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ABSTRACT

Taxicab is the most common type of on-demand transportation service in the city
because its dispatching system offers better services in terms of shorter wait time.
However, the shorter wait time and travel time for multiple passengers and destinations
are very considerable. There are recent companies implemented the real-time ridesharing
model that expects to reduce the riding cost when passengers are willing to share their
rides with the others. This model does not solve the shorter wait time and travel time
when there are multiple passengers and destinations. This paper investigates how the
ridesharing can be improved by using the genetic algorithm that gives the optimal
solution in terms of passengers wait time and routes duration among passengers’ start and
end locations. The simulator uses the Google digital maps and direction services that
allow the simulator to fetch the real-time data based on the current traffic conditions such
as accident, peak hours, and weather. The simulation results that are sub-optimal routes
are computed using the advanced genetic algorithm and real-time data availability.
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1. Project Description

1.1 Introduction and Problem Statement

Uber is one of the most popular on-demand ridesharing car services in the United
States and expanding internationally to at least 45 countries. It dominates the entire
transportation network marketplace because many passengers realized the benefits of the
service, such as conveniently using their mobile phone application to request the service
without the need to carry any cash or provide tips at the end of ride. The Uber services
provide an estimate of the cost on-the-fly, allows rating the driver, and having payment
transaction via emails. The ridesharing service also provides an Online Dispatch System
(ODS) that uses communication technologies and geo-location services, such as Global
Positioning System (GPS) and digital maps. When a passenger requests for a ride, the
system collects passenger’s location and finds matching drivers within that location. ODS
simply computes the distance between passengers and drivers, and then it shows the
passengers the closest proximity of available drivers on the map. This concept may not be
ideal for many cars, passengers and destinations in terms of minimizing the passenger
wait time and travel time.

In order to optimize process, the ODS first needs software algorithms and data
structures to define various scheduling and dispatching policies, such as First-In-First-
Out (FIFO) known as a queue, Last-In-First-Out (LIFO) also known as a stack,
processor sharing, priority, shortest service first, preemptive shortest service first, and
Shortest Remaining Time First (SRTF) that can be used when passengers request a ride
and drivers provide the service. Secondly, the ODS needs to define model constraints and
objectives. The two types of objectives to be considered are: (1) reducing passenger’s
wait time and (2) travel time. The “cost” function will be used to optimize the scheduling

and dispatching algorithms, which can be very complex and interesting.
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1.2 Project Goal
The objective of this project is to minimize passengers wait time and travel time using
an advanced Genetic Algorithm with Constraints.

Online - compute duration
from passenger to

request a ride Schedule Al
* Sk - find the shortest
Dispatch

duration of available
System e

dispatch a car

Figure 1: Online Schedule and Dispatch System

1.3 Real-Time Ridesharing Schedule And Dispatch Problem

The first scenario (scenario 1a), a passenger requests a ride, and multiple drivers are
nearby. It’s not problematic to locate the closest driver to the passenger. Because the
ODS detects passenger and drivers’ locations, it can measure the distance or travel time
from the passenger to every nearby driver using Google direction services. If there are 5

nearby drivers, then OSD performs 5 computations. We can solve this scenario using
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Another scenario (scenario 1b), a passenger requests a ride but multiple drivers are

going to different directions. This scenario is more complicated than the previous one

because ODS cannot quickly measure the travel time from the passenger to the driver

when the driver is moving. For instance, the worst case is that five drivers are delivering

5 passengers to 5 different destinations when a new passenger requests a ride. The task is

to predict which driver completes his/her route before heading to pickup the new

passenger in the shortest duration. The ODS can solve this case in two steps. First,

calculating the travel time from the new passenger to 5 driver’s destinations that are 5

computations. Second, calculating the travel time from 5 driver’s sources to 5 driver’s

destinations that are also 5 computations. The total cost for this case is 10 computations.

The Brute Force algorithm can be used for this scenario as well.

Santa Clara
Convention Center 5

ﬁa '

Wa's

Baysho,ekw Great A Xfica \’l\e‘,;w.’
. D5 o

- RaYShO
Ot By TRy,

Kifer Rd

&g, Kiter pg

— (¢ :
(82) X 4 Passeng
San Iara )

poliinger Rd Fruitdale &

X 3 B \1-
Vv e 07 &
WEST VALL X D1 E\ Yy
WEST SAN JOSE o _\\Q
1 @

Figure 4: Multiple cars with multiple directions, and

Miller Ave

1eIpUaN

one passenger

Santa Clara
Convention Center (3

Sl ., —San Jos:
erp Sﬁ z CENTRAL

1 Fruitdale
@)

o
L]

Figure 5: Multiple cars with multiple directions, and

one passenger with simulated routes

10



Vu Tran

The second scenario (scenario 2), when multiple passengers are willing to share one
car to a destination, they can split the rate. Realistically, passengers share a ride to the
airport when the wait time and travel time are important due to the flight’s schedule. For
instance, 4 passengers are going to the same airport. The ODS locates a driver that is near
to 4 passengers. The task is to provide the driver the optimal routes in terms of the
passenger wait time and travel time. The ODS has to decide which passenger is pickup
first and so on. The first passenger requests a ride is the first one to be picked up may be
is not an ideal solution (FCFS). If there are 4 passengers, then the distance or duration of
24 possible routes will be computed. The number of routes gets increased when the car
has more capacities. If a van has 7 seats, it can hold 7 passengers. Hence, 5040 possible
routes are measured. To solve the problem with 4 passengers, Brute Force algorithms can
quickly find the best optimal route of 24 possible routes. To solve this problem with 7
passengers, besides Brute Force algorithm, Nearby Neighbor algorithm (NNA) can be
applied. NNA may not give the best optimal route, but its computation is inexpensive as
needing only 1 computation, but the data structure is required. This problem can be also
solved by Standard Genetic Algorithm.
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The third scenario (scenario 3), multiple passengers are sharing one car to multiple
destinations. This problem requires 3 constraints. First, driver must visit all passengers
P1, P2, P3, P4 (Pi, 1 <=i <=n), but only once. Second, driver must visit all destinations
D1, D2, D3, D4 (Di, 1 <=1 <= n), but only once. Third, driver cannot visit Dj before
visiting Pj, (1 <=j <=n. There are 40320 possible routes with 4 passengers and 4
destinations that are permuted, but 2520 possible routes satisfy the third constraint. This
scenario is more complicated if it deals with multiple cars when there are multiple
passengers and multiple destinations (scenario 4). For instance, 7 passengers with 7
destinations require 2 cars. A car can serve up to 4 passengers. In this case, car 1 can
serve 4 passengers and car 2 can serve 3 passengers. Furthermore, there are many
possible routes for 2 cars with 7 passengers and 7 destinations. Because this problem
involves with a lot of computations and arrangements, it is complicated and complex
when using Brute Force or Nearby Neighbor algorithms. However, Genetic algorithm is
an ideal solution to deal with a problem of great complexity that will be explained in the

