
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2016

EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING

APACHE SPARK APACHE SPARK

Parineetha Gandhi Tirumali
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Tirumali, Parineetha Gandhi, "EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE SPARK"
(2016). Master's Projects. 479.
DOI: https://doi.org/10.31979/etd.sh8a-3gyv
https://scholarworks.sjsu.edu/etd_projects/479

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/479?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F479&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE

SPARK

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Parineetha Gandhi Tirumali

May 2016

ii

©2016

Parineetha Gandhi Tirumali

ALL RIGHTS RESERVED

iii

The Designated Thesis Committee Approves the Thesis Titled

EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE

SPARK

by

Parineetha Gandhi Tirumali

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2016

Dr. Tran Duc Thanh Department of Computer Science.

Dr. Thomas Austin Department of Computer Science.

Mr. Subrahmanyam Bolla Manager, VMWare.

iv

ABSTRACT

EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE

SPARK

by Parineetha Gandhi Tirumali

 Entity matching is the process of identifying different manifestations of the same

real world entity. These entities can be referred to as objects(string) or data instances.

These entities are in turn split over several databases or clusters based on the signatures

of the entities. When entity matching algorithms are performed on these databases or

clusters, there is a high possibility that a particular entity pair is compared more than

once. The number of comparison for any two entities depend on the number of common

signatures or keys they possess. This effects the performance of any entity matching

algorithm. This paper is the implementation of the algorithm written by Erhard Rahm et

al. for performing redundancy free pair-wise similarity computation using MapReduce.

As an improvisation to the existing implementation, this project aims to implement the

algorithm in Apache Spark in standalone mode for sample of data and in cluster mode for

large volume of data.

v

ACKNOWLEDGEMENTS

I would like to thank the following people and many others who aren't named here.

I would like to express my gratitude to Professor Tran for his continuous support and

guidance throughout the completion of this project.

I would like to thank my committee members Dr. Thomas Austin and Mr.

Subrahmanyam Bolla for their contribution.

I would like to thank my parents, family and my husband for their cooperation.

vi

Table of Contents

ABSTRACT ... iv

ACKNOWLEDGEMENTS .. v

List of Figures .. viii

List of Tables .. x

1. Introduction ... 1

2. Related Works ... 3

2.1 Terminology .. 3

2.1.1 Entity .. 3

2.1.2 Signature ... 3

2.1.3 Matching ... 3

2.2 Pair-wise similarity computation(PSC) ... 3

2.3 Spark Implementation of Map Reduce .. 3

3. Problem Definition.. 6

3.1 Challenges ... 7

3.2 Signature Function .. 7

3.3 Map Function .. 12

3.4 Reducer Function .. 12

3.5 Real Time Example ... 14

4. Implementation Details ... 17

4.1 Baseline Implementation 1 .. 17

4.2 Baseline Implementation 2 .. 21

4.2.1 Hive Context ... 21

4.2.2 Data Frames .. 22

vii

4.2.3 Window Concept in Spark .. 23

5. Performance Evaluation .. 26

5.1 Apache Spark Cluster Setup .. 27

5.2 Launching and testing the cluster .. 33

6. Conclusion .. 35

7. References ... 36

viii

List of Figures

Figure 1: Referencing same paper object multiple times.. 1

Figure 2: Multiple entries for the same product.. 1

Figure 3: Spark Execution Framework ... 4

Figure 4: Python Spark Data Flow Architecture... 5

Figure 5: Worker Node Data Flow ... 5

Figure 6: Map Reduce Data Flow(1) .. 6

Figure 7: Difference between Map Reduce and Spark ... 7

Figure 8: Example of Pair-wise similarity computation ... 8

Figure 9: Signatures for two pass blocking ... 9

Figure 10: Output of Map phase ... 10

Figure 11: Output of the reduce phase .. 11

Figure 12: Map Reduce phase after improvising the algorithm 13

Figure 13: Sample Table ... 14

Figure 14: Key value pairs generated by Map .. 14

Figure 15: Grouping similar entities ... 15

Figure 16: Sorting the keys associated with each entity ... 15

Figure 17: Entity pairs .. 16

Figure 18: Snapshot of indexed file .. 18

Figure 19: Code snippet to generate key value pairs from map 18

Figure 20: Snapshot of indexed file contents .. 19

Figure 21: Snapshot of Entity, SortedSignatures .. 19

Figure 22: Code snippet for generating entity pairs.. 20

Figure 23: Snapshot of Key value pairs in the form of key and pairs of entities.............. 20

