San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

A JavaScript and PHP EPUB reader web application

Xiaqging He
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Computer Sciences Commons

Recommended Citation

He, Xiaqging, "A JavaScript and PHP EPUB reader web application" (2015). Master's Projects. 442.
DOI: https://doi.org/10.31979/etd.dgfp-u875

https://scholarworks.sjsu.edu/etd_projects/442

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/442?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F442&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A JavaScript and PHP EPUB reader web application

A Project Report
Presented to
The faculty of Department of Computer Science

San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Xiaging He

December 2015

©2015
Xiaging He
ALL RIGHTS RESERVE

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

A JavaScript and PHP EPUB reader web application

By

Xiaging He

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science Date

Dr. Thomas Austin, Department of Computer Science Date

Dr. Chris Tseng, Department of Computer Science Date

I1

Acknowledgement

First, I would like to give my deep thanks to my project advisor, Dr. Chris
Pollett, for his encouragement, suggestions and support during the whole
process of this project. Without his technical advisement, guidance and

thoughtful insight, | would not have been able to complete the project on time.

Second, I would like to thank my committee members, Dr. Chris Tseng

and Dr. Thomas Austin, for their efforts, time and feedback.

Last, | would like to thank my husband, Faya Wang, who is always my
strong support for everything, my parents, who raised me, and my lovely kids,

Audrey and Bryan, who make my life full of fun.

I1

Abstract

1.

Table of Contents

Introduction =0 @—emmmmmmmmmmmmmmmeoe-

Background =~ —eemeeemememeeeeeee-

2.1 What is EPUB

2.1.1 What a EPUB file includes

2.1.2 How to create a EPUB file

213 EPUB3 W e

2.2 Existing EPUB reader ~ -------

2.2.1 iBooks and Google Play Books

2.2.2 Firefox’s add-on EPUBReader

2.2.3 eReader devices = —mmmmmmmmemeeee-

2.3 Why is an EPUB reader web application

Preliminary Work

3.1 DEFLATE algorithm =~ ==-=--mmemmemee-

3.1.1 Huffman Coding = ----------m-mmm-

3.1.2 LZ77 compression algorithm

3.2 SEQUITUR —-mmmmmmmm e
3.3 How to implement SEQUITUR algorithm using JavaScript-

3.4 Why did we choose JSZip? = ------==-=mmmmmmmmmmm oo

10

11

12

12

14

14

16

16

17

19

19

23

25

4. Core of the project ~ smmm

4.1 Goal and Requirements = =-m-mmmmmmmm e
4.1.1 Database Architecture and Development Approach --
4.1.2 JavaScript JSZip & jQuery = mmmmmemmeeeeeeee-
4.1.3 PHP MVC framework — =-----memmmmmeeeeee 31

4.2 Supported Features ~ mrmmmmmmm e
4.2.1 Read EPUB book easily without any extra effort -----
4.2.2 Track the page position automatically ~ ----------
4.2.3 Library services & Bookshelf functionality = ----------
4.2.4 Features to be implemented or improved ~ ----------

4.3 EXPEriment s

4.3.1 Testing process S —

4.3.2 Testing results & feedback = -----------mmmmmmmmemmeeee

5. Conclusion and Future Improvement =~ -------====-==mmnmmmeemanen

6. References = ————mmmmmmmmm o

28

28

28

29

33

33

34

34

34

35

35

36

40

41

Abstract

A JavaScript and PHP EPUB reader web application

By Xiaging He

EPUB is one of the most popular ebook formats. It is supported by many
e-Readers, such as Apple’s iBooks, BlackBerry Playbooks, Sony Reader, Kobo

eReader, Amazon Kindle Fire, and the Mozilla Firefox add-on EPUBReader.

In this report, we describe our implementation of a JavaScript and PHP
EPUB reader web application. This web application allows users to read the
EPUB format books easily across multiple devices without any specified

platform lock-in.

Our application provides an EPUB library. When a user logs in, he can
borrow an EPUB book from the library and save into his own bookshelf, then
choose any one from his own bookshelf to read. Our application tracks where a
user has been reading so users can easily pick up where they left off if they

leave the application.

1.Introduction

EPUB, like PDF and Word, is a format for representing documents in electronic
form. It is vendor-independent XML-based and is widely supported by many
eReaders, such as iBooks, Blackberry Playbooks, Sony Reader, and so on. There is
also Mozilla Firefox add-on, EPUBReader, that reads EPUB files. However, there are
some shortages for these existing devices and applications. A drawback of eReaders is
Platform lock-in, and one for an add-on is the inability to easily sync page positions
across multiple devices. In this project, we will implement a web application for the

EPUB format to get rid of these drawbacks.

In my application, users can read the EPUB format books easily, synchronized
across multiple devices and without any specified platform lock-in. We stored
massive EPUB books in servers and provided them to the user as a library entry. User
can borrow those free books, which will be saved into user’s bookshelf. He can then
access any book on his own bookshelf at any time. The application will track his last
reading page to let him pick up easily next time. He can also access the application

from any devices, that have been synchronized among these devices.

In Chapter 2, I'll present the background for the project with an introduction of
EPUB and a comparison with existing EPUB reader devices and Apps. In Chapter 3, |
will discuss the preliminary work of the project, which includes how JavaScript
compression/decompression works. The core of the project will be described in
Chapter 4, which includes the design, the implementation, and our user experience
experiments. Finally, I will explain my conclusion and future work for the project in

Chapter 5.

2.Background

In this chapter, I will explain what EPUB is, why it has become popular recently
and the difference between EPUB and PDF. Then I will describe the existing e-reader
hardware devices and software applications that support EPUB format and their
issues. Furthermore, I will explain why I choose to create an EPUB reader web

application, and how my application will solve those issues.

2.1 What is EPUB?

EPUB is a short for Electronic PUBIication and is sometime written as ePub[1].
Like PDF and Word, it is a format for representing documents in electronic form. It
has become the most common of all the formats and is widely supported across all

platforms.

The EPUB format is based on the original Open eBook(OEB) format, which was
used between 1997 and 2007. The International Digital Publishing Forum (IDPF) had
announced in late 2007 that OEB format would be superseded by the PUB format.
The EPUB format is a free and open standard and is designed for reflowable content,
meaning that the text display is not static and fixed, but rather can be optimized for
particular rendering device. This feature differentiates EPUB from PDF and Word.
The content, which was shown in EPUB format, is not pre-formatted as fixed book
pages. When a reader device renders the contents of an EPUB book, it formats the
content into pages based on the display size and text font. At this level, EPUB defines

both the format for the contents and how the reading systems will render the contents.

https://en.wikipedia.org/wiki/EPUB

2.1.1 What a EPUB file includes?

The EPUB file is XHTML content wrapped as a zip file package with a .epub

extension, and is similar to a website. It has three major parts:

e Open Publication Structure (OPS)

e Open Packaging Format (OPF)

e OEBPS (Open eBook Publication Structure) Container Format (OCF)

In general, an EPUB file is a collection of OPS Documents, an OPF package file,

and other files of different media types, which include structured text and graphics

that were packaged in an OCF container.
Figure 1 shows an EPUB file’s structure.

Name -~ Date Modified

Feb 14, 2014, 10:05 PM
Feb 14, 2014, 11:03 AM
Feb 14, 2014, 11:03 AM
May 6, 2014, 12:33 AM

May 6, 2014, 12:59 AM
May 6, 2014, 12:55 AM
Feb 19, 2014, 2:32 PM

v |] META-INF
“ | container.xml
B mimetype
v [OPS
B chapter-001.htmi
e chapter-002.htmi

B content.opf

» |9 css Feb 14, 2014, 10:05 PM
» 7 images Feb 14, 2014, 10:05 PM
@ introduction.html May 6, 2014, 12:30 AM
o title.htmi Feb 14, 2014, 10:23 PM
B toc.ncx May 6, 2014, 12:32 AM

B toc.ncx.bak May 6, 2014, 12:31 AM

Size

253 bytes

20 bytes

852 bytes
817 bytes

2 KB

926 bytes
942 bytes
2 KB
1 KB

Figure 1. An EPUB file’s structure

Typically, the Open Packaging Format file (OPF) serves as a container manifest

and defines all of the files included in the EPUB zip file. The OPF file is an XML file,

which consists of three elements:

Kind

Folder

XML text

Unix E...le File
Folder

HTML text
HTML text
Unix E...le File
Folder

Folder

HTML text
HTML text
TextEd...ument
Unix E...le File

1

1
!

