
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2016

Concept Based Search Engine: Concept Creation Concept Based Search Engine: Concept Creation

Aishwarya Rastogi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Rastogi, Aishwarya, "Concept Based Search Engine: Concept Creation" (2016). Master's Projects. 462.
DOI: https://doi.org/10.31979/etd.b8xv-3u8u
https://scholarworks.sjsu.edu/etd_projects/462

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/462?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Page 1 of 39

Concept Based Search Engine: Concept Creation

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfilment

of the Requirements for the Degree

Master of Science

By

Aishwarya Rastogi

February 2016

Page 2 of 39

© 2016

Aishwarya Rastogi

ALL RIGHTS RESERVED

Page 3 of 39

The Designated Project Committee Approves the Project Titled

CONCEPT BASED SEARCH ENGINE: CONCEPT CREATION

By

Aishwarya Rastogi

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

February 2016

Dr. Tsau Young Lin Department of Computer Science

Dr. Robert Chun Department of Computer Science

Mr. Eric Louie IBM Research Center

Page 4 of 39

ABSTRACT

Concept Based Search Engine: Concept Creation

By Aishwarya Rastogi

Data on the internet is increasing exponentially every single second. There are billions

and billions of documents on the World Wide Web (The Internet). Each document on the

internet contains multiple concepts (an abstract or general idea inferred from specific instances).

In this paper, we show how we created and implemented an algorithm for extracting

concepts from a set of documents. These concepts can be used by a search engine for generating

search results to cater the needs of the user. The search result will then be more targeted than the

usual keyword search.

The main problem was to extract concepts from a set of documents. Each page could

have thousands of combinations that could be potential concepts. An average document could

have millions of concepts. Combine that to the vast amount of data on the web, we are talking

about an enormous amount of dataset and samples. As a result, the main areas of concern are the

main memory constraints and the time complexity of the algorithm.

This paper introduces an algorithm which is scalable, independent of the main memory

and has a linear time complexity.

Page 5 of 39

ACKNOWLEDGEMENTS

I would like to thank my project advisor, Dr. Tsau Young Lin, for his constant guidance

and trust on me. It wouldn’t have been possible without his contribution throughout the project.

I would also like to thank my committee members Dr. Robert Chun and Eric Louie for

their invaluable advices, crucial comments during the project development and taking out time

for guiding me throughout the project.

Most importantly, I would like to thank my family and friends for always being there and

providing me with the love and support throughout my master’s program. It would not have been

possible without their constant encouragement and blessings.

