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ABSTRACT 

Concept Based Search Engine: Concept Creation 

By Aishwarya Rastogi 

 

Data on the internet is increasing exponentially every single second. There are billions 

and billions of documents on the World Wide Web (The Internet).  Each document on the 

internet contains multiple concepts (an abstract or general idea inferred from specific instances). 

In this paper, we show how we created and implemented an algorithm for extracting 

concepts from a set of documents. These concepts can be used by a search engine for generating 

search results to cater the needs of the user. The search result will then be more targeted than the 

usual keyword search. 

The main problem was to extract concepts from a set of documents. Each page could 

have thousands of combinations that could be potential concepts. An average document could 

have millions of concepts. Combine that to the vast amount of data on the web, we are talking 

about an enormous amount of dataset and samples. As a result, the main areas of concern are the 

main memory constraints and the time complexity of the algorithm. 

This paper introduces an algorithm which is scalable, independent of the main memory 

and has a linear time complexity. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 5 of 39 
 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my project advisor, Dr. Tsau Young Lin, for his constant guidance 

and trust on me. It wouldn’t have been possible without his contribution throughout the project. 

I would also like to thank my committee members Dr. Robert Chun and Eric Louie for 

their invaluable advices, crucial comments during the project development and taking out time 

for guiding me throughout the project. 

Most importantly, I would like to thank my family and friends for always being there and 

providing me with the love and support throughout my master’s program. It would not have been 

possible without their constant encouragement and blessings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 6 of 39 
 

TABLE OF CONTENTS 

 

CHAPTER              

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   8 

 

2. Hefty Combination Challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   9 

 

3. Concept Based Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

3.2 Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

3.3 Class Diagram . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .. . . . .  15 

3.4 Entity-Relationship Diagram . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 16 

3.5 Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

 

4. Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

4.1 Data loading and pre-processing . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

4.2 Make Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

4.3  Merge Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

4.4  Filter Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

 

5. Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

 

6. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

 

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

 

8. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

 

9. Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . 38 

 

10. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

 

 

 



Page 7 of 39 
 

 

LIST OF FIGURES 

 

Figure 1.1: Concept Creation Overview………………………………………………… 8 

Table 2.1: Number of Words Vs Number of Combinations…………………………….9 

Figure 2.1: No. of Words vs. No. of Combinations……………………………………..10 

Figure 3.1: Bird’s eye view of the Algorithm………………………….…………….….11 

Figure 3.2: Algorithm……………………………………………………………….…...13 

Figure 3.3: Sequence Diagram………………………………………………..………….14 

Figure 3.4: Class Diagram…………………………………………………………. …...15 

Figure 3.5: Entity - Relationship Diagram………………………………………….……16 

Figure 3.6: Use Case Diagram……………………………………………………...……17 

Figure 4.1.1: Preprocessing Raw Data……………………………………………….….21 

Figure 4.2.1: Creating Combinations………………………………… ……………..…. 23 

Figure 4.2.2: Making Combinations……………………………………………….……24 

Figure 4.2.3: Frequency map ……………………………………………………….…..25 

Figure 4.3.1: Merge Combinations………………………………………………….…..26 

Figure 4.3.2: Merging Combinations………………………………….……………….. 28 

Figure 4.4.1: Filtering Concepts……………………………………………….……..…29 

Figure 4.4.2: Filtering Combinations………………………………………..….………30 

Figure 6.2: Total time taken vs Number of files Executed………………….………….34 

Figure 6.2: Total time taken vs Number of files Executed…... …………………….….35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 8 of 39 
 

CHAPTER 1 

Introduction 

 

The objective of this paper is to come up with an algorithm to generate concepts from a 

given set of documents. Let us start with describing what a set of documents is. The set of 

documents for this project is a set of ten thousand IEEE papers which were converted to text 

files. The input for this algorithm can be any set of text files. 

A concept is defined as “an abstract or general idea inferred or derived from specific 

instances”. Here we consider concepts as a word or combination of words that appears in 

multiple documents and represent an idea or an abstract e.g. Data Structure, Neural Networks, 

Wall Street. In this project the maximum number of words in concept are six as most of the 

concepts will be covered with a concept length six and also it will decrease the number of 

combinations created exponentially. A point to note is that the concepts are a subset of the 

possible combinations. 

