
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2014

Optimization of Scheduling and Dispatching Cars on Demand Optimization of Scheduling and Dispatching Cars on Demand

Vu Tran
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tran, Vu, "Optimization of Scheduling and Dispatching Cars on Demand" (2014). Master's Projects. 422.
DOI: https://doi.org/10.31979/etd.zxmq-4s74
https://scholarworks.sjsu.edu/etd_projects/422

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/422?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Writing Project

Optimization of Scheduling and Dispatching

Cars on Demand

Final Report

By

Vu Tran

CS 298

12/20/2014

Guided by

Professor

Dr. Chris Tseng

 Vu Tran

 2

A Writing Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirements for the Degree: Master of Science

© 2014

Vu Tran

ALL RIGHTS RESERVED

 Vu Tran

 3

The Designated Committee Approves the Project Titled

Optimization of Scheduling and Dispatching

Cars on Demand

By

Vu Tran

Approved for the Department of Computer Science

San Jose State University

December 2014

Dr. Chris Tseng Department of Computer Science

Dr. Thanh Tran Department of Computer Science

Mr. Peter Tran Employee of NASA Ames Research Center

 Vu Tran

 4

Acknowledgement

I would like to express my sincere gratitude to Dr. Chris Tseng for his guidance, time and

the knowledge he shared with me. Without his direction and support, my report might not

have shaped to completion. I would like to thank my committee members, Dr. Thanh

Tran and Mr. Peter Tran, for their inputs and suggestions. At last, I would like to thank

my family and friends for their encouraging support through the project.

 Vu Tran

 5

ABSTRACT

Taxicab is the most common type of on-demand transportation service in the city

because its dispatching system offers better services in terms of shorter wait time.

However, the shorter wait time and travel time for multiple passengers and destinations

are very considerable. There are recent companies implemented the real-time ridesharing

model that expects to reduce the riding cost when passengers are willing to share their

rides with the others. This model does not solve the shorter wait time and travel time

when there are multiple passengers and destinations. This paper investigates how the

ridesharing can be improved by using the genetic algorithm that gives the optimal

solution in terms of passengers wait time and routes duration among passengers’ start and

end locations. The simulator uses the Google digital maps and direction services that

allow the simulator to fetch the real-time data based on the current traffic conditions such

as accident, peak hours, and weather. The simulation results that are sub-optimal routes

are computed using the advanced genetic algorithm and real-time data availability.

 Vu Tran

 6

TABLE OF CONTENTS

1. PROJECT DESCRIPTION ... 8
1.1 INTRODUCTION AND PROBLEM STATEMENT ... 8
1.2 PROJECT GOAL ... 9
1.3 REAL-TIME RIDESHARING SCHEDULE AND DISPATCH PROBLEM ... 9

2. PROJECT DESIGN .. 13
2.1 SIMULATION DESIGN ... 13
2.2 MODELING RIDESHARING SCHEDULE AND DISPATCH ALGORITHMS DESIGN 14

3. PROJECT IMPLEMENTATION ... 20
3.1 SERVER SETUP WITH AMAZON CLOUD INFRASTRUCTURE EC2 .. 20
3.2 SIMULATION IMPLEMENTATION.. 24

a. Randomizing Passengers and Drivers Coordinates .. 24
b. Randomizing Passenger’s Destination and Driver’s Destinations ... 25
c. Integrating Google Direction Service ... 26