next section.
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2. Project Design

2.1 Simulation Design

First, we need a lot of data point to simulate the drivers whether are driving or
idling in certain locations and passengers are waiting for drivers to pickup. Passengers
need to provide their locations whether they can enter or share their current location using
GPS or enabling Web Share Location. Based o the passenger’s location, the system will
randomly generate the drivers’ locations with given amount of drivers we want to
simulate. System utilizes Google Maps API to produce the longitude and latitude as
coordinates of passengers and drivers. The system then uses these coordinates to visually
draw locations on Google Maps.

Second, system needs to capture the en-routes of drivers using Google Direction
Service. This service will give us real-time data such as distance, duration and each step
of drivers taking from point A to point B. The algorithms will use this data to analyze and
formulate the model.

Third, we will use the Amazon Cloud Web Service EC2 to host the system and
database. We will also use NoSQL database (MongoDB) to store the directions and
analyzed data. Due to number of requests that are allowed by Google Services, the

database becomes very useful in terms of improving the smoothness of simulation.

13
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2.2 Modeling Ridesharing Schedule And Dispatch Algorithms Design
Brute Force search algorithm for the scenarios 1a, 1b, and 2 performs as follow:
1. Make a list of all possible routes
2. Calculate the duration of each route by adding up the duration of its edges

3. Choose the route with the smallest total duration

Nearest Neighbor search algorithm for the scenario 2 performs as follow:
1. Stand on an arbitrary vertex as current vertex.

2. Find out the shortest duration connecting current vertex and an unvisited vertex

V.
Set current vertex to V.
Mark V as visited.

o g ~ w

Go to step 2.

Cost =

If all the vertices in domain are visited, then terminate.

1

d(C, Pr)+ X, d(P, Piyq) +d(P, D)

Notation:

d: Duration from the current coordinate to the next coordinate

C: Car

D: Destination

Pt The first Passenger in the vehicle’s route, where 1 <=f <=n

Pi: The last Passenger in the vehicle’s route, where 1 <=1 <=n

Pi: Passenger, where 1 <= i <=n
n: Number of passengers

Comparison

Brute-Force Algorithm

Nearest-Neighbor Algorithm

e Optimal (guaranteed to find the
shortest duration)

o Inefficient (long time)

e Non-optimal (not always find the
shortest duration)

e Efficient (quick and easy)

14
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Standard Genetic Algorithm for scenario 2 performs as follow:

1. [Start] Generate random population of n chromosomes (suitable solutions for the
problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome X in the population

3. [New population] Create a new population by repeating following steps until the
new population is complete

a. [Selection] Select two parent chromosomes from a population according to
their fitness (the better fitness, the bigger chance to be selected)

b. [Crossover] With a crossover probability cross over the parents to form a
new offspring (children). If no crossover was performed, offspring is an exact
copy of parents.

c. [Mutation] With a mutation probability mutate new offspring at each locus
(position in chromosome).

d. [Accepting] Place new offspring in a new population

4. [Replace] Use new generated population for a further run of algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in current
population

6. [Loop] Go to step 2

15
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Evaluatlon

Seleo'uon

Crossover

}

Termination

Condition?

2 £ZB

Figure 10: Standard Genetic Algorithm Process

Genetic algorithm with constraints for scenario 3 performs as follow:

Constraints:

1. Driver must visit all passengers P1, P2, P3, P4 (Pi, 1 <=i<=n), but only once

2. Driver must visit all destinations D1, D2, D3, D4 (Di, 1 <=i <=n), but only once

3. Driver cannot visit Dj before visiting Pj, (1 <= j <=n)

Algorithm
1. [Start]

a.
b.
C.
d.

Generate random population of n passengers and random of n destinations.

Combine population of n passengers with population of n destinations

Compute population of 2n passengers and destinations named as routes

Organize routes using multiple points crossover algorithm (algorithm 1d)

that meet above constraints.

2. [Fitness] Evaluate the fitness f(x) function of each route x in the population

3. [New population] Create a new population by repeating following steps until the

new population is complete

4. [Selection] Select two parent routes from a population according to their fitness

(the better fitness, the bigger chance to be selected)

5. [Crossover]

16
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a. Apply single point crossover algorithm (algorithm 5a) over the parent
routes to form a new offspring (children) route.
b. Validate the new offspring route with constraints above. If the offspring
route is not valid, then mutate its DNAs in step 6. Otherwise, go to step 7.
[Mutation] Change positions in a offspring route that meet constraints above
[Accepting] Place new offspring route in a new population

[Replace] Use new generated population for a further run of algorithm

© ©® N o

[Test] If the end condition is satisfied, stop, and return the best solution in current
population
10. [Loop] Go to step 2

Fitness Function (scenario 3: one car, many passengers, and many destinations)

1
d(C' Pf) + 1221d(Gir Gi+1)

fitnesse qerrime =

Notation

d: Duration from current coordinate to next coordinate

C: Car

Pt The first Passenger in the vehicle’s route, where 1 <=f<=n
Pi:Passengeri, wherel<=i <=n

