San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2016

EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING
APACHE SPARK

Parineetha Gandhi Tirumali
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Databases and Information Systems Commons

Recommended Citation

Tirumali, Parineetha Gandhi, "EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE SPARK"
(2016). Master's Projects. 479.

DOI: https://doi.org/10.31979/etd.sh8a-3gyv

https://scholarworks.sjsu.edu/etd_projects/479

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/479?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE
SPARK

A Project
Presented to
The Faculty of the Department of Computer Science
San Jose State University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

By
Parineetha Gandhi Tirumali
May 2016

©2016
Parineetha Gandhi Tirumali
ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE
SPARK

by
Parineetha Gandhi Tirumali

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE
SAN JOSE STATE UNIVERSITY
May 2016

Dr. Tran Duc Thanh Department of Computer Science.
Dr. Thomas Austin Department of Computer Science.
Mr. Subrahmanyam Bolla Manager, VMWare.

ABSTRACT
EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE
SPARK
by Parineetha Gandhi Tirumali

Entity matching is the process of identifying different manifestations of the same
real world entity. These entities can be referred to as objects(string) or data instances.
These entities are in turn split over several databases or clusters based on the signatures
of the entities. When entity matching algorithms are performed on these databases or
clusters, there is a high possibility that a particular entity pair is compared more than
once. The number of comparison for any two entities depend on the number of common
signatures or keys they possess. This effects the performance of any entity matching
algorithm. This paper is the implementation of the algorithm written by Erhard Rahm et
al. for performing redundancy free pair-wise similarity computation using MapReduce.
As an improvisation to the existing implementation, this project aims to implement the
algorithm in Apache Spark in standalone mode for sample of data and in cluster mode for

large volume of data.

ACKNOWLEDGEMENTS

I would like to thank the following people and many others who aren't named here.

I would like to express my gratitude to Professor Tran for his continuous support and

guidance throughout the completion of this project.

| would like to thank my committee members Dr. Thomas Austin and Mr.

Subrahmanyam Bolla for their contribution.

I would like to thank my parents, family and my husband for their cooperation.

Table of Contents

ABSTRACT ..t re e 1\
ACKNOWLEDGEMENTS ...ttt v
LIST OF FIQUIES ...ttt sttt st e ene e b e be e nrees viil
LASE OF TADIES ... e bbb X
L INEFOTUCTION ... bbbt r bbb ene s 1
2. REIAIEA WOTKS......coeieeeece bbb 3
2.1 TEIMINOIOGY ..ttt bbb 3
2L L ENLILY oo e e e re e ne e 3
2.1.2 SHONALUIEeeieeeie ettt te et e et e e e s be e teeseesbaebeeneesneenreenne e 3
N Y/ - o] T USSR 3

2.2 Pair-wise similarity computation(PSC).......c.cciviiieiieiiciccecce e 3
2.3 Spark Implementation of Map REAUCE..........cccocoeiieiiccceece e 3
3. Problem DefinitioN.........ccoi i 6
TN O 1 11 =T g o[- SO 7
3.2 SIGNALUIE FUNCLION ...ttt 7
3.3 AP FUNCHION L.ttt bbb 12
3.4 REAUCET FUNCTION ...ttt bbb 12
3.5 Real TImMe EXAMPIE ..o s 14
4. Implementation DEtailS....... ..o 17
4.1 Baseline Implementation L..........cccoociiiiiiiniiiee s 17
4.2 Baseline Implementation 2...........cocooiiiiiieiii e 21
4.2.1 HIVE CONEXL.....iiiiiiiiiieeee et 21
4.2.2 Data FIaAMES......ccuiiiiiiiiiieii it 22

Vi

4.2.3 WINdow Concept iN SPAr........ccceeieiieiieie e 23

5. Performance EValUALION ... s 26
5.1 Apache Spark CIUSIEr SEIUPceeiveiiiieie e 27
5.2 Launching and testing the CIUSIErccccveieiicii e 33
6. CONCIUSION ...t bbbttt b bbb ene s 35
7 RETEIBINCES ...ttt b 36

Vii

List of Figures

Figure 1: Referencing same paper object multiple times..........ccccoovviiiiieieic s 1
Figure 2: Multiple entries for the Same Product.............cccooeiiiiiiiinicicee e 1
Figure 3: Spark EXecution FrameWOrKcociiiiiiiiie e 4
Figure 4: Python Spark Data FIOW ArChItECIUIE.couvvieiicie e 5
Figure 5: Worker NOde Data FIOWcccooiiiiiiiiiciee e 5
Figure 6: Map Reduce Data FIOW(L)ccccoiiiiiiiiiieieec e 6
Figure 7: Difference between Map Reduce and Sparkcccccoevveveiieiiene e, 7
Figure 8: Example of Pair-wise similarity COmputationcc.ccccoveveivieieeiecce s, 8
Figure 9: Signatures for two pass DIOCKING.........cccceiiiiiiiii e 9
Figure 10: OUutput OF Map PRESEcoveiiiiiiiieieee s 10
Figure 11: Output of the redUCe PRASEcoveiieiice e 11
Figure 12: Map Reduce phase after improvising the algorithmc..cccoveiiiieinn. 13
Figure 13: SamMPIE TabIe ..o s 14
Figure 14: Key value pairs generated DY Mapcoooeieiiiiiininineeeeee s 14
Figure 15: Grouping Similar eNtitieS..........coviieiiiii i e 15
Figure 16: Sorting the keys associated with each entity...........c.ccccoevieviiic i, 15
FIQUIE 17: ENLILY PAITS .oveeieceiecieee ettt st et be e te e e sreenas 16
Figure 18: Snapshot of indexed file ... 18
Figure 19: Code snippet to generate key value pairs from mapccccooevenencnennnnnn. 18
Figure 20: Snapshot of indexed file CONENES............ccevieviiiiiece e 19
Figure 21: Snapshot of Entity, SortedSignaturesS...........cccocveveieeieiie v 19
Figure 22: Code snippet for generating entity Pairs.........coceveverirenieeiieiese s 20
Figure 23: Snapshot of Key value pairs in the form of key and pairs of entities.............. 20
Figure 24: Generation of ENtity PairScccoveiiiiiii i 20
Figure 25: List of attributes and ODJECEScoovviiiiiiiic 23
Figure 26: List of attributes, objects and previous valuesccooevvieneicienincsnne, 24
Figure 27: List of attributes and object, Previous Pairsccovveveeieienene e 24
Figure 28: Algorithm for Map PRaSE........c.cccveiiiiiie it 25

viii

Figure 29:Algorithm for RedUCE Phasecccvveiiiieiieic e 25

Figure 30: Algorithm for OVErIap.........coov i 25
Figure 31: Execution times COMPAITSONcouririeierierieniesiesiesiesie e 27
Figure 32: Screenshot of two VMs in VMWare WorkStationcccccevencienennnnne. 27
Figure 33: Screenshot showing Java Version 0N VIM...........cccocvveiviieieene e 28
Figure 34: Screenshot for Scala downloadcccccevveiiiiiiicie e 28
Figure 35: Screenshot showing Scala version on VIM ... 28
Figure 36: Screenshot of Master NOGEcocviiiiiieiiie s 29
Figure 37: Screenshot of WOrker NOGEcoccveiiiiciicic e 29
Figure 38: Screenshot for installing SSN..........c.coveii i 30
Figure 39: Screenshot showing Master CONNECTIONccoevvevririieiinieeseeeeee e 30
FIQUIE 40: SPArK VEISIONviuiiiieiiiieiieste sttt 31
Figure 41: Files in conf fOlAErcvviiiii s 31
Figure 42: Updated SIAVES FIlE........cc.oiieiiiiecicce e 32
Figure 43: Updated Spark-env.sh flle..........cccoiiiiiiie s 32
Figure 44: Files in sDIN FOIAEr.........ooiiii s 34

List of Tables
Table 1: Execution time with and without redundant pairs

1. Introduction

Entity matching is the process of identifying different manifestations of the same
real world entity. An entity can be an object, data instance or a record. Examples of
manifestations and objects include: different ways of addressing(names, email addresses)
the same person; web pages with different descriptions of the same business; different
photos of the same object and so on. The matching is performed by implementing several
techniques like numerical matching approach, rule-based matching approach and
workflow-based matching approach[1].

