San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2016

Processing Posting Lists Using OpenCL

Radha Kotipalli
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

b Part of the Databases and Information Systems Commons

Recommended Citation

Kotipalli, Radha, "Processing Posting Lists Using OpenCL' (2016). Master's Projects. 474.
DOI: https://doi.org/10.31979/etd.6vjk-e644
https://scholarworks.sjsu.edu/etd_projects/474

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/474?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F474&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Processing Posting Lists Using OpenCL CS298 Report

Processing Posting Lists Using OpenCL

A Project Report
Presented to
The Faculty of Department of Computer Science

San Jose State University

In Partial fulfillment
of the Requirements for the Degree

Master of Science in Computer Science

By
Radha Kotipalli

Spring 2016

San Jose State University Page: 1

Processing Posting Lists Using OpenCL CS298 Report

@2016
Radha Kotipalli

ALL RIGHTS RESERVED

San Jose State University Page: 2

Processing Posting Lists Using OpenCL CS298 Report

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

Processing Posting Lists Using OpenCL

By
Radha Kotipalli

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science Date
Dr. Sami Khuri, Department of Computer Science Date
Dr. Thomas Austin, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

San Jose State University Page: 3

Processing Posting Lists Using OpenCL CS298 Report

ABSTRACT

Processing Posting Lists Using OpenCL

One of the main requirements of internet search engines is the ability to retrieve relevant results
with faster response times. Yioop is an open source search engine designed and developed in
PHP by Dr. Chris Pollett. The goal of this project is to explore the possibilities of enhancing the
performance of Yioop by substituting resource-intensive existing PHP functions with C based
native PHP extensions and the parallel data processing technology OpenCL. OpenCL leverages

the Graphical Processing Unit (GPU) of a computer system for performance improvements.

Some of the critical functions in search engines are resource-intensive in terms of processing
power, memory, and I/O usage. The processing times vary based on the complexity and
magnitude of data involved. This project involves different phases such as identifying critical
resource intensive functions, initially replacing such methods with PHP Extensions, and
eventually experimenting with OpenCL code. We also ran performance tests to measure the
reduction in processing times. From our results, we concluded that PHP Extensions and OpenCL

processing resulted in performance improvements.

San Jose State University Page: 4

Processing Posting Lists Using OpenCL CS298 Report

ACKNOWLEDGEMENTS

I would like to express sincere thanks to my project advisor Dr. Chris Pollett, for his guidance
and encouragement through every step of this project. His mentoring helped me learn a lot of
best practices and gain familiarity with many concepts. I would also extend my thanks to my
project committee members, Dr. Sami Khuri and Dr. Thomas Austin, for their guidance and their
time.

I also would like to thank my family and my friends, especially my husband and my daughter for
the co-operation and motivation that they lent me throughout my Master’s program at San Jose

State University.

San Jose State University Page: 5

Processing Posting Lists Using OpenCL CS298 Report

TABLE OF CONTENTS

INTRODUCGTIONuttettetiestte ettt sttt sttt ettt e b et e bt e s bt e sbeesheesatesabesateeateeabeeaeeenbe e beenbeeabeenbeeaseesbee beebeenseas 11
Background of Inverted Index and Yioop's Encoding and Decodingcccuvveeeeeieeciiiieeeeeeeecirieee e 14
TV A=Y o o [PP 14
Encoding and DECOdIiNG iN YiOOP .. uuiiiciiieiiiiiie ittt e ecitee sttt e esire e e sttt e e saae e e s saseeessasaeeesassaeessnsseeessnsseeens 19

oY Tole Yo o= PSR 19
DTl o 1 =SSR 23
Background of PHP Extensions and OPENCL..........cciciiieiiiiieeeeciiee ettt e e et eeeteee e e ete e e e eate e e e ebee e e esnreeeeennes 25
o o L= e =T o 1S o [O P TSRO 25
Benefits Of PHP @XEENSIONS:ccoiiiiiiiiiiieeiee ettt ettt sttt e st e s bt e e bt e e sabe e sabeesbeeesareesans 27
OpenCL (Open CoOMPULING LANGUAEE)ueiiiiiiieeeiieeeeeitieeeeeite e e eetteeeeeite e e e sataeeeeataeeesnbaeeeenntaeessneeesennsens 28
OPENCL Program FIOW:ciiiiiiiieiciiie sttt ettt e e et e e e e ta e e e eeata e e e eataeeessaeeesansaeeeensaeeeensaeenan 30
(0o o [T o] o] 11 00 1=T] =1 [o TSRS 31
o3 0o o [T =SSR 31

(o o [ST o o1 A o] o PSPPSRI 31

LG 21U o ot o s AP PP PP PP PPPPPUPPPPPT 32

Ol o (=T 0 Yo o S PP TP PP 33

DT Tole o 1o =SSR 35
PHP FUNCHION .ttt st e s ssr e s enr e e sannae e e raeeens 35

PHP C Extensions FUNCLION fOr DECOMING:uviiiiiiiiccieiee et e et e e e e e e snnrae e e e e e 36

(0] o 1T 0[O/ 6o Yo LTSS 37

Lo L= = T o SR 37

UL oY oF: [{4\ oo 1 7 T=Te [USSRt 39
TESTS AND RESULTS ...ttt ettt ettt b e s bt e she e sat e sat e st e e bt et e et e e beenbeesbeesbeesaeeemeeemeeeneeens smees 43
o o T o g Tole T [T Y-8 =] PSSRt 44

o o L A g Yole T 1o Y= (T P UURRROt 46

o o LR BT Yole T g o L USSP 48

o o | D T Yole T g =i o L USSP 50
PHP 5 VS PHP 7ttt ettt st st st et et e et e e b e e sb e e s bt e sseesmeesmeeenee reenees 52
2T o) =T o =TS [oV = N 53
PH P ettt ettt e bt e bt e bt e ehe e bt e eh e e eh e e eae e eateeabe e be e be et sabeebeebeebeentean 54

San Jose State University Page: 6

Processing Posting Lists Using OpenCL CS298 Report

Ol o =T 0 Yo o S PP T PP 55

L@ 7= [OF I =84 =T o 1] [o PPt 56
Observations and CONCIUSIONSuiiiiieiiiieiieeree ettt e s e s b e e sre e e sme e e sareeesneeesanes 59
g N V2T o T o g =T) Y =] U o S 61
[=T =T LR L (=T PSP 61
Setting up PHP Extensions for Visual studio 2013ueeiieiiiiiiiiiiiieeeeeciinreeee e e eeeireeeeeeeeeerrreeeeeeeeeanns 61
ViSUBL STUAIO 2003 ...ttt ettt et e b e s bt e sbe e she e sae e sat e st sae e et an et s 61

PHP DV ENVIFONMENT ..coiiiiiiiiiiee ettt e s e s s s e e s mre e e s sreeas 61

Y a1 oY= oI AN o Lol L= USSR 63
INSLAIlING INtEI INDE AriVEIS.ceiiii i iiiiieeee ettt e e e e e ettt et e e e e e et e e e e e e e s ttbbeeeeeeeesassasaeaeasesnnssraneeeaenans 64
Setting and CoNFIUIING YOO oocuuiriiiiii ettt eeer vt e e e e e e ertabeeeeeeeeesabsbaseeeeeeesantssaeeseeesnnnsens 64
How to compile and run PHP extension eXample:oeiiciiieiecieee et e e e snaee s 65
REFEIEINCES ...ttt et e b e b e s bt e s bt e s bt e sbe e s et e e ae e et e et e e bt e bt e b e en s eabe e b e ereereen 67

San Jose State University Page: 7

Processing Posting Lists Using OpenCL CS298 Report

LIST OF FIGURES

Figure 1 Flow diagram for ENCOQINGcouiiiiiiiiiieiieieeee et e s 19
Figure 2 ENCOAed STHNE «...eeiuiiiiiiiieieeeee ettt ettt ettt e sb e she e sat e st st e et e et e et e e beesbeenbeenes 21
Figure 3 INdeX STOrage iN YIOOP vievveerreersreeiriieriieesieessieeentseesseesseessseesssseessseesssesssseesssseessessssesssseesssseesnes 22
FAigure 4 INAEX SHATd........eoiieiiiiiiiieeiieeeie ettt ettt st e et e e sbe e sbe e e sateesateesbaesnbseesabeesasaes seen 22
Figure 5 Flow diagram for DECOAING......c.uiiriiiiiiiiiiiiirieeiiee sttt ettt e ssie e s sateesbeesbeessbaessaeeesareesnes 23
Figure 6 PHP ExXtension Entry POINt.........coeeviiiiiiiiiiieicieee ettt s 26
Figure 7 OpenCL Platform MoOdelcoiiueiiiiiiieieiieieetesenee sttt sttt s 28
Figure 8 OpenCL APPlICAtiOn......cceiirieriiriirieiere ettt sttt s r e e sre e 29
Figure 9 OpenCL Program fIOWccceviiirieiiiieieine ettt s s e 30
Figure 10 Zend Function t0 1€ad INPUL.........cecuerireeriiiireeesieee ettt s 33
FAZUIE 11 ZIPTTS LAW ...ttt sttt st ettt e b e b e e b e e bt e sbeesbeesaeesaee eens 43
Figure 12 Yioop crawl Management SCIEEM..........eeiueerveereereerierierie st et eeeeteesteesbeesbeesseesseesaeesaeesanesnresane 53
Figure 13 Search results With PHPcoociiiiiiiiiiiiiii ettt sttt et sae e st saree s 54
Figure 14 Search results With C EXtENSIONS.....cciiiiiiieiriieeiiieiiiie et esieesreeesiteesireesbeesbeeesiaessaseessseesseeenens 55
Figure 15 Search results with OpenCL EXIENSIONScevvveiirieirieiiiieeiiiieeniieenieesieessieeesireeseeesveessveeeseseenene 56

San Jose State University Page: 8

Processing Posting Lists Using OpenCL CS298 Report

LIST OF TABLES

Table 1 Elias's Y-COUEWOIAooiiiiiiiiiiieiiet ettt ettt sttt st sttt e e b e e beesbeesbeenns 16
Table 2 GOlOMDB/RICE COUS....ccuuiiiiiiiiiieiieiieree ettt ettt st st sttt ettt e st e e beesbeesbeenas 17
TADIE 3 SIMPIE-9 ..ttt et et e st e s bt e e bt e e s abeesbe e e beeesabeesbaesbaeenabee eeebeeen 18
Table 4 Modified9 ALZOTITRIM.....cocviiiiiiiiie ittt sbe e s te e sbe e e saeeesabeesabeesrbeeesaseesanes 21
Table 5 Machine ConfigUIAtIONS.cccveirriitiriierieesiee ettt esieesteesteessteeessteesibeesseessseesssseessessssessnsnesssseesanes 66