Di: Destination i, where 1 <=i<=m

{Pi, Di} € Gi, where 1 <=i<=2n

n: Number of passengers, where n =m

m: Number of destinations, where m =n

17
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Fitness Function (scenario 4b: many cars, many passengers, and many destinations)

a. Travel Time
1

fitnessiaverrime = = _ —
z d (Cj' }}1) + 21221 d(GiJ' Gij+1
Notation
d: Duration from current coordinate to next coordinate
C: Car,where 1 <=j <=k
Ps: The first Passenger in the vehicle’s route, where 1 <=f <=n
Pi:Passengeri, wherel<=i <=n
Di: Destination i, where 1 <=i<=m
{Pi, Di} € Gi, where 1 <=i<=2n
k: Number of cars
n: Number of passengers, where n =m

m: Number of destinations, where m=n

b. Average Wait Time

n
*WaitTime;

fltnessangaitTime =

Notation

WaitTime: Wait Time of a passenger from Car to Piand/or Di, where 1 <=i<=n,
but do not include durations within the passenger’s destination and unvisited
passengers and their destinations

n: Number of passengers

18
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Multiple Points Crossover Algorithm in 1d

Genel | P2 P3 P1 P4 l<=i<=n

Gene2 | D3 D2 D4 D1 l<=i<=n

Parent | P2 P3 D3 D2 P1 P4 D4 D1 1<=i<=2n

Algorithm

1.

2
3.
4

© o N o O

Set the index 1to O

Process the first D in Gene 2

Find the corresponding P in Gene 1.

If the index of corresponding P less than I, then insert current D after the previous
D in Gene 2 and mark current D as visited. Go to step 8

Mark current D as visited

Insert current D after the corresponding P in Gene 1

Set I to index of P

If all Ds in Gene 2 are visited, then terminate.

Process the next D in Gene 2, go to step 3

Single point crossover algorithm in 5a

Parent 1 P2 P3 D3 D2 P1 P4 D4 D1

Parent 2 P2 D2 | P3 P1 P4 D3 | D1 D4

Parent 2 X X X P1 P4 | X D1 D4

Offspring | P2 P3 D3 D2 P1 | P4 D1 D4

Algorithm

1.
2
3.
4. Add DNAs to the offspring to form a complete gene.

Copy the first half gene of Parent 1 and form a new offspring
Mark all DNAs in Parent 2 that are matching with DNAs in the offspring
Copy all unmarked DNAs in Parent 2 and keep their orders.

19



Mutation Operation

Gene P2 D3 D2 P3 P1 P4 D1 D4
New Gene | P2 P3 D2 D3 P1 P4 D1 D4
Algorithm

1. Find D in the gene and record its index

2. Find corresponding P in the gene

Vu Tran

3. [Test] If the index of corresponding P is greater than index of D, then swap their

position.

4. [Test] If visit all D in the gene, then terminate
5. [Loop] Gotostep 1

3. Project Implementation

3.1 Server Setup with Amazon Cloud Infrastructure EC2

To setup an Amazon Elastic Compute Cloud (EC2), first we need to create

Amazon Web Service (AWS) account by following step by step as shown in figure

below.

amazon

web services

Sign In or Create an AWS Account
You may sign in using your existing Amazon.com account
or you can create a new account by selecting "I am a new

user.”

My e-mail address is:

[-] I am a new user.

I am a returning user
and my password is:

—

L Sign in using our secure server 9/,1

Figure 11: Creating AWS account
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After signing into AWS console, we see a lot of services. We will only need EC2

to host our application.

Services VU TRAN ~

Amazon Web Services

Compute
EC2

Virtual Servers in the Cloud

Storage & Content
Delivery
s3

Scalable Storage in the
Cloud

‘ Storage Gateway

Integrates On-Premises IT
Environments with Cloud
Storage

CloudFront
Global Content Delivery
Network

‘ Glacier

Archive Storage in the Cloud
oltn

e

Database
RDS

Managed Relational
Database Service

. DynamoDB
Predictable and Scalable
NoSQL Data Store

Next, choose EC2 service to begin launching an instance

Administration & Security Application Services

il Directory Service

“w* Managed Directories in the
Cloud

g Identity & Access

Management
Access Control and Key
Management

@ Trusted Advisor
AWS Cloud Optimization
Expert

CloudTrail
User Activity and Change
Tracking

£ Config PREVEW

¥ Resource Configurations
and Inventory

CloudWatch
Resource and Application
Meonitoring

Deployment &
Management

Elastic Beanstalk
AWS Application Container

e OpsWorks

E- sQs
Message Queue Service

ml SWF
Workflow Service for
Coordinating Application
Components

}

AppStream
=~ Low Latency Application
Streaming

Elastic Transcoder
Wy Easy-to-use Scalable Media
Transcoding

q\, SES

Email Sending Service

b

:~I CloudSearch

Managed Search Service

Mobile Services
r_- Cognito
J User Identity and App Data
Synchronization

== Mobile Analytics
Understand App Usage Data
at Scale

aim SNS

Figure 12: Amazon Web Services

Additional Resources

Getting Started

See our documentation
to get started and learn
more about how to use
our services.

AWS Console
Mobile App

View your resources on
the go with our AWS
Console mobile app,
available from Amazon
Appstore, Google Play,
or iTunes.

AWS Marketplace
Find and buy software,
launch with 1-Click and
pay by the hour.

Service Health

& Al services
operating normally.
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Services ~ VU TRAN ~

| EC2 Dashboard
Events
Tags
Reports
Limits

INSTAMNCES

Instances
Spot Reguests

Reserved Instances
=| IMAGES

AMIs

Bundie Tasks

=| ELASTIC BLOCK STORE
Volumes

Snapshots

=] NETWORK & SEGURITY
Security Groups
Elastic IPs

Placement Groups

Resources

You are using the following Amazon EC2 resources in the US
West (Oregon) region:

0 Elastic IPs

0 Snapshots

0 Load Balancers

1 Security Group

0 Running Instances
0 Volumes
0 Key Pairs
0 Placement Groups

(‘I

Q Easily deploy Ruby, PHP, Java, .NET, Python, Node.js
& Docker applications with Elastic Beanstalk.

