitution ciphers, by using only digraph

statistics. The entire process requires decrypting the cipher text only once. The

following section lists the Jakobsen’s Fast Attack [10] on Simple Substitution Ciphers.
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2.5.2 Fast Attack on Simple Substitution Ciphers

We assume that the plain text consists of the English language, and the ciphertext

would also consist of 26 symbols of the English language.

Jakobsen’s algorithm [10] uses digram statistics to compute the score for the

current key. The ciphertext is parsed only once to compute the digram distribution

matrix for the plaintext. Subsequent scoring is done by modifying the initial putative

key (used for decryption) and the associated digram distribution matrix. These two

entities are compared with the expected digram statistics for English language for the

purpose of scoring.

Determining the initial putative key

The initial putative key is determined by computing the monogram statistics for

the given cipher text and comparing it with the statistics for English language.

The sequence E T A O I N S R H L D C U M F P G W Y B V K X J Q

Z, indicates the letters in the descending order of their monogram frequencies for

English Language. The most frequent alphabet in the ciphertext would correspond

to the letter E. Remaining associations are calculated using the similar method.

Scoring a putative key

An efficient way of scoring the putative key, is to calculate the sum of the nu-

merical differences of the digraph frequencies associated with the putative key and

the ones for English language. Listed below is the formula for scoring the current

putative key:

𝑑(𝑋, 𝑌 ) =
∑︁
𝑖,𝑗

|𝑥𝑖𝑗 − 𝑦𝑖𝑗|

Note that the matrices 𝑋 and 𝑌 are of the same dimensions.
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The preceding equation would yield the distance between the 2 matrices that

represent digraph distributions. The smaller the distance, the more likely that the

putative key would decrypt the ciphertext to yield a result that is closer to the actual

plaintext. So, this distance can be treated as a score, where a score of 0 implies a

perfect match.

We aim to achieve a better score by modifying the putative key, by swapping

two elements at a time. Based on this swap, only the rows and columns starting and

ending with these two elements need to be swapped within the digram distribution

of the putative key.

The Jakobsen’s Fast attack assumes the following:

1. Compute 𝐸, a matrix which contains the excepted Digram frequencies of English

language.

2. Let 𝐶 be the input ciphertext.

3. Let 𝐾 be the initial putative decryption key that is computed using monogram

frequency statistics of the ciphertext.

4. Let 𝑃 represent the putative plaintext obtained by decrypting 𝐶 using the

putative key.

5. Let 𝐷 represent the digram distribution matrix for 𝑃 .

Algorithm 2.1 depicts a hill climb approach to attack the cipher. At each stage,

the modified key is ignored if it does not result in an improved score (lower score).

8



Algorithm 2.1 Jakobsen’s Fast Attack on substitution ciphers
1: Initialize 𝐸 with expected digram frequencies
2: 𝐶 = Input cipher text
3: 𝐾 = Compute Initial Putative Key
4: 𝑃 = Putative plaintext by decrypting C using K
5: 𝐷 = Digram distribution matrix for 𝑃
6: score = 𝑑(𝐷,𝐸)
7: for 𝑖 = 1 to 𝑛− 1 do
8: for 𝑗 = 1 to 𝑛− 𝑖 do
9: 𝐷′ = 𝐷

10: swapRows(𝑗, 𝑗 + 𝑖)
11: swapColumns(𝑗, 𝑗 + 𝑖)
12: if d(𝐷′,𝐸) < score then
13: 𝐷 = 𝐷′

14: swapElements(𝑗, 𝑗 + 𝑖) {Swap elements of the putative key}
15: score = d(𝐷′,𝐸)
16: end if
17: end for
18: end for
19: return K

2.6 Hidden Markov Models

A Markov Chain or Markov Process [23] refers to the memoryless process of a

stochastic process. A stochastic process possesses the Markov property if the condi-

tional probability of the successive states depends only upon the present state and

not the ones preceding it.

A Hidden Markov Model [23] or HMM is a statistical Markov Model in which the

system being modeled is assumed to be a Markov process with unobserved (hidden)

states. In simpler Markov models (like a Markov chain), the state is directly visible

to the observer, and therefore the state transition probabilities [23] are the only

parameters. In a HMM, the internal state is not directly visible, but the output

(dependent on the internal state) is visible. Each state has a probability distribution

over the possible output tokens. Therefore, the sequence of tokens generated by an

9



HMM provides some information regarding the sequence of internal states.

2.6.1 Notation

The components of a Hidden Markov Model can be represented using the follow-

ing notation:

𝑇 = length of the observation sequence

𝑁 = number of states in the model

𝑀 = number of observation symbols

𝑄 = {𝑞0, 𝑞1, . . . , 𝑞𝑁−1} = distinct states of the Markov process

𝑉 = {0, 1, ...,𝑀 − 1} = set of possible observations

𝐴 = state transition probabilities

𝐵 = observation probability matrix

𝜋 = initial state distribution

𝒪 = (𝒪0,𝒪1, . . . ,𝒪𝑇−1) = observation sequence

Figure 2 depicts the basic layout of a Hidden Markov Model. The internal states

are labeled in ‘x’, which would be the plain text symbol. The observations are labeled

in ‘y’, which represents a ciphertext symbol. The transition probabilities amongst

internal states are labeled in ‘a’, which is an element of the 𝐴 matrix. Finally, the

observation probabilities are depicted using the label ‘b’ amongst the observation

symbol and internal state.

2.6.2 HMM Problems

Formally, there are 3 problems [23] associated with the Hidden Markov Model.

10



Figure 2: Hidden Markov Model

2.6.2.1 Problem 1

This deals with model evaluation. Given the model and a sequence of observa-

tions, we need to find the probability 𝑃 (𝒪|𝜆). The main idea is to find the likelihood

of the sequence given the model.

2.6.2.2 Problem 2

Given the model and the sequence of observations, we need to find the optimal

sequence for the underlying Markov process. The main idea is to uncover the hidden

part of the Hidden Markov Model.

2.6.2.3 Problem 3

Given the observation sequence and the dimensions N and M, find the model

lambda that maximizes the probability of the given sequence

11



2.6.3 HMM Scaling

This concept is required to avoid numerical underflow while calculating proba-

bilities after each stage of the HMM algorithm. This is achieved by summing up the

values of 𝛼𝑡 at 𝑡 and dividing each quantity by this summed quantity.

2.6.4 Baum-Welch Algorithm

The Baum-Welch algorithm is used to find unknown parameters of the Hidden

Markov Model. Before describing the Baum-Welch algorithm, we would briefly ex-

plain the Forward algorithm.

2.6.4.1 Forward Algorithm

This algorithm is the solution to Problem 1, i.e. finding the probability that

the given observation sequence was generated from the given model. The following

equation depicts the probability:

Probability = 𝑃 (𝒪|𝜆)

where 𝒪 is the observation sequence and 𝜆 is the model.

This would imply that the model would have been trained on the given obser-

vation sequence in the past. The matrix 𝐵 would contain the state transition prob-

abilities that would conform with the given observation sequence to yield a higher

probability.

The Forward Algorithm analyzes the probabilities of transitioning from one state

to the next based on the given observations. The solution to the Forward Algorithm

is to iteratively compute the state transition probabilities for each observation.