San Jose State University Page: 9

Processing Posting Lists Using OpenCL CS298 Report

LIST OF CHARTS

Chart 1 Encoding Test Results for10,000 documents (PHPS, 32 bit, i5+HD GPU).....ccccceeviriirieiieeenne 44
Chart 2 Encoding Test Results for 100,000 documents (PHPS5, 32 bit, i5+HD Graphics)ccccceeeenueeee. 45
Chart 3 Encoding Test Results for 10,000 documents (PHPS, 32 bit, i7+Nvidia Graphics)cc.ccccevvennne 45
Chart 4 Encoding Test Results for 100,000 documents (PHP 5, 32 bit, i7+Nvidia Graphics)c..c...... 46
Chart 5 Encoding Test Results for 10,000 documents (PHP7, 32 bit, 15)....ccccevvieinieeriiiinieinieeniee e 46
Chart 6 Encoding Test Results for 100,000 documents (PHP7, 32 bit, i5)....ccccceveeverenieneneneeneneeeeenee 47
Chart 7 Encoding Test Results for 10,000 documents (PHP7, 32 bit, 17)...cccevereevereneenenieneeneneeeeeenne 47
Chart 8 Encoding Test Results for 100,000 documents (PHP7, 32 bit, 17)...cccccevernienieniinieneeneeeeeeeeeee 48
Chart 9 Decoding Test Results for 10,000 documents (PHPS, 32 bit, i5+HD Graphics)cccccevvvrrerneene. 48
Chart 10 Decoding Test Results for 100,000 documents (PHPS, 32 bit, i5+HD Graphics)ccccceeeneene. 49
Chart 11 Decoding Test Results for 10,000 documents (PHPS, 32 bit, i7+Nvidia Graphics) 49
Chart 12 Decoding Test Results for 100,000 documents (PHPS5, 32 bit, i7+Nvidia Graphics).................. 50
Chart 13 Decoding Test Results for 10,000 documents (PHP7, 32 bit, 15) cocvvevcveevcieeiiiiinieenieeeiee e 51
Chart 14 Decoding Test Results for 100,000 documents (PHP7, 32 bit, 15) .cooceevveeinieinieinieeeiee e 51
Chart 15 Decoding Test Results for 10,000 documents (PHP 7, 32 bit, 17) «ccoovcveevieeriieiniiinieeciee e 51
Chart 16 Decoding Test Results for 100,000 documents (PHP7, 32 bit, 17) .ccoecvevenenieneneeieneneeeene 52
Chart 17 PHPS Vs PHP7 Encoding Performance COmMPAriSONcecerereenieniereenienenienienieeeesreseeeneens 52
Chart 18 PHP5 Vs PHP7 Decoding Performance CompariSOnceeevereereenereeneneneesresreeeesresee e 53
Chart 19 Query Performance from browser (PHPS)......c.cccoeieiininiiniieeec e 57
Chart 20 Query Performance from browser (PHP7)......cccccveieiiiiiiinieec e 58

San Jose State University Page: 10

Processing Posting Lists Using OpenCL CS298 Report

CHAPTER 1

INTRODUCTION

Search engines use an inverted index to look for a word in all the documents that contain that
word. This list of documents is called a posting list. Posting lists are typically stored in a
compressed binary format. Yioop is a PHP-based open source search engine designed and
developed by Dr. Chris Pollett. The objective of this project is to improve the performance of

Yioop by using PHP extensions as well as a GPU-based parallelization.

Search engines are among the most used applications on the internet. The processing demands
needed to create inverted indexes and to handle even more queries have steadily grown alongside
the internet. Search engines rely on index compression as an important tool to be able to handle
the increasing amounts of data on the internet. A compressed index enables the caching of more
data in memory. The compression also saves bandwidth and reduces the time required to transfer
data from memory to the CPU cache. The correct selection of a compression scheme also can
play a critical role in improving query performance. Performance can be doubled by using a

well-implemented byte-wise compression scheme, as compared to a bit-wise scheme [7].

Decoding a compressed posting list can be made faster when working with whole bytes as
opposed to operating on individual bits in that byte. Similarly, operating on whole machine word
(16, 32, or 64 bit) is more efficient than accessing the bytes individually [4]. Currently, the
Yioop search engine uses a word aligned compression method. Yioop is completely written in

PHP.

San Jose State University Page: 11

Processing Posting Lists Using OpenCL CS298 Report

PHP is an easy-to-use interpreted application programming language. PHP by default provides a
rich set of standard function libraries. However, application developers do not have to restrict
themselves to the out-of-box PHP functionality. Developers can leverage their preferred
programming language to develop PHP extensions. Developers may lose the ease of coding but
PHP extensions will provide them with greater flexibility as they get more control over resource
allocation and functionality. The application speed can further be improved by leveraging
parallelization provided by GPU-based application development frameworks such as OpenCL or

CUDA.

According to the research document, "A Performance Study of General Purpose Applications on
Graphics Processors", performance gains of up to 40 times can be obtained by switching
workloads to graphical processors (CUDA) for several computationally demanding applications
including Traffic Simulation, Thermal Simulation, and K-Means[8]. The experimentation part of
this project is very computationally intensive. Many modern commodity computer systems are
equipped with advanced graphics processing units. Part of this project measures the performance

gains obtained through GPU power using OpenCL-based implementation.

OpenCL (Open Computing Language) provides a platform for parallel programming. A typical
CPU may have one to eight cores, but GPUs normally contain hundreds or thousands of
processing units. Some of the existing posting list processing of Yioop can be parallelized.
Therefore, implementing a posting lists algorithm using OpenCL will improve the performance

of the Yioop search engine. Encoding and decoding are two major algorithms used in Yioop.

Encoding and decoding algorithms provides important functionality in a search engine. The

inverted indexes are created by crawling through various websites and obtaining data. An

San Jose State University Page: 12

Processing Posting Lists Using OpenCL CS298 Report

encoding algorithm is used to compress the inverted indexes. Similarly, the decoding algorithm

allows search engines to retrieve results based on a search word.

This document is divided into a total of six chapters. Chapter 2 describes the concepts of inverted
indexes and Yioop's encoding and decoding process flow. Chapter 3 provides background
information on PHP extensions and OpenCL. Chapter 4 lists code implementations for this
project. Chapter 5 contains the performance tests and results. Chapter 6 consists of observations
and the conclusion and. Lastly, Appendix 1 provides the steps needed to set the testing

environment and Appendix 2 lists the test machine configurations.

San Jose State University Page: 13

Processing Posting Lists Using OpenCL CS298 Report

CHAPTER 2

Background of Inverted Index and Yioop's Encoding and Decoding

This chapter discusses inverted index data structures and various compression algorithms, such
as y-codes, Golomb/Rice codes, vByte codes, and Simple-9 codes often used in this construction.
The second section of this chapter explains the encoding and decoding process of posting lists in

Yioop.

Inverted Index

An inverted index consists of two principal components: the dictionary and the posting lists. The
uncompressed inverted index for a given document can be very large, sometimes even greater
than the actual source itself. A compressed inverted index can provide advantages including
lesser storage space requirements, faster query retrieval time, and the ability to accommodate

large collections.

A data compression algorithm converts data represented in one format into another format that
requires fewer bits to store and transfer. It contains an encoder and a decoder. An encoder
converts original data A into B. The decoder converts the output of an encoder back to the
original data. There are two types of decoders. The first one is lossy, which takes B and converts
into C, where C can be an approximation of A. Some of the examples of this type of decoder
include JPEG and Mp3 files. The second type is lossless, which takes B and converts back to A.

Lossless decoders are necessary for search engines.

One of the most important compression algorithms in use is the Huffman coding algorithm. The

Huffman algorithm calculates the probability of frequency of characters and uses that

San Jose State University Page: 14

Processing Posting Lists Using OpenCL CS298 Report

information to find the code word for each character. It uses prefix property; no code word is an

initial substring of any other code word-for example a-0, b-11, c-100, d-101.

Posting lists occupy more space than the dictionary, so it is important to have an efficient
compression algorithm to minimize the storage space as well as to retrieve the information
quickly and without any loss. Therefore, it is necessary to have an efficient algorithm for

encoding and decoding.

Posting lists may contain very large number of elements and each number may occur only once,
so using standard compression algorithms like Huffman Coding is not feasible. Posting lists
contain only monotonically increasing index positions. Replacing index positions with A-values,
an equivalent sequence of difference between consecutive elements, would be advantageous
since elements can be smaller and can be encoded using fewer bits. The algorithms that are

available to compress posting lists can be categorized as parametric and nonparametric codes.

Nonparametric codes do not consider the A-values in a given posting list while encoding that
posting list. They consider that all posting lists share some common features-for example,
smaller A-values are usually more common than longer ones. Elias's y-code is one of the
examples of a nonparametric gap compression algorithm for positive integers. I'-codeword for a
positive integer contains two components. The first component is a selector that specifies the
length of the second component, and the second component is body, the binary representation of

the positive integer [4].

San Jose State University Page: 15

Processing Posting Lists Using OpenCL CS298 Report

Table 1 Elias's y-codeword

Positive selector | body | y-codeword
Integer (k)

1 1 1 1

5 001 101 00101

7 001 111 00111

16 00001 | 10000 | 000010000

A positive integer k consists of |log2(k)] + 1 bits in its binary representation. The length of its

code word is |p(k)|=2[log2(k)]+1 bits.

Encoding: y-codeword for a positive integer (k): |log2(k)] number of 0's followed by a 1 and

then remaining binary bits of £.

Decoding: Count number of zero's until the first land consider it as N and 1 is the first bit of the

integer with value 2" and read remaining N bits of the integer.

Parametric codes consider the specific characteristics of the list to be compressed. Golomb/Rice

code is an example of a parametric gap compression method. To compress a list whose A-values
follow a geometric distribution, i.e. Pr[A=k]=(1—p)*'p for some constant p between 0 and 1.

Group the A-values according to their bit length and compute the range, which most of the A-

values lies under.
To encode the list using Golomb/Rice code:

e Choose an integer M, the modulus (M is a power of 2, then Rice code, arbitrary modulus M,

Golomb code)

San Jose State University Page: 16

Processing Posting Lists Using OpenCL CS298 Report

e Split each A-value into two components, a quotient q(k) and a remainder r(k) where:
k-1
g0 =71, (k)= (k=1) mod M

Encode & by writing g(k)+1 in unary followed by r(k) as a [log(M)] bit or [log(M)] bit number.
Golomb code gives better compression rates than Rice code, but Rice decoders run between 0.2
and 0.4 times faster than Golomb decoders [4].