Figure 24: Generation of Entity Pairs ... 20

Figure 25: List of attributes and objects ... 23

Figure 26: List of attributes, objects and previous values .. 24

Figure 27: List of attributes and object, previous pairs .. 24

Figure 28: Algorithm for Map Phase .. 25

ix

Figure 29:Algorithm for Reduce Phase .. 25

Figure 30:Algorithm for Overlap .. 25

Figure 31: Execution times comparison ... 27

Figure 32: Screenshot of two VMs in VMWare WorkStation ... 27

Figure 33: Screenshot showing Java version on VM.. 28

Figure 34: Screenshot for Scala download ... 28

Figure 35: Screenshot showing Scala version on VM .. 28

Figure 36: Screenshot of Master Node ... 29

Figure 37: Screenshot of Worker Node .. 29

Figure 38: Screenshot for installing ssh .. 30

Figure 39: Screenshot showing Master connection .. 30

Figure 40: Spark version ... 31

Figure 41: Files in conf folder .. 31

Figure 42: Updated Slaves file .. 32

Figure 43: Updated spark-env.sh file .. 32

Figure 44: Files in sbin folder ... 34

x

List of Tables

Table 1: Execution time with and without redundant pairs .. 26

1

1. Introduction

 Entity matching is the process of identifying different manifestations of the same

real world entity. An entity can be an object, data instance or a record. Examples of

manifestations and objects include: different ways of addressing(names, email addresses)

the same person; web pages with different descriptions of the same business; different

photos of the same object and so on. The matching is performed by implementing several

techniques like numerical matching approach, rule-based matching approach and

workflow-based matching approach[1].

Some of the examples of entity matching are

Example 1:

Figure 1: Referencing same paper object multiple times

Example 2:

Figure 2: Multiple entries for the same product

2

 To say if two objects or two products or two people are same or not we need to

compare them. To know if two entities are a match or non match, we need to first

compare the pairs of entities. Due to the different manifestation of an entity and presence

of multiple signatures or attributes for each entity, the entities will get compared more

than once. The other reason for a particular pair of entity to be compared more than once

is due to the presence of overlapping clusters. One of the processes for entity matching is

blocking, this blocking is performed based on a blocking key. There is a possibility that

an entity can have more than one blocking key, because of which the entities gets to share

more than one cluster. So the comparison takes place more than once, due to which the

efficiency deteriorates.

 What motivates for Entity matching is linking census records, public health, web

search, comparison shopping, portals integration from multiple sources, electronic

marketplaces, integrating genomic data in medical genetics, monitoring events in the sky

in the field of astrophysics.

 The remaining part of this paper is organized as: section 2 gives a brief on related

works done in pair wise similarity computation and its drawbacks. Section 3 describes

about the problem definition and section 4 explains how this problem has been addressed.

 Entities are distributed among the clusters or databases and when a comparison is

performed on these clusters or databases, there is a high chance that the entities are

compared redundantly. This reduces the efficiency of entity matching. One naive way of

increasing the efficiency in terms of speed is using map reduce. But this does not solve

the problem of redundant entity comparison completely. So this paper tries to solve the

problem of redundant entity comparison using the concept of data frames and windows in

Apache Spark.

 The terms Entity and Object, and the terms Signature and Keys are one and the

same throughout the paper.

3

2. Related Works

 Here after in this paper I use the following terminology to explain the concepts.

This chapter gives a brief about these terminologies

2.1 Terminology

2.1.1 Entity

 An entity in real world can be a person, product or any object which has attributes

associated to it. An entity can also be referred to as an object, string or a document.

Example: name, product.

2.1.2 Signature

 A signature is associated with the entity, it can be a token, blocking key or set of

terms. Example: category.substr(0,3) or manufacturer.

2.1.3 Matching

 It is a process of comparing two entities and saying if they are a match or non-

match.

Examples: Matching products for comparison shopping. Finding duplicate entries of

customers in enterprise database

2.2 Pair-wise similarity computation(PSC)

 Pair-wise similarity computations is an important concept in data related

applications like entity resolution, clustering based on entities, etc. Groups of entities

with same signature fall into one cluster and this is called clustering. During this process

there is a high chance that entities getting duplicated in case of common signatures. How

to deal with such scenario is the whole idea of implementing this paper.

2.3 Spark Implementation of Map Reduce

 Apache Spark is an open source project found by UC Berkeley AMP Labs, the

main motive of this project was to use in-memory, distributed data structure to speed up

data processing over Hadoop. Map reduce concept was the early trial of making the

4

process execution faster over distributed data structure, but introduction of spark made

programs way more flexible and faster compared to map reduce alone.

 In map reduce framework, few tasks are assigned to map and few to reducers.