3.3 GENETIC ALGORITHM IMPLEMENTATION ... 27

4. RESULTS .. 30

5. ANALYSIS AND FINE-TUNING OF PLANNED SYSTEM ... 35

6. CONCLUSION .. 46

8. REFERENCES .. 47

 Vu Tran

 7

TABLE OF FIGURES

FIGURE 1: ONLINE SCHEDULE AND DISPATCH SYSTEM .. 9
FIGURE 2: MULTIPLE CARS AND ONE PASSENGER.. 9
FIGURE 3: MULTIPLE CARS AND 1 PASSENGER WITH SIMULATED ROUTES .. 9
FIGURE 4: MULTIPLE CARS WITH MULTIPLE DIRECTIONS, AND ONE PASSENGER .. 10
FIGURE 5: MULTIPLE CARS WITH MULTIPLE DIRECTIONS, AND ONE PASSENGER WITH SIMULATED ROUTES ... 10
FIGURE 6: ONE CAR, MULTIPLE PASSENGERS AND ONE DESTINATION .. 11
FIGURE 7: ONE CAR, MULTIPLE PASSENGERS AND ONE DESTINATION WITH SIMULATED ROUTES 11
FIGURE 8: ONE CAR, MULTIPLE PASSENGERS AND MULTIPLE DESTINATIONS ... 12
FIGURE 9: MULTIPLE CARS, MULTIPLE PASSENGERS AND MULTIPLE DESTINATIONS .. 12
FIGURE 10: STANDARD GENETIC ALGORITHM PROCESS .. 16
FIGURE 11: CREATING AWS ACCOUNT ... 20
FIGURE 12: AMAZON WEB SERVICES .. 21
FIGURE 13: LAUNCHING EC2 INSTANCE .. 22
FIGURE 14: AMAZON MACHINE IMAGE, UBUNTU SERVER .. 22
FIGURE 15: EC2 INSTANCE TYPE .. 23
FIGURE 16: EC2 CONFIGURATION .. 23
FIGURE 17: DRIVER'S LOCATIONS BASED ON THE PASSENGER LOCATION .. 24
FIGURE 18: MANY CARS AND ONE PASSENGER.. 25
FIGURE 19: MANY CARS, MANY PASSENGERS AND ONE DESTINATION ... 26
FIGURE 20: ADVANCED GENETIC ALGORITHM PROCESS WITH CONSTRAINTS .. 27
FIGURE 21: GENES PREPARATION ... 28
FIGURE 22: 4 CARS AND 1 PASSENGER ... 30
FIGURE 23: 4 CARS, 4 DESTINATIONS AND ONE PASSENGER .. 31
FIGURE 24: 1 CAR, 5 PASSENGERS AND ONE DESTINATION .. 32
FIGURE 25: 1 CAR, 4 PASSENGERS AND 4 DESTINATIONS ... 33
FIGURE 26: CAR 1, 3 PASSENGERS AND 3 DESTINATIONS ... 34
FIGURE 27: CAR 2, 1 PASSENGERS AND 1 DESTINATIONS ... 34
FIGURE 28: CAR 1, 3 PASSENGERS AND 3 DESTINATIONS FOR TRAVEL TIME .. 36
FIGURE 29: CAR 2, 1 PASSENGER AND 1 DESTINATION FOR TRAVEL TIME .. 36
FIGURE 30: CAR 1, 2 PASSENGERS AND 2 DESTINATIONS FOR AVERAGE WAIT TIME .. 39
FIGURE 31: CAR 2, 2 PASSENGERS AND 2 DESTINATIONS FOR AVERAGE WAIT TIME .. 39

 Vu Tran

 8

1. Project Description

1.1 Introduction and Problem Statement

Uber is one of the most popular on-demand ridesharing car services in the United

States and expanding internationally to at least 45 countries. It dominates the entire

transportation network marketplace because many passengers realized the benefits of the

service, such as conveniently using their mobile phone application to request the service

without the need to carry any cash or provide tips at the end of ride. The Uber services

provide an estimate of the cost on-the-fly, allows rating the driver, and having payment

transaction via emails. The ridesharing service also provides an Online Dispatch System

(ODS) that uses communication technologies and geo-location services, such as Global

Positioning System (GPS) and digital maps. When a passenger requests for a ride, the

system collects passenger’s location and finds matching drivers within that location. ODS

simply computes the distance between passengers and drivers, and then it shows the

passengers the closest proximity of available drivers on the map. This concept may not be

ideal for many cars, passengers and destinations in terms of minimizing the passenger

wait time and travel time.

In order to optimize process, the ODS first needs software algorithms and data

structures to define various scheduling and dispatching policies, such as First-In-First-

Out (FIFO) known as a queue, Last-In-First-Out (LIFO) also known as a stack,

processor sharing, priority, shortest service first, preemptive shortest service first, and

Shortest Remaining Time First (SRTF) that can be used when passengers request a ride

and drivers provide the service. Secondly, the ODS needs to define model constraints and

objectives. The two types of objectives to be considered are: (1) reducing passenger’s

wait time and (2) travel time. The “cost” function will be used to optimize the scheduling

and dispatching algorithms, which can be very complex and interesting.