If we consider this algorithm as a black box, the input and output for this project will look 

something like this, 

 

 

Figure 1.1: Concept Creation Overview 
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CHAPTER 2 

Hefty Combination Challenge  

 

As we have mentioned in the introduction section that concepts are a subset of 

combinations that means we need an efficient algorithm to generate and store combinations from 

a group of words and handle it tactfully and efficiently. 

 

The most difficult problem to tackle while creating combinations for a set of words is the 

exponential growth of the possible outcomes with each additional word. If we consider all the 

possible combinations for a single page it would be huge. There can be a large number of 

combinations for every page. Let’s take an example. 

 

If we look at different combinations possible from a group of words then it would be 

exponential. The table below shows all possible combinations that can be created by adding a 

single word in every step. Let us assume A, B, C and D are four words, then the table below list 

the possible combinations and number of possible combinations. 

 

Words Considered for 

creating combinations 

Combinations Number of combinations 

A A 1 

A B A, B, AB 3 

A B C A, B, C, AB, AC, BC, ABC 7 

A B C D A, B, C, D, AB, AC, BC, AD, BD, CD, 

ABC, ABD, ACD, BCD, ABCD 

15 

 

Table 2.1: Number of Words Vs Number of Combinations 

 

As we can see from the table above, the numbers of combinations increase exponentially 

with the number of available words. This becomes worst when we are trying to consider the 

combinations for the whole page which may easily contain more than five hundred words. 

To give you an idea of how huge the number of combination can grow we have a graph 

which shows the exponential growth of the combinations. The number of combinations reaches 

up to a billion in just 30 words.  
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As the number of words grows up to 30 words, the number of combinations will look 

something like this. The graph below shows us the statistic of the growth of the number of 

concepts vs the number of words.  

 

 

Figure 2.1: No. of Words vs. No. of Combinations 

 

 Now as we have defined the major challenge let’s discuss in detail how we designed and 

implemented the algorithm. The aim of the project was to design an algorithm and come up with 

an implementation that is independent of the main memory constrains caused by the hefty 

combination challenge and hence making it scalable for a larger number of documents. 
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CHAPTER 3 

Concept Based Search Engine 

 

In this chapter we will give an overview of the entire algorithm and in the later sections 

we will define each module of the code in detail. We have tried to include software engineering 

and UML diagrams wherever possible to give you a better understanding of the algorithm and 

the reasoning that went behind it. 

 

The whole software is divided into four main parts: 

 Pre-Processing raw data files 

 Creating all possible combinations 

 Merging all the combinations 

 Filtering  combinations to create Concepts 

 

Below is the flowchart of the code execution of these four modules: 

 

Figure 3.1: Bird’s eye view of the Algorithm 
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Preprocessing Raw Data: 

This module just takes the raw data that was provided by the web crawler in text format and 

makes it ready for the concept creator. The main function of this preprocessor is to remove stop 

words, remove all the special character and convert them all to a lower case. Stop words are the 

most common words in a language; in our case we took a list of around six hundred stop words 

from the internet.  

Algorithm: 

 Reading the stop word file line by line and adding the stop words in a hash map. 

 For each file in the Raw Data set: 

o Append it to the map file (File ID: File Name). 

o For every line in the file: 

 Remove all the special characters. 

 Split the line into words. 

 For each word in the line: 

o Check if the word is a stop word. If not, change it to 

lowercase and write it to the new file. 

Creating Combinations: 

This is the most important module of the algorithm. The combinations are created here in this 

module. The main function of this module is to create combinations for every page reading one 

paragraph at a time. 

Algorithm: 

 For each page which was created after the per processing stage: 

o Create a hash-map 

o For each paragraph (30 words) in the page: 

 Make combinations 

 Merge the created Combinations and their frequencies in the page hash-

map 

o Sort the Hash-map key set 

 Write all the keys in the Keyset with the DocID in a file 

Merge Combinations: 

In this module we merge all the combinations created in all the files into a single file. The 

algorithm is very much similar to a merge sort as the input files for this module are already in a 

sorted order. 

