
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

GRAPH BASESD WORD SENSE DISAMBIGUATION FOR CLINICAL GRAPH BASESD WORD SENSE DISAMBIGUATION FOR CLINICAL

ABBREVIATIONS USING APACHE SPARK ABBREVIATIONS USING APACHE SPARK

Veebha Padavkar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Padavkar, Veebha, "GRAPH BASESD WORD SENSE DISAMBIGUATION FOR CLINICAL ABBREVIATIONS
USING APACHE SPARK" (2015). Master's Projects. 455.
DOI: https://doi.org/10.31979/etd.tx8m-kzg9
https://scholarworks.sjsu.edu/etd_projects/455

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/455?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

GRAPH BASESD WORD SENSE DISAMBIGUATION FOR CLINICAL

ABBREVIATIONS USING APACHE SPARK

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirement of the Degree

Master of Science

By

Veebha Padavkar

Dec 2015

The Designated Thesis Committee Approves the Thesis Titled

© 2015

Veebha Padavkar

ALL RIGHTS RESERVED

GRAPH BASESD WORD SENSE DISAMBIGUATION FOR CLINICAL

ABBREVIATIONS USING APACHE SPARK

by

Veebha Padavkar

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

DEC 2015

Dr. Thanh Tran Department of Computer Science

Prof. Thomas Austin Department of Computer Science

Chandni Patel Datawarehouse Manager, Pinger Inc.

ABSTRACT

GRAPH BASESD WORD SENSE DISAMBIGUATION FOR CLINICAL

ABBREVIATIONS USING APACHE SPARK

Identification of the correct sense for an ambiguous word is one of the major

challenges for language processing in all domains. Word Sense Disambiguation is the

task of identifying the correct sense of an ambiguous word by referencing the

surrounding context of the word. Similar to the narrative documents, clinical documents

suffer from ambiguity issues that impact automatic extraction of correct sense from the

document. In this project, we propose a graph-based solution based on an algorithm

originally implemented by Osmar R. Zaine et al. for word sense disambiguation

specifically focusing on clinical text. The algorithm makes use of proposed UMLS

Metathesaurus as its source of knowledge. As an enhancement to the existing

implementation of the algorithm, this project uses Apache Spark - A Big Data

Technology for cluster based distributed processing and performance optimization.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Thanh Tran, my project advisor, for his

amazing support and motivation throughout this project.

I would like to thank my project committee member, Professor Thomas Austin and

Chandni Patel for their contribution in completion of this project

I would like to thank my family for their great support throughout my studies here at San

Jose State University

1 	

Table of Contents

1 INTRODUCTION .. 5
2 RELATED WORKS AND BACKGROUND ... 8

2.1 UMLS ... 9
2.2 Metamap .. 9

2.3 Approaches for WSD .. 10

2.3.1 Knowledge Based Approach .. 11
2.3.2 Supervised Learning Approach .. 11

2.3.3 Unsupervised Learning Approach ... 12
2.4 Applications of WSD .. 13

2.4.1 Machine Translation/Word Understanding ... 13
2.4.2 Data Retrieval ... 14

2.4.3 Content Analytics: .. 14

2.4.4 Semantic Network/Web .. 14
3 PROJECT DESIGN ... 15

3.1 Definition ... 15
3.1.1 Problem Formulation ... 15

3.1.2 Terminology .. 15

3.2 Technology ... 16
3.2.1 Apache Spark ... 16

3.2.2 Amazon Web Services EMR ... 18
3.2.3 Amazon Web Service S3 .. 18

3.3 Methods .. 19

3.3.1 Jaccard Similarity ... 19
3.3.2 Betweennes Centrality ... 19

4 IMPLEMENTATION ... 20
4.1 Apache Spark Setup ... 20

4.1.1 Installation ... 20

4.1.2 Configuration ... 21

2
	

4.2 Algorithm ... 22

4.2.1 Algorithm Implementation Steps in WSD on Apache Spark 24
4.3 Challenges .. 28

4.4 Optimization using Apache Spark ... 30
4.4.1 Fast in-memory processing .. 30

4.4.2 Query Processing with SparkSQL ... 31

4.4.3 Spark GraphX ... 31
4.4.4 Broadcast Objects .. 32

4.5 Execution Framework .. 32
4.5.1 Distributed Pipeline Execution Framework ... 33

5 PERFORMANCE ... 35

5.1 Application Performance .. 35
5.1.1 Core Processing Time ... 35

5.1.2 Graph Scanning Time .. 36
5.1.3 SparkSQL Query Time .. 37

5.2 Disambiguation Results Summary .. 38
5.3 Multiple Stage Results for Detected Abbreviations 41

5.3.1 Preprocessing Stage ... 41

5.3.2 Execution Stage – Disambiguation .. 44
5.4 Examples .. 45

5.4.1 Example 1 .. 45
5.4.2 Example 2 .. 46

6 CONCLUSION .. 48

7 REFERENCES ... 49

3 	

List of Figures

Figure 1 Unsupervised Graph based WSD Approaches ... 8

Figure 2: Apache Spark Architecture ... 16

Figure 3: Apache Spark Architecture ... 16

Figure 4: AWS EMR Logical Model ... 18

Figure 5: Flow of how data is fetched from medical dictionaries 25

Figure 6: Data Flow Functional Architecture Diagram .. 27

Figure 7: Distributed Pipelined Execution Framework .. 34

Figure 8: Average Processing Time for Graph Traversal and Query Retrieval .. 38

4 	

List of Tables

Table 1: Summary of Processing Time for set of Clinical Notes 37

Table 2: Summary of Disambiguation Results for set of Clinical Notes 40

Table 3: Abbreviations with Single CUI ... 41

Table 4: Abbreviations with No CUI Mapped ... 42

Table 5: Abbreviations with Context Words ... 43

Table 6: Abbreviations with mapped CUIs from Metamap ... 43

Table 7: Examples of Disambiguated Results with Highest Accuracy 44

5 	

1 INTRODUCTION

The exponential growth of data and data processing tools in the 21st

century has brought an enormous amount of information growth in a brief span of

time. Data is gathered from numerous viewpoints that generate large volumes of

raw information with exceptionally varied characteristics. Simple quantification

can be inferred by understanding that Information Organizations today are

processing petabytes of information every day with an even higher velocity of

data generation by users, sensors and mobile devices. Considering the possibility

of extracting essentially important insights from the data, processing and

analytics has become continued processes for decades now

One such domain that considers knowledge extraction as the prime

benefit of the data for the betterment of future is the Bio-medical domain.

Tremendous volumes of data with exceptionally high velocity of data generation

and varied data characteristics make this domain a unique candidate for solving

numerous data processing problems. The notable feature of data in this domain

is the existence of domain specific terms that essentially requires correct

understanding of the data as a whole to infer the meaning of any part of the data.