Let the newly computed state transition probabilities be stored in a new variable

12



called 𝛼, which is a 2 dimensional array of size 𝑁 × 𝑇 . Here 𝑁 is the number of

states and 𝑇 is the number of observations. At a given time 𝑡, 𝛼 would contain the

probability of producing the observation 𝒪 for a given state 𝑗−1 and the probabilities

of traversing through all states up till state 𝑗 − 1.

This algorithm is recursive, so we assume that the transition probabilities before

state 𝑗 have already been computed. The first step or the initialization step, are

depicted within 𝜋, which is a 1 dimensional array of size 1 × 𝑇 . It contains the

probabilities of starting from the initial state. In other words this process would be

computed in a top-down approach. The probability of producing the first observation

symbol is given by:

𝑃 (𝒪1) = 𝜋𝑖𝑏𝑖(𝒪1)

The algorithm terminates by summing up the values of 𝛼 at time t=T. This gives

the probability of traversing through all states and producing the entire observation

sequence, for the given model. To summarize, the Forward Algorithm can be defined

by the following recurrence(s):

The formula to calculate the scaling factor is given by:

𝛼𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝛼𝑡−1(𝑗)𝑎𝑗𝑖𝑏𝑖(𝒪𝑡)

𝑡 = observation at time 𝑡

𝑎 = contains the state transition probabilities

𝑏 = contains the emission probabilities

As 𝑇 increases, the 𝛼𝑡(𝑖) tends to 0. This will lead to a numerical underflow, which

can be avoided by scaling the numbers. The scaling factor is calculated by summing
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up the values of 𝛼 at time 𝑡. Then each value of 𝛼 for time 𝑡 is divided by this scaling

factor. The scaling factor is a 1 dimensional array with dimensions 1× 𝑇 .

The formula to calculate the scaling factor is given by:

𝑐𝑡 =
1

𝑁−1∑︀
𝑗=0

𝛼𝑡(𝑗)

Then scale each value on 𝛼𝑡 by multiplying with the scaling factor 𝑐𝑡:

𝛼𝑡(𝑖) = 𝑐𝑡𝛼𝑡(𝑖) (3)

According to equation 3, summing up all values at time 𝑡 would result in the

numerator being equal to the denominator:

𝑁−1∑︁
𝑗=0

𝛼𝑇−1(𝑗) = 1

With reference to (3),

𝛼𝑡(𝑖) = 𝑐0𝑐1𝑐2...𝑐𝑡𝛼𝑡(𝑖)

Which implies that:
𝑁−1∑︁
𝑗=0

𝛼𝑇−1(𝑗) = 𝑐0𝑐1𝑐2...𝑐𝑇−1

𝑁−1∑︁
𝑗=0

𝛼𝑇−1(𝑗)

= 𝑐0𝑐1𝑐2...𝑐𝑇−1𝑃 (𝒪|𝜆)

After combining these results, gives the following result:

𝑃 (𝒪|𝜆) = 1
𝑇−1∏︀
𝑗=0

𝑐𝑗

This implies that the reciprocal product of all scaling factors will yield the final

probability of the observation sequence given the model. Finally to avoid underflow,

we usually take the log-likelihood of the probability. This is given by:

log𝑃 (𝒪|𝜆) = −
𝑇−1∑︁
𝑗=0

log 𝑐𝑗
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The Backward Algorithm analyzes and iteratively computes the transition probabil-

ities in the reverse order. This method is similar to the Forward Algorithm, which

starts from the first observation symbol and traverses all successive symbols. Similar

to the Forward Algorithm, the same scaling factor is used for calculating 𝛽𝑡(𝑖) in case

of the Backward Algorithm.

This is followed by computing Gamma 𝛾 and Di-gamma 𝛾(𝑖, 𝑗) using 𝛼, 𝛽 and

matrices 𝐴, 𝐵. The final step is to re-estimate the values for 𝜋, 𝐴 and 𝐵. The

subsequent iteration starts again with the Forward Algorithm, Backward Algorithm,

Compute Gamma, Di-Gamma and Re-estimation. The process repeats until the

probability is better than the previous iteration. The subsequent section describes

the entire process of the Baum-Welch Algorithm in detail with the help of pseudo-

code.

2.6.4.2 Complete Pseudocode

The complete pseudo-code for HMM. includes alpha, beta pass, compute di-gamma.

Re-estimate 𝐴, 𝐵, 𝜋 and finally the probability. The Baum-Welch algorithm consists

of the following step:

1. The 𝛼− 𝑝𝑎𝑠𝑠

2. The 𝛽 − 𝑝𝑎𝑠𝑠

3. Compute 𝛾 and 𝐷𝑖− 𝛾

4. Re-estimate entities 𝜋 and 𝐵.

The following section depicts the pseudocode for Baum-Welch algorithm [23]:
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Initialization

The entities 𝜋, 𝐴 and 𝐵 are initialized with random values, where each row sums

to 1. In other words the entities should be row stochastic and should not contain

uniform values.

𝜋 = is of size 1×𝑁

𝐴 = {𝑎𝑖𝑗} is of size 𝑁 ×𝑁

𝐵 = {𝑏𝑖𝑗} is of size 𝑁 ×𝑀

maxIters = Number of times to re-estimate parameters

iter = 0

existingLogProb = NULL

Alpha pass

This stage deals with the Forward Algorithm, where the values for 𝛼 are com-

puted iteratively, starting from the first observation.

Algorithm 2.2 Compute 𝛼0(𝑖)

𝑐0 = 0
for 𝑖 = 0 to 𝑁 − 1 do
𝛼0(𝑖) = 𝜋𝑖𝑏𝑖(𝒪0)
𝑐0 = 𝑐0 + 𝛼0(𝑖)

end for

The algorithm above computes the values for 𝛼0, which is for 𝑡 = 0. We also

calculate the scaling factor 𝑐0 by summing up all values for 𝛼 at 𝑡 = 0. Next, we scale

the values for 𝛼 that were calculated up till this point. As mentioned earlier, scaling

is necessary to avoid numerical underflow. This is done by dividing each individual

value by the scaling factor.
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Algorithm 2.3 Scale 𝛼0(𝑖)

𝑐0 =
1
𝑐0

for 𝑖 = 0 to 𝑁 − 1 do
𝛼0(𝑖) = 𝑐0𝛼0(𝑖)

end for

Next, we calculate the remaining values of 𝛼 for 𝑡 = 1 up till 𝑡 = 𝑇 − 1.

Algorithm 2.4 Compute remaining values for 𝛼𝑡(𝑖)

for 𝑡 = 0 to 𝑇 − 1 do
𝑐𝑡 = 0
for 𝑖 = 0 to 𝑁 − 1 do
𝛼𝑡(𝑖) = 0
for 𝑗 = 0 to 𝑁 − 1 do
𝛼𝑡(𝑖) = 𝛼𝑡(𝑖) + 𝛼𝑡−1(𝑗)𝑎𝑗𝑖

end for
𝛼𝑡(𝑖) = 𝛼𝑡(𝑖)𝑏𝑖(𝒪𝑡)
𝑐𝑡 = 𝑐𝑡 + 𝛼𝑡(𝑖)

end for
end for

Repeat the process for scaling all values for 𝛼 computed in the previous step.