But, spark has a generic executor(JVM) depending on a situation executes map stages

and reduces. JVM is core where all computation is executed, it is also an interface for

other ecosystems like Hadoop. Consider we need to process 1TB of data on AWS, and

the one worker node processes 1GB of data in map stage the result is stored as 1 RDD.

 Using Java or Scala will run the process directly on JVM. But for python the

execution framework is different, it has several python or pyspark processes, generally

one per task depending on the application. These processes are connected to JVM and

data is shipped from JVM to python for processing.

Figure 3: Spark Execution Framework

 There can be several such worker nodes but there should be only one manager to

provision or restart workers. This is called Cluster Manager. The object that connects and

holds the cluster in spark is spark context. Spark's driver program directs the operations

by initializing the spark context. Spark's actions and transformations are initialized in this

spark context and when the program gets executed the worker nodes kick starts and

process the data. Following figures show how the data flow when using python in Spark.

5

Figure 4: Python Spark Data Flow Architecture

 Spark supports two interfaces of cluster management: yarn and standalone. Yarn

is Hadoop's cluster manager which can be used with Hadoop map reduce and spark.

Whereas a standalone interface has special spark process which takes care of starting the

nodes that are failing.

Figure 5: Worker Node Data Flow

6

3. Problem Definition

 Data quality play an important role for entity matching. Big data is massive

representation of data and to find matching entities is very crucial and challenging task.

This project mainly implements the concept of pair wise redundancy free comparison

using Apache Spark. The basic approach for pair-wise similarity computation takes

Cartesian product of the entity pairs. Cartesian product gives a complexity of O(n
2
) which

is very high in terms of big data. This can be improvised by using Map Reduce concept to

parallelize the computation which in turn speeds up the process but the quadratic

complexity seems to be almost same even after using Map Reduce. So the paper referred

modifies the algorithm for reduce phase. Following figure shows how the basic map

reduce works.

Figure 6: Map Reduce Data Flow(1)

 Map Reduce alone sometimes is not so efficient when compared to Spark.

Following are few differences between Map Reduce and Spark and we can clearly see

that Spark out performs extraordinarily when compared to Map Reduce.

7

 Figure 7: Difference between Map Reduce and Spark

3.1 Challenges

 Matching entities while dealing with big data can be a tedious process and the

quality of the data place a major role. When the data is so enormous in size it is obvious

that it can be heterogeneous and there lies the challenging part. Heterogeneous data is

unclean, unstructured and incomplete. With the growing data, applications and

relationship between various sources of data, the need for matching is also growing. With

this growth matching names with names is not as important as matching Amazon profiles

with browsing history on Google and friends profile on Facebook. Larger datasets need

efficient parallel techniques to process them.

3.2 Signature Function

 The main problem in entity matching is that a particular entity pair comparison

takes place many times, this leads to redundant pair comparison which reduces the

efficiency of entity matching. The solution for elimination of redundant pair comparisons

can be achieved by efficiently integrating with a parallel MR implementation.

Redundant comparison takes place when there are more than one common signatures

between two entities. The basic map reduce can be improved by introducing the concept

8

of clustering. The search space to match particular entity is reduced by grouping them

with the entities of similar entities, and this group forms a cluster. Every cluster has the

entities which are similar and the comparison takes place for pairs of entities present

within the cluster.

 For every entity in a group of entities O, a sub group of attributes s are generated

using the following signature function

σ: O→ P (S)

 This function takes group of entities and the attributes S as input and generate

subset of attributes s ⊆ S for each entity o ∈ O. The pair-wise similarity algorithm

generates the similarity for all entity pairs that have minimum one common attribute.

{(o1, o2)|(o1,o2) ∈ O X O ᴧ o1≠ o2 ᴧ σ(o1) ∩ σ(o2) ≠ Ø}

Figure 8: Example of Pair-wise similarity computation

 In real time A, B, C.. can represents the product name, person name etc. 1, 2, 3..

can be price of a product, manufacturer or substring of title or category etc.

Consider A, B, C, D, E, F, G, H, I are few entities having 1, 2, 3, 4, 5 as keys or

signatures. If these entities are not clustered there is a high possibility that these entities

can be compared more than once. So the blocking algorithm is first performed to reduce

the search space for matching. The figure shown above looks like it is the result of two

pass blocking. Because of the presence of the more number of common signatures the

entity pairs get compared once for each common signature. Generating signatures for the

entities is part of the blocking phase. Blocking can be done based on one pass, or two

9

pass or multi pass. The result obtained with multi pass is considered to be more accurate

to find duplicates than single pass, because the entities which are not grouped in the first

block gets grouped properly in the subsequent block phase. As the number of passes

increases the size of the cluster gets smaller. The drawback of smaller cluster size is the

similar entities pairs are missed. These missed entity pairs will never get compared with

each other. The concept of blocking is beyond the scope of this project. Deciding on how

many keys to generate and what keys to generate for entities is a difficult task, which

depends on number of entities per cluster. For example, if the employee entities are

clustered based on the address, there is a possibility that the same employees might be

placed in different clusters if the address is slightly varying or missing.