As the data grows, there is possibility of increased incorrect inference for the

same part of data for which the inference might have been accurate in past. This

essentially leads to core problem of lexical disambiguation that gets introduced

as the volume of data increase and reduce the uniqueness of features in the data.

Humans usually distinguish the data and its usage from context. In a

similar way, for machines to understand data, the context of the data or the words

play an important role. Various systems have been implemented with advanced

algorithms to learn the correct meaning of the data from its context. However,

the unstructured nature of the data and irrelevant existence of context has always

been a challenge for these systems.

6 	

Algorithms have been developed that try to interpret the correct meaning

of the words from its surrounding context. However, the existence of ambiguity

has such aspects that inferring the correct meaning are not merely possibly by

understanding the surrounding words. It has become critical to understand

‘sense’ of the complete data surrounding an ambiguous content. Approaches to

automatically disambiguating words therefore typically make use of context words

to learn the sense of the data as a whole. This problem has been discussed and

worked on by many experts of general-purpose language as well as domain

specific language experts and gave rise to the problem domain as Word Sense

Disambiguation (WSD) which essentially focus on inferring the correct meaning

of the words through the sense of surrounded context.

WSD techniques have evolved over the period by adopting la test tools and

technologies. However, the most essential barrier in improved disambiguation

results is the lack of formally annotated data that can directly help to quickly infer

the correct meanings of ambiguous word instances. Hence, WSD systems

essentially operate on subset of clinical data on which the accuracy of their

system is highly dependent.

Annotation of text detected in clinical settings, such as nurses and

discharge summaries notes is particularly expensive in time and resources since

it has to be performed by medical experts. Hence many efforts in WSD required

either unsupervised or semi-supervised methods that resulted in little to almost

no data being annotated. The knowledge base being specific to domains are

proving helpful in improving the results of systems that were previously less

efficient with the need of good and correct annotated data. Hence, the algorithms

moved towards the use of complete knowledge base for disambiguation of the

terms with unsupervised methods. In this project we have implemented one such

WSD system, a graph based unsupervised approach, built on Apache Spark.

7 	

This project offers a solution to the problem of disambiguation by utilizing

the bio-medical domain specific knowledge base on clinical text with no cost

required to manually annotate the data as we use an unsupervised approach. We

have considered using and examining results on Apache Spark, which is an

interesting big data topic that has a lot of developing potential. This project

extends one aspect of the graph based WSD system by optimizing the developed

algorithm and comparing results when executed on Apache spark by calibrating

the performance.

This project introduces an implementation of unsupervised graph based

approach in the biomedical domain, which uses the unified Medical Language

System as Knowledge Base. Several tactics on how efficiently the data is stored

in Sparks Resilient Distributed Datasets to leverage the in-memory processing

capabilities.

The performance of executing and solving the disambiguation heavily

depends on the intrinsic optimization of the algorithm itself and the technologies

that make up the systems on which it is implemented. Hence, this project aims at

using a state of the art setup to implement a proven algorithm with

enhancements focusing on improved accuracy and performance optimization.

The system is evaluated with practical datasets; large enough to simulate how

professional WSD system would work in a minimized scale. Several metrics are

tested to compare performances of the chosen strategies and scoring schemes.

This report categorically discusses the graph based unsupervised word

sense disambiguation. Chapter 2 discusses on related work on WSD system and

resources required by our system. Chapter 3 discusses our unsupervised graph

based approach to WSD using the UMLS Metathesaurus. Chapter 4 presents the

evaluation of our algorithm. Chapter 5 concludes our findings with results.

8 	

2 RELATED WORKS AND BACKGROUND

WSD Systems are disambiguation systems that are not dependent on any

domain, which means that these systems are not customized for any particular

field or domain. Knowledge base is the main key part in any unsupervised WSD

system, since the entire disambiguation process is dependent on the

knowledgebase. For instance the UMLS (Unified Medical Language System)

knowledge base is normally utilized by WSD systems, which concentrate on the

biomedical area while WordNet is regularly utilized by area, free WSD. In Table I

we present six late unsupervised diagram based WSD calculations alongside their

insight base, and the reported precision. As the reported exactness appears,

biomedical WSD accomplish better precision contrasted with their space

autonomous partner. [6]

Figure 1 Unsupervised Graph based WSD Approaches

Since in our methodology we use UMLS as our knowledgebase and

simulate Metamap as our concept mapping approach, we would further discuss

these two in the following section.

9 	

2.1 Unified Medical Language System

The U.S. National Library of Medicine (NLM) has created an archival of

different biomedical and clinical examination vocabularies to enhance the

biomedical domain called as UMLS. UMLS is made out of the following three

information sources:

The Metathesaurus is a vocabulary database of biomedical concepts with

their diverse names, and connections between them. The Metathesaurus of the

UMLS 2015AB contains more than 2.7 million concepts gathered from 161

vocabularies, for example, SNOMED Clinical Terms (SNOMED-CT) and Medical

Subject Headings (MSH). The Metathesaurus sorts out knowledge taking into

account concepts, where a Concept Unique Identifier (CUI) distinguishes every

concept. [6]

The Semantic network, is a collection of semantic types which helps in

categorizing all concepts which are represented in the metathesaurus, and also a

collection of different semantic relations which defines possible relationships

between different semantic types. The semantic network in the UMLS 2014AB

contains:

• Contains 133 semantic types. Examples include, Enzyme, Genetic

Function, Therapeutic, Laboratory procedure

• 54 Semantic Relations, examples include: affects, treats, disrupts,
prevents. [6]

2.2 Metamap

Metamap is a concept mapping approach which was developed by the

NLM to map biomedical texts to concepts in UMLS. It consists of five

components.

10 	

• Lexical/Syntactic Analysis: This component segments biomedical text into

phrases and later into terms. The text is Xerox part-of-speech tagged using

the Xerox POS tagger. [6]

• Variant Generation: This segment creates a variation for every expression

distinguished by the Lexical/Syntactic Analysis part. A variation is one or

more expression words went with its spelling variations, derivational

variations. [6]

• Candidate Identification: This segment recovers the arrangement of ideas

from the UMLS Metathesaurus that contain no less than one variation

recognized by the Variant Generation segment. [6]

• Candidate Evaluation: This part assesses every competitor against the

data content. The mapping score is registered utilizing a blend of four

linguistic measures: centrality; variety; scope; and cohesiveness. The four

measures are consolidated straightly such that scope and cohesiveness

get double the heaviness of centrality and variety. The score is

standardized to a worth somewhere around 0 and 1,000, where a score of

1,000 means an immaculate applicant. [6]

• Mapping Construction: It integrates all the Metathesaurus candidates,

which match the input text. [6]

2.3 Approaches for WSD

There are majorly two approaches for Word Sense Disambiguation, which

are supervised Learning Approach and Unsupervised Learning Approach.