Table 2 Golomb/Rice codes

Integer Golomb Codes Rice Codes
M=3 M=6 M=4 M=8

1 10 100 100 1 000

2 110 101 101 1001

3 111 1100 110 1010

4 100 1101 111 1011

5 01 10 1110 01 00 1 100

To improve both encoding and decoding processing times, it is better to look at codes so that the
split between code words falls on byte or word boundaries. There are two such methods: byte-
aligned and word-aligned codes. One of the simplest examples of a byte-aligned method is vByte
(variable-byte coding). It splits the binary representation of each A-value into 7-bit chunk + 1 bit

continuation flag [4].

Example: L = (1624, 1650, 1876, 1972, 2350 ...)
A (L) = (1624, 26, 226, 96, 384 ...)

11011000 0 0001100 0 0011010 1 1100010 0 0000001 0 1100000 1 0000000 0 0000011...

San Jose State University Page: 17

Processing Posting Lists Using OpenCL CS298 Report

0 at the beginning of the chunk indicates the end of the current code word. (88 + 12 x 27 =

1624).

For faster and more efficient decoding purposes, it's better to process the entire machine words
such as 16-bit, 32-bit, or 64-bit. But encoding each A-value as a 32-bit integer might defeat the
intent of compression. This can be solved by using a word-aligned encoding method, where the
algorithm inspects the postings list's A-values and tries to insert as many consecutive A-values as
possible into a 32-bit machine word. The simplest example of a word-aligned method is Simple-

9.

Simple-9 inspects the A-values in a posting sequence and tries to squeeze as many of them as
possible into a 32 bit machine word. In these 32 bits, 4 bits are reserved for a selector, which tells
how many A-values of equal size have been inserted in the remaining 28 bits. There are nine
different ways of dividing them into chunks of equal size.

Table 3 Simple-9

Selector 0 1 2 3 4 5 6 7 9
Number of A's 1 2 3 4 5 7 9 14 28
Bits per A 28 14 9 7 5 4 3 2 1
Unused bits/word 0 0 1 0 3 0 1 0 0

Example: L = (1624, 1650, 1876, 1972, 2350 ...)
A-values: 1624 25 225 95 383 [A-value: [1650 -1624 -1] =25 ...]
The above indexes can be saved as 1624 and 25 together as two 14-bits each; 225, 95, and 383,

together as three 9-bits each, and one unused bit at the end.

San Jose State University Page: 18

Processing Posting Lists Using OpenCL CS298 Report
Encoding and Decoding in Yioop

Encoding:

The following flow chart shows the basic flow of the encoding process in the Yioop search
engine.

Figure 1 Flow diagram for Encoding

San Jose State University Page: 19

Processing Posting Lists Using OpenCL CS298 Report

To encode the posting lists, Yioop uses an algorithm called Modified9, which is similar to the
Simple-9 algorithm. The Simple-9 algorithm is an example of a word-aligned code compression
algorithm that allows for the storage of several consecutive values as a single 32-bit machine

word (4 bytes).

The encoder takes a list of posting lists that consists of the index positions of the word
occurrences in the document and a document index and returns a packed integer string. First,
index positions in the posting lists are replaced with their A-values and the document id is
attached at the front of the list. Then, Modified9 inspects the A-values in a posting sequence and
tries to squeeze as many A-values as possible into a 32 bit (4 bytes) machine word. In this 32 bit,

the high order 2 bits of a given word indicate whether or not to look at the next word.

The first 2-bit codes are as follows:

e 11 start of encoded string

¢ 10 continue four more bytes

e 01 end of encoded

¢ 00 indicates the whole sequence encoded in one word
After the first 2 bits, the next most significant bits can be up to either 2, 4, 5 or 6 bits. These
most significant bits are called selector, which indicates the format of the current word, i.e. how
many A-values of equal size have been inserted in the remaining bits. There are nine different

possibilities.

San Jose State University Page: 20

Processing Posting Lists Using OpenCL CS298 Report

Table 4 Modified9 Algorithm

Selector 00 |01 10 | 1100 | 1101 | 1110 {11110 | 111110 | 111111
Number of A's | 1 2 3 4 5 6 7 12 24

Bits per A 28 |14 |9 6 5 4 3 2 1
Unused bits 0 0 1 0 1 2 4 0 0

A typical posting list consists of a doc_index and the list of position occurrences of the word, i.e

[doc_index, A-values].

Example: Postings List: [25, [1624 1650 1876 1972 ...]] (doc_index: 25)

A-values: [1624, 26, 226, 96, ...] [A-value: [1650 -1624 =26, ...]

doc_index and first index position are incremented by 1 so that they are not equal to zero, which

is the requirement for the Yioop's compression scheme, Modified9.

e The above indexes can be saved as 26 and 1625 together as two 14-bits each in one 4-
byte word
o 26,226, and 96 together as three 9-bits each, and one unused bit in one 4-byte word

The final encoded string:

Start # of A-values

(101 0000000001101000011001011010 0410 P0011001011100010001100000

Figure 2 Encoded String
Hex String: D0 06 86 SA A0 65 C4 60

San Jose State University Page: 21

Processing Posting Lists Using OpenCL CS298 Report

Index Dictionary
(combines all local dictionaries)

Index Index Index
Shard1 Shard2 e Shard n

Figure 3 Index storage in Yioop

The above figure represents the storage system of inverted indexes inside the Yioop database. It
contains a global index dictionary, the combination of all local dictionaries and several index
shards. Each index shard contains a local dictionary and the posting lists.

Local Dictionary

ldoc_index | post1 | post2 . .. |

j doc_index | post1 | post2... |

J ” Summary Folder

5 T A

off Set | meta info about document ﬂ

off Set | meta info about document
N - - - N A

Figure 4 Index Shard

San Jose State University Page: 22

Processing Posting Lists Using OpenCL CS298 Report

Decoding:

The following flow chart shows the basic flow of the decoding process in the Yioop search
engine.

‘start demdlns} <str_len

|

h 4
y Packed LunpackLlstModiﬂedgn
f,”/ integer String

F Y

Y L 4

unpackPosting() f« » decodeModified9() « > nextPoststring()
< delta > YES—> deDeltaList()
NO X
|—»\ Stop H—

Figure 5 Flow diagram for Decoding

The decoder takes a given packed integer string (encoded using the Modified-9 algorithm), uses
the top three bytes to calculate a document index of a document in the shard, and uses the low

order bytes to compute the number of occurrences of a word in that document.

At first, decoder algorithm identifies the complete posting string from the given packed integer
string of a posting list by checking first two Most Significant Bits of each 4-byte string (“11” for
start and “01” for the end). Then takes off first two MSB bits from each 4-byte string and then

observes the next bits to identify the number of A-values in that 4-byte string, using that

San Jose State University Page: 23

Processing Posting Lists Using OpenCL CS298 Report

information to decode the string back into its A-values according to Modified9. The algorithm
repeats the process until the end of the complete posting string to get back all the A-values in that
posting list. After getting all the A-values, the function, deDeltaList(), converts the values back
into the original index positions. Finally, the decoder attaches the document index at the front
and returns an array consisting of the document index and a sub-array consisting of all integer

positions of a given word in the document.

San Jose State University Page: 24

Processing Posting Lists Using OpenCL CS298 Report

CHAPTER 3

Background of PHP Extensions and OpenCL

This chapter reviews the details of PHP extensions and OpenCL, which are used to enhance the
performance of the Yioop search engine as part of this project. The PHP extensions section
provides an introduction to PHP extensions and the reasons why developers choose to embed in
PHP source code. The second part of this chapter provides an introduction to OpenCL and its

components by showing the basic OpenCL program flow.

PHP extensions:

Programming languages and compilers provide an extensive set of function libraries. Oftentimes,
the standard functionality is enough for general purpose applications. However, there may be a
need to alter standard behavior or add additional functionality for complex applications. In such
circumstances, customizations like extensions come in handy. PHP extensions are a way to
customize or extend the default functionality of PHP. PHP implementation provides many
widely used extensions, known as standard extensions called modules, as part of the PHP
interpreter. PHP also provides extensions such as session, SPL, PCRE, MySQL, and sockets that
can be disabled or enabled through configuration settings. Some of these extensions can also be
built through the phpize tool. PHP extensions can be written in many languages, such as Java,
Perl, C, C++. The following figure shows the entry point for the PHP extensions and provides
the startup and shutdown methods [6]. For this project, the original encoding and decoding

functions of Yioop that were written in PHP are replaced with PHP extensions.

San Jose State University Page: 25

Processing Posting Lists Using OpenCL CS298 Report

PHP Extension API

y N y .
sample_module

Module Startup Routine
Request Startup Routine
Request Shutdown Routine
Module Shutdown Roytine
PHP Sample_func_one()
Sample_func_two()
Sample_func_three()
Sample_func_four()

Figure 6 PHP Extension Entry Point

San Jose State University Page: 26

Processing Posting Lists Using OpenCL CS298 Report

Benefits of PHP extensions:

PHP is a widely used language for developing websites. It’s an interpreted language, and it may
not always be suitable for applications where speed of processing is the main factor. One such
application is web search engine, where results have to be retrieved quickly. PHP extensions
provide a way to improve performance while still leveraging the ease of use of coding in PHP.
Slow performing code can be moved to other languages such as C or C++ and embedded within

PHP functions by using PHP extension methodology [6].

There are many different reasons to utilize PHP extensions. PHP may not provide ways to
directly call specific third party or custom libraries. Sometimes developers may need to improve
application response times and throughput. PHP extensions can also help reduce memory
footprint, as developers have more control through custom extension code. When developers
distribute their PHP code, native extensions can be compiled and shared. This will allow the
hiding of proprietary source code, protecting intellectual property. Also, organizations can reuse
their existing code written in C or C++ through PHP extensions without having to rewrite the

same functionality in PHP [2].

San Jose State University Page: 27

Processing Posting Lists Using OpenCL CS298 Report

OpenCL (Open Computing Language):

OpenCL is a framework built specifically for parallel processing over heterogeneous systems.
OpenCL allows developers to write parallel programs in C-language and can exploit the power
of GPU threads. The greatest feature associated with OpenCL is its portability across multiple
platforms [1]. It works with AMD, NVidia, Intel, IBM, and other GPU vendors. It can also run
on integrated graphics, which allows for the use of cached memory for quicker data reading and
writing. Integrated graphics card is part of system board and uses part of system memory

instead having its own memory.

Processing
Element

Host

Compute Unit Compute Device

Figure 7 OpenCL Platform Model

Both the host (CPU) and device (GPU) of a given computer system act as computing devices,
each of which has several parallel computing units. Each of these computing units is similar to a
core or thread and can execute the code in parallel. Host code is typically written in C and,
executes in the CPU, whereas device code is written in OpenCL and executes in the GPU. Host
code sends the instructions to transfer data between the memories of the host and the devices or

to execute device code. Devices will perform these actions and return the results back to the host

[3].

San Jose State University Page: 28

CS298 Report

Processing Posting Lists Using OpenCL
OpenCL Application
. Host:CPU
Serial Code - ===l §
Host: GPU
Parallel Code i —
Serial Code -] Host:CPU %
Host: GPU
Parallel Code i

Figure 8 OpenCL Application

All the serial code executes in a host (CPU), and the parallel code executes in many device

(GPU) threads across multiple processing elements.