 After performing the two pass blocking on Figure 8 the resultant signature

function generates signatures as shown in Figure 8

Figure 9: Signatures for two pass blocking

 The first blocking phase generates three clusters with keys 1, 2, 3 and the second

blocking phase generates clusters with 4, 5 keys. The map phase generates key value

pairs for each entity. The output of the map phase is fed to the reducers through the

partitioners. The partitioner performs some function over the keys, in this particular

example the function is finding the modulo. The key value is divided by the number of

keys and as per the result the partitioner send the key value pairs to the reducers. The

signatures 1, 3, 5 are passed to one reducer and the signatures with 2 and 4 are passed to

the other reducer. The output of the map phase is shown below.

10

Figure 10: Output of Map phase

 Pair-wise comparison takes place in reducer for each key. Due to the presence of

the common signatures the entities are compared redundantly in the reduce phase. The

entities that are compared redundantly are underlined in the figure shown below. This is

due to the presence of overlapping cluster. So there is a need to change the processing of

the reduce phase which can avoid redundant comparisons. The output of the reduce phase

before changing the algorithm is shown in Figure 10.

11

Figure 11: Output of the reduce phase

 The main reason for the redundant comparison to take place is that one reducer is

not aware of what entity pairs other reducers are processing. So to make the reducers

smarter we need to implement a small function to calculate the minimum value among

the list of common keys for any two entity pairs.

l ∈ min(σ(o1) ∩ σ(o2))

 There can be various other approaches to solve this problem instead of just

finding the smallest key among the list of common keys. Now the reducer that handles

the signature l is responsible for comparing the entities o1and o2. No other reducer will

compare these two entities again. How does this work? The reducer receives entities o1

and o2 as input and the partitioner. The reducers checks if there is any signature less than

the current signature produced by the partitioner. If there exists a signature less than that

then the reducer will not compare these two entities as it assumes that this pair is taken

care by the other reducer. If there is no signature less than the one produced by the

partitioner then the reducer takes that entity pair and compares.

12

3.3 Map Function

 The output of the map function is modified from just generating the key value

pairs to generating the subgroup of keys smaller than the key received. Initially the map

outputted the list of keys for a particular entity i.e.,

σ(o) = {s1, s2, s3,..sn}

Let σsi(o) = s ∈ σ(o) | s < si

After improvisation the map function now emits

(si , [o , σsi(o)]) for every 1≤ i ≤ n

3.4 Reducer Function

 Reducer takes the above input and for present key k and the entity pair similar to

the one shown above performs an extra step of checking if the two entities have disjoint

key set. For a given pair ([o1 , σk(o1)], [o2 , σk(o2)]) the reducer checks if

σk(o1) ∩ σk(o2) = Ø

 If they are disjoint the reducer makes the current key as the least common key and

the two entities o1 and o2 are compared. If these two sets are not mutually exclusive then

it means that there is/are smaller keys k' is present for that pair of entity (o1, o2). So in this

scenario the key k is not considered.

13

Figure 12: Map Reduce phase after improvising the algorithm

 Now the map phase emits key value pairs along with the keys smaller than the

current key. For example, consider the entity A which has two common keys 1,4 where

σ(A)={1, 4}. The key value pair for the first time would be (1, [A, Ø]), where Ø

represents that there are no keys smaller than the current key 1. Now when the key 4 is

considered, the map function gives (4, [A, {1}]), which means that there is a key smaller

than the current key 4. As σ(B)={1, 4} the pair A-B is compared with the key 1. Later

when key 4 is considered then the σ4(A)= (4, [A, {1}]) has a subset of the key {1}.

 The initial (k, v) i.e., (1, [A, Ø]) which is passed to the first reducer is compared

against other entities who has common signature 1. In this case it is B, C, D. So the pairs

A-B, A-C, A-D, B-C, B-D, C-D are compared. Now the entities that share the signature 4

are sent to other reducer. As σ(E)={2, 4}, σ(H)={3, 4}, σ(I)={3, 4} and now the pair A-B

is ignored. In total, this process generated 26 pairs before the improvement of the

algorithm. After the improvements made to the reducer it eliminated 4 pairs which is

15% less than the actual. So there is performance improvement.