Hide

Create Instance

To start using Amazon EC2 you will want to launch a virtual
server, known as an Amazon EC2 instance.

Launch Instance

Mote: Your instances will launch in the US West (Oregon) region

(™ Scheduled Events

US West (Oregon):

Service Health
Service Status:

Figure 13: Launching EC2 Instance

Step 1: Choose Ubuntu Server

1. Choose AMI

2. Choose Instance Type

3. Configure Instance 4, Add Storage

Step 1: Choose an Amazon Machine Image (AMI)

SuSE Linux Enterprise Server 12 (HVM), EBS
General Purpose (SSD) Volume Type. Public

(‘X

5. Tag Instance

Account
Attributes

Supported Platforms

Default VPC
vpc-ar588bc2

Additional
Information

Getting Started Guide
Documentation

All EC2 Resources
Forums

Pricing

Contact Us

AWS
Marketplace

Find free software
trial products in the
AWS Marketplace
from the EC2 Launch

Cancel and Exit

Cloud, Advanced Systems Management, Web

and Scripting, and Legacy modules enabled.

Root device type: ebs Virtualization type: hvm

@ Ubuntu Server 14.04 LTS (HVM), SSD

Ubuntu Volume Type - ami-3d50120d

Ubuntu Server 14.04 LTS (HVM), EBS General
Purpose (SSD) Violume Type. Support available

from Canonical (http://www.ubuntu.com/cloud

/services).

Root device type: ebs Virtualization type: hvm

Figure 14: Amazon Machine Image, Ubuntu Server

64-bit
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Step 2: Choose an Instance Type

Because our application requires a lot of computations, we need a high
performance instance such as: m3.xlarge (13 ECUs, 4 vCPUs, 2.5 GHz, Intel Xeon E5-
2670v2, 15 GiB memory, 2 x 40 GiB Storage Capacity)

Family < e - wepus () - Momoy(aim) - "o ?‘;’f""e - E:vsa‘i:z:::amfz;f’ | e )
General purpose 1 1 EBS only - Low to Moderate
General purpose t2.small 1 2 EBS only - Low to Moderate
General purpose t2.medium 2 4 EBS only - Low to Moderate
General purpose m3.medium 1 375 1x4(SSD) - Moderate
General purpose m3.large 2 75 1x32(SSD) - Moderate
a General purpose m3.xlarge 4 15 2x40(SSD) Yes High

Figure 15: EC2 Instance Type

Step 3: Configure Instance Details

We use default configurations and finally launch the instance

Config.urs the inslance?o suit your requirements. You can launch multiple instances from the same AMI, request Spot Instances to take advantage of the lower
pricing, assign an access management role to the instance, and more.

Number of instances (i) 1
Purchasing option (i) ~Request Spot Instances
Network (i) vpe-a7588be2 (172.31.0.0/16) (default) C  Create new VPC
Subnet . No preference (default subnet in any Availability Zor Create new subnet
Auto-assign Public IP (i) Use subnet setting (Enable)
1AM role (i None
Shutdown behavior (j Stop
Enable termination protection (i) ~ Protect against accidental termination
Monitoring (i) "~ Enable CloudWatch detailed monitoring
Additional charges apply.
EBS-optimized instance (i) ILaunch as EBS-optimized instance
Additional charges apply.
Tenancy (j Shared tenancy (multi-tenant hardware)

Additional charges will apply for dedicated tenancy.

Cancel Previous Review and Launch Next: Add Storage

Figure 16: EC2 Configuration
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3.2 Simulation Implementation

a. Randomizing Passengers and Drivers Coordinates
In order to calculate the random coordinates, we will use the geometry and math
functions such as sin, cos, asin, atan2 in the snippet code below.

var lat = deg(asin(sinstartlat * cos(dist) + cosstartlat * sin(dist) * cos(Cbrg[@])));

var lon = deg(normalizelongitude(startlon * 1 + atanZ(sin(brg[@]) * sin(dist) *
cosstartlat, cos(dist) - sinstartlat * sin(lat))));

Generating Random Coordinates

Passenger _| Driver
Location Using inputs: " | Locations
Passenger Location
Max Distance

Number of Locations

o =

=
=

=

Figure 17: Driver's Locations based on the Passenger Location
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b. Randomizing Passenger’s Destination and Driver’s Destinations

For each driver’s start coordinate, generating the driver’s end coordinate with the

direction that driver is heading to.

=

&

\1

=

)

(

Figure 18: Many Cars and One Passenger

Vu Tran
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Capacity: 2

=

/ 1 A
)
P1
B
P4
Shortest Passenger Waiting Time 1
D3, P3, P4, A P3 Q
D3
Figure 19: Many Cars, Many Passengers and One Destination
c. Integrating Google Direction Service
Start .
Longitude — I . dlstar_*ica
and Latitude e duration
—_——» e sleps
End e start address
Longitude 41_ I e end_address
and Latitude

Google Direction Service
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3.3 Genetic Algorithm Implementation

We attempt to solve a problem with 2 cars, 4 passengers, and 4 destinations

Initialize
P and D

Evaluation

Initialize
Proceed GA 2 Car >
No

Population * Population

Selection
Condition?

Yes
P: Passenger

Yes g
i Slel[¥ilely Solution BB Termination
D: Destination Gendition

Figure 20: Advanced Genetic Algorithm Process with Constraints

Crossover

Mutation

4
{444

GA 1 Process
a. Initialize Passenger and Destination Population

4 Passengers 4 Destinations

4! = 24 cases 4! = 24 cases

P1 P2 P3 | P4 D1 D2 D3 | D4
P1,P2, ...Pn D1, D2, ... Dn

First, we randomly generate 5 passenger’s genes (P genes), and 5 destination’s
genes (D genes). Second, we combine P genes with D genes to make 25 genes.
Third, we re-arrange among P genes and D genes. So, they satisfy 3 constraints

that we defined in the design section.
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P’s genes D’s genes Combined genes Initial population
—_—— H