San Jose State University Page: 29

Processing Posting Lists Using OpenCL CS298 Report

OpenCL Program Flow:
A typical OpenCL program contains the following steps.

1. Organize resources, Create command queue

2. Compile Kernel

3. Transfer data from host to GPU memory

4. Launch threads running kernels on GPU, Perform main computation
5. Transfer data back to host memory from GPU

6. Free allocated memory [5]

clGetPlatformIDs()

clGetDeviceIDs() clCrt_aateProgram‘WithSourceO cICreateBuffer()
clCreateContext() clBuildProgram() clEnqueuneWriteBuffer()
clCreateKernel()

clCreateCommandQueue()

ll

7
clSetKernelArg()
(- clGetKernelWorkGrouplInfo()
[clRelease()]ﬁ clEnqueueReadBuffer() clEnqueueNDRangeKernel()
9 clFinish()
\,

Figure 9 OpenCL Program flow

San Jose State University Page: 30

Processing Posting Lists Using OpenCL CS298 Report

CHAPTER 4

Code Implementation

This chapter compares the original PHP source snippet and the corresponding C and OpenCL

replacement code where applicable.

Encoding:

PHP Function:

The packPosting() method is starting point where the encoding of posting lists starts. The
following is a snippet of an existing Yioop PHP code. It is located in the Utility.php file. This
function takes three input parameters, an integer of the document index, an array of posting lists,
and an optional boolean value, which determines whether to use the A-values of a posting list.
This function encodes the posting list using the Modified9 algorithm and returns a packed integer

string of the posting list.

function packPosting($doc_index, $position_list, $delta = true)

if ($delta) {
$delta_list

deltalist($position_list);
}
else {
$delta_list = $position_list;
}
if (isset($delta_list[0])){
$delta_list[0]++;

}

if ($doc_index >= (2 << 14) && isset($delta_list[0])
&8& $delta list[@] < (2 << 9) && $doc_index < (2 << 17)) {
$delta_list[@] += (((2 << 17) + $doc_index) << 9);

}

else {
// we add 1 to doc_index to make sure not @ (modified9 needs > 0)
array_unshift($delta_list, ($doc_index + 1));

}

$encoded_list = encodeModified9($delta list);
return $encoded_list;

Code Snippet 1: PHP Encoding

San Jose State University Page: 31

Processing Posting Lists Using OpenCL CS298 Report

C Function:

The following code snippet is the equivalent C code for the above PHP function. In PHP
extensions a regular PHP string is read as a struct of char® and its length, and the structure of an
array is a hash table with a label and data. Since this code is embedded into a PHP extension,

two struct types, php_string and php_array, were added additionally.

Functions array_shifi() and array _unshift() are built in PHP functions. The array_shift function
inserts an integer at the front of an array and returns the number of elements in that array. The
array_unshift function returns the first element of an array and readjusts the remaining elements.
But there are no such built-in functions in C to perform these actions. Additional functions

c_shift () and c_unshift() were written to achieve this functionality.

php_string packPosting(int doc_index, php_array position list, bool delta)

{
php_array delta_list;
if (delta) {
delta_list = deltalList(position_list);
}

else {
delta_list = position_list;

}
if (delta_list.arr[0]) {
delta_list.arr[@] = delta_list.arr[0] + 1;

}

if ((doc_index >= (2 << 14) && delta_list.arr[0])
&& delta_list.arr[0] < (2 << 9) && doc_index < (2 << 17)) {
delta_list.arr[0] += (((2 << 17) + doc_index) << 9);

}

else |
// we add 1 to doc_index to make sure not © (modified9 needs > 0)
delta_list = c_unshift(delta_list, (doc_index + 1));

}

php_string encoded_list = encodeModified9(delta_list);
return encoded_list;

Code Snippet 2: C Encoding

San Jose State University Page: 32

Processing Posting Lists Using OpenCL CS298 Report

C Extensions:

The below code snippet is an equivalent PHP extension function for the above PHP and C++
functions. Since this function needs to use the same input and output parameters that were used
in the original PHP function, an integer was declared to get a doc_index, a zval * which reads
an array of posting list, and zend bool which reads the boolean delta value. The below zend

function is used to read input parameters.

zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "lab", &doc_index,

&position_list, &delta)

Figure 10 Zend Function to read input

e Letter "I" represents a variable type long which is used to read an integer or long values.

e Letter "a" represents a variable type array and "b" represents a boolean value type.

e Symbol ''is given in front of the variable type, if the parameter is an optional.

The following is the complete representation of code that incorporates above PHP and C
functions. The highlighted code converts the zval* array structure to regular C array. This will

facilitate the reuse of code in inner functions.

San Jose State University Page: 33

Processing Posting Lists Using OpenCL CS298 Report

PHP_FUNCTION(packPosting)
{
zval* position_list, **data;
HashTable *arr_hash;
HashPosition pointer;
int doc_index;
zend_bool delta = TRUE;
php_array delta_list;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS CC, "la|b",
&doc_index, &position_list, &delta) == FAILURE) {
RETURN_NULL();
}
arr_hash = Z_ARRVAL_P(position_list);
int array_count = zend_hash_num_elements(arr_hash);
php array list;
list.arr = (unsigned int*)malloc(sizeof(unsigned int)*array_count);
list.arr_len = array_count;
int i = 0;
for (zend_hash_internal_pointer_reset_ex(arr_hash, &pointer);
zend_hash_get_current_data_ex(arr_hash, (void**)&data,
&pointer)== SUCCESS;
zend_hash_move_forward_ex(arr_hash, &pointer)) {
list.arr[i] = Z_LVAL_PP(data);
i++;
if (delta) {
delta_list = c_deltalList(list);
}
else {
delta_list = 1list;
}
if (delta_list.arr[0]) {
delta_list.arr[0] = delta_list.arr[0] + 1;
}
if ((doc_index >= (2 << 14) && delta_list.arr[0])
&& delta_list.arr[@] < (2 << 9) && doc_index < (2 << 17)) {
delta_list.arr[0] += (((2 << 17) + doc_index) << 9);
}
else {
// we add 1 to doc_index to make sure not © (modified9 needs > 0)
delta_list = c_unShift(delta_list, (doc_index + 1));
}
php_string encoded_string = encodeModified9(delta_list);
free(delta_list.arr);
ZVAL_STRINGL(return_value, encoded_string.name, encoded_string.name_len, 1);
free(encoded_string.name);
}

Code Snippet 3: C Extensions Encoding

San Jose State University Page: 34

Processing Posting Lists Using OpenCL CS298 Report

Decoding:

PHP Function:

The unpackPosting() function plays a vital role in retrieving the data from the database when a
user searches for a word or a phrase using the Yioop search engine. The input parameters for this
function are an encoded string, an offset, and a dedelta. The encoded string contains the
information about all the posting lists of the specified search. The offset is an integer value that
contains the starting position of the posting list. The dedelta is a boolean value that determines

whether the posting list has A-values or not.

The Soffset is sent as a pass-by-reference. Because each encoded string contains several postings,

offset needs to be updated after the decoding of each posting has been completed.

This function returns a list containing two elements. The first is an integer value of a doc_index,

and the second element is a list containing the decoded posting lists.

function unpackPosting($posting, &$offset, $dedelta = true)
{
$delta_list = decodeModified9($posting, $offset);
$doc_index = array_shift($delta_list);
if (($doc_index & (2 << 26)) > 0) {
$deltad = ($doc_index & ((2 << 9) - 1));
array_unshift($delta_list, $delta®);
$doc_index -= $deltao;
$doc_index -= (2 << 26);
$doc_index >>= 9;
}
else {
$doc_index--;

}

if (isset($delta_list[e])) {
$delta_list[0]--;

¥

if ($dedelta) {
deDeltalList($delta_list);

}

return[$doc_index, $delta_list];

Code Snippet 4: PHP Decoding

San Jose State University Page: 35

Processing Posting Lists Using OpenCL CS298 Report

PHP C Extensions Function for Decoding:
Since one of the arguments ($offsef) must be passed as pass-by-reference, the argument needs to

be declared ahead by using the ZEND BEGIN ARG INFO EX{() function.

In order to send one of the arguments as pass-by-reference in PHP extensions, it needs to be
declared in arginfo structure. The last argument value of 2 in the signature of function
ZEND BEGIN ARG INFO_EX() means that a minimum of 2 arguments are required. The code

1s below.

ZEND_BEGIN_ARG_INFO_EX(unpackPosting_arginfo, ©, ZEND_RETURN_VALUE, 2)
ZEND_ARG_INFO(@, posting) // © means "passed by value"
ZEND_ARG_INFO(1, off_set) // 1 means "passed by reference"

ZEND_END_ARG_INFO();

Code Snippet 5: ZEND_ARG_INFO()

Inside the zend function entry, the function with pass-by-reference needs to be declared, as
below.

PHP_FE(unpackPosting, unpackPosting_arginfo)

PHP_FUNCTIOM(unpackPosting) {

int offset = Z LwvalL P(off_set):

if (posting_len % 4>8)
posting len += posting len % 43
delta list

php_arra = decodeModified9(posting, posting_len, Soffset);

zwval_dtor(off_set);

Destroying the original value
Z_LwAL_P(off_set) = offset;

and updating with new value

inT oo . ——ET L (Rdelta_list);

zwval * list;

MAKE_STD FwalL (1list):

array_init(list);

Ffor (dint i = @; i<delta_list.arr_len; di++) i
add_next_index_long(list, delta_list.arr[i]);

¥

array_init(return_wvalue); -

add_next_dindex_long(return_walue, doc_index) ; Retur[‘nng .

add_next_dindex_zwval(return_walue, list); [doc_index, [list]]
¥

Code Snippet 6: C Extensions Decoding

San Jose State University Page: 36

Processing Posting Lists Using OpenCL CS298 Report

OpenCL Code:

deltaList() :
The deltaList() function takes a list of integers, computes the differences between two
consecutive elements, and returns the list of A-values. The following code snippets show the

original PHP and C code, with foreach and for loop respectively to iterate through the list.

function deltalist($list)
{
$last = 0;
$delta_list = [];
foreach($list as $elt) {
$delta_list[] = $elt - $last;
$last = $elt;
b
return $delta_list;

Code Snippet 7: PHP deltaList

php_array c_deltalList(php_array list)
{
int last = @; int elt;
int i = ©;
for (i = 0; i < list.arr_len; i++)
{
elt = list.arr[i];
list.arr[i] = elt - last;
last = elt;
}

return list;

Code Snippet 8: C deltaList

For loop functionality is achieved concurrently in one step using OpenCL’s parallelism. The

code snippets below show the OpenCL kernel and the host code for the deltaList function.