1) <metadata>: Bibliography and rights information for the book;

2) <manifest>: Defines the pages and resources which were used in the <spine>
element, including content documents, CSS style sheets, images and

navigation control file (NCX);
3) <spine>: Specifies the order of pages of the book.

Figure 2 shows an example of the OPF file.

B content.op!

content.opf

<?xml version="1,0" encoding="UTF-8"7">

<package xalns="http://www.idpf.org/2807/0pf" unigue-identifier="EPB-UUID" version="2.8">
<metadata xmins:opf=""http://www.idpf.org/2087/opf"
xmlns:de="http://purl.org/dc/elenents/1.1/">
<dcititle>The First EPUS Book</dc:title>
<dcicrentor opfirole="aut™ opfifile-as="He, Xiaqing">Xisqing He</dcicreator>
<dc:date opf:event="original-publication">2814</dc:date>
<dc:publisher>epubBooks (www.epubbooks, con)</de:publisher>
<dc:date opfi:event="epub-publication">2014-02-12</d¢ :date>
<dc:subjectsMystery</dcisubject>
<dc:sourcesProject Gutenberg</dc: sources
<dc: rights>
Provided by Xiaqing He Tor master graduate project. Not for commercial use.
This EPUB eBook is released under a Creative Commons (B8Y-NC-ND/3.8) Licence,
Source text and images are in the Public Domain.
</dc:rights>
<dc:identifier 1d«"EPB-UUID"»urn:uuid:216635F8-6BFE~1014-8FEA-FT2C22E10637«/dc: 1dentifiar
<dc: languagex»en~gb</dc: Language»
</metadata>
amanifest>
<i=- Content Documents -~

<item ide"titlepage" href="title.htnl" media-type="application/xhtmlexmi"™/>

<item id="epubbooksinfo" href="epubbooksinfo.html" medis-types"application/xhtmlexml™/>
<item id="introduction-@01" href="introduction-081.html" media-type="application/xhtalsxml" />
<item id="introduction-002" href="introduction-002.html" media-type="application/xhtalexml"/>

<l— CSS Style Sheets —>
<item id="title-page-css™ href="css/titlepage.ces™ medis-type="text/css™/>
<item id="main-css" href="css/book.css" media-type="text/css"“/>

<|— Images —>
<item i1d="epubbooks-logo™ href="images/epubbooks-10go.png"” media-type="image/png™/>

<l NCX ~—>
<item id="ncx" href=""toc.ncx" media-type="application/x-dtbncx+xml" />
</manifest>
<spine tocs“ncx™>»
«<itemref idrefs“titlepage™ Llinear="yes'"/>
<itearef idref«"gpubbooksinfo" Llinear=“yes"
«<itemref idrefs"introduction-801" Llinearw'yes"/»
«itemref idrefs“chapter-081" Llincar="yes"/»>
<itemref idrefs"chapter-002" Lincar="yes"/>
</spine>
</package>

Figure 2. An example of the OPF file
The content.opf file serves a very import role in the process of rendering EPUB

format files. It tells EPUB Reader devices or applications where to find files in the
EPUB ZIP package, what role each file plays, and in which order to display the pages

of the EPUB format book.

The Open Container Format packages the whole set of EPUB files together. The
container.xml file specifies the locations for the OEBPS folders that contain the
content files and the OPF XML files. It has only one function: telling the eReader app

where to find OPF file. We show an example of the container.xml file in Figure 3.

*) container.xml
File Path v : /Applications/XAMPP/xamppfiles/htdocs/epub/first epub book 2/META-INF/container.xm!

containerxm! 2 (no symbol selected) 2 s B "

H v .
<?xml version="1.8" encoding="UTF-8"7>
<container xmlns="urn:oasis:names:tc:opendocument:xmlns:container” version="1.0">
<rootfiles>
<rootfile full-path="0PS/content.opf" media-type="application/ocebps-package+xml" />
</rootfiles>
</container>

Figure 3. An example of container.xml

2.1.2 How to create a EPUB file

There are different options for how to create an EPUB file, and | will go through

two basic ways due to limited space.
1) Creating from scratch

We have described in the previous section what is included in an EPUB file. We
can follow that standard to create an EPUB file from scratch. Even though this
“creating from scratch” method is not recommended, it is still doable, and we can
demonstrate the process in a simple way. We can find an EPUB file, which can’t have
DRM (digital rights management) included, and change the extension to .zip. Now we
will get a folder containing all of the files that comprise the EPUB book. First, we can
try to manipulate the contents of one chapter file and check how it was modified using
an EPUB reader application (like iBooks for Mac Users), and then modify the whole

contents as expected.

This method will require a huge amount of labor and can easily lead to mistakes.

That’s the reason why it is not recommended or commonplace to create an EPUB file

from scratch.

| used this method to create a dummy EPUB file. Figure 4 shows how it looks

like when rendered by the Firefox add-on EPUBReader.

[

Firefox File Edit View History Bookmarks Tools Window Help

i ® @ Mozia Fifox Start Pag " Pub-Catalog W The First EPUB Book - He,
aboutepubreader?id=1 2

Title Page

INTRODUCTION The Fil‘St EPUB BOOk

CHAPTER |

CHAPTER I PR

Xiaqing He

www.sjsu.edu

Figure 4. An example of a dummy EPUB book created from scratch
2) Convert from another format (like Word, TXT) using an application

There are a few applications, both open-source and commercial, that can help to

convert your Word, ODF (OpenOffice Document File), or RTF (Rich Text Format)

doc into an EPUB file[2] .

There is an application named Sigil. It is a free, open-source editor for EPUB

files. However, a Word file can’t be handled by Sigil directly, since Sigil can only
handle basic text or HTML files. Consequently, we need another software to prepare
the Word file to import into Sigil while retaining the basic formatting. If you are a

Mac user, it is very easy to use Mac’s pre-installed TextEdit application to open a

http://www.thebookdesigner.com/2015/07/4-ways-to-create-an-epub-ebook

Word document and then save it as an HTML file. Figure 5 shows how to set up the

HTML Saving Options of TextEdit.

(] Preferences
|

New Document —apeﬁ and Save
When Opening a File:
| Display HTML files as HTML cocde instead of formatted text

| Display RTF files as RTF code instead of formatted text

When Saving a File:
Add ".txt" extension to plain text files

Plain Text File Encoding

Opening files: Automatic
Saving files: Automatic B
HTML Saving Options

Document type: = XHTML 1.0 Strict =
Styling: No CSS
Encoding: Unicode (UTF-8)

Preserve white space

Restore All Defaults

Figure 5. An example of how to set up the HTML Saving Options of TextEdit.

Or you can import the Word document into Google Docs and then save to
HTML. It can then be opened in Sigil as an EPUB file. There is another option,
Calibre, which is a free eBook management software that has conversion and editing
capabilities. In this section, | have introduced these applications that you can utilize to
convert an existing document in another format to an EPUB file. T won’t describe too
many details of how to do it, as you can easily search online for a topic like How to

use Sigil or Calibre to get the instructions.