 Vu Tran

 9

1.2 Project Goal

The objective of this project is to minimize passengers wait time and travel time using

an advanced Genetic Algorithm with Constraints.

Figure 1: Online Schedule and Dispatch System

1.3 Real-Time Ridesharing Schedule And Dispatch Problem

The first scenario (scenario 1a), a passenger requests a ride, and multiple drivers are

nearby. It’s not problematic to locate the closest driver to the passenger. Because the

ODS detects passenger and drivers’ locations, it can measure the distance or travel time

from the passenger to every nearby driver using Google direction services. If there are 5

nearby drivers, then OSD performs 5 computations. We can solve this scenario using

Brute Force algorithm, and it is guaranteed to find the short duration of available driver.

Figure 2: Multiple cars and one passenger

Figure 3: Multiple cars and 1 passenger with

simulated routes

 Vu Tran

 10

Another scenario (scenario 1b), a passenger requests a ride but multiple drivers are

going to different directions. This scenario is more complicated than the previous one

because ODS cannot quickly measure the travel time from the passenger to the driver

when the driver is moving. For instance, the worst case is that five drivers are delivering

5 passengers to 5 different destinations when a new passenger requests a ride. The task is

to predict which driver completes his/her route before heading to pickup the new

passenger in the shortest duration. The ODS can solve this case in two steps. First,

calculating the travel time from the new passenger to 5 driver’s destinations that are 5

computations. Second, calculating the travel time from 5 driver’s sources to 5 driver’s

destinations that are also 5 computations. The total cost for this case is 10 computations.

The Brute Force algorithm can be used for this scenario as well.

Figure 4: Multiple cars with multiple directions, and

one passenger

Figure 5: Multiple cars with multiple directions, and

one passenger with simulated routes

 Vu Tran

 11

The second scenario (scenario 2), when multiple passengers are willing to share one

car to a destination, they can split the rate. Realistically, passengers share a ride to the

airport when the wait time and travel time are important due to the flight’s schedule. For

instance, 4 passengers are going to the same airport. The ODS locates a driver that is near

to 4 passengers. The task is to provide the driver the optimal routes in terms of the

passenger wait time and travel time. The ODS has to decide which passenger is pickup

first and so on. The first passenger requests a ride is the first one to be picked up may be

is not an ideal solution (FCFS). If there are 4 passengers, then the distance or duration of

24 possible routes will be computed. The number of routes gets increased when the car

has more capacities. If a van has 7 seats, it can hold 7 passengers. Hence, 5040 possible

routes are measured. To solve the problem with 4 passengers, Brute Force algorithms can

quickly find the best optimal route of 24 possible routes. To solve this problem with 7

passengers, besides Brute Force algorithm, Nearby Neighbor algorithm (NNA) can be

applied. NNA may not give the best optimal route, but its computation is inexpensive as

needing only 1 computation, but the data structure is required. This problem can be also

solved by Standard Genetic Algorithm.

Figure 6: One car, multiple passengers and one

destination

Figure 7: One car, multiple passengers and one

destination with simulated routes

 Vu Tran

 12

The third scenario (scenario 3), multiple passengers are sharing one car to multiple

destinations. This problem requires 3 constraints. First, driver must visit all passengers

P1, P2, P3, P4 (Pi, 1 <= i <= n), but only once. Second, driver must visit all destinations

D1, D2, D3, D4 (Di, 1 <= i <= n), but only once. Third, driver cannot visit Dj before

visiting Pj, (1 <= j <=n. There are 40320 possible routes with 4 passengers and 4

destinations that are permuted, but 2520 possible routes satisfy the third constraint. This

scenario is more complicated if it deals with multiple cars when there are multiple

passengers and multiple destinations (scenario 4). For instance, 7 passengers with 7

destinations require 2 cars. A car can serve up to 4 passengers. In this case, car 1 can

serve 4 passengers and car 2 can serve 3 passengers. Furthermore, there are many

possible routes for 2 cars with 7 passengers and 7 destinations. Because this problem

involves with a lot of computations and arrangements, it is complicated and complex

when using Brute Force or Nearby Neighbor algorithms. However, Genetic algorithm is

an ideal solution to deal with a problem of great complexity that will be explained in the

next section.