Some of the examples of entity matching are

Example 1:

Title Author Venue Year
The merge/purge problem for large databases M_A. Hernandez, S]. Proceedings of the ACM SIGMOD international conference
Stolfo
The Merge/Purge problem for Large Databases AH. Mauricio, |.5. Proc. of the 1995 ACM SIGMOD conference on 1995
Stolfo management
andez, 5] Stolfo The merge/purge problem for Large M. Hern Proceedings of the 1995 ACM SIGMOD conference on 19495
Databases management

Figure 1: Referencing same paper object multiple times

Example 2:

Canon VIXIA HF 810 Camcorder - 1080p - 859 MP - 10 x opticalzoom $975 new

. ! S e . from 52 sellers _ o
The VIXIA HF S10 delwvers bnlliant video and photos through a Canon exclusive 8.59 e

megapixel CMOS image sensor and the latest version of Canon's advanced image [Compere prices |
processor,

Canon (VIXIA) HF $10 (VIS Dual Flash Memory Camcorde $899.00 row

Canon HF $10 MS Dual Flash M amcorderSPECIAL SALE PRICE: $9 line
Display both English/Japanese + we supplu all English manuals in English as PDF ...

Canon VIXIA HF $10 $999.00 rew
Dusl Flash Memory High Defintion Camcorder The Next Step Forward in HO Video Ditioanancn Adid
Canon has a wellknown and highly-regarded reputation for optical excellence, ... 2.seber ratings

Canon VIXIA HF $100 Flash Memory Camcorder $899.95 e
-~ A 0 Arlingtoncamera cc

eo HF S100 Instant Rebate with your purchase of a new

Ca e
‘ Canon VIXIA ce above includes $200 ... olor retin

S100 Flash Memory Came

x Canon Vixia Hf $10 Care & C q $2.99 rew
) Core & Cleaning Digial Camera/Cam eluxe Cleaning Kit with LCD Screen S
= Guard Canon VIXIA HF S10 Camcord, & Cleaning. PO e e

Figure 2: Multiple entries for the same product

To say if two objects or two products or two people are same or not we need to
compare them. To know if two entities are a match or non match, we need to first
compare the pairs of entities. Due to the different manifestation of an entity and presence
of multiple signatures or attributes for each entity, the entities will get compared more
than once. The other reason for a particular pair of entity to be compared more than once
is due to the presence of overlapping clusters. One of the processes for entity matching is
blocking, this blocking is performed based on a blocking key. There is a possibility that
an entity can have more than one blocking key, because of which the entities gets to share
more than one cluster. So the comparison takes place more than once, due to which the
efficiency deteriorates.

What motivates for Entity matching is linking census records, public health, web
search, comparison shopping, portals integration from multiple sources, electronic
marketplaces, integrating genomic data in medical genetics, monitoring events in the sky
in the field of astrophysics.

The remaining part of this paper is organized as: section 2 gives a brief on related
works done in pair wise similarity computation and its drawbacks. Section 3 describes
about the problem definition and section 4 explains how this problem has been addressed.

Entities are distributed among the clusters or databases and when a comparison is
performed on these clusters or databases, there is a high chance that the entities are
compared redundantly. This reduces the efficiency of entity matching. One naive way of
increasing the efficiency in terms of speed is using map reduce. But this does not solve
the problem of redundant entity comparison completely. So this paper tries to solve the
problem of redundant entity comparison using the concept of data frames and windows in
Apache Spark.

The terms Entity and Object, and the terms Signature and Keys are one and the

same throughout the paper.

2. Related Works

Here after in this paper | use the following terminology to explain the concepts.

This chapter gives a brief about these terminologies
2.1 Terminology

2.1.1 Entity
An entity in real world can be a person, product or any object which has attributes
associated to it. An entity can also be referred to as an object, string or a document.

Example: name, product.

2.1.2 Signature
A signature is associated with the entity, it can be a token, blocking key or set of

terms. Example: category.substr(0,3) or manufacturer.

2.1.3 Matching
It is a process of comparing two entities and saying if they are a match or non-

match.

Examples: Matching products for comparison shopping. Finding duplicate entries of

customers in enterprise database

2.2 Pair-wise similarity computation(PSC)

Pair-wise similarity computations is an important concept in data related
applications like entity resolution, clustering based on entities, etc. Groups of entities
with same signature fall into one cluster and this is called clustering. During this process
there is a high chance that entities getting duplicated in case of common signatures. How

to deal with such scenario is the whole idea of implementing this paper.

2.3 Spark Implementation of Map Reduce
Apache Spark is an open source project found by UC Berkeley AMP Labs, the
main motive of this project was to use in-memory, distributed data structure to speed up

data processing over Hadoop. Map reduce concept was the early trial of making the

process execution faster over distributed data structure, but introduction of spark made

programs way more flexible and faster compared to map reduce alone.

In map reduce framework, few tasks are assigned to map and few to reducers.
But, spark has a generic executor(JVM) depending on a situation executes map stages
and reduces. JVM is core where all computation is executed, it is also an interface for
other ecosystems like Hadoop. Consider we need to process 1TB of data on AWS, and

the one worker node processes 1GB of data in map stage the result is stored as 1 RDD.

Using Java or Scala will run the process directly on JVM. But for python the
execution framework is different, it has several python or pyspark processes, generally
one per task depending on the application. These processes are connected to JVM and

data is shipped from JVM to python for processing.

Worker Node

Executor @
Driver Program

SparkContext }-‘ » Cluster Manager
Worker Node

Executor m

Figure 3: Spark Execution Framework

There can be several such worker nodes but there should be only one manager to
provision or restart workers. This is called Cluster Manager. The object that connects and
holds the cluster in spark is spark context. Spark's driver program directs the operations
by initializing the spark context. Spark's actions and transformations are initialized in this
spark context and when the program gets executed the worker nodes kick starts and
process the data. Following figures show how the data flow when using python in Spark.

Data Flow

' Pij
Pyd) |i e Python
i ! | Spark
Socket|| Spark [W::t:llt’er Python
Context [k : i Python
i | Spark T
i |Context I
b Python
Spark
Local Worker Python
FS Python
Local Cluster

I:lethon I:I JVM

Figure 4: Python Spark Data Flow Architecture

Spark supports two interfaces of cluster management: yarn and standalone. Yarn
is Hadoop's cluster manager which can be used with Hadoop map reduce and spark.
Whereas a standalone interface has special spark process which takes care of starting the

nodes that are failing.