Algorithm 2.5 Scale 𝛼𝑡(𝑖)

𝑐𝑡 =
1
𝑐𝑡

for 𝑖 = 0 to 𝑁 − 1 do
𝛼𝑡(𝑖) = 𝑐𝑡𝛼𝑡(𝑖)

end for
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Beta Pass

This section describes the beta pass or the Backward Algorithm. This is similar

to the Forward Algorithm, but operates in the reverse order starting from the final

observation up till the first observation. The scaling factors computed during the

𝛼-pass are re-used to scale the values contained within 𝛽. Initialize the values for 𝛽

at 𝑡 = 𝑇 − 1 with the scaling values at 𝑐𝑇−1.

Algorithm 2.6 Scale 𝛽𝑇−1(𝑖)

for 𝑖 = 0 to 𝑁 − 1 do
𝛽𝑇−1(𝑖) = 𝑐𝑇−1

end for

Compute the remaining values for 𝛽 starting from 𝑡 = 𝑇 − 2 up till 𝑡 = 0.

Algorithm 2.7 Compute and scale remaining 𝛽𝑡(𝑖)

for 𝑡 = 𝑇 − 2 to 0 do
for 𝑖 = 0 to 𝑁 − 1 do
𝛽𝑡(𝑖) = 0
for 𝑗 = 0 to 𝑁 − 1 do
𝛽𝑡(𝑖) = 𝛽𝑡(𝑖) + 𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

end for
𝛽𝑡(𝑖) = 𝑐𝑡𝛽𝑡(𝑖) {Scale the values for 𝛽𝑡}

end for
end for
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Compute Gamma

The variables Gamma 𝛾(𝑖), and Di-Gamma 𝛾(𝑖, 𝑗) are additional parameters that

are computed in order to help re-estimate the parameters 𝜋 (the initial probabilities)

and 𝐵 (emission probabilities).

Algorithm 2.8 Compute 𝛾

for 𝑡 = 0 to 𝑇 − 2 do
denom = 0
for 𝑖 = 0 to 𝑁 − 1 do

for 𝑗 = 0 to 𝑁 − 1 do
denom = denom + 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

end for
end for
for 𝑖 = 0 to 𝑁 − 1 do
𝛾𝑡(𝑖) = 0
for 𝑗 = 0 to 𝑁 − 1 do
𝛾𝑡(𝑖, 𝑗) = (𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗))/denom
𝛾𝑡(𝑖) = 𝛾𝑡(𝑖) + 𝛾𝑡(𝑖, 𝑗)

end for
end for

end for

Reestimate 𝜋,𝐵

This section describes the process to re-estimate the values for 𝑝𝑖 and 𝐵. Since

𝐴 contains the state transition probabilities, which in other words are the digraph

frequency statistics for the English language, it should not be re-estimated. This

would make sure that the digraph frequency statistics are preserved for the entire

process.

Algorithm 2.9 Reestimate 𝜋

for 𝑖 = 0 to 𝑁 − 1 do
𝜋𝑖 = 𝛾0(𝑖)

end for
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Algorithm 2.10 Reestimate 𝐵

for 𝑖 = 0 to 𝑁 − 1 do
for 𝑖 = 0 to 𝑀 − 1 do

numer = 0
denom = 0
for 𝑡 = 0 to 𝑇 − 2 do

if 𝒪𝑡 == 𝑗 then
numer = numer + 𝛾𝑡(𝑖)

end if
denom = denom + 𝛾𝑡(𝑖)

end for
𝑏𝑖(𝑗) =

numer
denom

end for
end for

Compute the probability

Finally, compute the probability by summing up the log values of the scaling

factor, 𝑐:

Algorithm 2.11 Compute probability
logProb = 0
for 𝑖 = 0 to 𝑇 − 1 do

logProb = logProb + 𝑙𝑜𝑔(𝑐𝑖)
end for
logProb = −logProb

If the 𝑙𝑜𝑔𝑃𝑟𝑜𝑏 computed in the current iteration is greater than the value com-

puted in the previous iteration, proceed to the next iteration by repeating from first

step.

2.7 Graphics Processing Unit

A Graphics Processing Unit [21] or GPU is a specialized piece of hardware capable

of rapidly accessing memory as well as manipulate it, for the purposes of displaying

high quality graphics. Their highly parallel structure is best suited for purposes where
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several blocks of memory need to be altered concurrently. This is not efficient in case

of a CPU (traditional processor), since it has a limited number of cores.

Such specialized hardware interfaces with the motherboard through an expansion

slot such as the PCI-Express interface, which is a high speed serial expansion bus

standard capable of achieving bandwidth rates of 8 GB/s. Intra device communication

can reach up to 120 GB/s.

There are several application of the GPU, such as in the field of Computer Vision,

Computational Finance, Computer Aided Design, and many more. Popular programs

like Adobe Suite of tools and MATLAB, utilize the GPU to accelerate computationally

intensive tasks.

2.7.1 Overview

Figure 3: The difference between a CPU and GPU [11]

A traditional CPU contains few cores and can support few threads at a time.

The GPU consists of hundreds or even thousands of cores, and can support thousands

of threads simultaneously. This allows a program to speed up execution by 100× on
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a GPU, making it very efficient.

Figure 4: How does GPU Accelerated code work

A program intended to be executed on a GPU, consists of heterogeneous

code [26], i.e. code that can execute on CPU and GPU. The computationally

intensive code section would execute on the GPU and return the result back to the

CPU, while the sequential code continues to execute on the CPU.

Figure 5 depicts a machine that has thousands of tubes, each tube capable of

painting a single pixel independent of the other. All tubes paint their respective

pixel simultaneously, acting similar to how several GPU processors execute certain

instructions in parallel.

2.7.2 CUDA programming language

Also known as Compute Unified Device Architecture [16] is a parallel computing

platform developed by NVIDIA, using which the GPU is suitable for general purpose
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Figure 5: This image depicts how a GPU functions by painting a picture instanta-
neously

applications such as High Performance Computing. CUDA is generally an extension

to existing programming languages like C, C++, Python and Fortran. Recently,

OpenCL [20] has also become broadly supported, which is an open standard defined

by the Khronos group and provides cross platform support.

The CUDA programming language enables developers to access the GPU instruc-

tion set directly to accelerate general purpose applications in the field of biological

simulations, cryptography, and several other areas. GPUs are used for several pur-

poses including graphics rendering as well as in game physics using the PhysX engine.

The current stable release of CUDA is v7.0.

The basic flow for a CUDA program [30] is listed below:

∙ Allocate memory for the variables on the GPU.

∙ Implement the code and load to GPU. The GPU would use the memory allo-

cated in Step 1.

∙ Once execution completes, copy the results back from the GPU to the CPU.
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The special section of code executed on the GPU is called a kernel. CUDA allows the

definition for a kernel on any supporting language.

__global__ void add ( int *a , int *b , int *c ) {

*c = *a + *b ;

}

The __global__ keyword, would enable the host code (CPU) to launch the 𝑎𝑑𝑑

method on the device (GPU). The variables 𝑎, 𝑏, and 𝑐 should point to the device

(GPU) memory. All keywords highlighted in red belong to the CUDA Programming

language.