P2,P3,P1,P4 \ D3,02,04,D1 P2,P3,P1,P4,D3,02D4,D1 | R P2,P3,03,02,P1,P4,04,D1
5

— \ D3,02,01,04 P2,P3,P1,P4, D3,02,01,04 | s |P2P3,D3,D2,P1,D1,P4,D4
o

P1,P3,P2,P4 D2,04,01,D3 E P2.,P3,P1,P4, D2,04,D1,D3 \é P2,02,P3,P1,P4,D4,D1,03
R

P1,P4,P3,P2 D3,01,02,04 P2,P3,P1,P4,D3D1D2,04 | _ | P2.P3.03,P1.D1,P4D2,D4
[+]

P2,P1,P4,P3 D3,04,01,D2 P2,P3,P1,P4,D3,04,D1,02 | § |P2P3,D3,P1,P4D4,D1,D2
s
R
A
1

25 cases ¥ 25 cases

5

Figure 21: Genes Preparation

b. Proceed GA 2 Processes
For each combined passengers and destinations gene
(P1,P3,D1,D3,P2,D2,P4,D4), proceed the second GA process.
1. Initialize Car Population

Initial Population P1 |P2 |P3 |P4 |CAR1 CAR2
1,121 1 1 2 1 P1,P2,P4 P3
2,1,2,1 2 1 2 1 P2,P4 P1,P3
2,2,1,1 2 2 1 1 P3,P4 P1,P2
2. Evaluation
m
fitness = ), :
itness =
= d(Cj, Pr)+ X2 d(E;, Eiyy)
Example
P1,P3,D1,D3,P2,D2,P4,D4
CAR1 CAR?2
P1,P2,P4 P3
C1,P1,D1,P2,D2,P4,D4 | C2,P3,D3

CAR1 = d(C1,P1) + d(P1,D1) + d(D1,P2) + d(P2,D2) + d(D2,P4) + d(P4,D4)
CAR2 = d(C2,P3) + d(P3,D3)

, 1

fitness =~ R1+ CARZ
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3. Selection
Select two genes from the population in which the shorter durations have

more chances to get selected. For instance:
PARENT 1: 12,11
PARENT 2: 2,112

4. Crossover
Apply One Point Crossover to PARENT 1
Child: 1,2,1,2

5. Mutation
Because this GA 2 has a small population, do not need to apply mutation.

6. Termination: If No, go to step 2.
Selection
Select two genes from the population in which the shorter durations have more

chances to get selected. For instance:

Parent 1: P1,P3,D1,D3,P2,D2,P4,D4
Parent 2: P1,P3,03,D4,P4,D1,P2,D2

. Crossover

Apply One Point Crossover to PARENT 1
Child: P1,P3,D1,D3,D4,P4,P2,D2

Mutation

[The Child is not valid because D2 and D3 are assigned before P3 and P2. The car
should not visit a destination before visiting a passenger. To fix this, we need to
change the position of the DNA.]*

Child: P1,P3,D1,D3,D4,P4,P2,D2

Mutated CHILD: P1,P3,P2,D3,D4,P4, D1,D2

. Termination: If No, go to step 2b.
g. Solution
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4. Results

Simulation Result for Scenario 1a:

% Reed Ave Muq,qv @
£ L) 2
2 R L z
() % (X - a
= Sant
~ E Fremont Ave El Camino Real
o Garlisie Way ¢ % 2
é §: Bc“\cl\ St "% ‘c:_:
g % g yomt
anwau Way
HonfX}ad Rd Homestead RO
o1 DDA v
wy Unipere, <
i ose,,"kuy é
o \E e X Pruneridg
: 2o
A ; & Vallco Fashln Park SEQ D5 Westfiel
Cupertino " Stevens Creek Blvd - mlcvcus Creek Blvd s
y i D1 Santal
5 " =Uani
llanRd | Pacifica Dr 5" &O’Da'd"elo'&anwy——M‘;\
é 5 Bollinger Rd I 4,
i §7 Williams Ad [pal - williams Rd Willla
2 o
A 7 % WEST VALLEY
w Dr ) Ralnbow Dt % g S NESTa oSt &"‘g Payne Ave Gty
Prospect Rd x\""«“m Ave
3 by B3 ﬂ
;"“D o 3 W Campbell Ave
Figure 22: 4 Cars and 1 Passenger
Initial Drivers to Passenger — =
Location Distance Duratl... | Driver
37.33044317 -
1.6 mi 4 mins 5 Direction
121.97452814
a7 3249355 - 1.6 mi & mi 1 Directi
bBm mins n
121.99163056 S
37.36191648 -
2.2 mi 5 mins 3 Direction
121.98862655
37.33937635 -
24 mi 5 mins 4 Direction
122.02871493
37.31161905, - 32 mi 7 mi 2 Directi
£ M mins n
121.98071923 rectio
Driver 5 has the shortest duration

Vu Tran
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Simulation Result for Scenario 1b:

Reed Ave o, |
™~ § q'u} | g
2 L @
@ 2 a
4 ;’ :
San
E Fremont Ave £l Camino Real -
&
Carlisie Way ¢» )
§ on St ; 2
= 8'-(\\ = 3
z G [ v
oiness Way | \
ad Rd !
i ¢ i
wy' n Dero,\?‘}’ <
W é
d e
)

4

Iy fausig N

Aesor (& Vallco Fashion Park Westfie
Cupertino Stevens Creek Blvd
2
3
llanRd  Pacifica Dr s
il
©w
Bollinger Rd

Williams Rd Willlams Rd Wwillli

pyNgeZUY QS
S Blaney Ave

WEST VALLEY

&

‘ S \i
w Dr Rainbow Or = & @ Payne Ave
e @
Pr ilton A
ospect Rd Q@“.uon wve
2 . B3
"}é = W Campbell Ave =
Figure 23: 4 Cars, 4 Destinations and One Passenger
Duration . New Duration Duration D2P
D Distance (PWT1) Speed Variance % New Speed (PWT1) (PWT2) Total PWT
1 421 mi 975 mins 2591 milhr 0 % 25.91 mi/hr §9.75
2 369 m 928 mins 2384 mihr 0 % 23.84 mi/hr §9.28
3 624 mi 1253 mins 29.85 mithr 0 % 29.86 mi/hr
4 207 mi 56 mins 2219 milhr 0 % 22,19 mi/hr § 56
5§ 35 mi 7.37 mins 2848 milhr 0 % 28.48 mithr | 7.37