Knowledgebase approach is also another approach which has been implemented

by few older systems. Below are the description given for these approaches.

11 	

2.3.1 Knowledge Based Approach

Knowledge based approach for WSD involves use of dictionaries,

thesaurus, ontologism, etc. to understand the sense of words in context. Even

though these methods have comparatively lower performance than other

approaches, but one advantage of this approach is that they do have large-scale

knowledge resources.

However, few techniques are also using Knowledge Base approach. Since

Knowledge Base Approaches tend to use external dictionary sources like

WordNet etc. or some other machine language dictionary. Initial knowledge base

approaches to WSD were dated back to the 1980’s when experiments were

piloted on very small domains. But the lack of large-scale computational assets

did not allow a proper evaluation and comparison in end-to-end applications. To

perform disambiguation process in knowledge base approach, hard coded

grammatical rules are been used.

2.3.2 Supervised Learning Approach

Supervised learning method is that method which tries to find relationships

between independent variables also known as input attributes and a target

attribute also known as dependent variable. It makes use of labeled training data

to derive functions. These derived functions are used further to predict results.

This method is majorly implemented in different domains such as health,

marketing, finance and manufacturing. The relationship found is represented in a

structure referred to as a model. Usually models describe and explain

phenomena, which are hidden in the dataset and can be used for predicting value

of the target attribute knowing the values of the independent variables.

12 	

However, in supervised approaches, use of training data is involved.

Generating training data manually requires lot of manual efforts plus the data

can’t be trusted on its accuracy. Since the training data does not have the inputs

classified correctly, this can result in getting wrong disambiguated results. Hence

due to the given reasons, unsupervised approach methods are considered more

correct and accurate.

2.3.3 Unsupervised Learning Approach

In Unsupervised learning method it tries to find hidden structure in

unlabeled data. Unsupervised methods for WSD can be broadly divided into two

categories namely similarity-based and graph based ones. For graph based

methods generally unsupervised approach is preferred since it offers an

advantage of not requiring the training data.

2.3.3.1 Unsupervised WSD methods

Graph Based Method

Graph Based algorithms essentially consists of two stages. Initially, a

graph is built considering all possible interpretations of the group of words from

the knowledge base. The graph nodes represent the word senses, whereas

edges represent the relationships between two nodes. In next step, the graph

structure is examined to resolve importance of each node. Here sense

disambiguation resolves to find the most important node for each word. The

sense is primarily being disambiguated by traversing the graph and collecting the

directly connected nodes for the word being disambiguated and applying a

similarity metrics over the collected nodes.

13 	

Similarity Based Method

Similarity based algorithms assign a plausible sense to an ambiguous

word by comparing each of its senses with those of the words surrounding the

words to be disambiguated which are also referred to as the context words. The

sense whose definition has the highest similarity is assumed to be the correct

one. [4]

The algorithm calculations contrast in the similarity measure the y utilize

and the received meaning of connection that can fluctuate from a couple of words

to the entire corpus. In similarity based algorithm each sense is determined for

each word individually without considering the senses assigned to neighboring

words. Based on the results of the previous experiments carried out on graph

based and similarity based approaches it’s been observed that graph based

approaches outperform similarity based ones, by a significant margin. [5]

A clear advantage of graph based WSD systems is that the entire UMLS

Knowledge Base can be used during the disambiguation by propagating

information through the graph [1].

2.4 Applications of WSD

2.4.1 Machine Translation/Word Understanding:

To identify exact translation of a word in a particular context is an

extremely difficult task to perform automatically. WSD has been considered as a

major task which needs to be solved to enable an accurate machine translation,

this is because it is widely known that disambiguation of words in a sentence can

help choose better candidates as depending on the context words can have

totally different translations. Even though WSD disambiguation is very difficult to

implement and some other methods have been proposed it still is the best option

[11].

14 	

2.4.2 Data Retrieval:

Express semantics are not used to tight down records, which are not

pertinent to the client by even the most progressive Internet searchers. The

execution issues and the extensive overhead that may come about because of

the enormous knowledge base scan is the real reason that WSD has not

contributed fundamentally to data recovery truly. However, with better routines to

execute WSD it could be utilized to precisely offer what the client asked for, an

exact disambiguation of the report database alongside the disambiguation of the

questioned words will encourage the determination of just those archives, which

are really required [11].

2.4.3 Content Analytics:

Examination of content as for thoughts, topics, tones, and so on can profit

by WSD utilized as a part of substance investigation space. Consider the sample

of Blogger, it contains such a variety of online journals, and their number is

expanding quickly. Content investigation utilizing WSD can help as a part of

characterization of information with according to client necessities [11].

2.4.4 Semantic Network/Web:

Semantic Web is only a cooperative development by World Wide Web

Consortium to urge website pages to incorporate semantic substance into their

site pages to change over the right now existing unstructured or semi organized

archives into a web of information. All the aforementioned strategies can be used

to accomplish this vision and consequently WSD assumes a critical part in

accomplishing it [11].

15 	

3 PROJECT DESIGN

3.1 Definition

3.1.1 Problem Formulation

Given an input to the system as a set of clinical notes or a clinical

discharge summary note, output the most correct disambiguated sense for the

detected medical words or abbreviations using graph based unsupervised word

sense disambiguation techniques implemented on Apache Spark.

3.1.2 Terminology

The following terms are widely used in the report:

• Entity: In this project, entity represents an object with unique id and

properties.

• Clinical Note: an ICU patient report given by a physician.

• WSD: Word Sense Disambiguation.

• Similarity: Denotes the relevancy between an entity also known as a

medical term or an abbreviation in the knowledgebase and abbreviations

detected in the input clinical note.

• Context Words: Bag words surrounded around the medical abbreviation or

the medical word, which has to be disambiguated.

• Resilient Distributed Datasets(RDD): The basic abstraction in Apache
Spark

16 	

Figure 2: Apache Spark Architecture

3.2 Technology

3.2.1 Apache Spark

Apache Spark is an open source cluster-computing framework developed

at the AMPLab of UCBerkley. By distinctively performing in-memory data

processing Spark sets itself out of Hadoop open-source community. Spark is not

build on the fundamental blocks of Map and Reduce. Spark provides real-time

analytics by processing large volume of stream data. There are several

advantages of Spark as compared to other big data and MapReduce

technologies namely Hadoop and Storm.

Spark distributes all the actions as applications across the cluster and runs

them as independent sets of processes. The SparkContext residing in the ‘driver

program’ of a spark job controls the cluster. Driver program also hold the main

function that triggers the job and starts execution of non-slave operations. In a

compatible cluster environment like Yarn also known as Yet Another Resource

Negotiator, Spark registers executors on nodes in cluster and it sends the

application code. After all the executors are registered, SparkContext send

divides the batch in to set of tasks and distributes then across the nodes. Figure

3 shows the basic building blocks of how prime components of Spark works

together. The processes are active as long as the corresponding application is

running. The architecture is logically divided into two stages as scheduling stage

and the executor stage.