Algorithm: 

 For every 2 files of the combinations created in the above module: 

o Merge them together. 
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Filter Concepts: 

This last module separates the concepts from the combinations. The main function of this 

module is to calculate the number of documents in which a combination was present and filter 

out the combinations that do meet the frequency threshold. 

Algorithm: 

 For each line in the merge combination file: 

o Calculate the document frequency of each document. 

o If the frequency is greater than the filter frequency declared, it as a concept, else 

ignore and read the next line. 

 

Below is the diagram that gives an overview of files created throughout the project: 

 

 

Figure 3.2: Algorithm 

Input for this project was a set of Raw Data files. After we are done with the Pre-Processing we 

get a set of clean data files which can be easily processed by the create combination module. 

Once all the clean data files are processed by the create combination module into created 

combinations files, these files are merged into a single merged combinations file. In the last 

phase the concepts are filtered and placed in the filtered concepts file. 
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Now let’s take a look at a few more UML diagrams and try to understand the overall algorithm 

in a little more detail. 

Below is the Sequence diagram of the entire algorithm. It shows how and when the objects 

interact with each other and when is the control given to one of the objects: 

 

Figure 3.3: Sequence Diagram 
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As we can see in the previous diagram the raw data files are send to the Preprocessing modules 

and it interacts with the stop words object to remove all the stop words present in the raw data.  

Once the data is clean it is send to the Make Combination module which then generates the list 

of possible concepts in the given set of clean data files and send it out for the next step, the 

Merge Combination module. The Merge Concepts module then merges all the generated 

concepts to a single file and passes it to the Filter module where the concepts are separated from 

the list of combinations provided to it. 

 

Now let’s take a look at the different classes used in this algorithm with a class diagram that 

shows the classes, their attributes and operations of these classes. As we know that the whole 

project is divided onto four modules Pre-Processing, Creating Combinations, Merging 

Combinations and Filter Combination. Let’s look at these classes one by one: 

 

 

Figure 3.4: Class Diagram 

 

Pre-Processing Class: The two most important attributes of this class are the raw data files and 

the list of stop words. The most important operations performed by this class are removing stop 

words, removing the special characters and mapping the file name with the file ID in a map file. 

Creating Combinations Class: The two main attributes of this class are the paragraph length and 

concept size. Paragraph length is the number of words we consider as a paragraph. Two words 

are considered to be in one combination only if they are present in the same paragraph. Concept 

size is the maximum number of words a combination can have .The operation performed by this 
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class is creating the combinations. We will talk about the create combination method later in 

detail. 

Merging Combinations Class: The attribute is the file list which is the set of files that was send 

by the create combination module and the operation is the merge operation. 

Filter Combinations Class: It contains the document frequency filter as the attribute. The 

document frequency filter is the frequency of the combinations in all the documents. The 

operation Filter Concept uses the document frequency filter to separate the concepts from the 

combinations.  

 

The Entity-Relationship diagram shows the relationship between the different objects. It is a 

good way to look at the different objects and how these objects are related. 

Below is the Entity-Relationship diagram: 

 

 

 

Figure 3.5: Entity - Relationship Diagram 
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From the ER Diagram we can see that for every Raw Data file there is one Pre-processed file. 

The Preprocessed data do not contain any stop words. The stop words have attributes like 

“common” and “English words”.  

From every preprocessed data files there are multiple combinations generated and every 

Combination is connected with the frequency and document ID in which it was present. 

The concept is a combination which has a document frequency greater than the filter frequency.  

 

A Use Case diagram can help us figure out how the search engine can use the concept creator. 