/ Worker Node \

Python

Spark Executor

«——— 4 Python
Java Virtual Machine

Python

HDFS

o /

Figure 5: Worker Node Data Flow

3. Problem Definition

Data quality play an important role for entity matching. Big data is massive
representation of data and to find matching entities is very crucial and challenging task.
This project mainly implements the concept of pair wise redundancy free comparison
using Apache Spark. The basic approach for pair-wise similarity computation takes
Cartesian product of the entity pairs. Cartesian product gives a complexity of O(n?) which
is very high in terms of big data. This can be improvised by using Map Reduce concept to
parallelize the computation which in turn speeds up the process but the quadratic
complexity seems to be almost same even after using Map Reduce. So the paper referred
modifies the algorithm for reduce phase. Following figure shows how the basic map

reduce works.

Input HDFS

| Output HDFS
split 0 o map ,,D;\, b e e R
e T A \ ‘ > *| Reduce ‘:] et HDFS
[e e e A e e e R : N i Replication
split 1 » map :[:I < .- :{T\}:__,_._:_',_:.V_:_._ R LR EEEEEr

B o o S S S L o) /// : A > » Reduce =vl:|-:—~> HDFS
: :// : ‘. ! Replication

split 2 » map j—[1

Figure 6: Map Reduce Data Flow(1)

Map Reduce alone sometimes is not so efficient when compared to Spark.
Following are few differences between Map Reduce and Spark and we can clearly see
that Spark out performs extraordinarily when compared to Map Reduce.

Criteria Map Reduce Spark

Conciseness Plain MR has a lot of boiler plate Almost no boilerplate
Performance High latency very fast compared to MR
Testability Possible via libraries, but non trivial Very much easy

Iterative processing Non trivial straight forward

Exploration of data Not possible easily Spark shell allows quick and easy

data exploration

SQL like interface Via Hive Build in as SparkSQL

Fault Tolerance Inheranlty able to handle fault tolerance via Exploits immutability of RDD to
persisting the results of each of phases enable fault tolerance

Eco system lots of tools available but integration is not Unifies lot of interfaces like SQL,
quite seamless, requiring lot of effort for stream processing etc into single
their seamless integration abstraction of RDD

In memory not possible possible

computations

Figure 7: Difference between Map Reduce and Spark

3.1 Challenges
Matching entities while dealing with big data can be a tedious process and the

quality of the data place a major role. When the data is so enormous in size it is obvious
that it can be heterogeneous and there lies the challenging part. Heterogeneous data is
unclean, unstructured and incomplete. With the growing data, applications and
relationship between various sources of data, the need for matching is also growing. With
this growth matching names with names is not as important as matching Amazon profiles
with browsing history on Google and friends profile on Facebook. Larger datasets need

efficient parallel techniques to process them.

3.2 Signature Function

The main problem in entity matching is that a particular entity pair comparison
takes place many times, this leads to redundant pair comparison which reduces the
efficiency of entity matching. The solution for elimination of redundant pair comparisons
can be achieved by efficiently integrating with a parallel MR implementation.
Redundant comparison takes place when there are more than one common signatures

between two entities. The basic map reduce can be improved by introducing the concept

of clustering. The search space to match particular entity is reduced by grouping them
with the entities of similar entities, and this group forms a cluster. Every cluster has the
entities which are similar and the comparison takes place for pairs of entities present

within the cluster.

For every entity in a group of entities O, a sub group of attributes s are generated
using the following signature function

c:0- P (S)

This function takes group of entities and the attributes S as input and generate
subset of attributes s < S for each entity 0 € O. The pair-wise similarity algorithm

generates the similarity for all entity pairs that have minimum one common attribute.

{(01, 02)|(01,02) € O X O A o01# 02 A 6(01) N 6(02) # O}

(5 o\

gl
o

Figure 8: Example of Pair-wise similarity computation

In real time A, B, C.. can represents the product name, person name etc. 1, 2, 3..

can be price of a product, manufacturer or substring of title or category etc.

Consider A, B, C, D, E, F, G, H, | are few entities having 1, 2, 3, 4, 5 as keys or
signatures. If these entities are not clustered there is a high possibility that these entities
can be compared more than once. So the blocking algorithm is first performed to reduce
the search space for matching. The figure shown above looks like it is the result of two
pass blocking. Because of the presence of the more number of common signatures the
entity pairs get compared once for each common signature. Generating signatures for the

entities is part of the blocking phase. Blocking can be done based on one pass, or two

pass or multi pass. The result obtained with multi pass is considered to be more accurate
to find duplicates than single pass, because the entities which are not grouped in the first
block gets grouped properly in the subsequent block phase. As the number of passes
increases the size of the cluster gets smaller. The drawback of smaller cluster size is the
similar entities pairs are missed. These missed entity pairs will never get compared with
each other. The concept of blocking is beyond the scope of this project. Deciding on how
many keys to generate and what keys to generate for entities is a difficult task, which
depends on number of entities per cluster. For example, if the employee entities are
clustered based on the address, there is a possibility that the same employees might be

placed in different clusters if the address is slightly varying or missing.

After performing the two pass blocking on Figure 8 the resultant signature

function generates signatures as shown in Figure 8

| Object | Signature |
{1, 4
{1, 4)
{1,5)
{1,5)
2,4
{2,5)
{2, 5}
3,4}
{3,4)

— IGOMmMONmP

Figure 9: Signatures for two pass blocking

The first blocking phase generates three clusters with keys 1, 2, 3 and the second
blocking phase generates clusters with 4, 5 keys. The map phase generates key value
pairs for each entity. The output of the map phase is fed to the reducers through the
partitioners. The partitioner performs some function over the keys, in this particular
example the function is finding the modulo. The key value is divided by the number of
keys and as per the result the partitioner send the key value pairs to the reducers. The
signatures 1, 3, 5 are passed to one reducer and the signatures with 2 and 4 are passed to

the other reducer. The output of the map phase is shown below.

Map: Signatures

Key Value|
: I
4 A
L I
5 4 B
Cd>1 C
= S
= o}
5 D
2 E
4 E
[Key|Value
2 F
B 5 -F
F 2 G
G ®5 G
- 3 H
| 4 H
=y |
4 |

Figure 10: Output of Map phase

Pair-wise comparison takes place in reducer for each key. Due to the presence of
the common signatures the entities are compared redundantly in the reduce phase. The
entities that are compared redundantly are underlined in the figure shown below. This is
due to the presence of overlapping cluster. So there is a need to change the processing of
the reduce phase which can avoid redundant comparisons. The output of the reduce phase

before changing the algorithm is shown in Figure 10.

10

Reduce: Pair Comparisons

Ky valug]
A e
i {B:’ A-B, A-C,
1 0 A-D, B-C,
B-D, C-D
3 H = =
: — CDCF
5 D C-G, D-F,
5 r D-G, F-G
5 G
R N
e E-F, E-G,
2 . kG
2 G
A-B, A-E,
i : :> A-H, A-l,
2 £ B-E, B-H,
4 H B-l, E-H,
4 | S

Figure 11: Output of the reduce phase

The main reason for the redundant comparison to take place is that one reducer is
not aware of what entity pairs other reducers are processing. So to make the reducers
smarter we need to implement a small function to calculate the minimum value among

the list of common keys for any two entity pairs.

I € min(o(o1) N 6(02))

There can be various other approaches to solve this problem instead of just
finding the smallest key among the list of common keys. Now the reducer that handles
the signature | is responsible for comparing the entities oland 02. No other reducer will
compare these two entities again. How does this work? The reducer receives entities 0l
and 02 as input and the partitioner. The reducers checks if there is any signature less than
the current signature produced by the partitioner. If there exists a signature less than that
then the reducer will not compare these two entities as it assumes that this pair is taken
care by the other reducer. If there is no signature less than the one produced by the
partitioner then the reducer takes that entity pair and compares.