Page 6 of 39

TABLE OF CONTENTS

CHAPTER

1. Introduction . 8

2. Hefty Combination Challenge. 9

3. Concept Based Search Engine . 11

3.1 Algorithm . 13

3.2 Sequence Diagram . 14

3.3 Class Diagram 15

3.4 Entity-Relationship Diagram 16

3.5 Use Case Diagram . 17

4. Modules . 19

4.1 Data loading and pre-processing 20

4.2 Make Combinations . 22

4.3 Merge Combinations . 26

4.4 Filter Concepts . 29

5. Software Description . 31

6. Experiments and Results . 32

7. Conclusion . 36

8. Future Work . 37

9. Appendix. . 38

10. References . 39

Page 7 of 39

LIST OF FIGURES

Figure 1.1: Concept Creation Overview………………………………………………… 8

Table 2.1: Number of Words Vs Number of Combinations…………………………….9

Figure 2.1: No. of Words vs. No. of Combinations……………………………………..10

Figure 3.1: Bird’s eye view of the Algorithm………………………….…………….….11

Figure 3.2: Algorithm……………………………………………………………….…...13

Figure 3.3: Sequence Diagram………………………………………………..………….14

Figure 3.4: Class Diagram…………………………………………………………. …...15

Figure 3.5: Entity - Relationship Diagram………………………………………….……16

Figure 3.6: Use Case Diagram……………………………………………………...……17

Figure 4.1.1: Preprocessing Raw Data……………………………………………….….21

Figure 4.2.1: Creating Combinations………………………………… ……………..…. 23

Figure 4.2.2: Making Combinations……………………………………………….……24

Figure 4.2.3: Frequency map ……………………………………………………….…..25

Figure 4.3.1: Merge Combinations………………………………………………….…..26

Figure 4.3.2: Merging Combinations………………………………….……………….. 28

Figure 4.4.1: Filtering Concepts……………………………………………….……..…29

Figure 4.4.2: Filtering Combinations………………………………………..….………30

Figure 6.2: Total time taken vs Number of files Executed………………….………….34

Figure 6.2: Total time taken vs Number of files Executed…... …………………….….35

Page 8 of 39

CHAPTER 1

Introduction

The objective of this paper is to come up with an algorithm to generate concepts from a

given set of documents. Let us start with describing what a set of documents is. The set of

documents for this project is a set of ten thousand IEEE papers which were converted to text

files. The input for this algorithm can be any set of text files.

A concept is defined as “an abstract or general idea inferred or derived from specific

instances”. Here we consider concepts as a word or combination of words that appears in

multiple documents and represent an idea or an abstract e.g. Data Structure, Neural Networks,

Wall Street. In this project the maximum number of words in concept are six as most of the

concepts will be covered with a concept length six and also it will decrease the number of

combinations created exponentially. A point to note is that the concepts are a subset of the

possible combinations.

If we consider this algorithm as a black box, the input and output for this project will look

something like this,

Figure 1.1: Concept Creation Overview

Page 9 of 39

CHAPTER 2

Hefty Combination Challenge

As we have mentioned in the introduction section that concepts are a subset of

combinations that means we need an efficient algorithm to generate and store combinations from

a group of words and handle it tactfully and efficiently.

The most difficult problem to tackle while creating combinations for a set of words is the

exponential growth of the possible outcomes with each additional word. If we consider all the

possible combinations for a single page it would be huge. There can be a large number of

combinations for every page. Let’s take an example.

If we look at different combinations possible from a group of words then it would be

exponential. The table below shows all possible combinations that can be created by adding a

single word in every step. Let us assume A, B, C and D are four words, then the table below list

the possible combinations and number of possible combinations.

Words Considered for

creating combinations

Combinations Number of combinations

A A 1

A B A, B, AB 3

A B C A, B, C, AB, AC, BC, ABC 7

A B C D A, B, C, D, AB, AC, BC, AD, BD, CD,

ABC, ABD, ACD, BCD, ABCD

15

Table 2.1: Number of Words Vs Number of Combinations

As we can see from the table above, the numbers of combinations increase exponentially

with the number of available words. This becomes worst when we are trying to consider the

combinations for the whole page which may easily contain more than five hundred words.

To give you an idea of how huge the number of combination can grow we have a graph

which shows the exponential growth of the combinations. The number of combinations reaches

up to a billion in just 30 words.

Page 10 of 39

As the number of words grows up to 30 words, the number of combinations will look

something like this. The graph below shows us the statistic of the growth of the number of

concepts vs the number of words.

Figure 2.1: No. of Words vs. No. of Combinations

 Now as we have defined the major challenge let’s discuss in detail how we designed and

implemented the algorithm. The aim of the project was to design an algorithm and come up with

an implementation that is independent of the main memory constrains caused by the hefty

combination challenge and hence making it scalable for a larger number of documents.

0

200000000

400000000

600000000

800000000

1E+09

1.2E+09

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

To
ta

l N
u

m
b

e
r

o
f

C
o

m
b

in
at

io
n

s

Number of words

Combinations vs. Words

Page 11 of 39

CHAPTER 3

Concept Based Search Engine

In this chapter we will give an overview of the entire algorithm and in the later sections

we will define each module of the code in detail. We have tried to include software engineering

and UML diagrams wherever possible to give you a better understanding of the algorithm and

the reasoning that went behind it.