A sample kernel launch sequence is listed below:

add<<< 1 , 1 >>>( a , b , c ) ;

The method name is followed by the Grid and Block dimensions enclosed within

triple brackets, followed by the method arguments. A Grid consists of multiple Blocks,

and a Block consists of multiple Threads. In the preceding sample, the Grid and Block

dimensions are of size 1, resulting in a single launch of the kernel.

add<<< N, 1 >>>( a , b , c ) ;

The preceding code segment would launch N instances of the kernel, with N

Blocks and 1 Thread per Block. Since, the method ‘add’ runs in parallel, it is possible

to speed up vector addition. Each instance can refer to its Block using the keyword

ThreadIdx.x. The following sample uses ThreadIdx.x to access the designated element

within the array.
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__global__ void add ( int *a , int *b , int *c ) {

c [ blockIdx . x ] = a [ blockIdx . x ] + b [ blockIdx . x ] ;

}

2.7.2.1 cuBLAS

The cuBLAS (Compute Unified Basic Linear Algebra Subroutines) library [17]

consists of routines that accelerate Vector-Vector, Matrix-Vector and Matrix-Matrix

algebra. These routines are invoked from the host code and execute efficiently on the

GPU. The library provides routines for single, double precision and complex inputs.

This library is based on the original BLAS, consisting of similar low level routines,

implemented by high level math programming frameworks like MATLAB and R.

cuBLAS Examples

We assume all device variables have been pre-allocated and cuBLAs has been

initialized. All methods used in the examples are intended for inputs with double

precision.

Vector DOT product

We assume two vectors 𝑎_𝑑 and 𝑏_𝑑 of size 10, which are allocated on the device.

The result of the operation would be stored by 𝑟𝑒𝑠𝑢𝑙𝑡_𝑑. The following code sample

depicts the dot product for two vectors.

int N = 10 ;

double *a_d ;

double *b_d ;

double * result_d ;
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cudaMalloc ( ( void **)&a_d , s izeof (double ) * N) ;

cudaMalloc ( ( void **)&b_d, s izeof (double ) * N) ;

cudaMalloc ( ( void **)&result_d , s izeof (double ) ) ;

cublasStatus_t s t a tu s = cublasDdot ( handle , N, a_d , 1 , b_d, 1 ,

&result_d ) ;

Matrix-Vector Multiplication

The method cublasDgemv multiplies a matrix with a vector. In the following

example, the matrix 𝑎_𝑑 is multiplied with the vector 𝑏_𝑑, the resulting vector is

stored within 𝑟𝑒𝑠𝑢𝑙𝑡_𝑑. The variables 𝑠𝑐𝑎𝑙𝑎𝑟_𝑑 and 𝑧𝑒𝑟𝑜_𝑑 are initialized with

values 1 and 0. All variables are allocated on the device.

int N = 10 ;

double *a_d ;

double *b_d ;

double * scalar_d ;

double *zero_d ;

double * result_d ;

cudaMalloc ( ( void **)&a_d , s izeof (double ) * N * N) ;

cudaMalloc ( ( void **)&b_d, s izeof (double ) * N) ;

cudaMalloc ( ( void **)&scalar_d , s izeof (double ) ) ;

cudaMalloc ( ( void **)&zero_d , s izeof (double ) ) ;

cudaMalloc ( ( void **)&result_d , s izeof (double ) * N) ;
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// I n i t i a l i z e scalar_d with 1 and zero_d with 0 .

cudaMemset( scalar_d , 1 , s izeof (double ) ) ;

cudaMemset( zero_d , 0 , s izeof (double ) ) ;

cublasStatus_t s t a tu s = cublasDgemv( handle , CUBLAS_OP_T,

N, N,

scalar_d ,

a_d , N,

b_d, 1 ,

zero_d ,

result_d , 1 ) ;
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CHAPTER 3

Hidden Markov Models with Random Restarts

Experiments were performed on the CPU and the GPU having different hardware

configurations. Each section describes each experiment in detail.

3.1 What is a Random Restart?

This subsection briefly describes the concept of Random Restart [22] with context

to a Hidden Markov Model. We start by covering related work, then describe Hill

Climbing and its disadvantages. Finally, we define random restarts and its advantage.

3.1.1 Hill Climbing and its Disadvantage

The hill climbing technique starts from an initial solution and iteratively tries to

improve the score based on some function [4, 6]. During each iteration, the solution

from the previous step is re-evaluated by modifying the input and subjecting it to

the evaluation function. The new input is chosen only if the score improves, else the

previous input is modified in a different manner. Figure 6 depicts the Hill Climbing

algorithm.

3.1.2 Random Restarts and its Advantage

The hill climbing technique (Figure 6) requires the initial start point and the

number of iterations. If the initial start point is not optimal, the solution obtained

would correspond to a local maximum. Choosing a different initial start point might

improve the score or obtain a higher local maximum, which may well be a global

maximum.
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Figure 6: Hill Climbing algorithm, main goal is to attain Global Maximum [27].

The entities 𝜋 and 𝐵 [23] are initialized using random values, generated using a

Pseudo Random Number Generator (PRNG). The PRNG is seeded using a random

value, which if varied would imply a different start point for the training phase for

the HMM. The seed for the Pseudo Random Number Generator is generated with the

help of some entropy. e.g. the System Time is a good example exhibiting randomness.

Due to this process, the algorithm achieves convergence faster resulting in the Global

Maximum.
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3.2 HMM with Random Restarts (CPU)

This section describes the entire process of executing Hidden Markov Model with

multiple random restarts uptill the final stage of computing the accuracy. Subsequent

subsections describe certain steps in detail.

3.2.1 Related Work

There has been considerable research being done with Hidden Markov Models.

Berg-Kirkpatrick et al. [2] has attempted to crypt-analyze the Zodiac-304 and Zodiac-

340 [5] ciphers with the help of HMM with random restarts. Nuhn et al. [14] provides

an EM based training procedure for probabilistic substitution ciphers, providing high

decipherment accuracies.

3.2.2 Algorithm Overview

The main steps to decipher text using Hidden Markov Model with random

restarts are listed below:

∙ Train the Hidden Markov Model using English text to obtain digraph statistics

from matrix 𝐴. Alternatively, the frequencies can be calculated externally and

substituted within matrix 𝐴.

∙ Compute a random encryption key.

∙ Encrypt a sample dataset (English language) using the encryption key, to obtain

the associated cipher text.

∙ Train the Hidden Markov Model using the cipher text obtained from the pre-

vious step. The matrix 𝐴 would contain digraph frequencies obtained from the

first step. Matrix 𝐴 should not be modified during the re-estimation phase.
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∙ Obtain the decryption key from matrix 𝐵, which contains the emission probabil-

ities for each encrypted symbol (observation) and the plain text symbol. Choose

the most probable internal state (plain text symbol) for the given observation

(cipher-text symbol). Section 3.2.2.1 describes this step in detail.

∙ Decrypt the text using the decryption key obtained from the previous step.

∙ Compare the decrypted text with the original plain text to obtain the success

rate or accuracy by using the formula:

Success Rate or Accuracy =
Number of letters that match

Total number of letters

Section 3.2.2.2 describes this step in detail.

NOTE: We normalize scores or accuracy across multiple test cases. Each test-case

deals with a randomly generated encryption key.

Figure 7: Flow Diagram for Cryptanalysis using HMM with Random Restarts

Moreover, we use the concept of random restarts associated with the HMM. In

this case, the Pseudo Random Number Generator is seeded with a random value and

is used to initialize the entities 𝜋 and 𝐵. This could possibly improve the accuracy,

resulting in the global maximum.
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3.2.2.1 Computing Decryption Key

Once the model has been trained, the matrix 𝐵 would contain the final emis-

sion probabilities associated with each state. The aim is to find the best emission

probability associated with each observation, resulting in the mapped internal state.