Figure 8: One car, multiple passengers and

multiple destinations

Figure 9: multiple cars, multiple passengers and multiple

destinations

 Vu Tran

 13

2. Project Design

2.1 Simulation Design

 First, we need a lot of data point to simulate the drivers whether are driving or

idling in certain locations and passengers are waiting for drivers to pickup. Passengers

need to provide their locations whether they can enter or share their current location using

GPS or enabling Web Share Location. Based o the passenger’s location, the system will

randomly generate the drivers’ locations with given amount of drivers we want to

simulate. System utilizes Google Maps API to produce the longitude and latitude as

coordinates of passengers and drivers. The system then uses these coordinates to visually

draw locations on Google Maps.

 Second, system needs to capture the en-routes of drivers using Google Direction

Service. This service will give us real-time data such as distance, duration and each step

of drivers taking from point A to point B. The algorithms will use this data to analyze and

formulate the model.

 Third, we will use the Amazon Cloud Web Service EC2 to host the system and

database. We will also use NoSQL database (MongoDB) to store the directions and

analyzed data. Due to number of requests that are allowed by Google Services, the

database becomes very useful in terms of improving the smoothness of simulation.

 Vu Tran

 14

2.2 Modeling Ridesharing Schedule And Dispatch Algorithms Design

Brute Force search algorithm for the scenarios 1a, 1b, and 2 performs as follow:

1. Make a list of all possible routes

2. Calculate the duration of each route by adding up the duration of its edges

3. Choose the route with the smallest total duration

Nearest Neighbor search algorithm for the scenario 2 performs as follow:

1. Stand on an arbitrary vertex as current vertex.

2. Find out the shortest duration connecting current vertex and an unvisited vertex

V.

3. Set current vertex to V.

4. Mark V as visited.

5. If all the vertices in domain are visited, then terminate.

6. Go to step 2.

𝐶𝑜𝑠𝑡 =
1

𝑑(𝐶, 𝑃𝑓) + ∑ 𝑑(𝑃𝑖 , 𝑃𝑖+1)𝑛
𝑖=1 + 𝑑(𝑃𝑙 , 𝐷)

Notation:

d: Duration from the current coordinate to the next coordinate

C: Car

D: Destination

Pf: The first Passenger in the vehicle’s route, where 1 <= f <= n

Pl: The last Passenger in the vehicle’s route, where 1 <= l <= n

Pi: Passenger, where 1 <= i <=n

n: Number of passengers

Comparison

Brute-Force Algorithm Nearest-Neighbor Algorithm

 Optimal (guaranteed to find the

shortest duration)

 Inefficient (long time)

 Non-optimal (not always find the

shortest duration)

 Efficient (quick and easy)

 Vu Tran

 15

Standard Genetic Algorithm for scenario 2 performs as follow:

1. [Start] Generate random population of n chromosomes (suitable solutions for the

problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps until the

new population is complete

a. [Selection] Select two parent chromosomes from a population according to

their fitness (the better fitness, the bigger chance to be selected)

b. [Crossover] With a crossover probability cross over the parents to form a

new offspring (children). If no crossover was performed, offspring is an exact

copy of parents.

c. [Mutation] With a mutation probability mutate new offspring at each locus

(position in chromosome).

d. [Accepting] Place new offspring in a new population

4. [Replace] Use new generated population for a further run of algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in current

population

6. [Loop] Go to step 2

 Vu Tran

 16

Figure 10: Standard Genetic Algorithm Process

Genetic algorithm with constraints for scenario 3 performs as follow:

Constraints:

1. Driver must visit all passengers P1, P2, P3, P4 (Pi, 1 <= i <= n), but only once

2. Driver must visit all destinations D1, D2, D3, D4 (Di, 1 <= i <= n), but only once

3. Driver cannot visit Dj before visiting Pj, (1 <= j <=n)

Algorithm

1. [Start]

a. Generate random population of n passengers and random of n destinations.

b. Combine population of n passengers with population of n destinations

c. Compute population of 2n passengers and destinations named as routes

d. Organize routes using multiple points crossover algorithm (algorithm 1d)

that meet above constraints.

2. [Fitness] Evaluate the fitness f(x) function of each route x in the population

3. [New population] Create a new population by repeating following steps until the

new population is complete

4. [Selection] Select two parent routes from a population according to their fitness

(the better fitness, the bigger chance to be selected)

5. [Crossover]

 Vu Tran

 17

a. Apply single point crossover algorithm (algorithm 5a) over the parent

routes to form a new offspring (children) route.

b. Validate the new offspring route with constraints above. If the offspring

route is not valid, then mutate its DNAs in step 6. Otherwise, go to step 7.