The whole software is divided into four main parts:

 Pre-Processing raw data files

 Creating all possible combinations

 Merging all the combinations

 Filtering combinations to create Concepts

Below is the flowchart of the code execution of these four modules:

Figure 3.1: Bird’s eye view of the Algorithm

Page 12 of 39

Preprocessing Raw Data:

This module just takes the raw data that was provided by the web crawler in text format and

makes it ready for the concept creator. The main function of this preprocessor is to remove stop

words, remove all the special character and convert them all to a lower case. Stop words are the

most common words in a language; in our case we took a list of around six hundred stop words

from the internet.

Algorithm:

 Reading the stop word file line by line and adding the stop words in a hash map.

 For each file in the Raw Data set:

o Append it to the map file (File ID: File Name).

o For every line in the file:

 Remove all the special characters.

 Split the line into words.

 For each word in the line:

o Check if the word is a stop word. If not, change it to

lowercase and write it to the new file.

Creating Combinations:

This is the most important module of the algorithm. The combinations are created here in this

module. The main function of this module is to create combinations for every page reading one

paragraph at a time.

Algorithm:

 For each page which was created after the per processing stage:

o Create a hash-map

o For each paragraph (30 words) in the page:

 Make combinations

 Merge the created Combinations and their frequencies in the page hash-

map

o Sort the Hash-map key set

 Write all the keys in the Keyset with the DocID in a file

Merge Combinations:

In this module we merge all the combinations created in all the files into a single file. The

algorithm is very much similar to a merge sort as the input files for this module are already in a

sorted order.

Algorithm:

 For every 2 files of the combinations created in the above module:

o Merge them together.

Page 13 of 39

Filter Concepts:

This last module separates the concepts from the combinations. The main function of this

module is to calculate the number of documents in which a combination was present and filter

out the combinations that do meet the frequency threshold.

Algorithm:

 For each line in the merge combination file:

o Calculate the document frequency of each document.

o If the frequency is greater than the filter frequency declared, it as a concept, else

ignore and read the next line.

Below is the diagram that gives an overview of files created throughout the project:

Figure 3.2: Algorithm

Input for this project was a set of Raw Data files. After we are done with the Pre-Processing we

get a set of clean data files which can be easily processed by the create combination module.

Once all the clean data files are processed by the create combination module into created

combinations files, these files are merged into a single merged combinations file. In the last

phase the concepts are filtered and placed in the filtered concepts file.

Page 14 of 39

Now let’s take a look at a few more UML diagrams and try to understand the overall algorithm

in a little more detail.

Below is the Sequence diagram of the entire algorithm. It shows how and when the objects

interact with each other and when is the control given to one of the objects:

Figure 3.3: Sequence Diagram

Page 15 of 39

As we can see in the previous diagram the raw data files are send to the Preprocessing modules

and it interacts with the stop words object to remove all the stop words present in the raw data.

Once the data is clean it is send to the Make Combination module which then generates the list

of possible concepts in the given set of clean data files and send it out for the next step, the

Merge Combination module. The Merge Concepts module then merges all the generated

concepts to a single file and passes it to the Filter module where the concepts are separated from

the list of combinations provided to it.

Now let’s take a look at the different classes used in this algorithm with a class diagram that

shows the classes, their attributes and operations of these classes. As we know that the whole

project is divided onto four modules Pre-Processing, Creating Combinations, Merging

Combinations and Filter Combination. Let’s look at these classes one by one:

Figure 3.4: Class Diagram

Pre-Processing Class: The two most important attributes of this class are the raw data files and

the list of stop words. The most important operations performed by this class are removing stop

words, removing the special characters and mapping the file name with the file ID in a map file.