The Use Case Diagram looks something like this: 

 

Figure 3.6: Use Case Diagram 
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The concept creator will be used by a search engine so the actor in this use case diagram is the 

search engine. A search engine can add or remove the stop words in the stop words file. It can 

change the paragraph size or the concept length size in the program. This will affect the speed of 

the code. The search engine can also change the Document frequency filter so as to improve the 

quality of the concepts generated. And also it uses the concepts generated by the concept creator 

while doing a search. 
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CHAPTER 4 

Main Modules 

In this chapter we will take a closer look on each of the modules. A quick recap of the Modules 

and their main operations: 

 

The software is divided into four main modules: 

 Pre-Processing: Raw data is pre-processed 

 Create Combinations: Creates all possible combinations 

 Merge Combination: Merges all the combinations into a single file 

 Filter Concepts: Filters combinations and saves concepts 

 

Now let’s take a look on how each of these modules work. 
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4.1 Data Loading and preprocessing 

Definition: 

 Stop Words (Dictionary meaning):   

“Any of a number of very commonly used words, as a, and, in, and to, that are 

normally excluded by computer search engines or when compiling a 

concordance.” 

Input:  

Inputs for this module are: 

 Raw Data Files: These were the files which were directly provided to the Search Engine 

from the web crawler without any modifications. 

 Stop Word File: For our project we have used a list of around 650 words found online 

which are considered as stop words. 

Process: 

This module is the first module of the Concept Creator and its main operation is to clean 

the data. The main function of this module is to remove all the stop words and the special 

characters from the text that was provided as an input.  

Before reading every file which was provided as the raw data to the module, it reads and 

stores all the stop words in a hash map, making it a constant time lookup. It then reads every file 

word by word and performs these operations for every word it reads: 

 Cleans the data by removing all non-word characters (that is all characters except 

alphabets and digits). 

 Checks if the word is a stop word. 

 If it’s not a stop word it converts the word to lowercase and writes it to the output file. 

 

After the complete file is read, the file is mapped with a document ID which is used later on 

in the project instead of using the entire file name. 

Output:  

 Clean data files (in lowercase and without special characters or stop words). 

 Map files (Document ID: Document Name) 
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Below is the flowchart of the preprocessing module: 

 

 

Figure 4.1.1: Preprocessing Raw Data 
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4.2 Make Combinations 

Definition: 

Combination (Dictionary definition): 

“Joining or merging of different parts or qualities in which the component elements are 

individually distinct.” 

 

Input:  

Input for this module is: 

 Data Files: These are the clean data files which were generated in the previous module. 

 

Process: 

This module is one of the most important modules of the project. The main function of this 

module is to divide a page into paragraph and calculate all the viable combinations in that 

paragraph. 

The main function of this module is the “makeCombination” method. We will discuss that 

method in detail later in this section. The module generates all possible combinations using this 

“makeCombination” method.  

The module keeps on storing all the generated combinations in a hash map and then sorts it 

before writing it into the output file along with the Document ID.  

 

Output:  

 Combinations with Document ID for all the data files (Combination: Document ID) 
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Below is the flowchart for the concept generator module: 

 

 

Figure 4.2.1: Creating Combinations 

 

As we are now done with explaining the overview of the create combination module. Let 

look into the most important method of this algorithm. We will see how exactly the code 

generates and stores such a large amount of combinations for each paragraph and pages. 
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makeCombinations Method: 

The method makeCombinations (String s) takes in a paragraph as a String and returns a 

Hash Map containing all the viable Combinations and their frequency (number of times they 

were present in the paragraph).  

The input string is split into tokens and the tokens are stored in a String array. For each 

token in the string array we read the key set of the “combination” Hash Map, append the token to 

all the keys in the key set until the length of the combination is less than 6 (combination size) 

and then put all the appended keys in the Hash Map of the “combination”. The Hash Map is then 

returned to the calling function. 

 

 

Figure 4.2.2: Making Combinations 

The main algorithm behind this method can be explained by looking at the diagram 

above. The word is stored in a hash map and every time a new word is added we keep the keyset 

from the previous hash map and then append the new word along with the keyset in the previous 

hash map after appending the new word at the end of that key set. 

As mentioned earlier the main function of this module is to divide the file into 30 words 

(paragraph size) paragraphs and then send each paragraph to the “makeCombination” method. 