Driver 2 has the shortest duration
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Simulation Result for Scenario 2:

=
E ArguesAve ‘

e

Scoty Bivg

Ay 51aMm(

entral Expy [e8 Centr: £ Y § 3 iz
g § gﬁ E2 2 Space Park Dr BaYSh%
s Z (3}
KiferBd- £ =2 g —
.; IP_L-II 2 (=) Owens Corning (&
» = Q ‘ oy,
] pgate D Agate Dr Ye Walsh Ave
Aster Ave 1 X¥] a1
El = \“"%,__,q ﬂ S o
s, > > -
L = e o 3 Pl 3 i Martin Ave g
g 5 %C g S Richard Ave o S
ERREE & g : 2 4
! 3 Tl °St A s = S s %, .
z E, o lél o g Memorex Dr f:!: 44‘?) In::r'r‘leatl' Ahivort
£ | $
F Z & o
i L 7 C»E $ Cabrto e S\
- §< W‘Q\e‘ 5 *‘a' bu", ) %
z = lil"““ bve Warburton Ave — [gq]  Warburton Ave ” Ave 3 gQ‘"d Qy‘"b
3. o Warburton Ave w{P3 Qanta Clara ™ = 4.
Figure 24: 1 Car, 5 Passengers and One Destination
Brute-force Search/Exhaustive Search
Find Shortest Duration
Best Route: D,P6,P1,P3,P5P4,PT,P2A |Duration: 33.33 mins
Worst Route: D P2,P6 PT F3 P4 P1 P5A |Duration: 53.02 mins
No. P2P P2P (mins) Route Total (min...
3840 | PE,P1,P3,P5,P4.PT P2 2047 D,PE,P1,P3,P5P4PT P2A 33.33
3856 | P6,P3P1,P5P4,P7 P2 20.93 D,P6,P3,P1,P5P4,P7 P2 A 338
208 P1,P3,P6,P5,P4,PT P2 20.05 D,P1,P3,P6,P5,P4 PT7 P2A 34.12
520 P1,P6,P3,P5,P4,P7,P2 20.22 D,P1,P8,P3,P5,P4,PT,P2ZA 34.28
3136 | P5P3P1,PBP4,P7 P2 20.78 D,P5,P3,P1,P6,P4,PT P2A 344
I ] o 2 3 4 5 > M 6 v ilems per page 1 - 5 of 5040 items o
—MNearest Neighbor Search (NNS)
Find Optimal Duration
Route: D P&,P1,P7 P4 P5P3P2A
Duration: 37.65 (mins)
Genetic Algorithm Search (GAS)
Find Optimal Duration
Route: D,PEP3P5P4PT7P1F2A |Duration: 34.85 mins
Genetic Algorithm Search (GAS)
Find Optimal Duration
Route: D,P6P3,P1,P5P4,P7,P2A |Duration: 33.8 mins
r—Genetic Algorithm Search (GAS)
Find Optimal Duration
Route: D,P5P3P1P6P4P7P2A |Duration: 34.4 mins
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Simulation Result for Scenario 3:

.

!Blyg

"Coﬂcqc Bly,,

9%
%,
<
<
N

-

"By W, L 4

e

Figure 25: 1 Car, 4 Passengers and 4 Destinations

Schedule:

=/ | T,P2,D2,P3,P1,D3,P4,D1,D4
T: Driver/Car

P: Passenger

"\\ D: Destination

2,520 routes satisfy 3 constraints

\
.f for 1 car, 4 passengers, 4

WO g
5, . .
o) destinations problem.
3
3| oI\ NORTH SAN JOSE %
- o4 SN
%- %f'-'; %
% d %
e 7
A.\\\o /:', “@b

Genetic Algorithm Process

Pr. Route Duration Pr. Time
1 T.P2,D2,P3,P1,03,P4D1,.04 35.6 0.28 secs
2 TP1,P3,P2,D2,P4,D3,D1,.04 36 0.395 secs
3 T.P1,P3,P2,02,P4,D3,D1,.04 36 0.367 secs
4 T.P3,P1,P2,D2,P4,D3,D1,04 36.55 0.298 secs
5 TP2P1,P3,D3,P4,D2,D1,.04 357 1.428 secs

Brute Force Process

Rank Route Duration Pr.Time Total Routes

Best T,P2,P1,P3,02,P4,D3D1,04 33.35 1.05 secs 2520 of 40320

Medium T,P3,P1,P2P4D2D1,D4,D3 48.82 1.05 secs 2520 of 40320

Worst T.P3,P4,P1,D1,P2,D03,04,D02 60.62 1.05 secs 2520 of 40320
TO

Duration (mins)
7]
w

Route 1 Route 2 Route 3

O
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Simulation Result for Scenario 4:

Genetic Algorithm Process - Total Travel Time
Type Route Car1 Duration Car2 Duration Pr. Time
1 P2,P3,P1,P4,04,D3,D1,02 37.35m T1P2P3,P1,D3D1,D2 2608m T2P4D4 11.27Tm 601s

Brute Force Process - Total Travel Time

Rank Route Car1 Route Duration Car2 Route Duration Pr. Time Total Routes
Best P4,D4,P2,P1P3,D3,D1,02 3552m T1,P4,04,P2P1,P3,D3D1,02 3552m T2 Om 26.646 s 2520 of 40320
Medium P1,P2,P3,P4D3,04,01,02 4987 m T1,P1,P2,D01,D2 2273 m T2,P3,P4,D3,D4 27T13m 26.646s 2520 of 40320
Worst P1,P4,P2,D2P3,D4 D301 &5867m T1,P3,D3 1072 m T2P1,P4P2D2D4D1 54.95m 26.646s 2520 of 40320
t Tk E ] Bl g 2
2 g & l'Il yiood ¥ B < ;
Ll D = = i o L .
foe %;_ 2 . I||,' 5 west or Ad 220 oo ‘-_'c:‘ The Galleria (&
) We erRd = The Galleria (&) |'I'Iar R 4
= [ g [ &
é’ I s Richmond Ave 3 - ol |
T | | 2 WOODLAKE/ : o
i |AR MEADOW =
WOODLAKES o = 2 BRIAR MEADOW —
! “BRIAR MEADOW . i S — o