10

2.1.3EPUB 3

EPUB3 is the latest version of the EPUB format, and is based on the latest

HTMLS5 standard. Therefore, EPUB publication can now contain video, audio, and

interactivity — just like websites in modern browsers[3]. The feature is achieved by

these key technologies in EPUB 3[4]:

1)

2)
3)
4)

5)

6)
7)

8)

9)

XHTMLS5: for representing text and multimedia content, which now has native
support for MathML equations, ruby pronunciation markup, and embedded SVG

images;

SVG 1.1: for representing graphical works, like manga and comics;
CSS 2.1 and 3: to facilitate visual display and rendering of content;
JavaScript: for interactivity and automation;

TrueType and WOFF: to provide font support beyond the minimal base set

included in a typical reading system;
SSML/PLS/CSS 3 Speech: for improved text-to-speech rendering;
SMIL 3: for synchronizing text and audio playback;

RDF vocabularies: for embedding semantic information about the publication and

content;

XML: a number of specialized grammars to facilitate the discovery and

processing aspects of EPUBS;

10) ZIP: to wrap all the resources up into a single file

11

http://epubzone.org/epub-3-overview/understanding-epub-3
http://www.oreilly.de/german/freebooks/epub3/What_Is_EPUB_3_.pdf

2.2 Existing EPUB reader

Since EPUB has become popular recently, there are now a lot of existing eBook
rendering platforms and applications that support the EPUB format. In this section, |
will describe them separately and analyze their drawbacks. Then | will explain why
we will promote an EPUB reader web application and how it will solve the issues of

the existing services.
2.2.1 iBooks and Google Play Books

iBooks is an e-book application developed by Apple for iOS and OSX operating
system based devices only. With the release of i0S8, iBooks became an integrated
app without extra installation. A user can open any EPUB file with iBooks, which

also provides a link for the user to receive EPUB content from the iBooks Store.

Google Play Books, originally named Google eBooks, is a cross-platform eBook
application developed by Google. The user must have an active Google Play account
to log in, and then can purchase or download an eBook from Google Play, which
offers over 5 million eBooks. The user may also upload up to 1000 PDF or EPUB
books to his Google Play Books account in cloud storage and synchronize them
between multiple devices. However, all those PDF or EPUB books must be purchased

from Google Play Books, otherwise they will be prohibited.
2.2.2 Firefox’s add-on EPUBReader

EPUBReader is Firefox’s add-on. With EPUBReader installed, the user can
import pre-downloaded EPUB files via Firefox’s “File/Open File” dialog, and
EPUBReader will render the file automatically. The EPUBReader will organize all

those books in ePub-Catalog. The user can set up different tag to classify them as a

12

private library. The user can also click a link to an EPUB file online via the Firefox
browser, which has installed EPUBReader extension. EPUBReader will then
download the file and process the file for reading automatically, exactly the same way
as pre-downloaded files. Figure 6 shows an example of how an EPUB book looks in
the Firefox EPUBReader, and Figure 7 shows how those imported EPUB books were

organized in an ePub-Catalog.

Firefox File Edit View History Bookmarks Tools Window Help

| e \. ePub-Cataiog < | W Macnraker - lan Flaming -+

& 1 aboutepubreader?ided ¢ Q Sea

Aoonraker

N0 MOONRAKER
2:::: :- Ian Fleming
Chapeer I

Chapter V
Chapter VI All Rights Reserved.

Copyright © 2015 epubBooks

Chaplec Vi| This publication is protected by copyright. By payment of the

vart Two required fees, you have been granted the non-exclusive,
non-transferable right to access and read the text of this ebook

Chaptes Vi on-screen or via personal text-t0-speech computer systems. No

Chapler X ' part of this text may be reproduced, transmitted, downloaded,

Chapter X decompiled, reverse engineered, stored in or introduced into any
information storage and retrieval system, in any form or by any

Chapter X1 means, whether electronic or mechanical, now known or

Chaptar XI| hereinafter invented, without the express written permission of
epubBooks.

Chapser XIlI

Chapter XIV www.epubbooks.com

Chapter XV

Chapter XV)

Figure 6. An example of how EPUB book looks in Firefox EPUBReader.

13

@ Firefox Flle Edt View History Bookmarks Tools Window Help A8 e 9 o -
e ¢ b Caraog | T
- about:epubcatalog c t * 80 3 4 4 - uO

Private Library <]

I roceogrK

Figure 7. How those imported EPUB books were organized in an ePub-Catalog.

2.2.3 eReader devices

There are many popular eReader devices, such as Amazon Kindle, Barnes &

Noble Nook, Sony Reader and so on.

Amazon Kindle is a series of e-book readers developed by Amazon. The oldest
version of Kindle can’t read EPUB files. The most popular format support by Kindle

is MOBI. Kindle has supported EPUB since the release of the Amazon Kindle Fire.

The Barnes & Noble Nook is developed by American book retailer Barnes &
Noble, and is based on Android platform. Barnes & Noble also provides a free e-

reader application to allow the user to read EPUB books on devices other than Nooks.

Sony Reader is a line of e-book readers manufactured by Sony, who invented the

first commercial E Ink e-book reader with the Sony Librie in 2004.

There are a few other nice eReader devices on the market, but we won’t describe
them here due to space limitations. For more details and comparisons between these
devices, you can visit https://en.wikipedia.org/wiki/Comparison_of_e-book_readers.
From the point of view of this application, all the eReader devices have the same

function: that is, they all support EPUB format.
14

https://en.wikipedia.org/wiki/Comparison_of_e-book_readers

2.3 Why is an EPUB reader web application?

There are EPUB reading application like iBooks, browser extensions like
EPUBReader for Firefox, and eBook reading devices like the Amazon Kindle Fire.
They all support EPUB format, so why still promote an EPUB reader web

application?

The reason is that those existing services have their own drawbacks. iBook
functions on i0S and OSX operation systems only. Window users and Android phone
users can’t utilize this great application, though there are other options available for
Windows and the Android platform. Firefox’s add-on EPUBReader solves the issues
of iBook and can be accessed by both Mac and PC users. However, it is still flawed
due to its inability to easily synchronize page positions across multiple devices. A
user may be reading an EPUB book via EPUBReader on device A and then change to
device B. He may need to install EPUBReader if it is not installed already. And there
is not any infomation on device B about which book he is reading and where he had
left off. This is a big defect im many eBook reader systems. eBook devices do track
where a user has been reading and provide other useful features. The device itself,
however, costs money and it has its own limitations; for example, it does not support

multiple users reading at the same time.

In my project, we are going to create a JavaScript and PHP EPUB reader web
application that supports multiple platforms/systems and allows the user to read the
EPUB book easily across multiple devices, while allowing multiple users to read the

book simultaneously.

15

3. Preliminary Work

In this chapter, we will go through the preliminary work of the project, which
includes an introduction of two compression algorithms, DEFLATE and SEQUITUR,
how to implement this SEQUITUR algorithm using JavaScript, why we have chosen
JSZip, and how to use it decompress a compressed .epub file. As we demonstrated in
the previous chapter, an EPUB file is actually a compressed ZIP file. Since our
project is to create a JavaScript EPUB reader web application, we need to understand
how the file is compressed and how to decompress it, which algorithm to apply and
how it works, whether we can implement one algorithm using JavaScript, which
algorithm we will choose, and how to implement it using JavaScript. Lastly, I will
show why we choose JSZip and which experiment we did to ensure it was good

choice for our project.

3.1 DEFLATE algorithm

Compression plays an important role in computer world, and it is widely used in
data processing. There are many compression methods, like GZIP and DEFLATE,
that are called lossless compression, since there is no data is lost during the
compression and decompression, and the decoded output is exactly the same as the
original input[10]. Any other compression method will create smaller copies of the
original that can’t be decompressed back to the original format. For example, during
JPEG compression, colors that are very similar (but not quite the same) are converted
into one single color. And for MP3 compression, inaudible sounds are removed from

an audio file. Even though data is lost during JPEG and MP3 compression, the image

16

https://www.adayinthelifeof.nl/2010/06/02/deflating-the-universe/

quality is still good enough for normal printing, and the audio quality is also good for

average use.

In our project, we need to decompress the compressed EPUB file and render it
correctly in the web browser, after doing some research on lossless compression

methods, we chose DEFLATE.