11

3.3 Map Function
The output of the map function is modified from just generating the key value
pairs to generating the subgroup of keys smaller than the key received. Initially the map
outputted the list of keys for a particular entity i.e.,
6(0) = {s1, S2, S3,--Sn}
Let 6:i(0) =s € 6(0) | S <SS
After improvisation the map function now emits

(si, [0, cs(0)]) forevery 1<i<n

3.4 Reducer Function
Reducer takes the above input and for present key k and the entity pair similar to
the one shown above performs an extra step of checking if the two entities have disjoint
key set. For a given pair ([01, 6k(01)], [02, 6k(02)]) the reducer checks if
6x(01) N oy(02) =D

If they are disjoint the reducer makes the current key as the least common key and
the two entities 01 and 02 are compared. If these two sets are not mutually exclusive then
it means that there is/are smaller keys k' is present for that pair of entity (01, 02). So in this

scenario the key k is not considered.

12

Map: Signatures Reduce: Pair Comparisons

Key| Value | [Key| Value |

m 4 AW 18,0 Pairs M pairs

A 1 B,& 1 C,@ A-B, A-C,

5 4 B,{1} 1 D,0 A-D, B-C,

= =1 C, @& B> 3 H,& =) B-D,CD

5 5 C,{1} = 3 1,9 H-I -

: 1 D,0 i 5 C,{1} CFCG, CD: {1}n{1}
5 0,{1} |B&| 5 0.1 D-ED-G FG: {2]n{2]
2 E,0 & 5 F,{2}
4 E,{2) z 5 G,{2}
Key| Value %D [Key| Value |
2 F,@ S 2 E,@ [Pairs M Pairs

M 5 F,{2 £ 2 F, @ E-F, E-G, =

F 2 6,0 & 2 G, O F-G

G =5 G,{2} E > 4 A,{1} =) AEAH AB:{1}n{1}

H 3 H,@ 4 B,{1} A-LB-E, H-1: {3] {3

[4 H,{3} 4 E,{2} B-H, B-l,
3 1,@ 4 H,{3} E-H, E-I,
4 1,{3} 4 1,{3}

Figure 12: Map Reduce phase after improvising the algorithm

Now the map phase emits key value pairs along with the keys smaller than the
current key. For example, consider the entity A which has two common keys 1,4 where
o(A)={1, 4}. The key value pair for the first time would be (1, [A, @]), where @
represents that there are no keys smaller than the current key 1. Now when the key 4 is
considered, the map function gives (4, [A, {1} 1), which means that there is a key smaller
than the current key 4. As o(B)={1, 4} the pair A-B is compared with the key 1. Later
when key 4 is considered then the 64(A)= (4, [A, {1}]) has a subset of the key {1}.

The initial (k, v) i.e., (1, [A, @]) which is passed to the first reducer is compared
against other entities who has common signature 1. In this case it is B, C, D. So the pairs
A-B, A-C, A-D, B-C, B-D, C-D are compared. Now the entities that share the signature 4
are sent to other reducer. As o(E)={2, 4}, o(H)={3, 4}, o(I)={3, 4} and now the pair A-B
is ignored. In total, this process generated 26 pairs before the improvement of the
algorithm. After the improvements made to the reducer it eliminated 4 pairs which is

15% less than the actual. So there is performance improvement.

13

It is implemented in such a way that the entities with same keys fall under the
same window and this window moves over rows of same obj and sorted by attributes.
This approach uses two map jobs, one to emit key value pair for each key and another
map job is used to group together the pairs having the same key.

3.5 Real Time Example
Consider that a dataset has following records

1 pari sjsu tirumali
2 pari INTU tiru

3 pari 8 T

4 pari CA Gandhi
5 pari CA T.G

6 pari s) T.G

7 pari SIS T

8 pari USA tirumali
9 pari India tirumali
10 pari Earth tiru

11 pari pari pari

12 tiru pari tiru

Figure 13: Sample Table

And consider that there is one pass blocking and the map phase generates following key

value pairs

pari, 1 pari, 5 pari, 9
sjsu, 1 CA, 5 India, 9
tirumali, 1 T1.G,5 tirumali, 9
pari, 2 pari, 6 pari, 10
INTU, 2 Sl 6 Earth, 10
tiru, 2 T1.G,6 tiru, 10
pari, 3 pari, 7 pari, 11
51,3 SIS, 7 pari, 11
T.3 T7 pari, 11
pari, 4 pari, 8 tiru, 12
CA 4 USA, 8 pari, 12
Gandhi, 4 tirumali, 8 tiru, 12

Figure 14: Key value pairs generated by Map

14

pari, 1 55U,1 ‘ |Gandhi.tll

pari, 2 tirumali, 1 CA.4
pari, 3 tirumali, 8 €a,5
pari, 4 tirurmnali, 9
TG, 5
pari, 5
INTU, 2 TG.6
pari, 6
_ tiru, 2 515, 7
pari, 7
_ tiru, 10 USA. &
pari, 8 I
tiru, 12 i
pari, 9 "
) firu, 12
pari, 10 earth, 10
pari, 11 8,3
pari, 11 5.6
pari, 11 T.3
pari, 12 T7

Figure 15: Grouping similar entities

pari,<1,2,3456,7,89101112>
515U <1=
tirumali <1,8,9=
INTU <22
tiru=<2,1012>
51=3, b=
T=37>

CA <45
Gandhi <4

TG <56>

515 =7=

USA <B=

India <9=

earth<10=

Figure 16: Sorting the keys associated with each entity

15

The reducer creates following entity pairs

1-2,1-3,1-4, 1-5,1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 2-3, 2-4, 2-5, 2-6,
2-7,2-8,2-9,2-10,2-11,2-12, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, 3-11, 3-
12,4-1,4-5,4-6,4-7, 4-8,4-9,4-10,4-11,4-12, 5-6, 5-7, 5-8, 5-9, 5-10,
5-11,5-12,6-7,6-8, 6-9, 6-10, 6-11, 6-12, 7-8,7-9, 7-10, 7-11, 7-12, 8-9,
8-10,8-11,8-12,9-10,9-11,9-12,10-11,10-12,11-12,1-8,1-9,8-9, 8-
10,2-12,10-12,3-6,3-7,4-5,5-6

Figure 17: Entity pairs
Total number of pairs=76
Redundant pairs= 10
Efficiency improvement = (10/76)*100 = 13.15%

16

4. Implementation Details

This section describes about the algorithm implemented as part of baseline, the
dataset chosen for experimentation and other tools and technologies used throughout the
implementation of this project are explained.

The problem definition section has clearly described about the solution for how to
avoid the redundant comparison. In this section I will describe about how I used Sparks

libraries to solve this problem.

4.1 Baseline Implementation 1

In the paper referred the author talks about using the index of the string valued
key instead of using the string itself. So as a part of the initial implementation, I
implemented the algorithm using this technique. I created index called ID which is a
unique value for every record present in the dataset and created a indexed file and the
data is saved in the following format. For this implementation | used Medical Health
contacts dataset and it had some 38 columns and most of them has null values or most of
the columns had the same values for almost all the records. Using such data will not be of
much help for this implementation. So | chose only few columns which are mostly not
null. 1 chose Agency name, phone number, toll free number, email and web address

columns.
[ID,JAGENCY, LOCALPHONE, TOLLFREEPHONE, EMAIL, WEB]]

The indexed file is generated as shown in the following figure and each spark partition
can handle an RDD of 2GB. With this extraordinary feature of spark, we can give large

amounts of data to process and spark does it very easily.