I A N - | A\—

15 pudiley

¥
HE

| Beechnut 5t

Figure 26: Car 1, 3 Passengers and 3 Destinations Figure 27: Car 2, 1 Passengers and 1 Destinations

GA for Car 1: T1, P4,D4,P2,P1,P3,D3,D1,D2 | GA for Car 2: T2,P4,D4

Genetic Algorithm Process - Average Passengers Wait Time
Type Route Car1 AvgWT Car2 AvgWT Pr. Time
1 P4,P3,P1,P2D3,D4,D02,D1 8.07m T1,P4D4 528m T2P3,P1,P2D3,02D1 9m 0.711s

Brute Force Process - Average Passengers Wait Time

Rank Route Car1 Route AvgWT Car2 Route AvgWT Pr.Time Total Routes

Best P3,P4,P2P1,D3,04D1,02 754m T1,P4,P2,D4D2 7.9Tm  T2P3,P1,03,D1 712m  11.182s 2520 of 40320
Medium P3,P4,P2,02,03,04,P1,D01 11.44m T1,P2,D2P1,01 1363m T2P3,P4,03,D4 9.26m 11.182s 2520 of 40320
Worst  P1,P4,D1,04,P2,02,P3,03 30.43m T om T2,P1,P4,01,04,P2,D2,P3,03 3043m 11.182s 2520 of 40320

Average Wait Time

GE
BF-B
BF-M

BF-W 130.43

30 40

Time in Minute
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5. Analysis and fine-tuning of planned system

Experiment with 2 Cars, 4 Passengers, 4 Destinations

Optimizing: Travel Time and Average Wait Time

A. Compare the Performance Brute Force Algorithm with Genetic Algorithm

B. Proceed 10 GA processes with 2 configurations to form the initial population
1. Random Initial Passengers and Random Initial Destinations
2. Fixed Initial Passengers and Fixed Initial Destinations

In order to benchmark the algorithm, we need to use a faster server in terms of faster
CPUs and larger memories. For this experiment, we use Amazon Cloud EC2 (m3.xlarge)
with 4 CPUs and 15 GiB memories.

35



Vu Tran

Experiment with 2 Cars, 4 Passengers, 4 Destinations: Travel Time

Genetic Algorithm Process - Total Travel Time

Type Route Total Duration Car 1 Duration Car2 Duration Pr. Time
1 P2,P3,D3,P1,02,P4,01,.04 8087 m T1,P2P1,D02,P4,D1D4 59.28m T2P3D3 21.88m 0327s

Brute Force Process - Total Travel Time

Rank Route Total Duration Car1 Route Duration Car2 Route Duration Pr. Time Total Routes
Best P1,P4,01,P2,04,P3,D3,02 71.12m T1 Om T2P1P4,01P2D4P3 D302 7112m 3.322s 2520 of 40320
Medium P2,P1,P3,D3,P4,04D2,01 88.85m T1,P3,D3,P4,D4 4318 m T2,P2P1,02,01 56.67Tm 3.322s 2520 of 40320
Worst  P4,P3,P2,P1,04,02,01,03 129.72m T1,P4,P3P2,P1,04020103 12972m T2 om 3322s 2520 of 40320

Car 1: P2,P1,02,P4,D1,D4

ASLrIcs ok

Car 2: P3,D3

'loreng’ Florenm={>*ham 5
iver] Driver] "
2 Cudahy
£92nd St £ 920d St South Gate

Tweedy H*

Ay Loyduog

L 120th S\

lowbrook

Figure 28: Car 1, 3 Passengers and 3 Destinations for | Figure 29: Car 2, 1 Passenger and 1 Destination for
Travel Time Travel Time

Total Travel Time

Time in Mins

GA BF-B BF-MBF-W
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Experiment with 2 Cars, 4 Passengers, 4 Destinations: Travel Time

10 GA Processes
x axis: Number of Processes
y axis: Time in Minutes

Vu Tran

Random Initial Passengers & Random Initial Destinations

174.00
129.25
8r.18 80.20
84.50 4 ?E.i_?_c_l___,_________.______f‘m 7717 77.85 73.00 77.32 77.18 78.70
e ————
39.75 4 ‘
-5.00
1 2 3 4 5 6 7T & 9 10
Fixed Initial Passengers & Fixed Initial Destinations
170.00
126.25
B85.32
BO.8T
g2.50 4 77:35 73.90 78.35 74,60 78.38 | 78.37 78.38 | 78.38  80.
38.75 4 ‘
-5.00
1 2 3 4 5 6 il | 8 9 10

37



Vu Tran

Experiment with 2 Cars, 4 Passengers, 4 Destinations: Travel Time

10 GA Generations
x axis: Number of Generations
y axis: Time in Minutes
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Experiment with 2 Cars, 4 Passengers, 4 Destinations: Average Wait Time

Genetic Algorithm Process - Average Passengers Wait Time

Type Route Total AvgWT Car1 AvgWT Car2 AvgWT Pr. Time
1 P4,P2,P3,P1,01,02,D3,D4 12.55m T1,P3,P1,D1,D3 1458m T2P4P20D2D4 1052m 0458s

Brute Force Process - Average Passengers Wait Time

Rank Route Total AvgWT Car1 Route AvgWT Car2 Route AvgWT Pr.Time Total Routes

Best P4,P2D4,P3,P1,02,D1,.D3 1255m T1,P3,P1,01,D3 14.59m T2P4P2D4D2 1052m 3.868s 2520 of 40320
Medium P2,P1,D1,D2,P4,P3,D4D3 2143 m T1,P4,P3,04,D3 23.77Tm T2P2P1D1D2 19.09m 3.868s 2520 of 40320
Worst  P4,P3,04,D3,P2,02,P1,D1 58.9m T1,P4,P3,04,D3,P2,D2P1,D1 588m T2 om 3.868s 2520 of 40320