Deflate is a data compression algorithm and associated file format that uses a
combination of LZ77 algorithm and Huffman codes. It was originally designed by
Phil Katz for his PKZIP archiving tool. The file format was later specified in RFC
1951. Deflate compression basically consists of two parts: duplicate string elimination

with LZ77 algorithm and compression though Huffman coding trees[6].
3.1.1 Huffman Coding

A Huffman code is a prefix code prepared by the Huffman algorithm[8]. Each
code is a series of bits, either 0 or 1, and represents an element in a specific
“alphabet” (or Huffman tree). The core of Huffman coding is: the characters most
used in the original file get the least amount of bits inside the compressed file.
Alphabet (or Huffman tree) is a lookup table that stores how many bits a certain
character gets. There will be different alphabets for different files, or even for the

same file[9].

I will explain how Huffman coding works using a simple example. Say we have
an input string: ‘FFDBABFCFFAFBE’. The F is the most used, so it gets the least
amount of bits. The B comes second. One thing we need to pay attention to is to avoid

making an overlap. Finally, we can get a Huffman tree as shown in Figure 8.

17

http://en.wikipedia.org/wiki/DEFLATE
https://en.wikipedia.org/wiki/Huffman_coding
http://www.zlib.net/feldspar.html

/ \
0 1F
/ \
/ \
0 1B
/ \
/ \
0 1
/ \ = i\
/ \ / \

Figure 8. An example of a Huffman tree

After getting the Huffman tree, it will be easy to encode and decode of the string.

Now we can compress the original string ‘FFDBABFCFFAFBE’ into:
11001101 000001100101 100001010001;and, grouped into bytes:
1100 1101 | 0000 0110 | 0101 1000 | 0101 0001

C D 0 6 5 8 3 1 (hexcode)

We have compressed 14 bytes string into 4 bytes. Now, we begin to decompress.
The rule of decompressing is to read a bit and follow down the Huffman tree until we
get to a character or the end of the tree. When on the top of a tree, we need to read the
follow bit to decide which branch will continue. Then we can determine that the
output of decompression is ‘FFDBABFCFFAFBE’, which is exactly the same as the

original string.

18

3.1.2 LZ77 compression algorithm

LZ77 is an algorithm designed to compress repeated sequences of characters. It
is used to analyze input data and determine how to reduce the size of that input data

by replacing redundant information with metadata[7].

LZ77 algorithm uses the term “Sliding window”, which means that at any given
point in the data, there is a record of what characters came before[9]. A 64K sliding
window means that the compressor (and decompressor) has a record of what the last
65536 (64*1024) characters were. When the next sequence of characters to be
compressed is the same as the one that can be found within the sliding window, the
sequence of characters will be replaced by two numbers: a distance, representing how
far back into the window the sequence starts, and a length, representing the number of

characters for which the sequence is identical.

I will also explain how distance and length works using a simple example. For
example, we have the following HTML code: <title>Test</title>. It can be
compressed as <title>Test</[6;12]. 6 is the length and 12 is the distance. How can we
decompress it? 12bytes back, the position begins at ‘t’ of <title>, and we will copy the

next 6 (length) bytes since there to get the <title>Test</title>.

3.2 SEQUITUR, a grammar-based compression algorithm

The SEQUITUR algorithm was developed by Craig Nevill-Manning and Lan H.
Witten in 1997. It is a method of using data compression to infer the structure of a

sequence of symbols. It detects repetition and factors it out of the string by forming

19

https://msdn.microsoft.com/en-us/library/ee916854.aspx
http://www.zlib.net/feldspar.html

rules in a grammar. The rules can be composed of non-terminals, giving rise to a

hierarchy.
Here is general process of compressing with SEQUITUR[12]:
We will use three major variables, as follows:

1) An auxiliary string, Aux, that represents the results of compression process so

far;
2) A hash table, Hash, which will have pairs of symbols that appear in Aux;

3) A table of productions that have been generated so far. The right-hand side of
these productions will always have a length of at most 2 before the final step

of this algorithm is applied.

In the beginning, all the three variables are empty by default. Let W=
W1,W2,...,Wn be the string we are going to compress. The algorithm proceeds as

follows:

First, for i = 1 to n: add Wi to the end of Aux and look at the last two symbols of

Aux. These might be a mix of terminals and variables. If:

a) The last two symbols match one right-hand side of production in Production
table, then replace in Aux these two symbols by the left-hand side of variable
of that production. If the production has been used more than once, it will

have a flag as marked;

b) The last two symbols match a pair of symbols in Hash, then replace the two
symbols with a new variable. Add a new production to the production table

consisting of this new variable going to these two symbols. Next, delete these

20

http://www.cs.sjsu.edu/faculty/pollett/154.13.13s/Lec18032013.html

two symbols from Hash and add to Hash the two symbols, starting from where

we replaced the earlier occurrence.

Now, we will place the last two symbols of Aux in Hash, then repeat the above

two steps until nothing else can be applied.

Second, remove rules that are only used once in the grammar by compressing
them. For example, if A -> BC, B -> de, and C -> fg and the last two rules were used

only once, then we will delete these two rules and add the rule A -> defg.

Last, we output the grammar consisting of the rules in our production table

together with a new start variable, S, that is used in the rule S -> final value of Aux.

For example, we have the input string as “abbababbabbabbabab”, Table 1 shows

the state of Aux and the production table after each character is read:

21

Letter | Aux Production Table Hash
a a {} {3}
b ab {} {ab}
b abb {} {ab,bb}
a abba {} {ab,bb,ba}
b Abbab becomes AbA {A->ab} {Ab,bA}
a AbAa {A->ab} {Ab,bA,Aa}
b AbAab becomes AbAA | { A->ab marked } {Ab,bA AA}
b AbAADb becomes BAB | { A->ab marked, B->Ab } | {BA,AB}
a BABa { A->ab marked, B->Ab } | {BA AB,Ba}
b BABab becomes { A->ab marked, B->Ab, | {CC}
BABA becomes CC C->BA}
b CCb { A->ab marked, B->Ab, | {CC,Cb}
C->BA}
a CCha { A->ab marked, B->Ab, | {CC,Cb,ba}
C->BA}
b CCbab becomes CCbA | { A->ab marked, B->Ab, | {CC,Cb,bA}
C->BA}
b CCbADb becomes CCbB | { A->ab marked, B->Ab | {CC,Cb,bB}
marked, C->BA }
a CChBa { A->ab marked, B->Ab | {CC,Cbh,bB,Ba}
marked, C->BA }
b CChbBab becomes { A->ab marked, B->Ab | {CC,Cbh,bC}
CCbBA becomes CCbC | marked, C->BA marked }
a CCbCa { A->ab marked, B->Ab {CC,Cb,bC,Ca}
marked, C->BA marked }
b CCbCab becomes { A->ab marked, B->Ab {CC,Cb,bC,CA}
CCbCA marked, C->BA marked }

Table 1. An example of how to compress a string with SEQUITUR algorithm

22

Now, we get the final {A ->ab, B -> Ab, C -> BA, S -> CCbCA} since there is
no rule that was used only once. We are going to use R to denote the start of a rule,
and # followed by a sequence of digits for n to denote the n variable. In this example,
the string “abbababbabbabbabab” was compressed as RabR#0bR#1#0R#2#2b#2#0. It
looks like it was not too efficient here, while it works better on longer strings. For
example, a string of 64 a’s can be encoded as RaaR#0#0R#1#1 R#2#2R#3#3R#4#4, a

string of length 28.

3.3 How to implement SEQUITUR algorithm using JavaScript

Since our purpose is to create a JavaScript EPUB reader web application, the
most important issue is whether we can unzip compressed EPUB files using
JavaScript. The research | am doing here is trying to implement the SEQUITUR
algorithm using JavaScript. If our JavaScript code can compress and decompress

correctly with SEQUITUR algorithm, then our proposal is doable.