6. [Mutation] Change positions in a offspring route that meet constraints above

7. [Accepting] Place new offspring route in a new population

8. [Replace] Use new generated population for a further run of algorithm

9. [Test] If the end condition is satisfied, stop, and return the best solution in current

population

10. [Loop] Go to step 2

Fitness Function (scenario 3: one car, many passengers, and many destinations)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 =
1

𝑑(𝐶, 𝑃𝑓) + ∑ 𝑑(𝐺𝑖 , 𝐺𝑖+1)2𝑛
𝑖=1

Notation

d: Duration from current coordinate to next coordinate

C: Car

Pf: The first Passenger in the vehicle’s route, where 1 <= f <= n

Pi: Passenger i, where 1 <= i <= n

Di: Destination i, where 1 <= i <= m

{Pi, Di} ∈ Gi, where 1 <= i <= 2n

n: Number of passengers, where n = m

m: Number of destinations, where m = n

 Vu Tran

 18

Fitness Function (scenario 4b: many cars, many passengers, and many destinations)

a. Travel Time

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 =
1

∑ 𝑑 (𝐶𝑗 , 𝑃𝑓
𝑗
) + ∑ 𝑑(𝐺𝑖

𝑗
, 𝐺𝑖+1

𝑗
)2𝑛

𝑖=1

𝑘

𝑗=1

Notation

d: Duration from current coordinate to next coordinate

C: Car, where 1 <= j <= k

Pf: The first Passenger in the vehicle’s route, where 1 <= f <= n

Pi: Passenger i, where 1 <= i <= n

Di: Destination i, where 1 <= i <= m

{Pi, Di} ∈ Gi, where 1 <= i <= 2n

k: Number of cars

n: Number of passengers, where n = m

m: Number of destinations, where m = n

b. Average Wait Time

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒 =
n

∑ 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑖
𝑛
𝑖=1

Notation

WaitTime: Wait Time of a passenger from Car to Pi and/or Di, where 1 <= i <= n,

but do not include durations within the passenger’s destination and unvisited

passengers and their destinations

n: Number of passengers

 Vu Tran

 19

Multiple Points Crossover Algorithm in 1d

Gene 1 P2 P3 P1 P4 1 <= i <= n

Gene 2 D3 D2 D4 D1 1 <= i <= n

Parent P2 P3 D3 D2 P1 P4 D4 D1 1 <= i <= 2n

Algorithm

1. Set the index I to 0

2. Process the first D in Gene 2

3. Find the corresponding P in Gene 1.

4. If the index of corresponding P less than I, then insert current D after the previous

D in Gene 2 and mark current D as visited. Go to step 8

5. Mark current D as visited

6. Insert current D after the corresponding P in Gene 1

7. Set I to index of P

8. If all Ds in Gene 2 are visited, then terminate.

9. Process the next D in Gene 2, go to step 3

Single point crossover algorithm in 5a

Parent 1 P2 P3 D3 D2 P1 P4 D4 D1

Parent 2 P2 D2 P3 P1 P4 D3 D1 D4

Parent 2 X X X P1 P4 X D1 D4

Offspring P2 P3 D3 D2 P1 P4 D1 D4

Algorithm

1. Copy the first half gene of Parent 1 and form a new offspring

2. Mark all DNAs in Parent 2 that are matching with DNAs in the offspring

3. Copy all unmarked DNAs in Parent 2 and keep their orders.

4. Add DNAs to the offspring to form a complete gene.

 Vu Tran

 20

Mutation Operation

Gene P2 D3 D2 P3 P1 P4 D1 D4

New Gene P2 P3 D2 D3 P1 P4 D1 D4

Algorithm

1. Find D in the gene and record its index

2. Find corresponding P in the gene

3. [Test] If the index of corresponding P is greater than index of D, then swap their

position.

4. [Test] If visit all D in the gene, then terminate

5. [Loop] Go to step 1

3. Project Implementation

3.1 Server Setup with Amazon Cloud Infrastructure EC2

To setup an Amazon Elastic Compute Cloud (EC2), first we need to create

Amazon Web Service (AWS) account by following step by step as shown in figure

below.