The row headers represent the internal (hidden) states, while the column head-

ers represent the observation. The process starts by choosing an observation symbol

(column header), and then selecting the row with the highest probability, that asso-

ciates with this column. In other words, we are finding the most probable internal

state associated with the current observation symbol. This process is repeated for all

symbols.

A simple example:

Let us consider an example to describe the process of computing the decryption

key from the matrix 𝐵 once the HMM model has been trained. Table 1 depicts

the contents of the matrix 𝐵𝑇 , containing the final emission probabilities after the

training phase. We assume that the HMM consists of 6 internal states (depicted with

alphabets 𝑎 through 𝑓). We also assume that the observation sequence consists of 6

unique symbols (1 through 6). The objective is to find the most probable internal

state for each observation symbol.

Table 1: Sample contents for the matrix 𝐵𝑇 from a trained model.

1 2 3 4 5 6
𝑎 0.00000 0.00000 0.92113 0.00000 0.00000 0.00000
𝑏 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000
𝑐 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
𝑑 0.00000 0.00000 0.00000 0.00000 0.00000 0.45910
𝑒 0.97749 0.00000 0.00000 0.00000 0.00000 0.00000
𝑓 0.00000 0.55477 0.00000 0.00000 0.00000 0.00000
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For each observation symbol, select the highest probability associated with the

column. This implies choosing the most probable internal state associated with this

observation symbol.

Table 2: Most probable internal state chosen for each observation symbol.

1 2 3 4 5 6
𝑎 0.00000 0.00000 0.92113 0.00000 0.00000 0.00000
𝑏 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000
𝑐 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
𝑑 0.00000 0.00000 0.00000 0.00000 0.00000 0.45910
𝑒 0.97749 0.00000 0.00000 0.00000 0.00000 0.00000
𝑓 0.00000 0.55477 0.00000 0.00000 0.00000 0.00000

Table 2, depicts the most probable internal state for each observation symbol.

The probabilities are highlighted in red. An interesting fact is that the chosen proba-

bilities form a perfect diagonal, which implies that the input text was encoded using

the Caesar Cipher [24] with Shift 3. This example depicts a converged model. In a

complex scenario, there would be many internal states and observation symbols. The

model may not converge, unless the experiment was performed for a high number of

iterations. In such cases every column might consist of multiple probabilities, and

the highest probability is chosen.

3.2.2.2 Calculating Accuracy

The accuracy might vary based on a given ciphertext, so we average the accuracy

across multiple test cases. For each test case, a ciphertext is generated using a random

encryption key and a given plain text. The model is trained using the given ciphertext

for certain iterations. The associated decryption key is computed by looking up the

most probable internal state for the given observation symbol. The ciphertext is

decrypted using this decryption key and the associated plaintext is matched using
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the original plaintext to compute the percentage of symbols that matched. This

process is continued for multiple test cases and the accuracy is averaged across all

test cases.

3.3 Baum-Welch algorithm (GPU)

This section describes the previous work dealing with HMMs in the field of

Speech Recognition and Pattern Recognition. This is followed by a brief overview of

the optimized algorithm on the Graphics Processing Unit.

3.3.1 Related Work

There has been much research and development dealing with HMM within the

GPU domain. Liu [12] provides an efficient method to implement the various algo-

rithms (Forward, Viterbi and Baum-Welch) for the Hidden Markov Model on the

GPU. The implementation is compatible with CUDA v2.0. Hymel [9] improved the

implementation and used multiple HMM’s for the purpose of pattern recognition.

The efficiency is noticeable for large number of states and iterations. Yu et al. [29]

achieved 9.2x and 7.9x speedup during the training and testing stages, when used as

a Speech Recognition platform for real-time applications. The performance can be

limited due to the hardware’s memory bandwidth and availability of resources. Yu et

al. [29] states that the GPU version outperforms a single threaded CPU version for

internal states greater than 256 for the Forward Algorithm.

3.3.2 Algorithm Overview

The Baum-Welch algorithm for the GPU [9] would be similar to the CPU version.

All steps dealing with Vector-Vector, Matrix-Matrix and Matrix-Vector algebra are
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implemented using customized kernels and the cuBLAS library. This library provides

methods that can perform matrix-vector and matrix-matrix algebra in a very efficient

manner, by interleaving the operations across multiple processors of the GPU. The

implementation is compatible with CUDA Toolkit v6.5.

One such example would be in case of the 𝛼 − 𝑝𝑎𝑠𝑠 associated with the Baum-

Welch algorithm. With reference to Algorithm 2.4, the inner loop consisting of 𝑗 runs

for (𝑁−1) times. With the help of the cuBLAS DOT product 𝑐𝑢𝑏𝑙𝑎𝑠𝐷𝐷𝑜𝑡(), this can

reduced to a single operation. The method 𝑐𝑢𝑏𝑙𝑎𝑠𝐷𝑑𝑜𝑡() computes the DOT product

by distributing the processing across (𝑁−1) GPU threads. The runtime for the outer

loop consisting of 𝛼𝑡(𝑖)𝑏𝑖(𝒪𝑡) is 𝑂(𝑁 − 1), which is also reduced to a single operation

or 𝑂(log𝑁) with the help of CUBLAS method 𝑐𝑢𝑏𝑙𝑎𝑠𝐷𝑔𝑒𝑚𝑣(). The overall runtime

for Algorithm 2.4 reduces to 𝑂(𝑇 log𝑁), the log𝑁 is due to the recursive property

of the algorithm.

Algorithms 2.2 and 2.3 speed up with the help of 𝑐𝑢𝑏𝑙𝑎𝑠𝐷𝑑𝑜𝑡(), reducing the

runtime from (𝑁 − 1) steps to a single step. Similar operations have been used for

speeding up the 𝛽 − 𝑝𝑎𝑠𝑠, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝛾 and the re-estimation phase.
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CHAPTER 4

Experiments Setup

4.1 CPU based Experiments

The experiments intended to execute on the CPU were developed using Visual Studio

2013 Ultimate Edition, and compiled using gcc compiler on the remote server. Table

3 lists the configuration of the remote system.

Table 3: System Configuration (CPU)

CPU Intel Xeon E5-2697 (12 Cores), 2.7 GHz
RAM 8 GB
HDD 1 TB
OS Cent OS 6.6

4.2 GPU based Experiments

We briefly define some basic concepts before describing the actual experiment.

Amazon Web Services

Amazon Web Services is a division of Amazon Inc., specializing in cloud com-

puting services (Platform as a Service) and web based storage (Storage as a Service)

and available for enterprises and consumers.

The NVIDIA CUDA compiler

The NVIDIA CUDA Compiler (nvcc) [15] is specially designed to compile the

source code containing heterogeneous code, i.e. a mix of code executing on the CPU

and GPU. The nvcc compiler separates the CPU code and sends it to the gcc or g++

compiler, while the GPU code section is compiled by the nvcc compiler itself. The
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linking stage includes the compiled GPU functions within the host binary. e.g. The

GPU code may internally use the cuBLAS library, so the linker would include the

CUBLAS compiled binaries into the host binary.

PUTTY

PUTTY is an open source terminal, allowing an end user to connect to remote

systems. The software supports multiple protocols like SSH (with encryption), Telnet

and SCP.