| _kernel void deltalList(__global const unsigned int *list,
__global unsigned int *delta_list) {

// Get the index of the current element
int i = get_global_id(@);

delta_list[i] = list[i + 1] - list[i];

Code Snippet 9: OpenCL kernel

San Jose State University Page: 37

Processing Posting Lists Using OpenCL CS298 Report

The code snippet below is the host (CPU) code for the OpenCL deltaList() function. Two
memory buffers are created for the device code. One is read only for sending the list of unsigned
integers, and the other one is write only, for the result array consists of A-values, the difference
of consecutive elements. The global size is set as (list length — 1), because the first element of

the list does not change.

php_array opencl_deltalist(php_array list) {
int len = list.arr_len - 1;

// Create memory buffers on the device for each wvector
cl mem a_mem _obj = clCreateBuffer(context, CL_MEM READ ONLY |
CL_MEM _COPY _HOST_PTR,(len + 1) * sizeof(unsigned int), list.arr, &ret);

cl mem b_mem obj = clCreateBuffer(context, CL_MEM _WRITE_ONLY, (len)*
sizeof(unsigned int), NULL, &ret);

/4 Create the OpenCL kernel
cl kernel kernel = clCreateKernel(program, “"deltalist”, &ret);

// Set the arguments of the kernel
ret = clSetKernelArg(kernel, &, sizeof(cl mem), (void *)&a mem obj);
ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&b_mem_obj);

Sets global_id from 0 - (len-1)

and_gueue, kernel, 1, MNULL,
&global_item size, @, @, NULL, NULL);

// Allocate the memory for outPut

unsigned int * outPut = (unsigned int*)malloc(sizeof({unsigned int)*
(list.arr_len});

outPut[@] = list.arr[@];

//read result from the device to array outPut
ret = clEnqueueReadBuffer (command_queue, b_mem obj, CL_TRUE, @,
(len)* sizeof(int), &outPut[1], @, NULL, NULL);

// Clean up

ret = clReleasekernel(kernel);

ret = clReleaseMemObject(a mem_obj);
ret = clReleaseMemObject(b mem_obj);
free(list.arr);

list.arr = outPut;
return list;

Code Snippet 10: OpenCL Host Code

San Jose State University Page: 38

Processing Posting Lists Using OpenCL CS298 Report

unpackListModified():
The code snippet below shows the PHP function where unpackListModified() function is called

repeatedly. Instead of regular loop, this function uses call user func array("array merge”,

array_map(C\NS LIB . "unpackListModified9", unpack("N*", $post string))).

The unpack() function returns 32 bits from Spost¢ string at a time, which is an input parameter to
the function C\NS_LIB . ""'unpackListModified9". "C\NS_LIB"* specifies that this function is
computed under C land. The functions array merge() and array _map() are used to combine all

the outputs from the unpackListModified() function.

function decodeModified9($input_string, &$offset)
{
$post_string = nextPostString($input_string, $offset);
return call_user_func_array("array_merge",
array_map(C\NS_LIB . "unpackListModified9",
unpack("N*", $post_string)));
}

Code Snippet 11: PHP

A regular while loop is used in C Extensions to call unpackListModified() function repeatedly to

process the entire encoded string 4 bytes at a time.

while (len < str_len) {

temp_string = (char*)memcpy(temp_string, post_string + len, 4);
temp_array = unpackListModified9(temp_string);
size += temp_array.arr_len;
if(decoded_arr.arr_len == 0)
decoded_arr.arr = (unsigned int*)malloc(temp_array.arr_len * 4);
else
decoded_arr.arr = (unsigned int*)realloc(decoded_arr.arr,(size * 4));
memcpy (decoded_arr.arr + decoded_arr.arr_len, temp_array.arr,
temp_array.arr_len * 4);
decoded_arr.arr_len += temp_array.arr_len;
len += 4;

Code Snippet 12: C Extensions

San Jose State University Page: 39

Processing Posting Lists Using OpenCL CS298 Report

The following code snippet shows opencl unpackListModified() function call, the replacement

of the above PHP and C loops.

php_array decodeModified9(char* input string, int str_len, int *offset)

{

char* post_string = nextPostString(input_string, &str_len, offset);
return opencl_unpackListModified(post_string, str_len);

Code Snippet 13: OpenCL

The unpackListModified() function uses three constant char arrays in its calculations to decode
the encoded string. To minimize the data transfer time, these three constant char arrays are
declared inside the kernel code as shown below instead of copying these values from CPU land

to the GPU land for each function call.

// Declaring the constatnts for unpackListModified9

| _constant char MOD9_NUM_CODES[9] = { 63, 62, 60, 56, 52, 48, 32, 16, 0 };
| _constant char MOD9_NUM_ELTS[9] { 24, 12, 7, 6, 5, 4, 3, 2, 1 };

| _constant char MOD9_NUM BITS[9] = { 1, 2, 3, 4, 5, 6, 9, 14, 28 };

Code Snippet 14: Constants in Kernel

The code snippet below is the device/kernel code for the OpenCL unpackListModified()
function. Parameters of this function are the post string, which is a whole encoded string and the
decoded_list, an unsigned integer array of size equal to strlen(post_string)/4. The

decoded_list will return all the decoded A-values back to the host device (CPU).

San Jose State University Page: 40

Processing Posting Lists Using OpenCL CS298 Report

| _kernel void unpackListModified9(__global const char *post_string,
__global unsigned int *decoded_list) {

int num = get_global_id(®); int i;

int num_bits; int num_elts; int mask; int shift;

int pre_elt; int code = 0; int first_char;

unsigned int encoded_list = (post_string[num * 4] & Oxff) << 0x18;
encoded_list += (post_string[num * 4 + 1] & oxff) << 0x10;
encoded_list += (post_string[num * 4 + 2] & Oxff) << 0x8;
encoded_list += (post_string[num * 4 + 3] & oxff);

decoded_list[num * 25] = num_elts;
for (i = 9; 1 < num_elts; i++) {
if ((pre_elt = encoded_list & mask) == 0)
break;
decoded_list[num * 25 + num_elts - i] = pre_elt;
encoded_list >>= num_bits;

Code Snippet 15: Kernel code

The below code snippet is the host code of an OpenCL unpackListModified() function. In order
to request an OpenCL kernel to open strlen(post_string)/4 threads, global size should be set

to strlen(post_string)/4. Each thread computes four bytes of an input string in parallel.

Not knowing the output size ahead is not a problem with PHP and C functions, but with
OpenCL, the size needs to be known to allocate enough memory on the device. Since each 4 byte
string can only hold a maximum of 24 unsigned integers, an output unsigned integer array is
allocated with size equal to to 25 X strlen(post_string)/4. The first element of every 25
element array chunk holds the actual number of values stored in that 4 bytes string. After getting
the results back to the CPU land, a while loop is created to iterate according to the value in the
first element of every 25 element array chunk and inserts the decoded A-values into an output

array.

San Jose State University Page: 41

Processing Posting Lists Using OpenCL CS298 Report

php_array opencl_unpackListModified(char* str encoded list, int len) {

// Create memory buffers on the device for each vector
cl_mem a_mem_obj = clCreateBuffer(context, CL_MEM _READ_ONLY |
CL_MEM_COPY_HOST_PTR, (len)* sizeof(char), str_encoded list, &ret);
cl_mem e_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
sizeof(unsigned int)* (len / 4) * 25, NULL, &ret);

// Execute the OpenCL kernel on the list

size_t global_item_size = len / 4; // Process the entire lists

ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, 0,
&global_item_size, 0, 0, 0, 0);

unsigned int* temp = (unsigned int*)malloc(len * 25);

//read result from the device to array temp

ret = clEnqueueReadBuffer(command_queue, e_mem_obj, CL_TRUE, 0,
sizeof(unsigned int)* (len / 4) * 25, temp, ©, NULL, NULL);

int count = 0; int size = ©; unsigned int*1list; int pre_size = ©;

while (count < ((len / 4) * 25)) {
int k = temp[count];

if (count == @) {

pre_size = size;

size = k;

list = (unsigned int *)malloc(size * 4);
}
else {

pre_size = size;

size = size + k;

list = (unsigned int*)realloc(list, size * 4);
}
for (int i = 1; i <= k; i++) {

list[pre_size + i - 1] = temp[count + i];
}

count = count + 25;

return decoded_list;

Code Snippet 16: OpenCL unpackListModified

San Jose State University Page: 42

Processing Posting Lists Using OpenCL CS298 Report

CHAPTER S
TESTS AND RESULTS

Zipf’s law is a commonly used distribution model for the occurrences of terms in a collection.
Zipf’s law states that the frequency of the i"™ most frequent term is inversely proportional to its
rank (i) as shown in the diagram below, where [is a normalizing constant and its value is 0 <3
<l and a is very close to 1. B © f; is collection frequency, the number of occurrences of term t;

in a collection.

1

fiot
.

l-a

Figure 11 Zipf’s law

For this performance comparison testing, posting lists are created for two collections- one
contains 10,000 documents and the second one contains 100,000. Each document contains 5000
tokens and a total of 10,000 unique words in each collection. Inverted indexes are created using
Zipffian distribution by setting f§ as 0.5 and « as 1.1. Three different ranking words (i=10, 310,
3000) from these posting lists are randomly chosen from ranks (1-100), (101 -100), and (1001 -
10,000) such that the first one is the most frequent term, second one is a moderately frequent
term, and the third one is a less frequent term according to their frequency of occurrence in the

document collection.

The first test scenario compares the performance of the encoding of each word’s postings into a

single packed integer string. The second scenario compares the performance of decoding the

San Jose State University Page: 43

Processing Posting Lists Using OpenCL CS298 Report

integer string from the first scenario back to the original postings. These tests are run with three
variations: PHP, C Extensions, and OpenCL Extensions code. These tests are also repeated on
different CPU and GPU combinations, 32/64 bit application mode, and with different PHP
versions. Performance results are represented in terms of the time taken to perform the encoding

or decoding respectively for both scenarios.

PHP 5 Encoding test:

The following chart shows the results of encoding test of a posting list with different word
frequency ranks of 10,000 documents collection. The test was run on i5 machine with an Intel
HD graphics processor. A performance improvement of up to 3 times was observed with C
Extensions compared to the original PHP code for all three chosen term ranks. As the term
frequency increases, the OpenCL Extensions results show improvement, but not as good as the C

Extensions. This is because of the overhead associated with OpenCL's data transfer between the

kernel and CPU.
4
2 3.5
<2 3 -
()
£ 25 - &
[l
w 2 = PHP
7 1o mC
9 05 - Qe Q- Q- NB OpenCL
& o9 - : — : .
most-frequent(13) moderate-frequent(310) less-frequent(3000)
Rank

Chart 1 Encoding Test Results for10,000 documents (PHPS5, 32 bit, iS+HD GPU)

Chart 2 shows the results of encoding as above, but with 100,000 documents. These test results

follow same pattern as above.