Figure 3: Apache Spark Architecture

17 	

The driver schedules every individual task in the scheduling stage and

then executor stage runs the applications in different JVMs. Performance of

Spark heavily depends on the cluster manager component. Executor processes

communicate and share data chunk reference through cluster manager. It helps

the worker nodes in the cluster to acquire resources on the cluster and it

essentially shares the resources of cluster amongst Spark Applications and it

also assist the driver by creating the executors. For solutions like the one

implemented in this project, the in-memory processing of Apache Spark assist

significantly in improving the performance along with the lazy evaluation of the

large data queries across the cluster. Spark provides support for Structured

Query Language through Spark SQL to streamline data querying process on the

data stored in RDDs and the external sources like Hive, HBase. Through Spark

SQL the underlying RDD data in conveniently abstracted as relational tables.

Spark also provides support for Graph processing through GraphX, API

for graphs and graph-parallel computation. It essentially extends the RDD

abstraction by introducing the RDD Property Graph, a directed multi-graph with

vertex, edges and attached properties.

18 	

3.2.2 Amazon Web Services EMR

Elastic Map Reduce (EMR) is based on Hadoop, that supports processing

of data in distributed environment. With the MapReduce framework it allows the

developers process massive amount of structured and unstructured data in

parallel. EMR also support Spark clusters along with Hadoop. It processes data

across the cluster of virtual servers. Also, it provides the capability to scale up

and scale down the cluster resources depending on processing requirement.

Figure 4: AWS EMR Logical Model

3.2.3 Amazon Web Service S3

Simple Storage Service is web-based scalable, high-speed service for

online data backup and archiving. S3 support upload, store and download of

almost any file type up to five gigabytes in size. Redundant servers are utilized for

storing the data across multiple data centers. It targets to maximize the scaling

capabilities and enable applications to grow with storage requirements.

19 	

3.3 Methods

3.3.1 Jaccard Similarity

Jaccard Similarity is a statistic measure used to compare the similarity and

dissimilarity of sets. Similarity is defined as set intersection size divided union

size. This similarity measure is effective to represent similarity between two

documents or collection of terms.

Jaccard similarity measure is useful for similarity computation between set

of words in word sense disambiguation problem.

3.3.2 Betweenness Centrality

Betweenness centrality measure is a metric to calculate the highest score

amongst the nodes in the graph of which the correct sense for that particular

word has to be determined. The betweenness of node v is calculated as the

fraction of shortest paths between node pairs that pass through v. Formally

betweenness is defined as:

Where is the number of shortest paths from s to t, and (v) the number of

shortest paths from s to t that pass through vertex v. The intuition behind

betweenness is that a node is important if it is involved in a large number of paths

compared to the total set of paths.

20 	

4 IMPLEMENTATION

This is a summary on the implementation of the Word Sense

Disambiguation System on Apache Spark. This section covers essential

implementation details with original designs and source code snippets for

reference.

4.1 Apache Spark Setup

4.1.1 Installation

This section lists the tools and technology setup that was required along

with Spark for development and deployment activities throughout the project.

§ Apache Spark 1.5.0 with Hadoop 2.6

§ Scala 2.10.5

§ Java 1.8

§ AWS CLI

Selection of required version for all the installations was performed by

analyzing the version dependency across listed items.

21 	

4.1.2 Configuration

Development and deployment were done in two different configurations as

discussed below. AWS Simple Storage Service has been utilized to store all the

data required in the application throughout all the processes.

§ Standalone

Development activities were carried out with Spark in standalone mode

on a system with following primary specifications.

- Cluster on a machine with Intel i7 Processor and 16 Gigabytes RAM

- Master: local [4]

- Driver Memory: 4g

- Executor Memory: 2g

- Spark Configured for AWS S3 Access: Yes

§ Cluster

Deployment of the developed application was done in cluster setup on

Elastic Map Reduce service provided by Amazon Web Services (AWS).

- EMR 4.1.0 with Apache Spark 1.5.0 with Hadoop 2.6

- Master: 1, Slaves: 2

- EC2 instance (m3.xlarge) with 4 CPU Cores and 16 GB RAM each.

- AWS CloudWatch Enabled: Yes

- Spark Configured for AWS S3 Access: Yes

22 	

4.2 Algorithm

This section describes algorithm used to implement word sense

disambiguation of abbreviations for clinical notes. The algorithm uses UMLS

Metathesaurus as a graph K of CUI’s also known as Concept Unique Identifiers

for each medical term in the UMLS. There are several tables that are part of the

Metathesaurus, our implementation makes use of two primary tables: MRREL

and MRCONSO. The MRCONSO table is the primary table, which contains one

row per file and has detailed meaning of each unique string. It implies that every

combination of CUI and STR has only one row in the table. The MRREL table

contains all the relations between a Metathesarus string and the CUI associated

with it, so essentially it contains the relation mapping details between concepts.

The relations are defined of ten different types, which range from narrower

relations to broader relations. For performance consideration and we have

focused on following six relation types:

• PAR, the parent relation

• CHD, the child relation

• RB, the broader relation

• RN, the narrower relations

• SIB, the sibling relation

• RO, the other relation

Following section elaborates on the essential details of the algorithm used for

implementation along with significance of each step and its outcome in general

WSD problem solving.

23 	

[6]

This algorithm considers following three major steps in the execution:

- Tokenization with WSD Candidate Selection and Bag of Words

Collection.

- Neighbor collection for all the identified token concepts on Graph.

- Similarity/Betweenness calculation on collection of neighboring nodes.

Following is the description of each step in the algorithm for better

understanding of how it works in general case with the data in consideration.

1. An unstructured clinical note is parsed to valid set of collect tokens.

2. Parsed tokens are verified for abbreviation detection and context word

selection.

24 	

3. Abbreviation detection is performed by filtering the tokens against

abbreviation listing created with unique set of abbreviations from three

overlapping medical abbreviation dictionaries: ADAM, BERMAN and LRABR.

4. For each detected abbreviation, bag of words i.e. context words are collected

based on specific size of window.

5. Each set of abbreviations and corresponding context words in the document

are then processed together by scanning each word against the UMLS graph

of concepts for identifying the CUIs for the abbreviations and context words.

6. In the graph scan, edges will be collected where either the abbreviation or the

context words are on the source or destination side of the edge.

7. Traversing through the graph in Depth First Search mode purely performs the

selection of edges to collect each edge triplet. This will result in required

collection of CUIs that are specific to a set of abbreviation and context words.

8. The set of all the CUIs collected in previous step are then processed through

Betweenness Calculation by building sub-graph of CUI nodes and ranking

which of the abbreviation CUIs output the highest betweenness score.