Table 4: AWS GPU Instance configuration [1]

CPU Intel Xeon E5-2670 (8 Cores), 2.6 GHz
RAM 15 GB
HDD 30 GB
OS Amazon Linux

GPU NVIDIA GRID K520

Table 5: NVIDIA GRID K520 specifications [19]

Model NVIDIA GRID K520
Total GPUs 2 GK104 GPUs
GPU Cores 3072 (1536/GPU)

GPU Core Clock 800 MHz
Memory 8 GB (4GB/GPU)

This experiment was developed and executed on an Amazon Web Services GPU

instance (code named ‘g2.2xlarge’), which is attached with a NVIDA GRID K520

GPU [19]. This was achieved by connecting to the remote system using PUTTY.

Moreover, the code was also developed locally using Visual Studio with the NSight

plugin (bundled with the CUDA toolkit v6.5). The program was compiled using the

nvcc [15] compiler on the remote machine, supplied with additional arguments to
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indicate that the source uses cuBLAS library routines. Sample compilation sequence:

𝑛𝑣𝑐𝑐 − 𝐼<Path to CUDA samples> − 𝑙𝑐𝑢𝑏𝑙𝑎𝑠 < Program Name > .𝑐𝑢

Tables 4 and 5 depict the system specification for an AWS GPU Instance and NVIDIA

GRID K520 GPU.
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CHAPTER 5

Results

Experiments were performed against the text encoded using Simple and Homo-

phonic Substitution Ciphers. This section lists the results for Substitution ciphers

using Jakobsen’s algorithm and HMM with random restarts.

5.1 Jakobsen’s Fast Attack

In this experiment we implemented Jakobsen’s Fast Attack [10] over a cipher text

obtained by encrypting a random selection of the “Brown Corpus” [25]. We perform

this experiment multiple times, each time we use a random encryption key to encrypt

the text selected from the Brown Corpus. Figure 8 depicts the results obtained by

using random selections of encrypted text extracted from ‘Alice In Wonderland’, using

a random encryption key. The expected digraph frequencies ‘E’, are calculated using

the Brown Corpus. The accuracy based on data is always higher than the one based

on the key.
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Figure 8: Results for Jakobsen’s Fast Attack (Accuracy vs Data Size)

5.2 HMM with Random Restarts (CPU)

This section describes the results dealing with Caesar Cipher and Simple Sub-

stitution Cipher.

5.2.1 Caesar Cipher

In this experiment, we encrypt some sample text using Caesar cipher with Shift

3. Then we train the HMM over the encrypted text to obtain the trained model.

We decrypt the cypher text using the decryption key, computed from matrix 𝐵 and

compute the accuracy.

In cryptography, a Caesar cipher, also known as a Caesar’s cipher,

the shift cipher, Caesar’s code or Caesar shift, is one of the

simplest and most widely known encryption techniques. It is a type of

substitution cipher in which each letter in the plaintext is replaced

40



by a letter some fixed number of positions down the alphabet. For

example, with a shift of 3, A would be replaced by D, B would become

E, and so on. The method is named after Julius Caesar, who used it

to communicate with his generals.,The encryption step performed by a

Caesar cipher is often incorporated as part of more complex schemes,

such as the VigenÃĺre cipher, and still has modern application in the

ROT13 system. As with all single alphabet substitution ciphers, the

Caesar cipher is easily broken and in practice offers essentially no

communication security.

The sample text listed above, is encrypted with Caesar Cipher having Shift 3. We

ignore all characters except alphabets.

Encryption Key (Shift = 3)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

||||||||||||||||||||||||||

DEFGHIJKLMNOPQRSTUVWXYZABC

The associated encrypted text is listed below:

LQFUBSWRJUDSKBDFDHVDUFLSKHUDOVRNQRZQDVDFDHVDUVFLSKHUWKHVKLIWFLSKHUFDHV

DUVFRGHRUFDHVDUVKLIWLVRQHRIWKHVLPSOHVWDQGPRVWZLGHOBNQRZQHQFUBSWLRQWHFK

QLTXHVLWLVDWBSHRIVXEVWLWXWLRQFLSKHULQZKLFKHDFKOHWWHULQWKHSODLQWHAWLVUH

SODFHGEBDOHWWHUVRPHILAHGQXPEHURISRVLWLRQVGRZQWKHDOSKDEHWIRUHADPSOHZLWK

DVKLIWRIDZRXOGEHUHSODFHGEBGEZRXOGEHFRPHHDQGVRRQWKHPHWKRGLVQDPHGDIWHUMX

OLXVFDHVDUZKRXVHGLWWRFRPPXQLFDWHZLWKKLVJHQHUDOVWKHHQFUBSWLRQVWHSSHUIRU

PHGEBDFDHVDUFLSKHULVRIWHQLQFRUSRUDWHGDVSDUWRIPRUHFRPSOHAVFKHPHVVXFKDVW

KHYLJHQUHFLSKHUDQGVWLOOKDVPRGHUQDSSOLFDWLRQLQWKHURWVBVWHPDVZLWKDOOVLQJ

OHDOSKDEHWVXEVWLWXWLRQFLSKHUVWKHFDHVDUFLSKHULVHDVLOBEURNHQDQGLQSUDFWLF
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HRIIHUVHVVHQWLDOOBQRFRPPXQLFDWLRQVHFXULWB

The model is trained over the English language, resulting in matrix 𝐴 containing

the digraph frequencies. The HMM is now trained using the following inputs:

∙ The encrypted text as described above

∙ The matrix 𝐴 from the previous training phase

∙ Entities 𝜋 and 𝐵 are initialized with random values using a Pseudo Random

Number Generator.

Note that the matrix 𝐴 is not modified during the training phase. Matrix 𝐵 con-

tains the emission probabilities, and depicts the association between the observation

symbol (Encrypted symbol) and the internal state (English symbol). The decryption

key is computed from matrix 𝐵 after training the model.

We list the parameters for best case of the experiment (using random restarts):

Data Size: 671

HMM iterations: 1400

The resulting decryption key obtained from matrix 𝐵 is:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

||||||||||||||||||||||||||

XY?KBCDEFVHIJFLMNOPZRSTUVW

Success Rate (Key): 0.807692

The encrypted data is decrypted using the decryption key, resulting in the

following text:

INCRYPTOVRKPHYKCKESKRCIPHERKLSOFNOWNKSKCKESKRSCIPHERTHESHIFTCIPHERCKES
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KRSCODEORCKESKRSHIFTISONEOFTHESIMPLESTKNDMOSTWIDELYFNOWNENCRYPTIONTECH

NIZUESITISKTYPEOFSUBSTITUTIONCIPHERINWHICHEKCHLETTERINTHEPLKINTEXTISRE

PLKCEDBYKLETTERSOMEFIXEDNUMBEROFPOSITIONSDOWNTHEKLPHKBETFOREXKMPLEWITH

KSHIFTOFKWOULDBEREPLKCEDBYDBWOULDBECOMEEKNDSOONTHEMETHODISNKMEDKFTERJU

LIUSCKESKRWHOUSEDITTOCOMMUNICKTEWITHHISVENERKLSTHEENCRYPTIONSTEPPERFOR

MEDBYKCKESKRCIPHERISOFTENINCORPORKTEDKSPKRTOFMORECOMPLEXSCHEMESSUCHKST

HEVIVENRECIPHERKNDSTILLHKSMODERNKPPLICKTIONINTHEROTSYSTEMKSWITHKLLSINV

LEKLPHKBETSUBSTITUTIONCIPHERSTHECKESKRCIPHERISEKSILYBROFENKNDINPRKCTIC

EOFFERSESSENTIKLLYNOCOMMUNICKTIONSECURITY

Success Rate (Data): 0.907601

It is evident that the success rate based on the data is higher as compared to

the one based on the key. Increasing the number of iterations of the re-estimation

algorithm, improves the score.