To fulfill the compress function, we have an auxiliary string s1 which is exactly
the same as Aux that was described in Sequitur algorithm, an array R[] to store the
right-hand side of the Production table, array M[] to track whether a production has
been used more than once, and array last2Arr[] as that Hash which was described in
the previous section to track each combination of two characters of the input string. If
there are only 2 characters in the input string, there is no need to apply the Sequitur
algorithm, just use the original one. For a string consisting more than 2 characters,
using variable C to track each character and add it to the end of the auxiliary sting S1.

When getting a new last two characters of S1, which was represented as other String

23

variable last2char, we first check if it exists in Hash last2Arr already. If yes, we will
push it to Production table R and replace the two symbols with index info of
Production table in auxiliary string S1, and need to construct array last2Arr[] with the
new combination of each two characters in S1. If the last2char does not exist in Hash
last2Arr, we will check whether it matches anything that existed in array R[] as the
right-hand side of Production table. If it matches an existing right-hand side
production, we will first mark that production as true, and then replace in auxiliary
string S1 those two characters by the index number of production and delete it from
Hash. Furthermore, we need to deal with the new last 2 characters in auxiliary string
S1 and repeat the above process. If it does not match anything in right-hand side of

Production table, we will just push last2char to Hash last2Arrf[].

When getting the final production array R, we need to eliminate the rules that
were used only once. This step was fulfilled by checking whether M[index] is labeled
as false when dealing with R[index]. If the rule was used only once, we need to

replace in auxiliary string S1 the updated right-hand side production.

For the last step, we will construct the final compressed string with element in

array R[]; that is, the final rules in production table.

It is relatively easy to implement the decompress function. We have the final
compressed value, str, which consists with a lot of Rs as the start of a rule. We then

we split the whole string by replacing it with position and rule info.

The source code of the compression and decompression functions is shown in

Figure 9 and Figure 10.

24

<script type="text/javascript”>
function compress()} {

var 5 = document.getElementById("submit").value;
it (s.length < 3) {document.getElementById{"demo").innerHTML = s;}
else {

var s1 = sl@].concat(s[1]);
var R = new Array();
var M = new Array();
var last2Arr = new Array();
last2Aarrie] = s1;
var last2char;
var finals"";
for (var i=2;i<s.length;i++)(
var ¢ = slil;
s1 =sl.concat(c);
last2char = s1isl.length~2]l.concat{si[sl. length~-1]);
if (last2Arr.indexOf(last2char) < @)

var index = R.indexOf(last2char);
if (index >= @)
{
Milindex] = true; 51 = s1.replace(last2char, index);last2Arr.popl);
var last2char = si[sl.length-2].concat(slisl.length-1]);
if (last2Arr.index0Of(last2char) < @)
{last2Arr.push(last2char);}
else {
R.push(last2char);
var index = R.indexOf(last2char);

var re = new RegExp(last2char, '9'):

s1 = sl.replace(re, index);

last2Arr = new Arrayl();

for (var 3=0;j<si.length-1;3++)

last2Arr.push(si[jl.concat(s1[j+11)):
)
}
¥
else {last2Arr.push(last2char); }
else {

R.push{last2char);
var indexl = R.indexOf(last2char);

var re = new RegExp({last2char, 'g');
s1 = sl.replace(re,indexl);

last2Arr = now Array();
for (var)=0;j<sl.length-1;j++)

last2Arr.pushi(si{j).concat{si(§+1])};
}
¥
for (var 1=8; {1 < R.length; 1+4+){
if (M[i] != true) {var re = new RegExp(i, 'g'); $1 = sl.replace(re,R[il); R{i] = i;}
for (var 1=9;1<R. length;i++){
final = final.concat("R" + R[i]);

final = final.concat("R" + s1);
document.getElementById("demo”). innerHTML = final;

Figure 9. Compress function with SEQUITUR

function decompress(){
var str = document.getElementById("submit_asgain”).value;
str = str.substr(l);
var res = str.split(“a");
for {(var jsres.length=2;j>a@;j~=){
i1 (res[j] = j){var re = new RegExp(j,'q');reslres.length-1] = res[res.length-1].replace(re,res(j]);}

document.getElementById("origin”).innerHTNL = res[res.length-1];

Figure 10. Decompress function with SEQUITUR

25

3.4 Why did we choose JSZip?

Since have implemented Sequitur algorithm successfully in JavaScript. We are
pretty confident that an EPUB file can be rendered in web browsers using JavaScript.
While it may cost a lot of time and effort to create our own JavaScript code to
Zip/Unzip, there may be some JavaScript library that has provided this feature

already. After doing some research, we found JSZip on GitHub.

JSZip is a JavaScript library for creating, reading, and editing .zip files. In our
project, we focused on how to use JSZip to read an EPUB book as a zip, especially
how to get the binary data of that Zip file with an AJAX request from the browser,
and then how to access the file content in the browser. From the examples shown in
JSZip document, there is a collection of cross-browser utilities to go along with
JSZip, JSZipUtils , that we can apply. To make sure it works well, we need to include

both JSZip and JSZipUTtils libraries in the source code.

First, we will utilize JSZipUtils to get the binary data of an EPUB book on the
server with an AJAX request in the browser. We need to provide the correct file path;

otherwise JSZipUtils can’t load the contents.

Then we make an instance of JSZip, which consists of all the files included in
that EPUB file from which we just got binary data with a AJAX request. On this
instance, we can update (add, remove, and modify) files and folders with .file(name,
content) and .folder(name). They return the current JSZip instance as an output of

JSZip(data).

In our application, we are just going to show them properly in the browser, so we

will access the file content with .file(name) and its getters. We are using one getter

26

method asText(). It returns the content as a Unicode string. After that, we just do a

normal front-end operation in JavaScript, as we expected.

There are some limitations of JSZip. One is that JSZip only supports UTF8. If
the names of the files inside the Zip file are not in UTF8 (or ASCII), they won’t be
interpreted correctly. If the content is a text not encoded with UTF8 (or ASCII), the
getter method .asText() won’t decode it correctly either. And there are some
performance issues that come from the browser. A compressed zip file of 10MB will
be “easily” opened by Firefox/Chrome/Opera/IE10+, but will cause a crash in an

older version of IE. So we suggest not using IE <= 9 when using JSZip.

Those limitations may be improved in the future version, or there may be another

improved JavaScript library available to render Zip/EPUB files.

27

4. Core of the project

In previous sections, we described the background of this project and what we
completed in preliminary work. In this chapter, 1 will present the core of the project:
that is, how we design, implement, and test the JavaScript and PHP EPUB reader web
application. First, I will introduce the goal of this project and its requirements.
Secondly, I will go through the architecture design and framework options. Third, |
will list all supported features and discuss features to improve. Last, | will show
several experiments we performed to check this application’s design and

functionality.

4.1 Goal and Requirements

Our proposal is to create a web application that allows users to read an EPUB
format book easily across multiple devices. To fulfill this feature, we need a database
to store the user’s account info, which book he is reading, and where he has been

reading. Furthermore, we will provide a library service and bookshelf functionality.

In our application, a user can create an account. A registered user can borrow
books from a library after login and then save them into his bookshelf. The user can
only read books in his bookshelf, and the application will track his reading and save

his last reading position in each book to enable him to easily pick up where he left off.
4.1.1 Database Architecture and Development Approach

We will use typical server-client architecture for this project. A server is

normally a powerful computer or process dedicated to managing disk drives (file

28

servers), printers (print servers), or network traffic (network servers). A client can be

any PC, smartphone, tablet, or workstation on which users can run an application[13].

LAMP (the Linux operation system, the Apache HTTP Server, the MySQL
database and the PHP programming language) is a popular solution stack for building
web applications. In this project, we are going to use XAMPP (version 5.6.3), a free
and open source cross-platform web server solution stack. The X stands for cross-
platform. It works equally well on Linux, Solaris, Windows, and Max OSX. A stands
for Apache HTTP Server, M means MySQL database and PP means it can interpret
scripts written in both the PHP and Perl programming languages[14]. It’s not easy to
install an Apache web server, and it gets more complicated when adding MySQL,
PHP, and Perl. With XAMPP, it is easy to install Apache distribution containing

MySQL, PHP, and Perl.