9. All the CUIs for each unique abbreviations with maximum betweenness score

are then considered as the most correct meaning of the abbreviation based

on the context words it is surrounded with.

4.2.1 Algorithm Implementation Steps in WSD on Apache Spark

Preparation Phase:

- Construct GraphX graph from UMLS - MRREL. CUIs will be the Vertex

and Relations between CUIs will be edges on the graph.

- Build and Load abbreviation dictionary along with listing of tokens like

measurements, stop words etc. that will assist parsing process.

25 	

Figure 5: Flow of how data is fetched from medical dictionaries

Execution Phase:

1. For each clinical note input we parse the documents to get following

• W, a sequence of n words, representing the text containing the word to be
disambiguated with t, an index in W pointing to the word to disambiguate.

• s, a window size of the words before and after t.

• A, a set of plausible senses for the word being disambiguated.

2. For each abbreviation, we use the simulated in-memory Metamap dictionary to

query the CUIs and build a list of Abbreviation to CUI mapping.

3. Abbreviations with single resulting CUI are considered as already

disambiguated as they refer to only one meaning and the meaning is consistent

across all senses.

4. Abbreviations for which there are no CUIs identified are classified as

abbreviations that cannot be disambiguated with the available metadata and

dictionaries.

5. Abbreviations with more than one identified CUIs are considered as the

disambiguation candidates. For all the disambiguation candidate abbreviation,

26 	

the simulated metamap will be queries to get the CUIs for all the context words as

the CUIs for abbreviations were already collected in step #2 above.

6. For each identified unique CUI of Abbreviation and Context Words we travers

the Graph built in preparation phase using GraphX and UMLS MRREL.

Traversing the graph in Depth First Search fashion collects neighboring nodes for

each CUI. A map of CUI and neighboring nodes is then constructed and

broadcasted across the clusters for quick access query on each node.

7. After all the neighboring nodes are collected for each CUI from a set of

abbreviation and it’s corresponding context words we perform the next step to

identify the most relevant CUI in two ways: Jaccard Similarity computation and

Betweenness Computation.

8. Jaccard similarity computation is an additional adopted approach beyond the

scope of the original algorithm in this report. It is observed that similarity

computation yields almost identical results to the betweenness computation.

Hence, this implementation has been made configurable to provide choice

selecting either of the computation methods.

9. Based on above discussed two computation methods we derive one CUI for

each abbreviation which either fell on the way of all the context word neighbor

nodes for it in Betweenness Computation or the sets of abbreviation CUI

neighbors and Context Words CUI neighbors matched the most with Jaccard

Similarity.

10. Final result will be set of abbreviations per document with their CUI and

concept attached with CUI. This will be consolidated output of preprocess step

where we eliminated the non-ambiguous candidates and the output of second

step where we actually disambiguated the disambiguate candidate.

27 	

Following diagram depicts implementation of each step discussed previously.

Figure 6: Data Flow Functional Architecture Diagram

28 	

4.3 Challenges

1. Simulation of Metamap

- Metamap is a UMLS service that provides CUIs for queries that

contains strings to looks for in the UMLS MRCONSO.

- Metamap exposes REST APIS through which other application

programs can query and get the CUIs for the words.

- This project has a critical dependency on the Metamap to access

metamap through REST APIs up to 800 times for each clinical note.

- Hence, it was challenge to find alternative solution eliminate

performance bottleneck and dependency on an external service by

maintaining same level of correctness in query results.

- Storing the MRCONSO in an external database and querying it

extensively would have improved performance and removed the

dependency from Metamap. However, it was not an ideal solution.

- The solution was identified as SparkSQL, which helped us in loading the

aggregated MRCONSO table and distributing it across the nodes.

- Hence, all the queries were performed on in-memory data with reducing

Spark Read shuffles by querying once and broadcasting the mapped

results across the nodes, this essentially improved the overall

performance of each query.

29 	

2. Read Shuffle due to GraphX Scanning and Spark SQL Queries

- This was identified as the biggest challenge to performance

optimization.

- It was practical to load the MRCONSO in SPARK SQL and MRREL in

GraphX. However, querying then hundreds of time for each clinical note

was impractical considering the volume of data that is distributed across

nodes.

- A single query would result in huge number of read shuffles causing

data to move across nodes and heavily affect the performance of the

application. However, Querying the Spark SQL and GraphX from driver

was not as expensive as from worker nodes.

- Hence, the identified solution was to build a list of unique CUIs from

each clinical note and send it back to Master

- Driver program would collect the lists of neighbors in case of scanning

neighbors and list of meaning strings in case of querying the meaning

for CUIs.

- This collected list will be broadcast across nodes to make it available for

distributed processing of each set of abbreviation CUIs and Context

Word CUIs identified in previous step.

30 	

3. Identifying the best relation types to consider for building graph

- There were ten relation types between CUIs in MRREL from which the

graph was required to build. And the performance of graph was

dependent on it.

- Hence, identified solution was to build the graph with selected six

primary narrower relationships. This helped in reducing the size of

graph and improved the overall performance of traversing the graph.

4.4 Optimization using Apache Spark

Before describing the optimization framework used in project, following are

the feature of Spark on high-level that helped to enhance performance of the

project.

4.4.1 Fast in-memory processing

As the volume of data is growing exponentially, there is a need for

excellent processing performance in all types of applications. With the primary

abstraction of Resilient Distributed Datasets, Spark efficiently distributes the data

across nodes in the cluster and performs computation effectively by distributing

tasks for better parallel processing by benefitting with the data locality across the

nodes. In this project, all the required metadata is loaded in-memory at specific

required stages. This enabled faster parsing of clinical notes and abbreviation

detection. Also, as the data is consistently maintained across the nodes, passing

the data from one stage of RDD to the next stage did not cause much overhead.

31 	

4.4.2 Query Processing with SparkSQL

Spark’s support for relational data with its Spark SQL dataframe

abstraction over the RDD enables fast querying and analytics of data stored in-

memory. Having SQL query like capability on in-memory data improved the

overall performance across the application where there is frequent need of

selecting specific data from millions of rows.

In this project, we simulated the functioning of metamap ensuring to gain

similar results. Spark SQL was highly effective in replicating the MRCONSO

relational data in memory and providing real-time results to hundreds of queries

for CUI retrieval.

4.4.3 Spark GraphX

Sparks’ GraphX API helps to store the data in-memory in the form of

vertex and edges by distributed it across the cluster. It enables much faster

traversing and computation on the graph data as compared to using any external

Graph APIs.

Loading the UMLS MRREL data in-memory as a graph was critical for

optimized implementation of the chosen algorithm. The GraphX API allowed us to

load the complete MRREL data as graph nodes and edges. It also enables us to

traverse the graph and load node-edge-node triplets with high performance. And

as the graph can be persisted and un-persisted as required, it was very

32 	

useful to persist data before the stage where graph traversing was needed to

perform and unresisting it after operations are over and graphs is not required for

any further processing. GraphX API also let us query just the nodes and edges

individually; this was very helpful in specifically getting the neighboring nodes and

filtering the edges on type of relationships.