The “makeCombination” method then returns a Hash Map that contains all the viable 

combinations and the frequencies in which these combinations occurred in the paragraph. 
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Frequency Analysis Of The Combinations Created: 

When we studied the frequencies of Combinations for random files we found that more 

than 90% of the combinations created have a frequency 1. That means that these combinations 

were only created /occurred once in the whole file. Below is the graph showing the frequency 

distribution of the combinations created in this module: 

 

Figure 4.2.3: Frequency map  

 

As you can see most of the combinations occurred just once in a document. This means 

those combinations are least likely to become a concept. Even if some of these combinations 

were concepts, we will still ignore it because it will not be a relevant concept to the file as a 

combination that would have occurred more than once in the same document. 

So once the Hash Map is received, the combinations which have a frequency equal to 1 

are ignored and the combinations with frequency greater than 1 are stored along with the 

Document ID in sorted order. 
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4.3 Merge Combinations 

 

Input:  

 Combinations with Document ID for all the data files (Combination: Document ID). 

Process: 

This module is the module that merges all the Combinations that were created in the 

previous module into a single document. The main function is to merge all the combinations into 

one single file with a list of all the Document IDs they were present in. The list of all the 

Document IDs which were generated in this module provides the Document frequency for all the 

combinations. 

 

 

Figure 4.3.1: Merge Combinations 
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The files from the previous modules are provided to the “Merge” method two at a time. 

This Merge function is very similar to the merge method in the merge sort. This is the pseudo 

code form Wikipedia: 

 

Pseudo code: (Merge function in the Merge Sort): 

 
 

It is possible to use a similar kind of algorithm for merging the combination into a single 

file as the input files are in a sorted order. The combinations are sorted in Lexicographical order. 

 

Output:  

 Merged file (Combination 1: Document ID 1, Document ID 2….) 
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Below is the flow diagram for merging the combination files together: 

 

 

Figure 4.3.2: Merging Combinations 
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4.4 Filter Concepts 

 

Input: 

 Merged file (Combinations : Document ID 1, Document ID 2….) 

 

Process: 

This is the smallest module but it plays a very important role in filtering out the Concepts from 

the Combinations. Being the last module of the project this module provides the final filter which 

is needed to get the concepts. 

The merged file is read line by line to check the number of Documents IDs present for every 

combination. This is the combination document frequency for every combination. 

A filter is then applied to the combination document frequency. If the document frequency for a 

combination is greater than the filter frequency then the combination is considered a Concept. 

 

Output: 

 Concept File (Concept: Document ID 1, Document ID 2….) 

 

Below is a part of the Entity Relationship Diagram that shows how a Concept is related to a 

combination:  

 

Figure 4.4.1: Filtering Concepts 
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You can clearly see from the above diagram that a concept is a combination and has a document 

frequency which is greater than the filter frequency and it is present in multiple documents.  

 

The overall flow diagram for filtering out the concepts from the combination is given below: 

 

 

Figure 4.4.2: Filtering Combinations 
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Chapter 5 

Software Description 

 

Below are the software specifications that were used while running the code for this project:   

5.1 Software Specification 

 Operating System: Windows 7 

 Programming Language: Java 

 IDE: Eclipse 

 Data Base: File System 

5.2 Hardware Specification 

 CPU: IntelI CoreI i5-5300U CPU @ 2.3GHz 2.3GHz 

 RAM: 12 GB 

 

5.3 Eclipse heap size settings: 

 

Eclipse.ini file looks something like this: 

 

 

 

Note: You may use a different type of environment but that will affect the run time.   
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Chapter 6 

Experiments and Results 

We mentioned that the algorithm was linear when we add more files. Here is an experiment to 

prove that the time taken for the algorithm is linear as we add more files to it. 

We have run the program and noted the time taken by different modules. In the end it should be a 

linear growth in time when more pages are added to the algorithm.  