We chose the most popular open source MySQL (version 5.5.30) as our database
option. For this application, we need the database to store user info, books/library
info, and user-book info, which will track who are reading which book and the last

page they were reading. We will use PHP for our server side development.
4.1.2 JavaScript JSZip & jQuery

We have implemented the SEQUITUR algorithm using JavaScript, ensuring us
that we can write code in JavaScript to Zip/Unzip files. In our application, we will
utilize the JSZip, a JavaScript library for creating, reading, and editing .zip files, to
unzip the EPUB file with an AJAX request from the browser. Then, we will write
functions in JavaScript to parse metadata and display the EPUB book’s contents in the

browser. Most importantly, we need to implement a feature that will send the user’s

29

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/XAMPP

reading information to the server periodically and automatically. We will explain

more details from a programming point of view as follows:
1. Using JSZip to unzip and read the EPUB book

With the help of JSZip, not a lot of coding is required on our part.
However, we spent a good deal of effort making JSZip and its utilities,
JSZipUtils, work well with our code. The documentation of how to use JSZip

is not clear enough and it is difficult to debug when something goes wrong.

Getting binary data with an AJAX request in the browser is hard, but
with JSZipUtils.getBinaryContent, we can achieve it. Figure 11 shows an

example of how to use JSZipUTtils.getBinaryContent.

ISZiputils.getBinaryContent(‘path/to/content.2ip', functionlerr, data) {
if(err) {
throw err;

}

var zip = new JSZipldata);

});

Figure 11. An example of how to use JSZipUtils.getBinaryContent.

In the callback function, we make an instance of JSZip with response
data that includes all the files of the Zip package that are specified in the
‘path/to/content.zip’. With this instance, we can update files and folders. We

show an example of how to get file content with a JSZip instance in Figure 12.

var new_zip new JSZip();
y
new_z1ip.\ocad{content);

every files

new_zip.file{"hello.txt").asText(}; // “Hello World\n

Figure 12. An example of how to get file content with a JSZip instance.

30

2. Using JavaScript to parse the metadata and display the pages

When getting the file contents in the browser, we need to write JavaScript
code to parse the metadata and define how to display book contents properly
in the browser. An EPUB book is like a website, and its pages are stored as
html file, so it is straightforward to display the pages in the browser. We will
display table of contents also by parsing toc.ncx or the equivalent file.
Furthermore, we implemented an on-click function when a user clicks any

chapter in the table of contents, the page will show the contents accordingly.
3. Using jQuery to load data from the server using an HTTP Post request

jQuery is a cross-platform JavaScript library and is one of the most
popular JavaScript libraries in use today. It makes things like HTML
document traversal and manipulation, event handling, animation, and AJAX
much simpler with an easy-to-use API that works across multiple browsers. In
our application, we did not fully utilize its powerful functions. We just used
jQuery to make an AJAX call and send JSON data to the server via an HTTP
Post request. This step enables our application to track a user’s data (user info,
book info, chapter info and page info). The snippet code used to update the
user’s reading data periodically via jQuerey.post() is in Figure 13.

setInterval({function(){
var data = {

title : titlelInfo,

chap : new_chapInfo,

page : window.page¥Y0Offset
¥
$.post{”./7c=book", data, function(json){alert{jsonl;}, "json™};
Y.3eee);:

Figure 13. The snippet code used to update the user’s reading data periodically via

jQuerey.post().

31

4.1.3 PHP MVC framework

MVC (Model-View-Controller) is a very popular software design pattern for
developing web applications. A Model View Controller pattern consists of following

three parts[16]:

e Model - The lowest level of the pattern that is responsible for maintaining

data.

« View - This is responsible for displaying all or a portion of the data to the

user.

o Controller - Software code that controls the interactions between the Model

and View.

In the MV C pattern, the application is broken down into three coherent parts: the
Model, or Data, the View, or User Interface layer, and the Controller, which mediates
user interface interactions and updates to Model. I will show the MVC process

clearly in Figure 14.

ol

UPDATES MANIPULATES
VIEW CONTROLLER
\\9 >
=, <
<<% 9‘0
- >
\ 2
USER

Figure 14. MVC process
32

http://www.lynda.com/CakePHP-tutorials/MVC-Frameworks-Building-PHP-Web-Applications/315196-2.html

There are many popular PHP MVC frameworks, like CakePHP, Symfony,
Laravel, Zend, and so on. However, we will create our own PHP MVC framework in

this project, just following the basic concepts.

We have specified only one entry point for the whole application as index.php.
In index.php, we control the workflow based on the different $ REQUEST. To
implement the application’s features, we need to specify each feature in controller,
model, and view. For example, we provide a feature to let a user register in our
system. Then, we need a controller file (controller/register.php) which defines the
workflow of register process, like how to deal with when a user did not fill in all the
must-have info, how to retrieve data in the view and store it in the database via model
file, and so on. A model file (model/register.php) will take care of all the operations
within database, like checking whether a username was used already, inserting user
information into the database, and so on; a view file (view/register_view.php) will
just display the metadata following the HTML and CSS format, which was defined by

itself.

4.2 Supported Features

In this section, | will describe the main functionalities of this application. This
new EPUB reader application enables a user to, 1) read any available EPUB books
without any specific platform/device or pre-installed add-ons, 2) track a user’s
reading page automatically for easily pick up form where he left off, 3) borrow free
books from the EPUB book library and manage books in bookshelf. Lastly, I will list

some features that need to be implemented or improved upon in the future.

33

4.2.1 Read EPUB book easily without any extra effort

This new EPUB reader web application is very user friendly. Like any other
EPUB reader system, a user can read an EPUB format book in this application. The
user does not need to pre-install anything or rely on any specific platform or device to
access the books. After the user properly creates an account, he can borrow a book

from the library, save it to his bookshelf, and begin to read.
4.2.2 Track the page position automatically

This is the nicest feature of the application. It serves as a bookmark without
requiring a user’s effort. That is, a user does not need to place it intentionally. During
the reading process, the JavaScript code in the client side will communicate with the
PHP script on the server side periodically to update the page position and store it in
the database. Once the user logs in, the system will retrieve his latest reading record
from the database and the server will send this response to the client. Eventually, it

will display to the user the exact same page he left off at during last reading.
4.2.3 Library service & Bookshelf functionality

In this application, user can create an account and his username, password and
some other registration info will be saved into database. When a user logs in, the
system will check the legality of the user. After a successful login, the user now can
browse all the available books and borrow any or all of them and save them into his

own bookshelf.

The major issue here is not a technical issue, but rather a copyright issue. Where

can we get so many EPUB books and then provide them to users to borrow for free?

34

Google Play Books offers over 5 million eBooks based on Google’s powerful

resources. In our case, this is not an issue we will try to solve in this project.
4.2.4 Features to be implemented or improved

Currently, this application just works in a basic way. There are a lot of features

that can be implemented or improved.

For example, support for uploading a book. Before we do that, we need to assign
a role for each user in the application. Basically, it will be guest, registered user, and
admin. A guest can view a book without registration, but can not save the book to his
bookshelf. None of his reading info will be tracked by the application. A registered
user can borrow a book from the library to save into his bookshelf or upload books to
his bookshelf. He can classify books of his bookshelf as public, which serves a similar
purpose as the library, or label a book as private. Here we need to provide a search
function for the user to easily search across both the library and his own bookshelf.
Having more users sharing books will help solve the issue of limited books in this

project.

Furthermore, as a web application, the user experience is very important. A user
friendly Ul is crucial. This prospect is still in the early beta version and it needs lots

of effort to improve the Ul design.

4.3 Experiment

In this section, we will show several experiments we performed to check this

application’s design and functionality.