17

part-00000 (~/Desktop/indexedFile) - gedit

part0000 % _] part:00001 X | | part00000 %
*, [u'1-806-MEDICARE', u'', u'8006334227', u'', u''])
[u'Accreditation Assoclation for Ambulatory Health Care’, u'8478536060', u'', u'info@aaahc.org', u'www.aaahc.org'])
[u'Agency for Healthcare Research and Quality (AHRQ)', u'', u'B603589295', u'ahrqpubsgahra.gov', u'www.ahrq.gov'])

an Assoctation for Accreditation of Ambulatory Surgtcal Facilitles', u'8477751970', u'8885455222', u'infogaaaasf.org or
» U'ww . AAAASF.0rg"])

: Ass u'8136368106', u' 860749225
[u'A Fican Board of Medical Spectalties', u'3124362600', u'8662752267',
[u'A an Cancer Society', u'', u'8682272345', u'', u'www.cancer.org'])

u'www.aakp.org'])
‘www.abms.org'])

A

[u'Anerican Heart Assoctation', u'2145702000', u'8002428721', u'inqueriesgheart.org’, u'http://waw.americanheart.org/'])
[u'American Hospital Assoclation', u'3124223800', u'8004244301', u'', u'www.aha.org'])
"American Kidney Fund', u'3018813052', u'86063882 ine@akfinc.org’, u'www.kidneyfund.org'])
American Self-Help Clearinghouse’, u'9739891122" u‘njr.nr@cynemex.nex‘, u'www. selfhelpgroups.org’])
‘Benefits Coordination & Recovery Center (BCRC)' 27", u"", u'www.cob.cms.hhs.gov'])
‘Noridian Administrative Services', u'', u'8006334227°, u'www . nor diannedicare. con'])
XIMUS Center for Health Dispute Resolution (CHOR)', u'S854255210', u'', u'', u'www.medicareappeal.com’
‘Denall KidCare', u'9872696529', u'8883188890', u'Denall.Kid.Care@alaska.gov', u'http://dhss.alaska guv/dh()/Pages/DcnaltK\dCarL/
px'1)
children's Health Insurance Program”, u", u'8775437669', u ‘, u'www. insurekidsnow.gov'])
'"cMs', u' Seattle Reglonal Office”', u u' Www. Cns - gov
College of American Pathologists’, u aus;zmoc u suozz;ww , u'mediagcap.org', u'www.cap.org'])
‘Department of Defense’, u'7035713343', u'', u'', u'wW. defense.gov'])
‘Department of Veterans Affatrs', u'8008271600
, [u'Noridian Administrative Services , u'8006334227", u'', u'www.noridiannedicare.con/dne’])
'0C longtern care Ombudsman program', u'2624342120', u'8066771116', u'lce@aarp.org’, u'www.aarp.org/LCE'])
. [u'Northwest Renal Network - Network 16', u'2069230714', u'86802621514', u'shechinson@nwi6.esrd.net’, u'www.nwrenalnetwork.org'])
'DHSS of Alaska - Division of Healthcare Services & Health Facilities Licensing and Certification Uni', u'9673342430', u'8883879387',
www.hss.state.ak.us'])
'Federal Black Lung Program’, u'', u'8606387672', u'', u'http://owcp.dol.acs-inc.con'])
L tive Services', u'', u'8606334227', u'', u'www.noridianmedicare.con'])
Division of Healthcare Services & Health Facilities Licensing and Certification Uni', u'9073342483', u'8883879387',
v/dhcs/Pages/hflc/default.aspx'])
ent of Housing and Urban Development (HUD)', u'2027081112', u'8005694267', u'', u'w.hud.gov'])
enue Service', u'', u'8008291848', u'', u'www.irs.gov'])
t Commission on Accreditation of Healthcare Organizations (JCAHO)', u'6307925800', u'', u'', u'www.jolntcommission.org'])
alth and Human Services', u'9672691060', u'8004786406', u'', u'http://www.hss.state.ak.us/dpa/features/org/

, U'www.va.gov'])

NG YE DB ID ﬂ

“PlainText » TebWidth: 6+ Ini2,col73 | INS
Figure 18: Snapshot of indexed file

When there are multiple values in a row, Spark considers the first value as the key
and all other values as values. As the first value(key) in the indexed file is ID, map
function is used to swap the value with the key and make value as key. This was just an
idea given by the author, implemented it to test for the match entities within a file and it

worked. Following line of code is used to get the key value pairs as we needed

agency = indexedFile.mapValues (lambda x: x[0]).filter (lambda (u,v):
v!="") .map(lambda (x,vy): (y, X))

localPhone = indexedFile.mapValues (lambda x: x[1]).filter (lambda
(u,v): v!="") . map(lambda (x,vy): (y, X))

tfPhone = indexedFile.mapValues (lambda x: x[2]).filter (lambda (u,v):
v!="'"') .map(lambda (x,vy): (y, X))

email = indexedFile.mapValues (lambda x: x[3]).filter (lambda (u,v):
v!=""'") .map(lambda (x,vy): (y, X))

web = indexedFile.mapValues (lambda x: x[4]).filter (lambda (u,vVv):
v!="") .map(lambda (x,vy): (y, X))

Figure 19: Code snippet to generate key value pairs from map

18

Same filter operation is performed on all other keys such as LOCALPHONE,
EMAIL, TOLLFREEPHONE, WEB.

And | generated the file as shown in the following table

[KEY, VALUE] -

[AGENCY, Row_ID]
[LOCALPHONE. Row_ID]
[TOLLFREEPHONE, Row_ID]
[EMAIL. Row_ID]

[WEB. Row ID]

Figure 20: Snapshot of indexed file contents

Later entities having the same keys are grouped together and a list is generated to
group entities having the same key

Using the groupbykey operation provided by spark on [AGENCY, Row_ID] and
other attributes, | created a new dataset consisting of [AGENCY, Iterable<Row_ID>] and
other attributes with their respective iterable value. After grouping all the attributes I

sorted their values in ascending order using the following line of code.

matched agencies = agency.groupByKey () .mapValues (lambda x:

sorted(list (x)))

[KEY, SORTEDSIGNATURES] >
[AGENCY, SORTED(LIST<ID=>}]
[LOCALPHONE, SORTED(LIST<ID=}]
[TOLLFREEPHONE, SORTED(LIST<ID>)]
[EMAIL, SORTED(LIST<ID>}]

[WEB, SORTED(LIST<ID>}]

Figure 21: Snapshot of Entity, SortedSignatures

Generating entity pairs: To generate pairs, first element is taken and paired with rest of
the elements until there's no element left in list. Following function is used to generate
pair of IDs out of list of IDs

19

def pair(list):
out = []
while (len(list) > 0):
popped = list.pop()
for x in list:
out.append (str (popped) +"-"+str (x))
return out

Figure 22: Code snippet for generating entity pairs
Using above defined pair function to work on each sorted list of IDs. flatMapValues()
generates the pairs of IDs out of list of IDs, and rather than returning list of pairs, puts

each pair in new line.

flat matched agencies = matched agencies.flatMapValues (lambda x:
pair (x))

[Key, PairOfEntities] v

[AGENCY, ID_Pair]

[LOCALPHONE, ID_Pair]

[TOLLFREEPHONE, ID_Pair]

[EMAIL, ID_Pair]
[WEB, IO Pair]