Creating Combinations Class: The two main attributes of this class are the paragraph length and

concept size. Paragraph length is the number of words we consider as a paragraph. Two words

are considered to be in one combination only if they are present in the same paragraph. Concept

size is the maximum number of words a combination can have .The operation performed by this

Page 16 of 39

class is creating the combinations. We will talk about the create combination method later in

detail.

Merging Combinations Class: The attribute is the file list which is the set of files that was send

by the create combination module and the operation is the merge operation.

Filter Combinations Class: It contains the document frequency filter as the attribute. The

document frequency filter is the frequency of the combinations in all the documents. The

operation Filter Concept uses the document frequency filter to separate the concepts from the

combinations.

The Entity-Relationship diagram shows the relationship between the different objects. It is a

good way to look at the different objects and how these objects are related.

Below is the Entity-Relationship diagram:

Figure 3.5: Entity - Relationship Diagram

Page 17 of 39

From the ER Diagram we can see that for every Raw Data file there is one Pre-processed file.

The Preprocessed data do not contain any stop words. The stop words have attributes like

“common” and “English words”.

From every preprocessed data files there are multiple combinations generated and every

Combination is connected with the frequency and document ID in which it was present.

The concept is a combination which has a document frequency greater than the filter frequency.

A Use Case diagram can help us figure out how the search engine can use the concept creator.

The Use Case Diagram looks something like this:

Figure 3.6: Use Case Diagram

Page 18 of 39

The concept creator will be used by a search engine so the actor in this use case diagram is the

search engine. A search engine can add or remove the stop words in the stop words file. It can

change the paragraph size or the concept length size in the program. This will affect the speed of

the code. The search engine can also change the Document frequency filter so as to improve the

quality of the concepts generated. And also it uses the concepts generated by the concept creator

while doing a search.

Page 19 of 39

CHAPTER 4

Main Modules

In this chapter we will take a closer look on each of the modules. A quick recap of the Modules

and their main operations:

The software is divided into four main modules:

 Pre-Processing: Raw data is pre-processed

 Create Combinations: Creates all possible combinations

 Merge Combination: Merges all the combinations into a single file

 Filter Concepts: Filters combinations and saves concepts

Now let’s take a look on how each of these modules work.

Page 20 of 39

4.1 Data Loading and preprocessing

Definition:

 Stop Words (Dictionary meaning):

“Any of a number of very commonly used words, as a, and, in, and to, that are

normally excluded by computer search engines or when compiling a

concordance.”

Input:

Inputs for this module are:

 Raw Data Files: These were the files which were directly provided to the Search Engine

from the web crawler without any modifications.

 Stop Word File: For our project we have used a list of around 650 words found online

which are considered as stop words.

Process:

This module is the first module of the Concept Creator and its main operation is to clean

the data. The main function of this module is to remove all the stop words and the special

characters from the text that was provided as an input.

Before reading every file which was provided as the raw data to the module, it reads and

stores all the stop words in a hash map, making it a constant time lookup. It then reads every file

word by word and performs these operations for every word it reads:

 Cleans the data by removing all non-word characters (that is all characters except

alphabets and digits).

 Checks if the word is a stop word.

 If it’s not a stop word it converts the word to lowercase and writes it to the output file.

After the complete file is read, the file is mapped with a document ID which is used later on

in the project instead of using the entire file name.

Output:

 Clean data files (in lowercase and without special characters or stop words).

 Map files (Document ID: Document Name)

Page 21 of 39

Below is the flowchart of the preprocessing module:

Figure 4.1.1: Preprocessing Raw Data

Page 22 of 39

4.2 Make Combinations

Definition:

Combination (Dictionary definition):

“Joining or merging of different parts or qualities in which the component elements are

individually distinct.”

Input:

Input for this module is:

 Data Files: These are the clean data files which were generated in the previous module.

Process:

This module is one of the most important modules of the project. The main function of this

module is to divide a page into paragraph and calculate all the viable combinations in that

paragraph.