4.4.4 Broadcast Objects

 Through Broadcast feature, Spark allows to store the copy of frequently used

data across the nodes. This is very effective in improving the performance of the

application as the data is local to the node and no network traffic or read shuffle

would take place while a worker node tries to read the data that is broadcasted

through the SparkContext previously. Also it is possible to un-persist distributed

objects required, this allows freeing up the memory when the data is not required

anymore. Metadata objects required for parsing, abbreviation detection and the

objects holing graph neighbors were broadcast to improve the performance of

each node.

4.5 Execution Framework

This section describes execution framework that enabled a highly optimized

implementation of algorithm with features of Spark as discussed above.

33 	

4.5.1 Distributed Pipeline Execution Framework

The pipelined execution framework assumes that a multi-stage execution

would progress by processing on the output of previous stage. Every stage of

processing will be a set of tasks distributed across executors running on the

worker nodes in the cluster. Distributed Pipeline refers to the use of data locality

for multi-stage processing of the data on that resides on the same worker node

throughout all the processing stages.

In this project, the processing is starts by distributing the Incoming input

notes to workers for tokenization and further processing. The complete execution

is divided into two major stages as Preprocess Stage and the Disambiguation

Stage. Both the stages are collection of multiple processes that internally pass

the output of one process to the next for the completed output of the overall

stage. It is ensured that data present on the same node is used in all the

processes of a stage. Hence, this framework ensures minimal read shuffles that

generally affect the performance of worker nodes and the cluster. Since the

output of each stage remains in the RDDs, the output of one stage is mapped

with a particular function generates a new RDD through which Spark ensure that

the data present on a worker remains on the same worker. This allows the

framework process with required performance, as the data locality is benefits by

ensuring that data is not moved across nodes if not required. It eventually results

in pipelined approach across processes running on the individual worker nodes.

34 	

Finally, as per the term, distributed pipeline, each worker node data would

be available to subsequent stages unless the implemented algorithm demands

shuffling. Figure 7 depicts the Distributed Pipelined framework as discussed

above.

Figure 7: Distributed Pipelined Execution Framework

35 	

5 PERFORMANCE

This section discusses the accuracy and performance of the implemented

application along with optimization techniques that were applied to optimize the

solution even further for faster and all in-memory processing.

5.1 Application Performance

This section discusses the performance of the implementation observed

for individual processing of clinical notes from a set. Total performance of the

application is dependent on several factors when running on Spark. The major

factors the contribute to total run time of an application for a single clinical note

processing are:

5.1.1 Core Processing Time

This is the time taken perform following tasks

- Parse clinical note, create list of tokens and detect abbreviations

- Select context words and build Abbreviation-Context map

- Fetch CUIs and Build List of CUIs for each Abbreviations

- Detect Abbreviations that are readily disambiguated

- Detect Abbreviations that cannot be disambiguated

- Detect Abbreviations that are real candidates for disambiguation

- Detect CUIs and build list for context words of candidate abbreviations

- Disambiguation of detected abbreviation candidate

36 	

Output of core processing is as follows:

- List of Abbreviations with only one associated CUI.

- List of Abbreviations with no associated CUI.

- List of Abbreviation with more than one associated CUI.

- Finally, the actual list of disambiguated abbreviations with CUI and

meaning

5.1.2 Graph Scanning Time

This is total consolidated time taken to traverse the graph for finding

required CUI nodes and collecting their neighbors. This time heavily depends on

total number of nodes to be accessed, total neighbors attached to each node and

the distribution of graph data across the cluster. In case of this application, the

nodes and neighbors are collected by master, which reduces the read shuffles

across the nodes significantly. Also, the performance of graph traversal was

improved substantially by loading the node and neighbor maps in memory

through broadcasted objects. In this application the graph traversing is done only

once per clinical note. And if multiple clinical notes are fed at once, the graph

traversal will be performed once for all the detected abbreviation CUIs across all

the documents.

37 	

5.1.3 SparkSQL Query Time

This is total consolidated time taken to query the SparkSQL table that

contains the Abbreviation to CUI mappings that are essential at every stage of

disambiguation process. Similar to graph traversing process, the querying is also

performed in batch. A smart approach was taken to aggregate all the CUI entries

for specific abbreviations and build a compact list of CUIs that can be

broadcasted to the worker nodes. Hence the total time to query is cumulative of

time taken to read the aggregated list, broadcast it and query it during the

processing. The queried results are made available to worker nodes in term of a

Abbreviation to CUI List map which is used in the first step of disambiguation to

detect abbreviations with single CUI, no CUI or multiple CUIs. And similar map

will be used to fetch the CUI meaning in the final stage where the disambiguated

CUIs are being mapped with their associated meaning to present the output with

corresponding abbreviation. Following table shows the summary of processing

time in seconds as per above discussion for five different clinical notes.

Sr. No.

Clinical Note
Total

Application
Run Time

Core
Processing

Time

Graph
Scanning

Time

SparkSQL
Query
Time

1 NOTEEVENTS-04001.txt 218s 101s 89s 28s
2 NOTEEVENTS-07004.txt 240s 134s 84s 22s

3 NOTEEVENTS-09002.txt 205s 98s 76s 31s
4 NOTEEVENTS-16005.txt 212s 102s 83s 27s
5 NOTEEVENTS-32005.txt 183s 91s 71s 21s

Table 1: Summary of Processing Time for set of Clinical Notes

38 	

Y-Axis – Time in Seconds X-Axis – Clinical Notes
Figure 8: Average Processing Time for Graph Traversal and Query Retrieval

Below table shows the runtime performance of the application for single

clinical note processing with Spark based application processing parameters.

Runtime Performance ~ Seconds

 Job Initiation Time 2

 Loading Dictionaries In-Memory and Broadcast across Workers in Cluster 6

 Loading UMLS graph of 28 million records 27

 Traversing GraphX and Building GraphMap 84

 Time for Map Task - RDD Map Stages - Preprocessing & Disambiguation 79

 Time for Reduce Task - RDD Reduce Stages - RDD Collect Stages 49

 Time for loading MRCONSO in Spark SQL 34

 Time for SparkSQL Query for Disambiguated CUI Meaning 22

 Time for writing back to disk 59

Table 2: Runtime Performance for Single Clinical Note

39 	

5.2 Disambiguation Results Summary

This section discusses the summary of disambiguation results for

abbreviations detected in a set of clinical notes. The results are segregated as

per clinical notes for clarity. Following the main components considered

presenting the results.

§ Total Abbreviations Detected

This factor determines the total number of abbreviation detected in a clinical

note. As per multiple runs on multiple clinical notes, it is observed that detected

abbreviations are actually the total present abbreviations in the clinical note.