Figure 11: Creating AWS account

 Vu Tran

 21

After signing into AWS console, we see a lot of services. We will only need EC2

to host our application.

Figure 12: Amazon Web Services

Next, choose EC2 service to begin launching an instance

 Vu Tran

 22

Figure 13: Launching EC2 Instance

Step 1: Choose Ubuntu Server

Figure 14: Amazon Machine Image, Ubuntu Server

 Vu Tran

 23

Step 2: Choose an Instance Type

Because our application requires a lot of computations, we need a high

performance instance such as: m3.xlarge (13 ECUs, 4 vCPUs, 2.5 GHz, Intel Xeon E5-

2670v2, 15 GiB memory, 2 x 40 GiB Storage Capacity)

Figure 15: EC2 Instance Type

Step 3: Configure Instance Details

We use default configurations and finally launch the instance

Figure 16: EC2 Configuration

 Vu Tran

 24

3.2 Simulation Implementation

a. Randomizing Passengers and Drivers Coordinates

In order to calculate the random coordinates, we will use the geometry and math

functions such as sin, cos, asin, atan2 in the snippet code below.

Figure 17: Driver's Locations based on the Passenger Location

 Vu Tran

 25

b. Randomizing Passenger’s Destination and Driver’s Destinations

For each driver’s start coordinate, generating the driver’s end coordinate with the

direction that driver is heading to.

Figure 18: Many Cars and One Passenger

 Vu Tran

 26

Figure 19: Many Cars, Many Passengers and One Destination

c. Integrating Google Direction Service

 Vu Tran

 27

3.3 Genetic Algorithm Implementation

We attempt to solve a problem with 2 cars, 4 passengers, and 4 destinations

Figure 20: Advanced Genetic Algorithm Process with Constraints

GA 1 Process

a. Initialize Passenger and Destination Population

First, we randomly generate 5 passenger’s genes (P genes), and 5 destination’s

genes (D genes). Second, we combine P genes with D genes to make 25 genes.

Third, we re-arrange among P genes and D genes. So, they satisfy 3 constraints

that we defined in the design section.

 Vu Tran

 28

Figure 21: Genes Preparation

b. Proceed GA 2 Processes

For each combined passengers and destinations gene

(P1,P3,D1,D3,P2,D2,P4,D4), proceed the second GA process.

1. Initialize Car Population

Initial Population P1 P2 P3 P4 CAR1 CAR2

1,1,2,1 1 1 2 1 P1,P2,P4 P3

2,1,2,1 2 1 2 1 P2,P4 P1,P3

2,2,1,1 2 2 1 1 P3,P4 P1,P2

2. Evaluation

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑
1

𝑑(𝐶𝑗 , 𝑃𝑓) + ∑ 𝑑(𝐸𝑖 , 𝐸𝑖+1)2𝑛
𝑖=1

𝑚

𝑗=1

Example

P1,P3,D1,D3,P2,D2,P4,D4

CAR1 CAR2

P1,P2,P4 P3

C1,P1,D1,P2,D2,P4,D4 C2,P3,D3

CAR1 = d(C1, P1) + d(P1, D1) + d(D1, P2) + d(P2, D2) + d(D2, P4) + d(P4, D4)

CAR2 = d(C2, P3) + d(P3, D3)

fitness =
1

CAR1 + CAR2

 Vu Tran

 29

3. Selection

Select two genes from the population in which the shorter durations have

more chances to get selected. For instance:

 PARENT 1: 1,2,1,1

 PARENT 2: 2,1,1,2

4. Crossover

 Apply One Point Crossover to PARENT 1

Child: 1,2,1,2

5. Mutation

Because this GA 2 has a small population, do not need to apply mutation.