Figure 23: Snapshot of Key value pairs in the form of key and pairs of entities

This was a trial implementation of first baseline. The output of it is shown in the

following figure.

part-00000 (~/Desktop/sparkCodePart1_out) - gedit
B open - B sve & W o ¥

part00000 X || part-00001 % | part-00000 %
(u'Department of Insurance of Colorado’, '367-366')

(u'Intermountain ESRD Network - Network 15', '341-1839')
Intermountain ESRD Network - Network 15', '341-1891')
‘Intermountain ESRD Network - Network 15', '341-232')
‘Intermountain ESRD Network - Network 15

Intermountain ESRD Network Network
‘Intermountain ESRD Network - Network
"Intermountain ESRD Network - Network
Intermountain ESRD Network Network » '2891-232')
'Intermountaln ESRD Network - Network 15', '2891-2525')
‘Intermountain ESRD Network - Network 15', '2525-1839')
'Intermountain ESRD Network - Network , '2525-1891')
Intermountain ESRD Network - Network , '2525-232')
‘Intermountain ESRD Network - Network '232-1839"')
‘Intermountain ESRD Network Network 15", '232-1891')
‘Intermountain ESRD Network - Network 15', '1891-1839')

*, '2891-1839')
, '2891-1891')

*American Self-Help Clearingh 956-1003')
*American Self-Help Clearingh 956-1656"')
‘American Self-Help Clearingh 956-11')

"American Self-Help Clearinghous 956-1107")
American Self-Help Clearinghouse’, '956-1161')

Help Clearinghouse', '956-120')
‘American Self- se', '950-1212')
American Self 950-1266")
‘American Self-Help Clearinghouse', '956-1318')
*American Self-Help Clearinghouse', '950-1371')
American Self-Help Clearinghouse', '950-1424')
‘American Self-Help Clearinghouse', '956-1472')
‘Ameriqgn Self-Help Clearinghouse', '950-1516')

‘American Self

erid8n Self-Help Clearinghouse', '950-1565')
erican Self-Help Clearinghouse', '950-1618')
erican Self-Help Clearinghouse', '950-1671')
American Self-Help Clearinghouse', '950-171')
American Self-Help Clearinghous: 950-1723")
(u'American Self-Help Clearinghous 950-1775')
(u'American self-Help Clearinghous 950-1827")

PlainText » TabWidth: 8 + Ln 12, Col 56 INS

Figure 24: Generation of Entity Pairs

20

4.2 Baseline Implementation 2
When implementing the algorithm on big data, it is very important to check the
quality of the data. In the dataset | chose there were many data quality issues like

New line characters: When | ran the code | was not aware of the new line characters
present in few records. Debugging and figuring out what the problem was very time
consuming. There were very few attributes which had new line character, so to retain the

consistency these records were deleted.

Null values: As the dataset is very large it is expected to have null values. There were
many fields in the dataset which had 90% of the records as nulls. Considering such fields
would just create lag in the execution time with no positive effect on the result. So these

fields were removed.

Baseline implementation 2 is more Spark oriented. The main goal of this paper is
to implement efficient pair-wise similarity computation using Spark. To implement the
algorithm suggested in the paper I used the concept of Data Frames and Windows from
the Spark libraries.

Input: Medical Health dataset with 996,000 records.

Output: Output generated two files named eliminated and matched. Matched file has all
the pair of entities that matched only once. Eliminated file has all the pairs of records that

were supposed to be matched redundantly.

Made use of following pyspark libraries

pyspark.sgl.Window: A distributed collection of data grouped into named columns.
pyspark.sgl.Row: A row of data in a DataFrame.

pyspark.sgl.HiveContext: Main entry point for accessing data stored in Apache Hive

4.2.1 Hive Context: It is a superset of SQL Context as it provides all the functionalities of
SQL and Hive as well.

21

4.2.2 Data Frames: Data frames in spark provide the flexibility of collecting the data from
various data sources such as resilient distributed dataset or external files or Hive tables,
etc. In simple terms it is like creating a table with named attributes. To create a data

frame we first created the schema, column names and their datatypes.
e Generate a new RDD out of list/ tuple of already existing RDDs
aoPair = inRDD.flatMap(lambda line: attr_key(line.split(*'\t"")))

e Define the schema for the data frame. Spark has become so advanced that if the
datatype of the column is not mentioned then it will try to infer from the data what
type it can be by going through some amount of the data which is called sampling

ration[11].

schema = StructType([StructField(*'attr", StringType(), True), StructField(*'obj",
StringType(), True)])

class pyspark.sgl.types. StructFie 1d(name, dataType, nullable=True, metadata=Non e)

Afield in StructType

Parameters: e name — string. name of the field
» dataType — DataType Of the field
« nullable — boolean, whether the field can be null (None) or not
« metadata — a dict from string to simple type that can be tolnternald to JSON automatically

e Finally using the createDataFrame function apply the above schema to the RDD

aoDF = sglCtx.createDataFrame(aoPair, schema)

22

1 a
2 a
3 a
1 b
2 b
3 b
1 o
3 o

Figure 25: List of attributes and objects

4.2.3 Window Concept in Spark

Once the data frame is created with the mentioned schema, we need to perform
operations on this data frame. | used the concept called Windows in Spark. Apache Spark
allow us to perform certain functionalities on group of rows. These group of rows is
known as window. By defining a window we can perform some operations on data
frames[11]. Spark SQL provides 3 kinds of aggregate functions on windows: Ranking,
Analytic and Aggregate functions. window object is in the package called pyspark.sgl, So

we need to import it using the following line of code

from pyspark.sgl import HiveContext, Row, Window

memorize = aoDF.select("attr", "obj", lag("attr",1, None).over(window).alias("prev"))

The lag method gets the previous records for the current record and the parameter
1 represents get it from the one previous row and the parameter None represents what to
do when there is no previous value. over(window) defines a windowing column and to
jumps over one window at a time. If the current window is for the obj "a" then it process
the window 'a" and then only jumps to the other window and process that. The alias
function returns a new data frame and in this case we are creating a new data frame called

"pl’eV",

23

1 a null
2 a 1
3 a 2
1 b null
2 b 1
3 b 2
1 C null
3 o 1

Figure 26: List of attributes, objects and previous values

Finally the data frame created looks like

DataFrame : [attr, obj, prev] — RDD : [(attr, (obj, prev))]

(u'a', None)
(u'a', 1)
(u'a', 2)

(u'b', None)
(u'b', 1)
(u'b', 2)

P W N P, W N e

(u'c’, None)
3 (u'c’, 1)

Figure 27: List of attributes and object, previous pairs

mappedRDD = memorize.map(lambda row: (row.attr, (row.obj, row.prev)))
groupedByAttr = mappedRDD.groupByKey().mapValues(list).cache()

[(1, [(ua', None), (u'b, None), (u'c', None)]), (2, [(ua’, 1), (u'b', 1)]), (3, [(u'a, 2), (u'b', 2),
(u'c’,)]

Later grouped it by attribute and collected the tuple (obj, prev) into the list

24

Implemented following algorithms by making use of the spark libraries

map (k.~unused, w.=o)
S « (g).distinct(); //calculate= the distinct keys
S.=zort(); //makes use of =orted signature list
328 « [] /f =maller signature list
foreach s, € 8§ do
output (k—. = =51, v.= (o, 88));
S35.append (=) ;

Figure 28: Algorithm for Map Phase

reduce (kep=2, 1li2t(vVesg)=list(cbject, S8))
buf « { }:
foreach (o1, 88i1) € list{ocbject, 83) do
foreach (oz, 885z) € buf do
if doCwverlap (S8i, S5z} then
compare (o1, oz);

bufelbuf U {{o1, 331)1};