The main function of this module is the “makeCombination” method. We will discuss that

method in detail later in this section. The module generates all possible combinations using this

“makeCombination” method.

The module keeps on storing all the generated combinations in a hash map and then sorts it

before writing it into the output file along with the Document ID.

Output:

 Combinations with Document ID for all the data files (Combination: Document ID)

Page 23 of 39

Below is the flowchart for the concept generator module:

Figure 4.2.1: Creating Combinations

As we are now done with explaining the overview of the create combination module. Let

look into the most important method of this algorithm. We will see how exactly the code

generates and stores such a large amount of combinations for each paragraph and pages.

Page 24 of 39

makeCombinations Method:

The method makeCombinations (String s) takes in a paragraph as a String and returns a

Hash Map containing all the viable Combinations and their frequency (number of times they

were present in the paragraph).

The input string is split into tokens and the tokens are stored in a String array. For each

token in the string array we read the key set of the “combination” Hash Map, append the token to

all the keys in the key set until the length of the combination is less than 6 (combination size)

and then put all the appended keys in the Hash Map of the “combination”. The Hash Map is then

returned to the calling function.

Figure 4.2.2: Making Combinations

The main algorithm behind this method can be explained by looking at the diagram

above. The word is stored in a hash map and every time a new word is added we keep the keyset

from the previous hash map and then append the new word along with the keyset in the previous

hash map after appending the new word at the end of that key set.

As mentioned earlier the main function of this module is to divide the file into 30 words

(paragraph size) paragraphs and then send each paragraph to the “makeCombination” method.

The “makeCombination” method then returns a Hash Map that contains all the viable

combinations and the frequencies in which these combinations occurred in the paragraph.

Page 25 of 39

Frequency Analysis Of The Combinations Created:

When we studied the frequencies of Combinations for random files we found that more

than 90% of the combinations created have a frequency 1. That means that these combinations

were only created /occurred once in the whole file. Below is the graph showing the frequency

distribution of the combinations created in this module:

Figure 4.2.3: Frequency map

As you can see most of the combinations occurred just once in a document. This means

those combinations are least likely to become a concept. Even if some of these combinations

were concepts, we will still ignore it because it will not be a relevant concept to the file as a

combination that would have occurred more than once in the same document.

So once the Hash Map is received, the combinations which have a frequency equal to 1

are ignored and the combinations with frequency greater than 1 are stored along with the

Document ID in sorted order.

Page 26 of 39

4.3 Merge Combinations

Input:

 Combinations with Document ID for all the data files (Combination: Document ID).

Process:

This module is the module that merges all the Combinations that were created in the

previous module into a single document. The main function is to merge all the combinations into

one single file with a list of all the Document IDs they were present in. The list of all the

Document IDs which were generated in this module provides the Document frequency for all the

combinations.

Figure 4.3.1: Merge Combinations

Page 27 of 39

The files from the previous modules are provided to the “Merge” method two at a time.

This Merge function is very similar to the merge method in the merge sort. This is the pseudo

code form Wikipedia:

Pseudo code: (Merge function in the Merge Sort):

It is possible to use a similar kind of algorithm for merging the combination into a single

file as the input files are in a sorted order. The combinations are sorted in Lexicographical order.

Output:

 Merged file (Combination 1: Document ID 1, Document ID 2….)

Page 28 of 39

Below is the flow diagram for merging the combination files together:

Figure 4.3.2: Merging Combinations

Page 29 of 39

4.4 Filter Concepts

Input:

 Merged file (Combinations : Document ID 1, Document ID 2….)

Process:

This is the smallest module but it plays a very important role in filtering out the Concepts from

the Combinations. Being the last module of the project this module provides the final filter which

is needed to get the concepts.

The merged file is read line by line to check the number of Documents IDs present for every

combination. This is the combination document frequency for every combination.