San Jose State University Page: 44

Processing Posting Lists Using OpenCL

CS298 Report

Processing Time (sec)

N
o

w
o

N
o

-
o

o

©
s H PHP

(<\ LN [\ < a_'\' .C

q/'v Q‘O 0’)"” Q.Q] N
OpenCL

most-frequent(13)

moderate-frequent(310) less-frequent(3000)

Rank

Chart 2 Encoding Test Results for 100,000 documents (PHPS5, 32 bit, i5S+HD Graphics)

The following chart 3 shows the results of the encoding test of a posting list with different word

frequency ranks of 10,000 documents collection run on an i7 machine with an Nvidia graphics

processor. Similar to the i5 processor, a performance improvement of up to 3 times was observed

with C Extensions compared to the original PHP code for all three chosen term ranks with an i7

processor. For the most frequent search term (rank 13), an improvement of about 0.4 times was

observed with OpenCL extensions using an Nvidia GPU when compared relatively with the

original PHP implementation.

Processing Time (sec)

= N
=N w

o
o U

N H PHP
NG
b ™ > \ mC
o %QC’ WQ"/ 090 Go"
—— OpenCL

most-frequent(13)

moderate-frequent(310) less-frequent(3000)

Rank

Chart 3 Encoding Test Results for 10,000 documents (PHP5, 32 bit, i7+Nvidia Graphics)

San Jose State University

Page: 45

Processing Posting Lists Using OpenCL CS298 Report

Chart 4 shows the results of the encoding test as above, but with 100,000 documents. These test

results follow the same pattern as above with OpenCL and C Extensions.

40
(8]
@
<2 30
o
£ 70 m PHP
[Q)q
e 9 9 v) o
= 4 K mC
£ 10 o | S
g > Il v®
o W OpenCL
§ 0 - . — . I p
o most-frequent(13) moderate-frequent(310) less-frequent(3000)
Rank

Chart 4 Encoding Test Results for 100,000 documents (PHP 5, 32 bit, i7+Nvidia Graphics)

PHP 7 Encoding test:

The following chart shows the results of repeating the encoding test of a posting list with
different word frequency ranks of 10,000 documents collection, run on an i5 machine with an
Intel HD graphics processor with PHP version 7. This test compares the processing time required
for PHP and C Extensions. An approximately 300% improvement is observed with C Extensions

for all variations of tests relative to PHP code.

=
s}

o 14

Processing Time (sec
o O O =
H» OO0 LN

M PHP
HC
' N g
0.2 \,0 \’0
0 T 1
most-frequent(13) moderate-frequent(310) less-frequent(3000)

Rank

Chart 5 Encoding Test Results for 10,000 documents (PHP7, 32 bit, i5)

San Jose State University Page: 46

Processing Posting Lists Using OpenCL CS298 Report

Chart 6 shows the results of the encoding test as above, but with 100,000 documents. These test

results follow the same pattern as above with PHP 7 C Extensions.

20 o
9 Na
<15
£
= 10 -
) M PHP
g 5 - (\0’ 22} Qfo r\‘9
g v N NS HC
e 0 I T T 1
a

most-frequent(13) moderate-frequent(310) less-frequent(3000)

Rank

Chart 6 Encoding Test Results for 100,000 documents (PHP7, 32 bit, i5)

The following chart 7 shows the results of the encoding test of a posting list with different word
frequency ranks of 10,000 documents collection, run on an i7 machine with an Nvidia graphics
processor. Similar to the i5 processor, a performance improvement of up to 3 times was observed
with C Extensions compared to original PHP code for all three chosen term ranks with an i7

Processor.

)
k)
(]
£
=
» y < © @ M PHP
& ~ g N \
3 © o o O e
g
a. T T 1
most-frequent(13) moderate-frequent(310) less-frequent(3000)
Rank

Chart 7 Encoding Test Results for 10,000 documents (PHP7, 32 bit, i7)

San Jose State University Page: 47

Processing Posting Lists Using OpenCL CS298 Report

Chart 8 shows the results of the encoding test as above, but with 100,000 documents. These test

results follow the same pattern as above with C Extensions.

Rank

o
2
()
£
i
-1
b= M PHP
g \
g 4 & EC
=) AN
a
most-frequent(13) moderate-frequent(310) less-frequent(3000)

Chart 8 Encoding Test Results for 100,000 documents (PHP7, 32 bit, i7)

PHP 5 Decoding test:

The following chart shows the decoding test results of 10,000 documents run on an i5 machine

with Intel HD graphics processors with PHP version 5. There is an approximate performance

improvement of 6 times with C extensions and about 4 times with OpenCL for the test case

involving the most frequently occurring term (rank=13).

__40

[S)

[}

£ 30

£

5% v 3

£ 5‘9 Vb o A /\Q) PN
("] 10 > Q‘ Q‘ o4
8 Q. 0- Q.
(8]

S o — ——

e most-frequent(13) moderate-frequent(310) less-frequent(3000)

Rank

i PHP
EC

i OpenCL

Chart 9 Decoding Test Results for 10,000 documents (PHPS, 32 bit, i5S+HD Graphics)

San Jose State University

Page: 48

Processing Posting Lists Using OpenCL CS298 Report

Chart 10 shows the results of the decoding test as above, but with 100,000 documents. These test
results show even more improvement than the previous test. There is an approximate
performance improvement of about 40 times with C extensions and 30 times with OpenCL for

the test case involving the most frequently occurring term (rank=13).

3000 &
m 5
a
o 2000
E PHP
' 1000 &
£ i\ > N NS HC
2 s VR Ay N S
§ 0 : : . MOpenCL
o most-frequent(13) moderate-frequent(310) less-frequent(3000)
Rank

Chart 10 Decoding Test Results for 100,000 documents (PHPS, 32 bit, iS+HD Graphics)

The chart below shows the test results of the decoding test of an encoded posting list with
different word frequency ranks of 10,000 documents collection run on i7 machine with an Nvidia
graphics processor. A performance improvement of 8 times with C Extensions and 5 times with

OpenCL was observed with the most frequently occurring term (rank=13).

_25

3

Y 20

(]

£ 15

= M PHP

£ 10

g RO NSRS e

S I { o o7 O I OpenCL

o O T T 1
most-frequent(13) moderate-frequent(310) less-frequent(3000)

Rank

Chart 11 Decoding Test Results for 10,000 documents (PHPS, 32 bit, i7+Nvidia Graphics)

San Jose State University Page: 49

Processing Posting Lists Using OpenCL CS298 Report

Chart 12 shows the results of decoding test as above, but with 100,000 documents. There was an
approximate performance improvement of about 80 times with C extensions and 50 times with
OpenCL for the test case involving the most frequently occurring term (rank=13). Original PHP
code took approximately the same time on both i7 and i5 machines, but C and OpenCL

extensions took only half the time on i7 compared to i5.

2500 o
n Yy
§_2000
2 1500
£ 1000 M PHP
= Z
ao ¥ N A >
£ 500 P e e |c
§ 0 T — T 1 OpenCL
g most-frequent(13) moderate-frequent(310) less-frequent(3000)
Rank

Chart 12 Decoding Test Results for 100,000 documents (PHPS, 32 bit, i7+Nvidia Graphics)

PHP 7 Decoding test:

The following test scenarios are run under PHP 7 environment. Charts 13 and 14 represent the
testing results of decoding on an i5 machine for 10,000 and 100,000 documents, respectively.
Charts 15 and 16 represent the testing results of decoding on an i7 machine for 10,000 and
100,000 documents, respectively. PHP 7 has significant processing improvements when
compared to PHP 5. Beyond that, C extensions offer additional processing speed improvements

of 10 to 50%.

San Jose State University Page: 50

Processing Posting Lists Using OpenCL CS298 Report

)

2

()

£

= % - H PHP
.§° Q\v Qb

@ Q- Q- EC

[

3 T 1

a most-frequent(13) moderate-frequent(310) less-frequent(3000)

Rank

Chart 13 Decoding Test Results for 10,000 documents (PHP7, 32 bit, iS5)

9
E
2 % & PHP
<] vv
HC
; ’—=—|
most-frequent(13) moderate-frequent(310) less-frequent(3000)
Rank
Chart 14 Decoding Test Results for 100,000 documents (PHP7, 32 bit, i5)

)

2

(]

£

E,, . y PHP

= vV %

2 NS HC

(8]

2 T 1

e most-frequent(13) moderate-frequent(310) less-frequent(3000)

Rank

Chart 15 Decoding Test Results for 10,000 documents (PHP 7, 32 bit, i7)

San Jose State University Page: 51

Processing Posting Lists Using OpenCL CS298 Report

__40
b
<30
()]
£
= 20
» H PHP
ﬁ 10 HC
)
a O
most-frequent(13) moderate-frequent(310) less-frequent(3000)
Rank
Chart 16 Decoding Test Results for 100,000 documents (PHP7, 32 bit, i7)
PHP 5 Vs PHP 7:

The objective of this test case is to measure the performance improvements obtained by simply
using PHP 7 instead of PHPS. The test also compares results with C extensions. The PHP7
encoding test shows a 2.5 times performance improvement relative to PHPS. Even though PHP7
already offers better performance, switching to a C extension further improves processing speed

up to 3 times.

PHP Verb.f.ion Encoding Performance Comparision

™
2 4 che

£ ©

i: 2 N?) I

2 N M PHP
g 0 . Te
2 PHP 5 PHP 7

PHP Version

Chart 17 PHPS Vs PHP7 Encoding Performance Comparison

The following chart shows the decoding test results with different PHP versions. Switching to
PHP7 improves performance by about 6 times. C extensions further yield about a 0.8 times

improvement.