Figure 29:Algorithm for Reduce Phase

doCverlap(S31, 55:z)
10;
J=0;
lie88:1.1length(); //object 1's =orted =ignature list
lze88z.1length(); //object 2's =orted =ignature list

while (1 < 1i) A (] < 1lz) do // find the signatures
which are common
2138581 .get (1);
22882 .get(]);
cope=sl.compareTo (=2); //compareTo returns 0 if
=2l and =2 are =zame.
if cmp = 0 then
return true;
elze if cmp < 0 then
i++;
el=e
J++;
return false;

Figure 30:Algorithm for Overlap

25

5. Performance Evaluation

I have performed the implementation on Spark cluster on virtual machines. This
set up had 3 nodes with one as master node and two others as slave nodes. Each node is
of 2GB RAM and installed with Ubuntu 14.04. Experimentation is done using Apache
Spark version 1.4 with 2.4 Hadoop distribution. The data frames concept in spark was
introduced in the version 1.3, so | had to use version 1.3 or beyond for this

implementation.

Tested the implementation in the Spark standalone cluster mode on Medical
Health dataset called Plaid which had 996000 records. Without the implementation of
this algorithm the simple Cartesian product have done matching in very naive, compare
one record with each other record present in the dataset. With this implementation we
have narrowed down the search space and reduced the comparisons 163,527. We get
119,369 records as matching and eliminated 44158 matches which reduced the number of

comparisons by 44158/163527 = 27% of the records are eliminated as redundant.

Execution time with and without redundant pairs

Number Execution time with redundant Execution time without

of records pairs(minutes) redundant pairs(minutes)
100k 34.1 31.7
300k 68.8 65
500k 166.6 105.4
700k 158 149.8
996k 225.8 213.6

Table 1: Execution time with and without redundant pairs

26

250

200

150

100

50

100k 300k 500k 700k

996k

M Execution time with
redundant pairs(mins)

= Execution time without
redundant pairs(mins)

Figure 31: Execution times comparison

5.1 Apache Spark Cluster Setup

Implementation is done in Virtual Machine mode where using VM Workstation

and created two virtual machines with Ubuntu version 1.4 installed. Configured these
VMs with 2 GB RAM, 20GB hard disk and quad core processor.

=1

File Edit View VM Tabs Help | + |

Library

x

| Q, Type here to search

M |

= [H My Computer
EI UbuntuPari
1 UbuntuWorker
71 Shared VMs

{7} Home x]

Figure 32: Screenshot of two VMs in VMWare WorkStation

Install Java on the VM and update the JAVA_HOME in environmental variables

JAVA HOME=/usr/lib/jvm/java-6-oracle/

27

pari@ubuntu:~5 sudo nano fetc/environment
pari@ubuntu:~5 sudo nano fetc/environment
pari@ubuntu:~$ java -version

java version "1.6.0_45"

Java(TM) SE Runtime Environment (build 1.6.0_45-b86)

Java HotSpot(TM) 64-Bit Server VM (build 20.45-b81, mixed mode)
pari@ubuntu:~% source Jfetc/environment

pari@ubuntu:~$ echo S$JAVA_HOME

fusr/1lib/jvm/java-6-oracle/

pari@ubuntu:~5§

Figure 33: Screenshot showing Java version on VM

Download debian version of Scala if you are using Ubuntu

scala-lang.org
equires the Java runtime version 1.6 o [ater, which can be downloaded

Other resources

You can find the installer down nks for other operating systems, as well as
imentation and source code archives for Scala

Archive system size
Mac 0S X, Unix, Cygwin 2855M
Windows (msi installe 60.00M

Windows 28.60M

1 2.10.4. Debian 24.83M

RPM package 24.83M
APIdocs 3.65M
APIdocs 32.46M
sources

Scala Tool Support (tg2) 25K

Scala Tool Support (zip) 46K

Figure 34: Screenshot for Scala download
and install it from the software center. | installed 2.10.4 version

pari@ubuntu:~$ scala -version
Scala code runner version 2.10.4 -- Copyright 26082-20613, LAMP/EPFL

par i@ubuntu:~$% I

Figure 35: Screenshot showing Scala version on VM

Clone the master node to get the virtual machine with all the softwares installed till now.
With few modification we set the second virtual machine as Worker node.

28

Worksaton ~ | >~ | 0 | D O O | [0l =d H & | (5

Library

=

| Q, Type here to search

-

= @ My Computer
i
(F1 UbuntuWorker
7 Shared VMs

{o} Home | [5] UbuntuPari x] [T 1)

ﬁ UbuntuPari

P Power on this virtual machine
<31 Edit virtual machine settings

- Devices
0 Memory 2GB
[d Processors 4
=i Hard Disk (5CS[) 20 GB
(- CD/DVD (SATA] Auto detect
T Network Adapter NAT
USB Controller Present
QD Sound Card Auto detect
@ Printer Present
Display Auto detect

* Description

Type here to enter a description of this

virtual machine,

- Virtuz

Hardw.

DA|

Figure 36: Screenshot of Master Node

kastation'| ’ - |

| O

O|0=o s E

Library

x

| Q. Type here to search

T |

= [My Computer
(51 UbuntuPari

§1] UbuntuWorker

71 Shared VMs

[‘@Home xHﬁjwmtpan x]@ux] L

ﬁ UbuntuWorker

P> Power on this virtual machine
'QE_"IEditvirtuaI machine settings

~ Devices
0 Memory 2GB
[d Processors 4
[\ Hard Disk (SCSI) 20 GB
() CD/DVD (SATA) Auto detect

ﬁl Metwork Adapter MNAT

USBE Controller Present
@ﬂ Sound Card Auto detect
@ Printer Present
Display Auto detect

~ Description

Type here to enter a description of this

wvirtual machine,

- Virtuz

Figure 37: Screenshot of Worker Node

29

Once both machines are ready, install ssh on worker node to give access to the master

node to access worker.

parif@ubuntu:~% sudo apt-get install openssh-server
[sudo] password for pari:
Reading package lists... Done

Building dependency tree
Reading state information... Done
The following extra packages will be installed:

Figure 38: Screenshot for installing ssh

Later RSA key needs to be generated on the master node to obtain remote access.
Connect the master node with the worker node. Copy the public key generated earlier to

each worker node. This gives master to access worker node with SSH

pari@ubuntu:~$ ssh-copy-id -i ~/.sshfid_rsa.pub pari@192.168.77.129

The authenticity of host '192.168.77.129 (192.168.77.129)' can't be established.
ECDSA key fingerprint is a@:09:ef:d3:f4:4e:10:38:84:f6:e1:34:1a:9d:72:84.

Are you sure you want to continue connecting (yes/no)? yes

Jusr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter
out any that are already installed

Jusr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are promp
ed now it is to install the new keys

pari@192.168.77.129"'s password:

Number of key(s) added: 1

Now try logging into the machine, with: Mssh 'pari@l92.168.77.129'§

and check to make sure that only the key(s) you wanted were added.

pari@ubuntu:~S ssh 'pari@192.168.77.129'
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 4.2.0-27-generic x86_64)

* Documentation: https://help.ubuntu.com/

88 packages can be updated.

Figure 39: Screenshot showing Master connection

Create a new VM and repeat the same process and take screenshots

Download and install required version of spark on both the nodes.