Car 2: P4,P2,D2,D4
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“loren, X
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Figure 30: Car 1, 2 Passengers and 2 Destinations for | Figure 31: Car 2, 2 Passengers and 2 Destinations
Average Wait Time for Average Wait Time
Total Average Wait Time
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Experiment with 2 Cars, 4 Passengers, 4 Destinations: Average Wait Time

10 GA Processes
x axis: Number of Processes
y axis: Time in Minutes

Vu Tran

Random Initial Passengers & Random Initial Destinations
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Experiment with 2 Cars, 4 Passengers, 4 Destinations: Average Wait Time

10 GA Generations
X axis: Number of Generations
y axis: Time in Minutes

Random Initial Passengers & Random Initial Destinations
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Experiment with 2 Cars, 5 Passengers, 5 Destinations: Travel Time

Within PHP program, we first
attempted to allocate 4GB
memory to process the Brute
Force algorithm for 5
passengers, 5 destinations and
2 cars. Due to this complex
problem, it required a lot of
computations. There are
3,628,800 candidate
solutions. When it reached
4GB memory, the program
was stopped and printed out
the first error.

Next, we attempted to
allocate 8GB memory and the
execution time was 600
seconds (10 minutes). It
required more than 10
minutes to process this
problem. When it reached 10
minutes, the problem was
stopped and printed out the
second error.

Last, we attempted to
allocate 12GB memory and
set the execution time to
infinity. The program was
finally finished and printed
out the result at 894.006
seconds or ~15 minutes. It
also took 97% CPU

resources.

E[Sat Dec 06 09:31:42.940121 2014] [:error] [pid 1667]
‘PHP Fatal error: Maximum execution time of 600
‘seconds exceeded

Vu Tran

Brute Force - Allocate 4GB Memory for the process

E[Sat Dec 06 09:13:14.695016 2014] [:error] [pid 1628]
‘PHP Fatal error: Allowed memory size of 4294967296
gbytes exhausted (tried to allocate 233 bytes)

Brute Force - Allocate 8GB Memory for the process

Brute Force - Allocate 12GB Memory for the process

{"result";[
{"duration”:68.95},{"duration":104.52},{"duration":133.55}
],"time":894.0086,"total":"113400 of 3628800"}

real ~15 minutes elapsed 97% CPU
Process Time
894.006
ke
c
S
Q
@
]
k=
@
E
|_
------------------------------------------ 133.55-
Q
=}
£
=
c
Q
E
l_

GA BF-B BF-M BF-W
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Experiment with NP-Hard Problem: 2 cars, 7 passengers, 7 destinations
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DISCUSSION - Experiment with 2 Cars, 5 Passengers, 5 Destinations: Total Travel Time

Fixed Initial Passengers & Fixed Initial Destinations
Total Travel Time

- GA Travel Time/Wait Time - Cost High: 97.8 mins
100 Processes Low: 75 mins
146.7 Total Travel Time

133.55
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P GA BF
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In this experiment, we run 100 GA processes for 2 cars, 5 passengers, and 5 destinations

to find the optimal duration in terms of total travel time. The longest duration for this
case is 133.55 minutes and the shortest duration is 68.95 minutes. The GA results for
100 processes are ranking from 75 minutes to 97.8 minutes. The average duration is 80
minutes. With Brute Force, it takes 15 minutes to finish the process but GA takes 0.4
second. In the reality, we do not want to wait 15 minutes to get the most optimal routes

rather sub-optimal routes with the fast response from the system.
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DISCUSSION - Experiment with 2 Cars, 5 Passengers, 5 Destinations: Average Wait Time

Fixed Initial Passengers & Fixed Initial Destinations

Avg Passenger Wait Time
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The GA process of Average Wait Time (GA-AWT) takes longer than the GA process of
Total Travel Time. The GA-AWT calculates all passengers’ wait time, then it computes the
average wait time for each routes. It takes approximate 0.478 second to complete each
GA process. With 100 GA processes, the longest AWT is 17. 67 minutes, and the shortest
AWT is 12.05 minutes. The average of 100 processes of AWT is 14 minutes. When we deal
with NP-Hard problem, the runtime of the process is very expensive. Without this
advanced GA process, we can quickly find the sub-optimal solution in a very short time. It

is guaranteed to get a sub-optimal result that is better than the medium result.
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6. Conclusion

The Brute Force Algorithm takes years to process a complex problem such as 2
cars, 7 passengers and 7 destinations. The factorial of combination of 7 passenger and 7
destinations (14!) is 87,178,291,200 solutions (passengers and destinations orders). The
exponential of 2 cars with 7 passengers (27) is 128 (cars orders). The total candidate
solutions for 2 car, 7 passengers and 7 destinations (87,178,291,200 * 128) are
11,158,821,273,600.

The online dispatch system is improved when using the Genetic Algorithm for
NP-Hard problem. With a small initial population of the dataset, the system can quickly
produce a sub-optimal result in less than a second. However, it’s not guaranteed to get a
global optimal solution rather than a local optimal solution.

The Genetic Algorithm with Constraints is an advanced implementation that
proceeds 2 GA processes for each gene from generation to generation using revolutionary
concepts. Hence, the ODS can approximately provide sub-optimal solutions in terms of

minimizing the passenger wait time and travel time.
7. Future Work

In order to improve the result of Genetic Algorithm process, first we need to form a
better initial population. In theory, better parents should produce better children. This
work will take a lot of time to research a heuristic methodology. Second, we need to
improve the fitness function by combining the travel time with average wait time.

When we deal with more complex problem such as 5 cars, 20 passengers, and 20
destinations, the small population and less number of generations will not produce
optimal results. However, the large population and many generations will require a lot of
resources in terms of CPUs and Memories. To improve the performance of GA procedure
for this problem, we will need distributed and advanced computers or use parallel

computing method to speed up the process.
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