San Jose State University Page: 52

Processing Posting Lists Using OpenCL CS298 Report

PHP Versjon Decoding Performance Comparision
)

<
2 40 o’
g
i: 20 T \)(b‘ /\A\
¥ &’ - M PHP
(%]
] [
g 0 . . HC
o PHP 5 PHP 7
a

PHP Version

Chart 18 PHPS Vs PHP7 Decoding Performance Comparison

Browser Testing:

V - - Admin [Manage Crawl]

.1anageAccuunt - Create Cfan
Manage Users Name: Start New Crawl | Oplions

Manage Roles

Currently Processing
[EWIEN pescription: No active crawl

Manage Crawl Server Peak Memory: No Memory Data Yet
Manage Classifiers Fetcher Peak Memeory: No Memory Data Yet
Web App Peak Memory: No Memory Data Yet
Visited Uris/Hour: 0.00

Visited Urls Count: O

mearch Sourees Total Urls Seen: 0

_ Most Recent Fetcher: No Fetcher Queries Yet

nptle CH oA Most Recent Urls
No Recent Urls (Could mean only link data)

Page Cptions
Results Editor

Feeds and Wikis

Mix Crawls

Previous Crawls
Row 0 to 3 of 3 Show 50 w

Manage Machines

Manage Locales Description: Timestamp: Elrsl.:.-edextracted Actions
Server Settings .
Security Gopher Test 1410737840 =S
Sep 12 Sun, 14 Sep 2014 173413/2794613 Closed Delete
Appearance Fo Index ———
Stafistics 16:37:20 -0700
fl = 1447951839
Test 19 2015 Set as
Statistics Thu, 19 Mov 2015 5343/95168 Resume —Index Delete
L) 08:50:38 -0800 ET—
1447987988
Eztitics :‘;2;?;1521 5 11314/208105 Resume| % Delete

Figure 12 Yioop crawl management screen

San Jose State University Page: 53

Processing Posting Lists Using OpenCL CS298 Report

PHP:

v | . university Q

0.08647 seconds. Showing 1 - 10 of 1857

Gaza |

www democracynow.org/2014/8/%0un.. einstate Words: UNIVersity salaita professor ilinois gaza
University of llinois Urged to Reinstate ... in Gaza. 2014-09-09 University of llinois Urged to Reinstate ..,
of law at Columbia University and the director of the Open University

Cached. Similar. Inlinks. |P;184,173,114,84. Score:10.1

campbell joseph kei...
redhill.net.nz/1/conspiracy/C Words: COOPET conspiracy money cohen ufo
View as text Similar Inlinks. |P:219.89.124 52 Score:8.10

Grambling State University (university, Grambling, Lousiana, United States) —

Encyclopedia Britanni

www britannica com/EBcheckeditop...iversity Words: grambling university britannica state dia
Grambling State University university, Grambling, Lousiana, United .. Grambling State University Article
Free Pass. Written by The ... up Grambling State University. 2014 Encyclop dia Britannica, Inc.

Cached. Similar. Inlinks. |P:208.185.238. 124 Score:B.10

Query Statistics

http:/flocalhostiyicop/Pits=s141073 7840 Rg=univarsity

Total Elapsed Time for Gueries: 0.053105354300082 sceconds.

SELECT LOCALE_MAME. WRITING_MODE FROM LOCALE WHERE LOCALE TAG = 'gn-L15
Time: 000055003 16619873 seconds.

SELECT URL FROM MACHINE WHERE HAS_QUEULVE_SERVER = 0D ORDER BY MNMAME DESC
Time: 0.000G108283906582 seconds

PHRASE QUERY: university
Presentation O:
Low. 0
High: 10
Disjunct O
frrdex. 1410737 E40
Locale Tag. en-UUS
Stemmect/’ T har-grasmmed Words
univers
AMela Words
Quolted Word Locs
Presentation Parae time: 0011800897 1221824
Lookup Offacts Tima: 0028230015 1082495

=

B etneve Postings Sub-Time, 0,0204080077868724
P s oo oo

Ry Fata e b
Get Summaries Time: 0.002B250217437 744

Format Time: 0005881909157 71484

Time: D.0SDA4BT 041473380 seconds,

Figure 13 Search results with PHP

Figure 13 above shows the search performance results and corresponding query statistics with

the original PHP code. This test was done for a single word for the search criteria.

San Jose State University Page: 54

Processing Posting Lists Using OpenCL CS298 Report

C Extensions:

v _ . university Q

0.05980 seconds. Showing 1 - 10 of 1857

University of lllinois Urged to Reinstate Professor Steven Salaita, Critic of Israeli War in
Gaza

www.democracynow.org/2014/9/8fun.. einstate Words: University salaita professor illinois gaza
University of lllinois Urged to Reinstate . in Gaza. 2014-09-09 University of lllincis Urged to Reinstate _..
of law at Columbia University and the director of the Open University

Cached. Similar. Inlinks. IP:184.173.114.84 Score:10.1

Gopher is a distribu... [TXT]

gopher.viste-family neti0/whatis txt Words: SyStems web nameserver file networked

Bob Alberti of the University of Minnesota. Its central goals are: * ... sports teams of the University of
Minnesota are the Golden Gophers

View as text. Similar. Inlinks. IP:82.225.72.113. Score:8.44

Democracy Mow!

www.democracynow.org Words: CliCKY widget data find topics
Assault Protest University of lllinois Trustees Vote Against

Cached. Similar. Inlinks. 1P:184.173.114.84. Score:8.40

Aammamball lasanb leal

Query Statistics

hittp:Mocalhostivioop/Pits=14107 37840 & g=university

Total Elapsed Time for Queries: 0.0456764698028568 seconds.

SELECT I_{_)(_;.ﬂi_i;'__l'\.l,&.[\ﬂl;_ WRI I]N(_-':_M(,)I_Tl!i FROM LOCALE WHERE LOCAL E_ TAG =an-LUS"
Time: 0.00046706199645996 seconds.

SELECT URL FROM MACHINE WHERE HAS_ QUEUE SERVER = 0 ORDER BY NAME DESC
Time: 0.00053191184997559 seconds.

PHRASE QUERY: university
Presentation O:
Low:0
High: 10
Disjunct 0:
Index: 1410737840
LocaleTag: en-US
Sfemmed/Char-grammed Words
univers
MMeta Words
Quoted Word Locs:
Presentation Parse time: 0.0072528315848486
Lookup Offsets Time: 0.026983022689819
{ S P
Hafrieve Postings Sub-Time: D.0160138607025

Get Summaries Time: O 0027480125427246
Format Time: 00052859783 1726807
Time: 0.043301820755005 seconds.

Figure 14 Search results with C Extensions

Figure 14 shows the search performance results and corresponding query statistics with the PHP
code replaced with C Extensions. This test was done for the same search word used for PHP

search test.

San Jose State University Page: 55

Processing Posting Lists Using OpenCL CS298 Report

OpenCL Extensions:

v _ . university Q

0.08686 seconds. Showing 1 - 10 of 1857

University of lllincis Urged to Reinstate Professor Steven Salaita, Critic of Israeli War in
Gara

www.democracynow.org/2014/9/9/un...einstate Words: University salaita professor illinois gaza
University of lllinois Urged to Reinstate ... in Gaza. 2014-08-09 University of lllinois Urged to Reinstate ..
of law at Columbia University and the director of the Open University

Cached Similar Inlinks. IP-184.173.114.84 Score:10.1

Gopher is a distribu.. [TX

gopher.viste-family. net/0iwhatis.tt Words: Systems web nameserver file networked

Bob Alberti of the University of Minnesota. Its central goals are: * ... sports teams of the University of
Minnesota are the Golden Gophers

View as text. Similar. Inlinks. |1P:82.225.72 113. Score:8.44

Democracy MNow!
www.democracynow.org Words: Clicky widget data find topics

Aeezn il Dratact llnivareihr AF lllinAie Trstaae VWiaba AAsinet

Query Statistics

npailocalhost/yvioop/ 7itas=14107 378408 gEunivers ity

Total Elapsed Time for Queries: D.OTZ2259187688364 seconds.

SELECT LOCALE_MNMAME, WRITING_MODE FROM LOCALE WHERE LOCALE TAG ="en-LUS"
Time: 0.00049996376037598 aeconds.

SELECT URL FROM MACHINE WHERE HAS QUELE_ _SERWVER O ORDER BY NAME DESC
Time: 0.00051 999092102051 seconds.

PHRASE QUERY : university
Fresentation 0O:
Low:D
High: 10
Disjunct O:
Indax: 1410737840
Locale Tag: en-US
Stemmed/CThar-grammed Words
univers
Adeta Woras
Duoted Word Locs
FPresentation Parse time: 0. 0073380470275879
Loockup Offsets Time: 0.0531890965744019
o a2 e, U T Ly rm—m—
0.04251 7900466915
= F LA A DL
Get E;un\ru:lrlq“a Tiils , i FOGEAA145
Format Time: D.0O0535297303790883
I Time: D.OGATZ2503I6621094 seconds,

~afrneve Fostings Sub-Time

Figure 15 Search results with OpenCL Extensions

Figure 15 shows the search performance results and corresponding query statistics with the PHP
code replaced with OpenCL Extensions. This test was done for the same search word used for

PHP search test.

San Jose State University Page: 56

Processing Posting Lists Using OpenCL CS298 Report

The following chart shows the browser based query performance test results. This test was done
on an i7 CPU based system with an Nvidia GPU. The test was repeated with three search
patterns, a single word, two words, and with three words. The C Extension based test case results
have shown about 30% performance improvement as compared to the original PHP code.
However, the OpenCL performance did not show improvement because index size is not big

enough for OpenCL to perform better. In this case, overhead of OpenCL kernel to host switching

is high.
Browser-based Testing (PHP5)
/\
__50 v
w
E 40
()
€ 30 P«
— ,\>) Q)
" 20 K3 \b‘?‘ H PHP
g | <) @(? % EC
$ 10 - R x>
o s i OpenCL
a. 0 -
Single Word Double Word Triple Word
Search words

Chart 19 Query Performance from browser (PHPS)

San Jose State University Page: 57

Processing Posting Lists Using OpenCL CS298 Report

The following chart 20 shows the browser based query performance test results with PHP7. This
test was done on i7 machine for PHP and C Extensions. The C Extension test results have shown

about 25% performance improvement compared to the original PHP code.

N Browser-based Testing(PHP7)
%
0.14 >
T o012
2
Q 0.1 N
£ 0.08 -
£0.06 - M PHP
A U %
0.04 - X o 4 &
§ S S O AN EC
& 0.02 - S o
0 - e SRR
Single Word Double Word Triple Word
Search words

Chart 20 Query Performance from browser (PHP7)

San Jose State University Page: 58

Processing Posting Lists Using OpenCL CS298 Report

CHAPTER 6

Observations and Conclusions

The goal of improving Yioop's performance has been achieved by experimenting with replacing
encoding and decoding functionality with alternatives like C and OpenCL. The following are

some of the observations and conclusions arrived at while running the experiments.

C extensions performed 3 times better when compared to the original PHP code for the encoding
test case. However, OpenCL has shown only a 0.4 times improvement for the most ranked term
on an Nvidia based GPU. The overhead of data transfer between kernel and CPU land outweighs

the performance gains achieved through OpenCL parallelism.

C extensions performed 5 times better when compared to the original PHP code for the decoding
test case. OpenCL has achieved a 4 times improvement for the most ranked term on an Nvidia
based GPU, as well as on an Intel HD graphics GPU. OpenCL performed better when tried with
the most ranked terms as it contains a high number of postings. But for other ranked test cases,
OpenCL did not yield much improvement, as the overhead of context switching between CPU

and GPU is high.

Yioop performed about 2.5 times better for encoding case and about 6 times for the decoding test
by simply switching to PHP7. Another 3 times improvement was observed using C Extensions

along with PHP7 for the encoding case and about 0.4 times with the decoding test case.