5.2.2 Simple Substitution Cipher

In the generic case of a Simple Substitution cipher, each English alphabet is

associated with only one cipher symbol (one-to-one association). The approach is

similar to the Caesar cipher.

Similar to the previous case, the HMM is initially trained using English language,

resulting in the matrix 𝐴 containing the digraph frequencies. Next, the encryption

key is randomly generated and used to encrypt the given data set.

The HMM is trained using the matrices 𝐴, 𝐵 and 𝜋, where the matrix 𝐴 was

obtained from the previous step. The matrices 𝐵 and 𝜋 are initialized with random
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values, where the seed value is provided to the Programmable Random Number Gen-

erator (PRNG). The matrix 𝐴 is not modified during the training phase, preserving

the digraph frequency statistics for the entire process.

After the training phase, the decryption key is obtained from the matrix 𝐵.

Varying the seed varies the start point. This technique is useful to improve the

decryption process, in case the data set is of limited size.

Multiple experiments were performed for 50, 100 and 200 HMM iterations. For

each set of experiments the data size and the number of random restarts are varied and

the associated accuracy is calculated. Each subsequent subsection will also include

the actual accuracies obtained (in percentage of text correctly deciphered), along with

a line chart Success Rate vs Data Size and a 3-dimensional graph (Surface Plot) for

Success Rate vs Data Size vs Random Restarts.
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5.2.2.1 50 Iterations

This section lists the experiments and the associated result, performed with 50

iterations of HMM re-estimation.

Table 6: Experiment performed on the Brown Corpus [25] for 50 iterations

Restarts Data Size
100 200 300 400 600 800 1000 1200

1 2.9421 3.5056 4.6116 5.3426 12.1128 16.1381 24.006 28.7762
10 12.9864 14.6582 21.8856 29.4231 57.884 67.9847 84.4543 88.4877
100 20.576 27.563 53.1393 59.1042 86.1152 89.389 94.4393 97.9659
1000 23.17 40.87 74.5833 78.1325 91.6517 92.7263 96.786 99.3358
10000 24.3 45.35 87.8333 87.075 93.95 94.825 98.28 99.75
100000 27 50.5 97 94.75 95 95.875 98.7 99.75

Figure 9: Success Rate vs Data Size (50 Iterations)
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Figure 10: Success Rate vs Data Size vs Restarts (50 Iterations)

Figure 11: Success Rate vs Restarts vs Data Size (50 Iterations)
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5.2.2.2 100 Iterations

This section lists the experiments and the associated result, performed with 100

iterations of HMM re-estimation.

Table 7: Experiment performed on the Brown Corpus [25] for 100 iterations

Restarts Data Size
100 200 300 400 600 800 1000 1200

1 2.8597 3.4694 5.0943 6.0071 13.6352 18.1152 25.5932 31.0575
10 12.747 15.3403 23.6893 34.2184 61.8933 72.0557 80.7479 86.4106
100 20.575 31.8775 58.2497 71.216 85.0243 87.6932 90.4134 92.317
1000 23.14 44.37 81.9433 87.345 91.8717 92.0125 94.551 98.6067
10000 24.2 52.45 91.5667 92.625 94.65 94.6125 96.67 99.75
100000 26 63 95 96.75 99.5 96.875 98.7 99.75

Figure 12: Success Rate vs Data Size (100 Iterations)
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Figure 13: Success Rate vs Data Size vs Restarts (100 Iterations)

5.2.2.3 200 Iterations

This section lists the experiments and the associated result, performed with 200

iterations of HMM re-estimation.

Table 8: Experiment performed on the Brown Corpus [25] for 200 iterations

Restarts Data Size
100 200 300 400 600 800 1000 1200

1 2.8019 3.5619 5.2741 6.7028 14.4213 18.6835 28.201 33.2846
10 12.6197 16.2178 24.7003 38.2516 62.9263 71.8961 84.2349 86.8467
100 20.355 34.669 61.7643 77.99 83.3952 84.9175 90.3245 91.8125
1000 23.56 48.21 83.8533 90.5475 89.2917 89.65 94.905 98.07
10000 27 60.1 90.5333 93.575 94.8833 93.1 97.83 99.7417
100000 37 69 94.3333 94.5 99.5 94.375 99.7 99.75
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Figure 14: Success Rate vs Restarts vs Data Size (100 Iterations)

Figure 15: Success Rate vs Data Size (200 Iterations)
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Figure 16: Success Rate vs Data Size vs Restarts (200 Iterations)

Figure 17: Success Rate vs Restarts vs Data Size (200 Iterations)
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5.2.2.4 500 Iterations

This section lists the experiments and the associated result, performed with 200

iterations of HMM re-estimation.

Table 9: Experiment performed on the Brown Corpus [25] for 500 iterations

Restarts Data Size
100 200 300 400 600 800 1000 1200

1 2.8299 3.6747 5.5458 7.5169 15.2426 19.7124 29.1063 35.26
10 12.759 17.2218 26.8621 42.5173 66.1846 72.7052 84.237 86.475
100 20.645 37.9955 69.2907 82.4093 82.7338 84.6935 88.7054 92.395
1000 23.42 53.93 88.18 92.19 85.6933 89.1312 92.972 95.8
10000 25.3 68.75 92 94.35 91.6 92.1625 96.18 98.15
100000 32 74 95 96 95.1667 94.5 98.7 99.75

Figure 18: Success Rate vs Data Size (500 Iterations)

The score does improve with increasing data size, since more information can be

obtained from a larger dataset. Keeping the data size constant, the score improves
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Figure 19: Success Rate vs Data Size vs Restarts (500 Iterations)

with a higher degree by increasing the number of random restarts. Each restart

involves a random start point, which might lead to the global maximum.

5.2.3 Homophonic Substitution Cipher

We perform few more experiments for a simple case of the homophonic substitu-

tion cipher. The entire process of the experiment is similar to the one performed for

the Simple Substitution Cipher. The only difference is the process for encrypting the

plain text during the initial part of the experiment. We assume 26 plain text symbols

and 29 ciphertext symbols, which implies that atleast one plain text symbol can be

substituted with one or more ciphertext symbol.
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Figure 20: Success Rate vs Restarts vs Data Size (500 Iterations)

5.2.3.1 100 Iterations

This section lists the experiments and the associated result, performed with 100

iterations of HMM re-estimation.