Hence the parsing of tokens and abbreviation detection has excellent accuracy

40 	

§ Total Abbreviations Disambiguated

It is the total number of abbreviations that were disambiguated from the

total abbreviation detected abbreviations. This is a consolidated count of

abbreviations that are disambiguated correctly and the abbreviations that

are disambiguated incorrectly.

§ Accuracy - Total Abbreviations Disambiguated Correctly

This is the total count of abbreviations that were disambiguated correctly

which directly refer the accuracy of overall disambiguation process. The

correctness of results is verified against the relevant of CUI with the

context by analyzing clinical note and UMLS data.

The additional components of Disambiguation Results are the as below:

§ Abbreviations with Single associated CUI

The abbreviations that were mapped to single CUI from the Metamap,

were considered as the straight forward disambiguated abbreviations as

the mapped single CUI associate the abbreviation a single meaning that

eliminates the ambiguity for abbreviation meaning. These abbreviations

contribute to the total number of correct disambiguation as the results fall

into true positive category.

41 	

§ Abbreviations with No associated CUI:

The abbreviations that did not map with any of the CUIs in the Metamap

cannot be considered as the candidates for disambiguation. Hence, in the

preprocessing stage, all such abbreviations are filtered to avoid

unnecessary processing overhead in further stages. These abbreviations

also contribute to the complete list of abbreviations that were not

disambiguated, which helps to understand the impact of reference data on

the results.

Following table shows the summary disambiguation results per above discussion

for five different clinical notes.

No.

Clinical Note

Total
Abbreviations

Detected

Total
Abbreviations
Disambiguated

Accuracy
[Correct

Disambiguation]

1
NOTEEVENTS-

04001.txt 98
89

71

2

NOTEEVENTS-
07004.txt

141

92 79

3

NOTEEVENTS-
09002.txt

90

53

49

4

NOTEEVENTS-
16005.txt

74

62

56

5

NOTEEVENTS-
32005.txt

102

53

45

Table 2: Summary of Disambiguation Results for set of Clinical Notes

42 	

5.3 Multiple Stage Results for Detected Abbreviations

5.3.1 Preprocessing Stage

The preprocessing stage generates three lists of outputs. Abbreviations

with single CUI, Abbreviations with No CUIs mapped and Abbreviations with

multiple CUIs mapped. The later ones are the real candidates for disambiguation

process. Further in this section discusses the multiple intermediate outputs that

are generated as part of preprocessing stage.

§ Abbreviations with Single CUI

The abbreviations with single CUI are considered as elements with single

meaning and are not required to go through the complete disambiguation

process. The abbreviations are already disambiguated considering there is now

ambiguity due to the clear singular mapping with reference data. Following table

shows the list of abbreviations that were collected from the test runs

Abbreviation Retrieved CUI from Metamap Meaning

CHF C0018802 CONGESTIVE HEART FAILURE
AMT C1412390 Amount

MR. C2347167 Mr. - Title

PPM C0439187 Part per Million
SVC C0231957 Slow Vital Capacity

NEG C3853545 Negative

N/C C2349138 Volt per Meter
CFU C0553561 Colony Forming Unit

FOCI C0205234 Focal

DR. C2348314 Doctor - Title

Table 3: Abbreviations with Single CUI

43 	

§ Abbreviations with No CUI Mapped

Following is the list of abbreviations to which no CUI from Metamap was

mapped in the preprocessing stage. All these abbreviations were not considered

for further disambiguation processing.

Abbreviation

SPO2
OSH

HCT

TOL
F

OCC

U/O
S/P

Y/O

AOX

Table 4: Abbreviations with No CUI Mapped

§ Abbreviations with Multiple CUIs Mapped

Following is the list of candidate abbreviations that were passed to the

execution stage for disambiguation. The output of preprocessing stage for

these abbreviations is three fold. List of abbreviations with their context words,

list of CUIs for each abbreviation and list of CUIs for each context word.

These all elements are aggregated as a tuple for each abbreviation, which

allows distributing the tuples across nodes without the need of maintaining all

the abbreviations from a clinical note together on a single node.

44 	

Abbreviation Context Words

ALT mildly, elevated, 46, alkaline, phosphatase, 52, ast, checked

AST mildly, elevated, 52, alt, checked, transaminases, liver, tegretol, started
UTI positive, blood, cultures, change, 1158**], unit, [**hospital, osh

GU normal, male, testes, descended, organomegaly, soft, abd

HBSAG neg, rpr, nr, ri, gbs, ab, pos, , pns:
BP 81/49, 61, , temp, 100.0, 60, rr, 136, hr,

RPR nr, ri, gbs, negative., , neg, hbsag, ab, pos

URI fever, days, prior, delivery, resolved, throat, sore, , lesions., herpes
CSF usual, studies, pcr, hsv., will, clear., appeared, fluid, -, nnp

GI bleed, major, surgical, invasive, procedure:, complaint:, chief, 203**

Table 5: Abbreviations with Context Words

Abbreviation Retrieved CUIs from Metamap
ALT C0001899, C0201836, C0376147, C2257651

AST C0004002, C0201899, C0242192,C1420113

UTI C0042029, C1412376, C0077906
GU C0018309, C0042066, C2709258

HBSAG C0019168, C0201477, C0796320

BP C2986841, C0057191, C0037623, C0005823, C0005824
RPR C0201405, C1705631

URI C0041912, C1421895, C1548524, C1548524, C3272713

CSF C0007806, C0009392, C0079460, C3540512
GI C1136206, C1415142, C0017187, C0017540, C1553044, C1551090, C0521362

Table 6: Abbreviations with mapped CUIs from Metamap

Similar to above there is additional list of context word CUIs. The lists are

Abbreviation CUIs and Context CUIs for each abbreviation are essential for the

next stage where graph traversing and further processing will be done based on

each CUI from these lists.

45 	

5.3.2 Execution Stage – Disambiguation

In this stage, the output processed by the preprocessing stage is picked

up for traversing through the graph and getting the neighboring nodes for each

CUI of the abbreviation and for each CUI of the context words. After getting all

the neighboring CUIs, the most relevant CUI for the abbreviation is determined

by applying the Betweenness Centrality and Jaccard Similarity Methods as

discussed in previous sections of this report. In essence, this implementation

performs two steps for disambiguation, ‘Word Sense Disambiguation’ in which

maximum abbreviations are disambiguated based on context words surrounding

them. The abbreviations that were not disambiguated because of non-relevant

context words supplied to higher- l e v e l implementation of Document Sense

Disambiguation which tries to determine the ‘sense’ of a word from the whole

document as the context.