4.3.1 Testing process
35

We designed the testing tasks as follows:
1) Whether a user can register an account.
2) Whether a user can log in.
3) After login, whether the book shows properly.

Here we have different scenarios: for a user’s first time log in, the page is
empty, and there is a link to the library page. Then, the user can borrow a book
from there and begin to read; for a user with an existing reading log in this

system, the page should be exactly the same as where he left off last time.

4) Whether a user can borrow a book from a library and the book will shown up

in his bookshelf.
5) Whether the recent book feature was updated during the reading.
And we had a group of 3 people execute testing in 3 rounds.
e Round 1: testing on Chrome, Firefox, and Safari for Mac OSX
e Round 2: testing on Chrome, Firefox, and IE for Windows
e Round 3: testing on iPhone, iPad, and Android Phone
4.3.2 Testing results & feedback

Testing results from round 1 and 2 are quite positive, and all those testing tasks
were checked and fulfilled. In round 3, since our web application is not targeted for
mobile devices, the user experience is not good. Figure 15-20 show those experiments
we had done on different browsers for different operation systems and show those

tests we had done on different smart phones and tablets.

36

[I T

- L=] [LERTURST
1 v B Sestes -

et | G frm gy vasbue aena o

Bra T ety b P G0 . Daasibonlun it
L e P PR — e D
Wl & Bl ks el grer 4beh e -

B O sriber rrseer e pranb Porem ™

L I

Figure 15. Testing EPUB reader on Chrome for Windows

},

| < [+ Y I T £ 1 2 10 5001 330
 Pike Bam View Fosmenes Toshs Mol

G B Sagperied bies = J) Vot Bhes Uatary »
D buan-grey - wenthet Leg om
floming-mootnrksr Qe 1o liboary
milne-winnic-the-pooh Cio 1o your resent book
orwell-ninctecu-cighty-four
T o [Ty B L
- [d e ¥resel wim T e & o=
Wisnle st ool Mooduios Chaster ! Chaooe] Chaoosr] Clhapter 1Y Chasee Y Chaptee Y1 Chasee VI Chagter Y01 Chasec X Clagoce X f
Chapter 1T ||
Im Which Pook Goes Viviting and Gets It o Tight Place j‘?
I wmed Bomr. bmown wo bl friends as Winnie e oot or Pooh for short, wes walbing theough dhe foms ome day. h—wmoum-uynmnnu 18e Dt madde up & litle hom thet very .
WOERAg, e s Gosng Bls Sloutneas Tlaercises e frost of 11 glass. Tra e du iva Gl an B Sotohidd G as Tugh as B could Trow dow dow dven bos o wln, Al - L, e bet ol by
Tomch Bin Soes. ANerT Brumkiad e B said # over and over 50 himsclf watl) he fud loarm # off ty hoart, and zow e was bamming nnﬂ-mmn.a properly. B weet S this
Fru dw do ives. duadow, 1
L O R

e L e
Tt - abutle . tedfie- hdle.
Tikhle wbbic. shhtie ibMe
N v sy hdikle s

Well. v.-npnumam;mu-xmnh-r-eu and walking wiong gy wondering il cverytiody eise was Soing. snd st it felt ke, boing sommtody ehw. when seddenly be onme o &
waduly mak, wral in e ek wos & bergy besle

CABATT aakd TO0h . R b Ay i) l'llm-ylluﬂdﬂllul,‘ln. hat hode ovomes Flabdsr.” he sasd, “smd Rabbit moans Company ,* he sakd, “snd Company mesns Food wed
Flstenming 40 M Hummmring sed sucht 1be Mum sarm ssame sbhfie sm

| %0 he bane down, put his hoad o the hole. and called out

| “1e anytunty ot Wsenre

| Thero was & ssdden scutfling nooe from makde o Boke, and then sillsece
| “Wihert 1 bt Wb, ‘16 ampteonty o Bueroe 7 ealiend aust Pemsh vewy Mousdity

 a® s ra ae sesr suva

TNOT aakd & voloe: mad dhen addod, "You Seodn 1 steout w0 lowd. | heand you Quite well she firee time *
| "Isaiver!™ said Pool. “Eaat (here snytsaly hewe st Wi
l-soun. .

Figure 17. Testing EPUB reader on Firefox for Mac OSX

37

O LATAT O & aseem LR
= 1921681188 (4
n-u—-;--upulughhw Au-—dh.l“h“
b 10 Lomdon sunirnon L 00 minete Ameds 1 N witol oo B My wnt Waba
U el i i ey e T e W e e B werd o e ADC TR
e b ot of monddie. Wil o e w0 Loey w0 10 o e el en. Unbons of conmne

o et b ot b ey bk ol by srmaghe s P et st S sl candellty
POt v et Sy hpaes pey wns

T whaniin) e ey el Bhend Thes S o sy permaadier Sramds sy e i
—

Nrvat wwn b spnad b oy of Suwn onngd Witk sl S Sensatedd © and Doas
“Dhrnsy b commadery hameetl o oot shwny g ohons Perwwnlly, | ' helans heny s
Wt S o B e o | iy Bt gt e P) e o O e o8 By
B e L T e R e N e L
by popic’s wllnn. Wit 8o pow y * Potuge we ool Mne 0 Mhe ™

e L R e T

TR S el Dvan, b hnady plad s bipvy ¢ Gt st nd gt had
L L T T L S L
W progrmens * W gt ap O Son (Sem ol prwd ey w md Avs e nemn Setend
on ool "Tonkey o Widnondion ™ tu sl Al v 00t S vt ol by s B iy
Thee will b cngury il by [Wi ond myarl sl roe muon o oy Mamaary howt »
L wyDang e w g 8 Wt e (et o syend ar Gy ot S Thea o S
gl sy oA L Sty st e by bt d o Aot Sagh

B pormimng, B¢ toud will b vpened omaght W iiew B Aumen e choae My men
] s gand o v s st yard snev s o Bandeld yunds fra B vt D wil
D e e L R s e T I B R
N wns 0 bl b vt agass wd bnabler o o baad e bl By B —— e
e B grre s O Mamsdor ol b staly we g The pumin ol by pesssapnty o
Ay romd (hn s O Fradey mormsey | Sl purmmelly speryom fae Ooe wemgn The
o e e Misnlry ol tdbe svow B By ot sl B0 BAF o mun e vude e
L e R e e e e e N k)
o v bty e A maliey oty |l o B planger o bades e ol besk
ot b covwt and * e el hevnalty “wu ol ser whet wk Al e ¢ D pemend.
Soguring bis vl “Now bt o ! Woll mow Shippeng s il by (hamed Sum e tepet e
o ondugh on Tharnby The Novy vl provide & peond of B Sonmdorus of S as o)
Avagh G mummng Thore will bu o B om0 swn of S Shgn Tha My
e L e e e el Tl
hanhed By w8 ey oo Srong wp B temammn Yime iy be mmrnraed 0 bmee m—

wAINTY o ass M

1921681188 <
loga
ATAT Y > 458 LA
a 1921681188 WA

Chapter XV

There was a moment's silence in the room
during which Bond reflected how odd it was
that suspicions should have fallen so
suddenly and s0 unanimously on one man,
And did that automatically clear all the
others? Might not Krebs be the inside man of
a gang? Or was he working on his own and, if
s0, with what object? And what did his
snooping have to do with the death of Tallon
and Bartsch?