In the interest of empirical rigorousness, performance measurements were done with a 64 bit
setup instead of a 32bit setup. There is no performance difference observed with 32 bit versus

64 bit software.

San Jose State University Page: 59

Processing Posting Lists Using OpenCL CS298 Report

When running tests on an i7 machine, initial performance numbers were found to be very low, as
Windows’ defender service was consuming lot of system resources. Stopping the defender
service improved the results. When the tests were run on a Windows 10-based system, memory
compression service was taking up more system resources than the application itself and skewing

the results.

Browser based tests also had shown performance gains when C Extensions were used.

Overall, Yioop's original code is already well optimized and achieving further improvements is
not a trivial task. However, these experiments proved that the Yioop search engine’s
performance can be improved by using a combination of OpenCL and C extensions for most
resource and compute intensive functions. The operating system and the right type of GPU and

CPU combination will help achieve optimum performance results.

San Jose State University Page: 60

Processing Posting Lists Using OpenCL

Appendix 1

Environment Setup

CS298 Report

The following step by step instructions explain the process of setting the PHP extension

development environment on Windows 8.

Prerequisites
1. Microsoft Visual Studio 2013 Professional 32bit
2. Apache 2.4.x 32 bit binary version
3. PHP 5.6.15 Source
4. Intel INDE OpenCL drivers
5. 7Zip Utility

Setting up PHP Extensions for Visual studio 2013

Visual Studio 2013:

Install Visual Studio 2013 32 bit Professional version.

Install Visual C++ Redistributable Packages for Visual Studio 2013 from
http://www.microsoft.com/en-us/download/confirmation.aspx?id=40784
Launch Visual studio and make sure it opens fine and its license is fine.

Exit Visual Studio.

PHP Dev environment:

Ref: The following instructions are based on the steps from

https://wiki.php.net/internals/windows/stepbystepbuild.

Create a directory c:\php-sdk

San Jose State University

Page: 61

Processing Posting Lists Using OpenCL CS298 Report

e Download PHP binary tools from http://windows.php.net/downloads/php-sdk/php-sdk-
binary-tools-20110915.zip and extract the contents of the zip to c:\php-sdk. It will create
3 sub folders bin, script and share.

e Open Visual Studio 2013 command window from C:\Program Files (x86)\Microsoft
Visual Studio 12.0\Common7\Tools\Shortcuts and launch VS2013 x86 Native Tools
Command Prompt.

e cd to c:\php-sdk and run the following command
bin\phpsdk_buildtree.bat phpdev

e Make a copy C:\php-sdk\phpdev\vc9 folder and rename it to C:\php-sdk\phpdev\vc12

e Download a file called deps-5.6-vc11-x86.7z from

http://windows.php.net/downloads/php-sdk/. Extract the contents using the 7zip utility

and copy the contents of x86 folder to C:\php-sdk\phpdev\vc12\x86
e Download a stable version of PHP source from

http://windows.php.net/downloads/releases/php-5.6.15-src.zip and extract the contents to

C:\php-sdk\phpdev\vc12\x86\php-5.6.15-src

e From c:\php-sdk run the following commands
bin\phpsdk_setvars.bat
cd C:\php-sdk\phpdev\vc12\x86\php-5.6.15-src
run buildconf
configure --help

configure --enable-cli --enable-mbstring --with-curl --with-sglite3 --with-gd --enable-
apache2-4handler --enable-pdo --with-pdo-sqlite --enable-mbregex --with-mcrypt

nmake

nmake snap

San Jose State University Page: 62

Processing Posting Lists Using OpenCL CS298 Report

Copy php.ini-production from C:\php-sdk\phpdev\vc12\x86\php-5.6.15-src to C:\php-
sdk\phpdev\vc12\x86\php-5.6.15-src\Release TS and rename it php.ini

e Extract ssleay32.dll, libeay32.dll from http://windows.php.net/downloads/releases/php-

5.6.15-Win32-VC11-x86.zip) to C:\php-sdk\phpdev\vc12\x86\php-5.6.15-

src\Release TS
e Uncomment the following line in php.ini
extension=php_curl.dll

e Change zend.multibyte = On from Off in php.ini

Setting up Apache:
e Download Apache Binary for VC11 compatible 32bit version from

http://www.apachelounge.com/download/VC11/

e Extract the zip to c:\apps and Apache will be available under C:\apps\httpd-2.4.17-
win32-VCI11

e Download PHP Binary http://windows.php.net/downloads/releases/php-5.6.15-Win32-

VC11-x86.zip (download thread-safe version only) and extract the zip to a temp folder.
Copy libssh2.dll, libeay32.dll and ssleay32.dll from this folder to C:\php-
sdk\phpdev\vc12\x86\php-5.6.15-src\Release TS

e Edit C:\apps\httpd-2.4.7-win64-VC11\Apache24\conf\httpd.conf and add the following
lines at the end
LoadModule php5_module

""C:/php-sdk/phpdev/vc12/x86/php-5.6.15-src/Release_TS/php5apache2_4.dlI™"

AddHandler application/x-httpd-php .php
PHPInIDir "'C:/php-sdk/phpdev/vc12/x86/php-5.6.15-src/Release_ TS

e Also update ServerRoot and DocumentRoot as below in the httpd.conf file

San Jose State University Page: 63

Processing Posting Lists Using OpenCL CS298 Report

DocumentRoot should look like the following

DocumentRoot "C:/apps/httpd-2.4.17-win32-VC11/Apache24/htdocs/"
<Directory "C:/apps/httpd-2.4.17-win32-VC11/Apache24/htdocs/">

AllowOverride All ~ //Change None to All
e Enable rewrite module by un-commenting the following
LoadModule rewrite_module modules/mod_rewrite.so
e Start apache from command line

cd C:\apps\httpd-2.4.17-win32-VC11\Apache24\bin
httpd.exe

Installing Intel INDE drivers

e Download driver from https://registrationcenter.intel.com/registersninfo.aspx?sn=CPV §-

J3767J9J&EmaillD=sowmyu94%40yahoo.com&Sequence=1608158&pass=yes

e Copy CL folder from C:\InteNINDE\code builder 5.1.0.25\include to C:\php-

sdk\phpdev\vc12\x86\php-5.6.15-src

e Copy OpenCL.lib from C:\Intel\NINDE\code builder 5.1.0.25\1ib\x86 to C:\php-

sdk\phpdev\vc12\x86\deps\lib

Setting and Configuring Yioop

e Send request for access at https://seekquarry.com/download/3.4.0

e Change directory to C:\apps\httpd-2.4.17-win32-VC11\Apache24\htdocs

e Checkout latest version of Yioop from https://seekquarry.com/git/Yioop

e Test Yioop application from http://localhost/Yioop and then follow configuration
instructions from https://www.seekquarry.com/p/Documentation to complete the

configuration

San Jose State University Page: 64

Processing Posting Lists Using OpenCL CS298 Report

How to compile and run PHP extension example:

e Create a folder sample under C:\php-sdk\phpdev\vc12\x86\php-5.6.15-src\ext\sample
e Copy conFigurew32, php sample.h and sample.c code to this folder.
e Copy php.ini-production from C:\php-sdk\phpdev\vc12\x86\php-5.6.15-src to C:\php-
sdk\phpdev\vc12\x86\php-5.6.15-src\Release TS and rename it php.ini
e Uncomment extension_dir and the contents should like
extension_dir = "'C:/php-sdk/phpdev/vc12/x86/php-5.6.15-src/Release_TS/*

extension=php_sample.dll

Open Visual Studio command prompt using the shortcut provided above

cd C:\php-sdk

bin\phpsdk_setvars.bat

cd C:\php-sdk\phpdev\vc12\x86\php-5.6.15-src and run
buildconf

configure --enable-sample=shared

nmake php_sample.dll

cd Release TS

php -r "'sample_hello_world();"

¢ You should see output hello world !!!!!!11111!

This completes the successful setup of PHP extensions

Note: If nmake fails, stop Apache as it may be locking the dll file and failing to update it.

San Jose State University Page: 65

Processing Posting Lists Using OpenCL CS298 Report

Appendix 2

Table 5 Machine Configurations

No Description Remarks

1 Lenovo Ideapad Used for all 15 based test cases
Intel Core 15-3210M @2.5Ghz
Intel HD Graphics 4000N GPU
Parallel compute units 16

6GB RAM

420GB HDD

Windows 8.1

2 Lenovo W530 Used for all 17 based test cases
Intel Core 17-3840QM @2.8Ghz
Nvidia Quadro K2000MN
Parallel compute units 2N

12GB RAM

460GB HDD

Windows 8.1

San Jose State University Page: 66

Processing Posting Lists Using OpenCL CS298 Report

References

[1] The open standard for parallel programming of heterogeneous systems. (2016). Retrieved on

January 15, 2016 from https://www.khronos.org/opencl/

[2] Extension Writing Part I: Introduction to PHP and Zend. (2015). Retrieved on April 16, 2015
from http://devzone.zend.com/303/extension-writing-part-i-introduction-to-php-and-

zend/#Heading2

[3] Woolley, C. (2010). Introduction to OpenCL. Retrieved on November 5, 2015 from

http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/06-intro_to_opencl.pdf

[4] Stefan, B., Clarke, C., Cormack, G. (2010). Information retrieval-Implementing and

Evaluating Search Engines. Cambridge, Massachusetts: MIT Press.

[5] Benedict, G., Howes, L., Kaeli, D., Mistry, P., Schaa, D. (2011). Heterogeneous Computing

with OpenCL. Morgan Kaufmann.

[6] Golemon, Sara. Extending and Embedding PHP. Indianapolis, Ind.: Sams, 2006. Print.

[7] Scholer, F., Williams, H. E., Yiannis, J., and Zobel, J. (2002). Compression of inverted
indexes for fast query evaluation. In Proceedings of the 25" Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 222-229. Tampere,

Finland.

[8] Che, S., Jiayuan, M., W. Sheaffer, J., Skadron, K., (). A Performance Study of General
Purpose Applications on Graphics Processors. Retrieved on September 2, 2015, from

https://pdfs.semanticscholar.org/03aa/649535c7e01ac2b3255f2f44131380dc93c7.pdf

San Jose State University Page: 67

Processing Posting Lists Using OpenCL CS298 Report

[9] Keane, A. (2016). “GPUS ARE ONLY UP TO 14 TIMES FASTER THAN CPUS” SAYS
INTEL. Retrieved on March 6, 2016, from https://blogs.nvidia.com/blog/2010/06/23/gpus-are-

only-up-to-14-times-faster-than-cpus-says-intel/

[10] Yioop website. Retrieved on September 2, 2015, from http://www.seekquarry.com/

San Jose State University Page: 68

	Processing Posting Lists Using OpenCL
	Recommended Citation

	Microsoft Word - CS298_report