6. Termination: If No, go to step 2.

c. Selection

Select two genes from the population in which the shorter durations have more

chances to get selected. For instance:

Parent 1: P1,P3,D1,D3,P2,D2,P4,D4

Parent 2: P1,P3,D3,D4,P4,D1,P2,D2

d. Crossover

 Apply One Point Crossover to PARENT 1

Child: P1,P3,D1,D3,D4,P4,P2,D2

e. Mutation

[The Child is not valid because D2 and D3 are assigned before P3 and P2. The car

should not visit a destination before visiting a passenger. To fix this, we need to

change the position of the DNA.]*

Child: P1,P3,D1,D3,D4,P4,P2,D2

Mutated CHILD: P1,P3,P2,D3,D4,P4, D1,D2

f. Termination: If No, go to step 2b.

g. Solution

 Vu Tran

 30

4. Results

Simulation Result for Scenario 1a:

Figure 22: 4 Cars and 1 Passenger

Driver 5 has the shortest duration

 Vu Tran

 31

Simulation Result for Scenario 1b:

Figure 23: 4 Cars, 4 Destinations and One Passenger

Driver 2 has the shortest duration

 Vu Tran

 32

Simulation Result for Scenario 2:

Figure 24: 1 Car, 5 Passengers and One Destination

 Vu Tran

 33

Simulation Result for Scenario 3:

Figure 25: 1 Car, 4 Passengers and 4 Destinations

Schedule:

T,P2,D2,P3,P1,D3,P4,D1,D4

T: Driver/Car

P: Passenger

D: Destination

2,520 routes satisfy 3 constraints

for 1 car, 4 passengers, 4

destinations problem.

 Vu Tran

 34

Simulation Result for Scenario 4:

Travel Time

Figure 26: Car 1, 3 Passengers and 3 Destinations

GA for Car 1: T1, P4,D4,P2,P1,P3,D3,D1,D2

Figure 27: Car 2, 1 Passengers and 1 Destinations

GA for Car 2: T2,P4,D4

Average Wait Time

 Vu Tran

 35

5. Analysis and fine-tuning of planned system

A. Compare the Performance Brute Force Algorithm with Genetic Algorithm

B. Proceed 10 GA processes with 2 configurations to form the initial population

 1. Random Initial Passengers and Random Initial Destinations

 2. Fixed Initial Passengers and Fixed Initial Destinations

In order to benchmark the algorithm, we need to use a faster server in terms of faster

CPUs and larger memories. For this experiment, we use Amazon Cloud EC2 (m3.xlarge)

with 4 CPUs and 15 GiB memories.

 Vu Tran

 36

Figure 28: Car 1, 3 Passengers and 3 Destinations for

Travel Time

Figure 29: Car 2, 1 Passenger and 1 Destination for

Travel Time

 Vu Tran

 37

10 GA Processes
x axis: Number of Processes

y axis: Time in Minutes

Random Initial Passengers & Random Initial Destinations

Fixed Initial Passengers & Fixed Initial Destinations

 Vu Tran

 38

10 GA Generations
x axis: Number of Generations

y axis: Time in Minutes

Random Initial Passengers & Random Initial Destinations

Fixed Initial Passengers & Fixed Initial Destinations

 Vu Tran

 39

Figure 30: Car 1, 2 Passengers and 2 Destinations for

Average Wait Time

Figure 31: Car 2, 2 Passengers and 2 Destinations

for Average Wait Time

 Vu Tran

 40

10 GA Processes
x axis: Number of Processes

y axis: Time in Minutes

Random Initial Passengers & Random Initial Destinations

Fixed Initial Passengers & Fixed Initial Destinations

 Vu Tran

 41

10 GA Generations
x axis: Number of Generations

y axis: Time in Minutes

Random Initial Passengers & Random Initial Destinations

Fixed Initial Passengers & Fixed Initial Destinations

 Vu Tran

 42

Within PHP program, we first

attempted to allocate 4GB

memory to process the Brute

Force algorithm for 5

passengers, 5 destinations and

2 cars. Due to this complex

problem, it required a lot of

computations. There are

3,628,800 candidate

solutions. When it reached

4GB memory, the program

was stopped and printed out

the first error.

Next, we attempted to

allocate 8GB memory and the

execution time was 600

seconds (10 minutes). It

required more than 10

minutes to process this

problem. When it reached 10

minutes, the problem was

stopped and printed out the

second error.

Last, we attempted to

allocate 12GB memory and

set the execution time to

infinity. The program was

finally finished and printed

out the result at 894.006

seconds or ~15 minutes. It

also took 97% CPU

resources.

 Vu Tran

 43

 Vu Tran

 44

In this experiment, we run 100 GA processes for 2 cars, 5 passengers, and 5 destinations

to find the optimal duration in terms of total travel time. The longest duration for this

case is 133.55 minutes and the shortest duration is 68.95 minutes. The GA results for

100 processes are ranking from 75 minutes to 97.8 minutes. The average duration is 80

minutes. With Brute Force, it takes 15 minutes to finish the process but GA takes 0.4

second. In the reality, we do not want to wait 15 minutes to get the most optimal routes

rather sub-optimal routes with the fast response from the system.