Abbreviation Disambiguated CUI Meaning

ALT C0376147 serum glutamate pyruvate transaminase
AST C0004002 Aspartate Transaminase

UTI C0042029 Urinary Tract Infection

GU C0042066 GENITOURINARY
HBSAG C0201477 Hepatitis B Virus Surface Antigen

BP C0005823 Blood Pressure

RPR C0201405 Rapid Plasma Reagin
URI C0041912 Upper Respiratory Tract Infection

CSF C0007806 Cerebrospinal Fluid

GI C0521362 gastrointestinal

Table 7: Examples of Disambiguated Results with Highest Accuracy

46 	

Following are the average accuracy comparison results computed for

disambiguation performed on multiple notes with similarity and betweenness

centrality measures. The ultimate average accuracy of the application i.e. 82.5%

is calculated by considering the average accuracy of each method.

Figure 9: Disambiguation Average Accuracy Results

47 	

5.4 Examples

5.4.1 Example 1:

Clinical Note: NOTEEVENTS-07004

Abbreviation: URI

Sentence from input Clinical Note:

She had a sore throat without URI or fever for several days prior to

delivery that resolved right after delivery.

Detected Context Words:

fever, days, prior, delivery, resolved, throat, sore, , lesions., herpes

Total CUIs for this abbreviation in Metamap with their Meaning:

C0041912 - Upper Respiratory Tract Infections

C1421895 - UNCONVENTIONAL PREFOLDIN RPB5 INTERACTOR

C1548524 - Uniform Resource Identifier

C1548524 - Uniform Resource Identifier

C3272713 - Chromosome 19 Open Reading Frame 2 wt Allele

Disambiguated Accurate CUI: C0041912

Conclusion:

To validate the correction of above result, we verified the abbreviation and

context word relation in clinical documents on valid medical websites.

48 	

Primary website used for result validation:

http://www.hopkinsmedicine.org/healthlibrary/conditions/pediatrics/upper_respirat

ory_infection_uri_or_common_cold_90,P02966/

Description related to URI in Clinical Text from Website:

An upper respiratory infection (URI), also known as the common cold, is

one of the most common illnesses, leading to more health care provider visits

and absences from school and work than any other illness every year. It is

estimated that during a 1-year period, people in the U.S. will suffer 1 billion colds.

Caused by a virus that inflames the membranes in the lining of the nose and

throat, fever, colds can be the result of more than 200 different viruses. However,

among all of the cold viruses, the rhinoviruses cause the majority of colds.

5.4.2 Example 2:

Clinical Note: NOTEEVENTS-09002.txt

Abbreviation: BP

Sentence from input Clinical Note:

VS - HR 136 RR 60 BP 81/49 61 Temp 100.0 O2 sat 100%

Detected Context Words:

81/49, 61, temp, 100.0, 60, rr, 136, hr, -

Total CUIs for this abbreviation in Metamap with their Meaning:

C2986841 - Binding Potential, C0057191 - bleomycin/cisplatin protocol

C0037623 - Solomon Islands, C0005823 - Blood pressure

C0005824 - Blood Pressure Determination

49 	

Disambiguated Accurate CUI: C0005823

Conclusion:

To validate the correction of above result, we verified the abbreviation and

context word relation in clinical documents on valid medical websites.

Primary website used for result validation:

https://www.nlm.nih.gov/medlineplus/ency/article/002341.htm

Description related to BP in Clinical Text from Website:

Vital signs reflect essential body functions, including your heartbeat(HR),

breathing rate(RR), temperature(Temp), and blood pressure(BP). Your health

care provider may watch, measure, or monitor your vital signs to check your level

of physical functioning.

50 	

6 CONCLUSION

This project implements an unsupervised graph based WSD system for

clinical notes using Apache Spark. We used UMLS as the knowledge base to

disambiguate medical abbreviations. We observed that despite of generating and

loading graph of a huge Knowledge Base, processing time was reduced to a

great extent due to usage of spark’s in-memory computational features, which

helped to reduce the read-write time on disk. Also, the resulting average accuracy

for disambiguated abbreviations considering similarity and betweenness

centrality measure was closer to 82.5%, which is more compared to other WSD

systems, which have been generated using Knowledgebase approach.

We have calibrated the results using clinical notes from MIMIC2 dataset.

One clinical note on an average contains 98 ambiguous abbreviations amongst

204 context words. We ran our algorithm on these clinical notes with a window of

size five i.e. five context words of abbreviations from left and 5 from right.

However, considering on the performance front, we achieved a

performance for data processing around 362 seconds for parsing one clinical

note. Here, parsing a clinical note involves steps of preprocessing, graph

scanning and calculating the similarity metrics on the sub graph been generated

of CUI’s corresponding to the abbreviations detected.

This project can be further developed to enhance it for disambiguating all

the medical words and do in-memory caching. Along with this we also plan to

examine the impact of considering every relations of UMLS and see how the

accuracy of disambiguation process can differ.

51 	

7 REFERENCES

[1] Agirre, Eneko, and Aitor Soroa.: Personalizing pagerank for word sense
disambiguation. In Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics, 2009, pp. 33- 41

[2] Navigli, Roberto.: Word sense disambiguation: A survey. ACM Computing
Surveys (CSUR) 41.2, 2009

[3] Kilgarri, Adam.: Senseval: An exercise in evaluating word sense
disambiguation programs. Proc. of the First International Conference on
Language Resources and Evaluation,1998

. [4] Navigli, Roberto, and Mirella Lapata.: Graph connectivity measures for
unsupervised word sense disambiguation. In Proceedings of the 20th
international joint conference on Artifical intelligence (2007) 1683-1688

[5] [Mihalcea, 2005] Rada Mihalcea. Unsupervised large-vocabulary word
sense disambiguation with graph-based algorithms for sequence data
labeling. In Proceedings of the HLT/EMNLP, pages 411–418, Vancouver, BC,
2005.

[6] Wessam Gad El-Rab, Osmar R. Unsupervised Graph-based Word Sense
Disambiguation of Biomedical Documents, pages 1 to 4 HealthCom 2013-11.

 [7] Freeman, L.C.: A Set of measures of centrality based on betweenness.
Sociometry 40(1), 1977, pp. 35-41

[8] R. Satya: Comparison of supervised and unsupervised learning algorithms
for pattern classification. Vol.2, No.2, 2013, IJARAI

[9] MIMIC II: Clinical Database Overview. Internet. www.physionet.org/mimic2.
2 April 2015

[10] Amazon EMR www.aws.com/ElasticMapReduce 1st May 2015

[11] Agirre, Eneko, and Philip Edmonds : Word sense disambiguation Algorithms
and Applications. In Proceedings of the 12th Conference of the European Chapter
of the Association for Computational Linguistics, 2007, pp. 33- 41

	GRAPH BASESD WORD SENSE DISAMBIGUATION FOR CLINICAL ABBREVIATIONS USING APACHE SPARK
	Recommended Citation

	Microsoft Word - padavkar_veebha - Completed (1).docx