A filter is then applied to the combination document frequency. If the document frequency for a

combination is greater than the filter frequency then the combination is considered a Concept.

Output:

 Concept File (Concept: Document ID 1, Document ID 2….)

Below is a part of the Entity Relationship Diagram that shows how a Concept is related to a

combination:

Figure 4.4.1: Filtering Concepts

Page 30 of 39

You can clearly see from the above diagram that a concept is a combination and has a document

frequency which is greater than the filter frequency and it is present in multiple documents.

The overall flow diagram for filtering out the concepts from the combination is given below:

Figure 4.4.2: Filtering Combinations

Page 31 of 39

Chapter 5

Software Description

Below are the software specifications that were used while running the code for this project:

5.1 Software Specification

 Operating System: Windows 7

 Programming Language: Java

 IDE: Eclipse

 Data Base: File System

5.2 Hardware Specification

 CPU: IntelI CoreI i5-5300U CPU @ 2.3GHz 2.3GHz

 RAM: 12 GB

5.3 Eclipse heap size settings:

Eclipse.ini file looks something like this:

Note: You may use a different type of environment but that will affect the run time.

Page 32 of 39

Chapter 6

Experiments and Results

We mentioned that the algorithm was linear when we add more files. Here is an experiment to

prove that the time taken for the algorithm is linear as we add more files to it.

We have run the program and noted the time taken by different modules. In the end it should be a

linear growth in time when more pages are added to the algorithm.

Experiment:

Time taken to run 10 files:

Preprocessing.java- Run took: 217ms

MakeCombinations.java- Run took: 139107ms

MergeCombinations.java- Run took: 9458ms

FilterConcepts.java- Run took: 1266ms

Total time to generate concepts from 10 files-

Run took: 150048ms = 2.5008mins

Time taken to run 20 files:

Preprocessing.java- Run took: 364ms

MakeCombinations.java- Run took: 312354ms

MergeCombinations.java- Run took: 30842ms

FilterConcepts.java- Run took: 2643ms

Total time to generate concepts from 20 files-

Run took: 346203ms = 5.77mins

Time taken to run 30 files:

Preprocessing.java- Run took: 423ms

MakeCombinations.java- Run took: 507126ms

Page 33 of 39

MergeCombinations.java- Run took: 88619ms

FilterConcepts.java- Run took: 3744ms

Total time to generate concepts from 30 files-

Run took: 599912ms = 9.99mins

Time taken to run 40 files:

Preprocessing.java- Run took: 422ms

MakeCombinations.java- Run took: 663863ms

MergeCombinations.java- Run took: 129626ms

FilterConcepts.java- Run took: 4534ms

Total time to generate concepts from 40 files-

Run took: 798445ms= 13.30mins

Time taken to run 50 files:

Preprocessing.java- Run took: 481ms

MakeCombinations.java- Run took: 704694ms

MergeCombinations.java- Run took: 206821ms

FilterConcepts.java- Run took: 5835ms

Total time to generate concepts from 40 files-

Run took: 917831ms= 15.29mins

Page 34 of 39

Results:

Below is the graph showing time as the function of number of files used for creating concepts.

From the graph below we can see that Pre-Processing module and the Filter Concepts modules

take very less time as compared to the Make Combinations and Merge Combinations modules.

This means that we can ignore the Pre-Processing and Filter Concepts. Even if we look at the

data above they do have a linear time complexity.

We can see that the main modules Make Combinations and Merge Combinations which will add

the most time to the total time taken by the algorithm are both following a linear trend.

Figure 6.2: Total time taken vs Number of files Executed

0

100000

200000

300000

400000

500000

600000

700000

800000

10 Files 20 Files 30 Files 40 Files 50 Files

Ti
m

e
 T

ak
e

n
 (

in
 m

s)

Time taken by each module vs Number of Files

Pre-Processing

MakeCombinations

MergeCombinations

FilterConcepts

Page 35 of 39

Now let’s take a look at the total time taken by the algorithm if we increase the number of files.