 Vu Tran

 45

The GA process of Average Wait Time (GA-AWT) takes longer than the GA process of

Total Travel Time. The GA-AWT calculates all passengers’ wait time, then it computes the

average wait time for each routes. It takes approximate 0.478 second to complete each

GA process. With 100 GA processes, the longest AWT is 17. 67 minutes, and the shortest

AWT is 12.05 minutes. The average of 100 processes of AWT is 14 minutes. When we deal

with NP-Hard problem, the runtime of the process is very expensive. Without this

advanced GA process, we can quickly find the sub-optimal solution in a very short time. It

is guaranteed to get a sub-optimal result that is better than the medium result.

 Vu Tran

 46

6. Conclusion

The Brute Force Algorithm takes years to process a complex problem such as 2

cars, 7 passengers and 7 destinations. The factorial of combination of 7 passenger and 7

destinations (14!) is 87,178,291,200 solutions (passengers and destinations orders). The

exponential of 2 cars with 7 passengers (27) is 128 (cars orders). The total candidate

solutions for 2 car, 7 passengers and 7 destinations (87,178,291,200 * 128) are

11,158,821,273,600.

The online dispatch system is improved when using the Genetic Algorithm for

NP-Hard problem. With a small initial population of the dataset, the system can quickly

produce a sub-optimal result in less than a second. However, it’s not guaranteed to get a

global optimal solution rather than a local optimal solution.

The Genetic Algorithm with Constraints is an advanced implementation that

proceeds 2 GA processes for each gene from generation to generation using revolutionary

concepts. Hence, the ODS can approximately provide sub-optimal solutions in terms of

minimizing the passenger wait time and travel time.

7. Future Work

 In order to improve the result of Genetic Algorithm process, first we need to form a

better initial population. In theory, better parents should produce better children. This

work will take a lot of time to research a heuristic methodology. Second, we need to

improve the fitness function by combining the travel time with average wait time.

 When we deal with more complex problem such as 5 cars, 20 passengers, and 20

destinations, the small population and less number of generations will not produce

optimal results. However, the large population and many generations will require a lot of

resources in terms of CPUs and Memories. To improve the performance of GA procedure

for this problem, we will need distributed and advanced computers or use parallel

computing method to speed up the process.

 Vu Tran

 47

8. References

Craenen B. G. W., Eiben A. E. and Marchiori E. How to handle constraints with

evolutionary algorithms. In L. Chambers, The Practical Handbook of Genetic

Algorithms: Applications, 2nd edition , volume 1, pages 341-361. Chapman &

Hall/CRC, 2001

Feltman, Rachel. "The War between Uber and Lyft Will Be Won with an Algorithm."

Quartz. N.p., 4 Apr. 2014. Web. 02 Dec. 2014. <http://qz.com/195348/the-war-

between-uber-and-lyft-will-be-won-with-an-algorithm/>.

Meng, Q.B., Mabu, S., Yu, L., and Hirasawa, K. 2010. A Novel Taxi Dispatch System

Integrating a Multi-Customer Strategy and Genetic Network Programming. Journal

of Advanced Computational Intelligence and Intelligent Informatics, Vol. 14, No. 5,

pp. 442-452.

Monschke, Jan. "Genetic Algorithms." An Introduction of Genetic Algorithms. N.p., n.d.

Web. 02 Dec. 2014. <http://janmonschke.com/Genetic-

Algorithms/presentation/#/>.

Jung, J., Jayakrishnan, R., & Park, J.Y. (2013). Design and modeling of real-time shared-

taxi dispatch algorithms. In: Proc. Transportation Research Board 92nd Annual

Meeting, Washington, DC.

Tao, C.C. 2007. Dynamic Taxi-sharing Service Using Intelligent Transportation System

Technologies. International Conference on Wireless Communications, Networking

and Mobile Computing, pp. 3209-3212.

Uber. http://www.uber.com. Accessed Septemer 01, 2014.

	Optimization of Scheduling and Dispatching Cars on Demand
	Recommended Citation

	tmp.1445434739.pdf.moAIA