Drax broke the silence. “Well, that seems to
settle it," he said, looking to Bond for
confirmation. Bond gave a non-committal
nod. "Just have to leave him to you. At all
ovente we et o ha e bont wall sawow

Figure 18. Testing EPUB reader on iPhone

38

Lo N VR
i 10313214 ¢ 0O+

—
-

NeeonEgitvor Blie (| (hpe? (hape) Chped (bl (bt (hper? (el B
™ Ogel Ope) Ol Ggerd (opied Cerd Ogie? Ggerd (Gpied hole gl
| Quel Qe Ot Omod O Apeic

(ewim

Chptr

v a g ol oy Ao, md e clocks wee g e, Wamon S, b i mcerod b ot ot v e e ik
wiad, sipped quckly Grough e g oo of Vi Mams, egh o qckly comegd oot 1 s oty et v e g
wikim

ey o b b o et of . e gt e i, e b el
deputod gy i commnt fce, swee 1 e ik e fce of o o ot e, w1 vy Mack stk ad el
Ahame eate, Winsoe sl forhe o o ey e v ot o e ¢ s o kg o ot pect e
clo st was cut off ding Gl Boun, K wa e o e commmy e i gepecion e Yok, The fit v fighoy i
Wi, who wos iy a1 v e dhowe s gt ke et ol i el e o . O i, oppusite
the -t o o e emrmens e g o i wall. B s e o e e b a0 cmved ey ollow Y
bt whon o e, B BROTHER IS WATCHING YO e coptoe honah 1o

e e oty onc s i ot oy which b st b o il e podactioof pg v, T v e i
b e e s i e v fvedp o e e of b g b vl Wk b1 e vtk
wncbs, o e wends woe i gt The intovmes e oo, o ald) o b el ot e v 0wy o
shung % off complenty. He moved vz 10 B wendowr 3 el fad s, S mcgrenci of b body medly cophesand Yy e Mot vt
whed wer e wmform of e s bt was vy i, s e sl gt s com g s cvere oo St e Nl md
i e wier ot b el

i, ven g et widow 4uce i nerd ooked okl w2 ¢ gt e i of ik oo whring dd ol v pugr e
i, and ogh e s s andthe oy N e thoe scmed 1 e oo o n iy, encegt e e it o paed
oeyvir. The Nk st e puaod dows o vy ooamunlin e Tho was e 2 e Mo et mmetinchy ot BIG
BROTHER IS ROTURING YOU, e cotion und, whie e ek o hokod g o W v Dows o o bove sl ot v
¢ o, fopped Sl n e wind, el g d s e g ward INGIC. i e i et a gt il do
Actwace e ofh, bovered o it ot el v wih s v B was e e s, s 0 oo’

U T 481021 PM
192.168.1.188/epub/?c=book () &

I ChapterXXIl ChapterXXIV Chapter
I

apter XI
icewoman Brand

2 minutes later Bond was showing his Ministry
s to the uniformed guard on duty at the gate in
high wire fence.

t RAF sergeant handed it back to him and

1ted. "Sir Hugo's expecting you, sir. It's the big
1se up in the woods there." He pointed to some
its a hundred yards further on towards the

[s.

1d heard him telephoning to the next guard

« + A E R

Figure 19. Testing EPUB reader on iPad Figure 20. Testing EPUB reader on Android phone

Overall, the design and functionality are acceptable, while all the feedback is to

focus on the Ul design. This part definitely needs to be improved.

39

5. Conclusion and Future Improvement

This paper contains the motivation, theoretical foundation, design pattern,
detailed implementation, and testing process for our EPUB reader web application.
We started our project doing research on EPUB. After learning that EPUB is just a
Zip package, we began to do research on how the compression/decompression
algorithm works and implemented the SEQUITUR algorithm successfully in
JavaScript. When all preliminary work had been done, we were confident that we
could create such a web application and focus on design and implementation. We
went though many issues during the process. By solving each of them, we expanded
our knowledge of compression algorithms, front-end technologies, and server-side
programming.

This project aims to create an EPUB reader web application that supports a user
to read EPUB format book easily across multiple devices. During user acceptance
testing, this feature was implemented fully. However, there was a lot of feedback that
focused on the user experience. In a web application, user experience is very
important, and there are many features that need to be implemented and improved in
the future release.

The application is only a beta version, and there is much room for improvement,
especially in the Ul design. In the future of this project, it may expand into an eBook
community. It needs to provide more books for people to borrow, read, and share
comments. Increasing the number of books is a big issue due to copyright protection.
In that scenario, providing the upload feature is key, but may involve other issues like

file management, role design and so on.

40

6. References

[1] “EPUB”. [Online]. Retrieved from: https://en.wikipedia.org/wiki/EPUB

[2] Kudler, David. (July 10 2015). “4 Ways to Create an ePub eBook”. Retrieved
from: http://www.thebookdesigner.com/2015/07/4-ways-to-create-an-epub-ebook/

[3] “Understanding EPUB 3”. [Online]. Retrieved from: http://epubzone.org/epub-

3-overview/understanding-epub-3

[4] Garrish, Matt. (September 1 2011). “What is EPUB 3”. O'Reilly Media, Inc.
Retrieved from:
http://www.oreilly.de/german/freebooks/epub3/What_Is EPUB_3 .pdf

[5] Davies, Emma. “Creating and formatting documents for e-readers using ePub”.

Retrieved from: http://www?2.le.ac.uk/projects/oer/oers/beyond-distance-research-

alliance/creating-and-formatting-documents-for-e-readers-using-epub-a-guide

[6] “DEFLATE on Wikipedia”. [Online]. Retrieved from:
http://en.wikipedia.org/wiki/DEFLATE

[7] “LZ77 compression algorithm”. [Online]. Retrieved from:
https://msdn.microsoft.com/en-us/library/ee916854.aspx

[8] “Huffman coding”. [Online]. Retrieved from:
https://en.wikipedia.org/wiki/Huffman_coding

[9] Feldspar, Antacus. (August 23 1997). “An Explanation of the Deflate
Algorithm”. Retrieved from: http://www.zlib.net/feldspar.html

41

https://en.wikipedia.org/wiki/EPUB
http://www.thebookdesigner.com/2015/07/4-ways-to-create-an-epub-ebook/
http://epubzone.org/epub-3-overview/understanding-epub-3
http://epubzone.org/epub-3-overview/understanding-epub-3
http://www2.le.ac.uk/projects/oer/oers/beyond-distance-research-alliance/creating-and-formatting-documents-for-e-readers-using-epub-a-guide
http://www2.le.ac.uk/projects/oer/oers/beyond-distance-research-alliance/creating-and-formatting-documents-for-e-readers-using-epub-a-guide
http://en.wikipedia.org/wiki/DEFLATE
https://msdn.microsoft.com/en-us/library/ee916854.aspx
http://www.zlib.net/feldspar.html

[10] Thijssen, Joshua. (June 02 2010). “Deflating the universe”. Retrieved from:
https://www.adayinthelifeof.nl/2010/06/02/deflating-the-universe/

[11] “How does the DEFLATE compression algorithm work”. [Online]. Retrieved
from: https://www.quora.com/How-does-the-DEFLATE-compression-algorithm-

work

[12] Pollett, Chris. (March 18 2013). “Grammar-based compression algorithm:
SEQUITUR”. [Online]. Retrieved from:
http://www.cs.sjsu.edu/faculty/pollett/154.13.13s/Lec18032013.html

[13] “Client-server model”. [Online]. Retrieved from:

https://en.wikipedia.org/wiki/Client%E2%80%93server _model

[14] “XAMPP”. [Online]. Retrieved from: https://en.wikipedia.org/wiki/ XAMPP

[15] “Entity-relational model on Wikipedia”. [Online]. Retrieved from:
http://en.wikipedia.org/wiki/Entity%E2%80%93relationship model

[16] Falkman, Drew. (March 16 2015). “MVC Frameworks for Building PHP Web
Applications”. Retrieved from: http://www.lynda.com/CakePHP-tutorials/MVC-
Frameworks-Building-PHP-Web-Applications/315196-2.html

472

https://www.adayinthelifeof.nl/2010/06/02/deflating-the-universe/
https://www.quora.com/How-does-the-DEFLATE-compression-algorithm-work
https://www.quora.com/How-does-the-DEFLATE-compression-algorithm-work
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/XAMPP
http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

43

	A JavaScript and PHP EPUB reader web application
	Recommended Citation

	tmp.1450544825.pdf.AUBVa