Table 10: Experiment performed on the Brown Corpus [25] for 100 iterations (Ho-
mophonic substitution cipher)

Restarts Data Size
100 200 300 400 600 800 1000 1200

1 4.6078 4.0925 3.957 5.2821 15.0108 16.3368 24.6675 30.5536
10 13.7166 15.7832 19.7143 30.8389 69.1877 67.65 80.1744 86.3479
100 20.004 28.093 49.382 67.6798 92.452 86.4894 90.0111 93.6927
1000 23.78 43.62 68.8367 87.8625 94.795 91.5588 94.082 97.64
10000 26.5 53.95 82.2 90.95 97.3333 94.9625 96.68 99.4083
100000 31 62 92.3333 91.75 99 97.5 99.5 99.75
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Figure 21: Success Rate vs Data Size (100 Iterations)

Figure 22: Success Rate vs Data Size vs Restarts (100 Iterations)
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Figure 23: Success Rate vs Restarts vs Data Size (100 Iterations)

5.2.4 Real World Case

In an actual scenario, only the ciphertext is available and we assume the values

for N and M i.e. the number of plaintext and ciphertext symbols. There would be no

actual plaintext available to evaluate this technique, or in other words calculate the

accuracy. One interesting parameter to consider is the probability 𝑃 (𝒪|𝜆) once the

model has been trained.

We perform few experiments for a fixed data size and HMM iterations over a ran-

dom selection of text encrypted using Simple Substitution cipher. This experiments

is performed for 1000 random restarts. Then we analyze the relationship between

the probability 𝑃 (𝒪|𝜆) and the Success Rate to identify the trend between the two

parameters. Remaining results can be found in Section A.2 of the Appendix.
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Figure 24: Success Rate vs Probability (600 Characters, 200 Iterations)

It is evident from the scatter plot and the trend line that there is a linear re-

lationship between the Success Rate and probability 𝑃 (𝒪|𝜆), which might help to

choose the model that would yield the highest accuracy.

5.3 Baum-Welch Algorithm (GPU)

In this section we compare the results obtained from GPU version with CPU

version of Baum-Welch algorithm.

5.3.1 Performance Analysis (GPU vs CPU)

The GPU version of the program involves lots of memory transfers between the

CPU and the GPU. The performance degrades for lower number of iterations, while it

improves for a higher number of iterations and length of observation sequence. This

is evident from the fact that the computation is distributed among several processors
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of the GPU, and noticeable for large computations.

We performed basic performance tests for the CPU and GPU version of the

program and compute the execution ratio. The dataset used is “Brown Corpus” [25],

with varying size of ciphertext and varying HMM iterations.

Execution Ratio =
Time taken on GPU
Time taken on CPU

Figure 25: Execution Ratio vs Data Size (100 vs 1000 Iterations)

Figure 25 compares the Execution Ratio against Data Size for the Baum-Welch

algorithm. There is a clear distinction between the Trend Lines (Linear) for each fig-

ure, and we conclude that the performance improves for a larger input and iterations.

Figure A.29 compares the Execution Ratio against Data Size for multiple HMM

iterations. The ratio drops for a higher number of HMM iterations, depicting that

the processing is distributed among multiple thread of the GPU. Section A.3 lists

additional results.

57



5.4 Challenges

The concept of Hidden Markov Models with random restarts proves to be very

efficient in case of decipherment problems, even in cases where the ciphertext avail-

able is of limited size. The seed for the Pseudo Random Number Generator was

chosen randomly using several sources of randomness or entropy, a good example

would be the System Time. Increasing the number of random restarts, significantly

improves the accuracy where compared with the results by increasing the HMM iter-

ations. This experiment in itself is computationally intensive, and we try to perform

this experiment on a Graphics Processing Unit. To improve efficiency of the GPU

experiment, the implementation was optimized to efficiently distribute the processing

among multiple processors (or threads) within the GPU.
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CHAPTER 6

Conclusion

In case of the Jakobsen’s Fast Attack, the accuracy improves with increasing

data size. With limited data available, the accuracy is very low due to insufficiency

of language statistics for the input ciphertext. With increasing data size, the digraph

statistics is closer to the English language statistics.

We performed several experiments for HMM with random restarts, by extracting

and encrypting random sections of the “Brown Corpus” [25]. Each set of experiments

deals with a specific value for HMM iterations and varying data size and random

restarts. The results obtained from these experiments are impressive and the accuracy

improves significantly for increasing random restarts. This process is computationally

intensive, and we implemented the solution on a NVIDIA GPU. This experimental

setup is slower when compared with the single threaded CPU version, limited by the

GPU hardware’s kernel allocation and the availability of resources. To conclude, this

technique is useful even for a limited amount of ciphertext.
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CHAPTER 7

Enhancements and Future Work

The existing experiment for Hidden Markov Models is successful for Simple Sub-

stitution cipher, and should be extended to Homophonic Substitution ciphers like the

Purple cipher [8].

The experiment using Hidden Markov Models with random restarts is compu-

tationally intensive, and needs to be enhanced for faster execution. The existing

solution on the GPU should allow the GPU to initialize the matrices of the HMM.

The cuRAND [18] library (implemented on CUDA) can be used to generate random

seeds and initialize the matrices of HMM with random values. Multiple instances

of the Baum-Welch algorithm can be executed on the GPU, to simulate the concept

of HMM with random restarts. This technique would be very efficient, as the GPU

consists of thousands of cores and can operate in SIMD (Single Instruction Multiple

Data) mode.

Finally, we can also utilize the Hadoop ecosystem [3] to spawn multiple instances

of the Hidden Markov Model, each instance seeds a separate Pseudo Random Num-

ber Generator with a random value, simulating the concept of HMM with random

restarts. The underlying architecture would consist of several nodes to support a

higher number of HMM instances executing simultaneously. Each phase of the HMM

can be reimplemented using Map-Reduce [3] technique for faster execution.
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APPENDIX

Additional Experiment Results

A.1 Digraph frequencies

Table A.11: Digram statistics for 40,000 words of English Language [7]

Digraph Count Frequency
th 5532 1.52
he 4657 1.28
in 3429 0.94
er 3420 0.94
an 3005 0.82
re 2465 0.68
nd 2281 0.63
at 2155 0.59
on 2086 0.57
nt 2058 0.56
ha 2040 0.56
es 2033 0.56
st 2009 0.55
en 2005 0.55
ed 1942 0.53
to 1904 0.52
it 1822 0.5
ou 1820 0.5
ea 1720 0.47
hi 1690 0.46
is 1660 0.46
or 1556 0.43
ti 1231 0.34
as 1211 0.33
te 985 0.27
et 704 0.19
ng 668 0.18
of 569 0.16
al 341 0.09
de 332 0.09
se 300 0.08
le 298 0.08
sa 215 0.06
si 186 0.05
ar 157 0.04
ve 148 0.04
ra 137 0.04
ld 64 0.02
ur 60 0.02
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A.2 Success Rate vs Model Probability

Figure A.26: Success Rate vs Probability (100 Characters, 100 Iterations)

Figure A.27: Success Rate vs Probability (400 Characters, 100 Iterations)
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Figure A.28: Success Rate vs Probability (400 Characters, 200 Iterations)

A.3 Additional results (GPU vs CPU)

Figure A.29: Execution Ratio vs Data Size (Overall)
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Figure A.30: Execution Ratio vs Data Size (100 vs 200 Iterations)

Figure A.31: Execution Ratio vs Data Size (100 vs 300 Iterations)
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Figure A.32: Execution Ratio vs Data Size (100 vs 400 Iterations)

Figure A.33: Execution Ratio vs Data Size (100 vs 500 Iterations)
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Figure A.34: Execution Ratio vs Data Size (100 vs 600 Iterations)

Figure A.35: Execution Ratio vs Data Size (100 vs 700 Iterations)
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Figure A.36: Execution Ratio vs Data Size (100 vs 800 Iterations)

Figure A.37: Execution Ratio vs Data Size (100 vs 900 Iterations)
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