30

Download Apache Spark™
Our latest version is Spark 1.6.1, released on March 9, 2016 (release notes) (git tag)

1. Choose a Spark release: |1.4.0 (Jun 11 2015)

2. Choose a package type: | Pre-built for Hadoop 2.6 and later v
3. Choose a download type: | Direct Download v
4. Download Spark: spark-1.4_0-bin-hadoop? 6.tgz
5. Verify this release using the 1.4.0 signatures and checksums
Note: Scala 2.11 users should download the Spark source package and build with Scala 2.11 support.

Figure 40: Spark version

Until now these two nodes are the same as we have not given master or worker
specifications to any node. The main settings should be made in the conf file of the spark

package. conf file consists of following files

|| docker.properties.ternplate

|| fairscheduler.xml.template

|| legdj.properties.template

|| metrics.properties.template
|| slaves.template

|| spark-defaults.conf.template
| || spark-env.sh.termplate

Figure 41: Files in conf folder

Make a copy of slaves.template file and spark-env.sh.template file.

Rename "slaves.template(copy)" to "slaves" and "spark-env.sh.template(copy)" to "spark-

env.sh".

Add the IP address of the worker nodes in the slaves file.

31

File Edit Format WView Help

A Spark Worker will be started on each of the machines listed below.
#localhost
192.168.77.129

Figure 42: Updated Slaves file

Add the following lines in spark-env.sh file.

export SPARK_MASTER_IP=192.168.77.130

export SPARK_WORKER_CORES=1

export SPARK_WORKER_MEMORY=800m

export SPARK_WORKER_INSTANCES=2

31
32
33
34
35
36
S
38
2
40
41
42
43
44
45
46
47
43

4 Options for the daemons used in the standalone deploy mode

— SPARRK MRSTER IP, to bind the master to a different IP address or hgsthans

[export SPARK MASTER IP=192.168.77.130 |

- SPRRK MASTER FORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master

- SPARK MASTER OPTS, to set cgonfig properties only for the master (e.g. "-Dx=y")

- SPARK WORKER CORES, to set the number of cores to use on this machine

lexport SPARK WORKER CORES=1|

- SPARK WORKER MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
[Ezport SPERK WORKER MEMORY=800m|

- SPARK WORKER PORT / SPARK WORKER WEBUI PORT, to use non-default ports for the worker

- SPARK WORKER INSTRNCES, to set the number of worker processes per node

Export SPARK WORKER INSTANCES=2 |

- SPARK WORKER DIR, to set the working directory of worker processes

- SPRRK_WORKER_OPTS, to set gonfig properties only for the worker (e.g. "-Dz=y")

- SPRRK HISTORY OPTS, to set gonfig properties only for the history server (e.g. "-Dx=y")

- SPARK_SHUFFLE_OPTS, to set gonfig properties only for the external shuffle service (e.g. "-Dx=y")
#

#

— SPARK DREMON JAVA OPTS, to set gonfig properties for all daemons (e.g. "-Dx=y")
- SPARK PUBLIC_DNS, to set the public dns name of the master or workers

Figure 43: Updated spark-env.sh file

To test the installation, run

32

Jbin/spark-shell

scala:> sc.parallelize(1 to 1000).count();
(This should give the output as long=1000)
scala:>exit

[bin/run-example SparkPi

(This should give the output of calculated pi value)

5.2 Launching and testing the cluster
The shin folder has the files to start or stop a master or slave

To start the cluster we need to execute following command in the terminal
Jsbin/start-all.sh
and to stop

Jsbin/stop-all.sh

33

[MName

|| slaves.sh
| spark-config.sh
|| spark-daemon.sh

spark-daemons.sh

||_. start-all.sh

start-history-server.sh

L

| || start-master.sh

|| start-mesos-dispatcher.sh

|| start-shuffle-service.sh
|| start-slave.sh
|| start-slaves.sh

|| start-thriftserver.sh

|,_, stop-all.sh

|| stop-history-server.sh

| | stop-master.sh

|| stop-mesos-dispatcher.sh
|| stop-shuffle-service.sh
|| stop-slave.sh

|| stop-slaves.sh

|| stop-thriftserver.sh

Figure 44: Files in shin folder

34

6. Conclusion

This project implements pair-wise similarity computation without redundancy
using Apache Spark. The implementation is done successfully on large dataset consisting
of 996000 records. As Apache spark is a powerful big data processing engine which has
the concept of windows and data frames using which we tried improving this area of
entity matching has scope for more improvement. Improving the concept of redundant
comparison is a very rare study. This project can be further improvised by implementing
multiple blocking strategies. It can be implemented using Amazons cluster and try it for
more larger dataset. This algorithm with further research and slight modifications can

also be tested upon the datasets consisting of images, text and videos.

35

7. References

[1] Hanna Kopcke, Erhard Rahm, Frameworks for Entity Matching: A comparison.
Database Group, University of Leipzig, Postfach 100920, 04009 Leipzig, Germany,
Journal Data & Knowledge Engineering, volume 69, issue 2, pages 197-210, 2009
http://dl.acm.org/citation.cfm?id=1672420

[2] George Papadakis, Ekaterini loannou, Claudia Niederée, Themis Palpanas, and
Wolfgang Nejdl: Eliminating the Redundancy in Blocking-based Entity Resolution
Methods, In Proceedings of the 11th annual international ACM/IEEE joint conference
on Digital libraries, pages 85-94, 2011
http://dl.acm.org/citation.cfm?id=1998093&dI=ACM&collI=DL&CFID=619571752
&CFTOKEN=36873886

[3] Lars Kolb, Andreas Thor, Erhard Rahm: Don’t Match Twice: Redundancy-free
Similarity Computation with MapReduce, In Proceedings of the Second Workshop on
Data Analytics in the Cloud, pages 1-5, 2013
http://dl.acm.org/citation.cfm?id=2486768

[4] Jimmy Lin: Brute force and indexed approaches to pairwise document similarity
comparisons with MapReduce, Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, pages 155-162,
2009 http://dl.acm.org/citation.cfm?id=1571970

[5] GroR, A., Hartung, M., Kirsten, T., Kolb, L., Kopcke, H., & Rahm, E. Data
Partitioning for Parallel Entity Matching. CoRR, abs/1006.5309, 2010.

[6] Lars Kolb, Erhard Rahm: Parallel Entity Resolution with Dedoop, volume 13, issue 1,
pages 23-32, Journal Datenbank- Spektrum, 2013,
http://link.springer.com/article/10.1007/s13222-012-0110-x

[7] [Online, accessed on January 2015] Apache Spark programming guide:
http://spark.apache.org/docs/latest/programming-guide.html

[8] [Online, accessed on August 2015] Installing Apache spark on standalone cluster
mode: http://www.trongkhoanguyen.com/2014/11/how-to-install-apache-spark-121-
in.html

36

http://spark.apache.org/docs/latest/programming-guide.html

[9] [Online, accessed on August 2015] PySpark Guide:
https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals

[10] [Online, accessed on August 2015] pyspark.sgl.DataFrame and window Guide:
http://spark.apache.org/docs/latest/api/python/pyspark.sgl.ntml#pyspark.sql.DataFram

e

Image References:

1. [Online, accessed on February 2016] http://studybigdata.co/data-flow/
2. [Online, accessed on February 2016] http://docplayer.net/6327218-Hadoop-
mapreduce-and-spark-giorgio-pedrazzi-cineca-scai-school-of-data-analytics-and-

visualisation-milan-10-06-2015.html

37

	EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE SPARK
	Recommended Citation

	tmp.1464296488.pdf.Vj5OC