The graph below shows a linear growth in time. This proves that our algorithm has a linear time

complexity with respect to the number of files added in the system.

Figure 6.2: Total time taken vs Number of files Executed

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

10 Files 20 Files 30 Files 40 Files 50 files

Ti
m

e
 T

ak
e

n
 (

in
 m

s)

Total Time Taken (in ms) vs Number of Files

Total Time Taken

Page 36 of 39

Chapter 7

Conclusion

This algorithm was designed and implemented to generate concepts from a given set of

documents. The algorithm is independent of the main memory constrains as it computes one

document at a time. Moreover, the algorithm was built in such a way that it is scalable if the

number of documents is increased. These are the two things that were achieved by using this

algorithm.

Algorithm is independent of main memory constrains:

 Main memory processing is limited to a single page which makes it independent of the

main memory.

Algorithm is scalable:

 The time complexity is linear which enables the program to run smoothly even if more

documents are added to the set of documents as seen from the experiment done in

Chapter 7.

Page 37 of 39

Chapter 8

Future Work

 The fine tuning of the filter frequency needs to be done so that the concepts are

effectively separated from the rest of the combinations.

 Some kind of a page ranking system can be developed so that the most important pages

are shown first followed by the lower priority ones.

 This algorithm can be helpful in classification algorithms as well where the documents

can be classified into topics or concepts they contain.

Page 38 of 39

Appendix: Reference table for the flow charts

Show the start point in a process. When used as a Start symbol,

terminators depict a trigger action that sets the process flow

into motion.

Show the end point in a process.

Show a Process or action step. This is the most common symbol

in both process flowcharts and process maps.

A Predefined Process symbol is a marker for another process

step or series of process flow steps that are formally defined

elsewhere. This shape commonly depicts sub-processes (or

subroutines in programming flowcharts). If the sub-process is

considered "known" but not actually defined in a process

procedure, work instruction, or some other process flowchart or

documentation, then it is best not to use this symbol since it

implies a formally defined process

When used as a Start symbol, terminators depict a trigger

action that sets the process flow into motion.

Manual Operations flowchart shapes show which process steps

are not automated. In data processing flowcharts, this data flow

shape indicates a looping operation along with a loop limit

symbol

The Document flowchart symbol is for a process step that

produces a document.

Used in programming flowcharts to mean information stored in

memory, as opposed to on a file.

Page 39 of 39

List of References

[1] Tsau Young (T. Y.) Lin, Albert Sutojo and Jean-David Hsu; Concept Analysis

And Web Clustering using Combinatorial Topology (2006)

[2] Tsau Young (T. Y.) Lin and Jean-David Hsu; Knowledge Based Search Engine

Granular Computing on the Web

[3] Apriori algorithm; http://www.cs.sunysb.edu/~cse634

[4] Introduction to Information Retrieval - By Christopher D. Manning, Prabhakar

Raghavan & Hinrich Schütze ; Website: http://informationretrieval.org/ ;

Cambridge University Press

[5] Google Search, http://www.google.com.

[6] Roy, Pradeep, "Concept Based Semantic Search Engine" (2014).Master's Projects.

Paper 351.

[7] R. Agrawal and R. Srinkat. Fast algorithms for mining association rules. Proceedings

of the 20th VLDB Conference, 1994.

[8] T. Y. Lin. Granular computing: Examples, intuitions and modeling. In: the

Proceedings of 2005 IEEE International Conference on Granular Computing, 2005.

[9] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-

Hill, 1983.

[10] Introduction to Information Retrieval - By Christopher D. Manning, Prabhakar

Raghavan & Hinrich Schütze ; Website: http://informationretrieval.org/ ; Cambridge

University Press

	Concept Based Search Engine: Concept Creation
	Recommended Citation

	tmp.1456949590.pdf.cZRPK