 

Experiment: 

 

Time taken to run 10 files: 

Preprocessing.java- Run took: 217ms 

MakeCombinations.java- Run took: 139107ms 

MergeCombinations.java- Run took: 9458ms 

FilterConcepts.java- Run took: 1266ms 

Total time to generate concepts from 10 files- 

Run took: 150048ms = 2.5008mins 

 

Time taken to run 20 files: 

Preprocessing.java- Run took: 364ms 

MakeCombinations.java- Run took: 312354ms 

MergeCombinations.java- Run took: 30842ms 

FilterConcepts.java- Run took: 2643ms 

Total time to generate concepts from 20 files- 

Run took: 346203ms = 5.77mins 

 

Time taken to run 30 files: 

Preprocessing.java- Run took: 423ms 

MakeCombinations.java- Run took: 507126ms 
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MergeCombinations.java- Run took: 88619ms 

FilterConcepts.java- Run took: 3744ms 

Total time to generate concepts from 30 files- 

Run took: 599912ms = 9.99mins 

 

Time taken to run 40 files: 

Preprocessing.java- Run took: 422ms 

MakeCombinations.java- Run took: 663863ms 

MergeCombinations.java- Run took: 129626ms 

FilterConcepts.java- Run took: 4534ms 

Total time to generate concepts from 40 files- 

Run took: 798445ms= 13.30mins 

 

Time taken to run 50 files: 

Preprocessing.java- Run took: 481ms 

MakeCombinations.java- Run took: 704694ms 

MergeCombinations.java- Run took: 206821ms 

FilterConcepts.java- Run took: 5835ms 

Total time to generate concepts from 40 files- 

Run took: 917831ms= 15.29mins 
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Results: 

Below is the graph showing time as the function of number of files used for creating concepts. 

From the graph below we can see that Pre-Processing module and the Filter Concepts modules 

take very less time as compared to the Make Combinations and Merge Combinations modules. 

This means that we can ignore the Pre-Processing and Filter Concepts. Even if we look at the 

data above they do have a linear time complexity.  

We can see that the main modules Make Combinations and Merge Combinations which will add 

the most time to the total time taken by the algorithm are both following a linear trend. 

 

 

Figure 6.2: Total time taken vs Number of files Executed 
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Now let’s take a look at the total time taken by the algorithm if we increase the number of files. 

The graph below shows a linear growth in time. This proves that our algorithm has a linear time 

complexity with respect to the number of files added in the system. 

 

 

Figure 6.2: Total time taken vs Number of files Executed 
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Chapter 7 

Conclusion 

 

This algorithm was designed and implemented to generate concepts from a given set of 

documents. The algorithm is independent of the main memory constrains as it computes one 

document at a time. Moreover, the algorithm was built in such a way that it is scalable if the 

number of documents is increased. These are the two things that were achieved by using this 

algorithm. 

Algorithm is independent of main memory constrains: 

 Main memory processing is limited to a single page which makes it independent of the 

main memory. 

Algorithm is scalable: 

 The time complexity is linear which enables the program to run smoothly even if more 

documents are added to the set of documents as seen from the experiment done in 

Chapter 7. 
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Chapter 8 

Future Work 

 

 The fine tuning of the filter frequency needs to be done so that the concepts are 

effectively separated from the rest of the combinations. 

 

 Some kind of a page ranking system can be developed so that the most important pages 

are shown first followed by the lower priority ones. 

 

 This algorithm can be helpful in classification algorithms as well where the documents 

can be classified into topics or concepts they contain.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 38 of 39 
 

Appendix: Reference table for the flow charts 

 

 

Show the start point in a process. When used as a Start symbol, 

terminators depict a trigger action that sets the process flow 

into motion. 

 

Show the end point in a process. 

 

Show a Process or action step. This is the most common symbol 

in both process flowcharts and process maps. 

 

A Predefined Process symbol is a marker for another process 

step or series of process flow steps that are formally defined 

elsewhere. This shape commonly depicts sub-processes (or 

subroutines in programming flowcharts). If the sub-process is 

considered "known" but not actually defined in a process 

procedure, work instruction, or some other process flowchart or 

documentation, then it is best not to use this symbol since it 

implies a formally defined process 

 

When used as a Start symbol, terminators depict a trigger 

action that sets the process flow into motion. 

 

Manual Operations flowchart shapes show which process steps 

are not automated. In data processing flowcharts, this data flow 

shape indicates a looping operation along with a loop limit 

symbol 

 

The Document flowchart symbol is for a process step that 

produces a document. 

 

Used in programming flowcharts to mean information stored in 

memory, as opposed to on a file. 
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