14

 It is implemented in such a way that the entities with same keys fall under the

same window and this window moves over rows of same obj and sorted by attributes.

This approach uses two map jobs, one to emit key value pair for each key and another

map job is used to group together the pairs having the same key.

3.5 Real Time Example

 Consider that a dataset has following records

Figure 13: Sample Table

And consider that there is one pass blocking and the map phase generates following key

value pairs

Figure 14: Key value pairs generated by Map

15

Figure 15: Grouping similar entities

Figure 16: Sorting the keys associated with each entity

16

The reducer creates following entity pairs

Figure 17: Entity pairs

Total number of pairs=76

Redundant pairs= 10

Efficiency improvement = (10/76)*100 = 13.15%

17

4. Implementation Details

 This section describes about the algorithm implemented as part of baseline, the

dataset chosen for experimentation and other tools and technologies used throughout the

implementation of this project are explained.

 The problem definition section has clearly described about the solution for how to

avoid the redundant comparison. In this section I will describe about how I used Sparks

libraries to solve this problem.

4.1 Baseline Implementation 1

 In the paper referred the author talks about using the index of the string valued

key instead of using the string itself. So as a part of the initial implementation, I

implemented the algorithm using this technique. I created index called ID which is a

unique value for every record present in the dataset and created a indexed file and the

data is saved in the following format. For this implementation I used Medical Health

contacts dataset and it had some 38 columns and most of them has null values or most of

the columns had the same values for almost all the records. Using such data will not be of

much help for this implementation. So I chose only few columns which are mostly not

null. I chose Agency name, phone number, toll free number, email and web address

columns.

[ID,[AGENCY, LOCALPHONE, TOLLFREEPHONE, EMAIL, WEB]]

The indexed file is generated as shown in the following figure and each spark partition

can handle an RDD of 2GB. With this extraordinary feature of spark, we can give large

amounts of data to process and spark does it very easily.

18

Figure 18: Snapshot of indexed file

 When there are multiple values in a row, Spark considers the first value as the key

and all other values as values. As the first value(key) in the indexed file is ID, map

function is used to swap the value with the key and make value as key. This was just an

idea given by the author, implemented it to test for the match entities within a file and it

worked. Following line of code is used to get the key value pairs as we needed

Figure 19: Code snippet to generate key value pairs from map

agency = indexedFile.mapValues(lambda x: x[0]).filter(lambda (u,v):

v!=’’).map(lambda (x,y): (y, x))

localPhone = indexedFile.mapValues(lambda x: x[1]).filter(lambda

(u,v): v!='').map(lambda (x,y): (y, x))

tfPhone = indexedFile.mapValues(lambda x: x[2]).filter(lambda (u,v):

v!='').map(lambda (x,y): (y, x))

email = indexedFile.mapValues(lambda x: x[3]).filter(lambda (u,v):

v!='').map(lambda (x,y): (y, x))

web = indexedFile.mapValues(lambda x: x[4]).filter(lambda (u,v):

v!='').map(lambda (x,y): (y, x))

19

 Same filter operation is performed on all other keys such as LOCALPHONE,

EMAIL, TOLLFREEPHONE, WEB.

 And I generated the file as shown in the following table

Figure 20: Snapshot of indexed file contents

 Later entities having the same keys are grouped together and a list is generated to

group entities having the same key

 Using the groupbykey operation provided by spark on [AGENCY, Row_ID] and

other attributes, I created a new dataset consisting of [AGENCY, Iterable<Row_ID>] and

other attributes with their respective iterable value. After grouping all the attributes I

sorted their values in ascending order using the following line of code.

matched_agencies = agency.groupByKey().mapValues(lambda x:

sorted(list(x)))

Figure 21: Snapshot of Entity, SortedSignatures

Generating entity pairs: To generate pairs, first element is taken and paired with rest of

the elements until there's no element left in list. Following function is used to generate

pair of IDs out of list of IDs

20

Figure 22: Code snippet for generating entity pairs

Using above defined pair function to work on each sorted list of IDs. flatMapValues()

generates the pairs of IDs out of list of IDs, and rather than returning list of pairs, puts

each pair in new line.

flat_matched_agencies = matched_agencies.flatMapValues(lambda x:

pair(x))

Figure 23: Snapshot of Key value pairs in the form of key and pairs of entities

 This was a trial implementation of first baseline. The output of it is shown in the

following figure.

Figure 24: Generation of Entity Pairs

def pair(list):

 out = []

 while (len(list) > 0):

 popped = list.pop()

 for x in list:

 out.append(str(popped)+"-"+str(x))

 return out

21

4.2 Baseline Implementation 2

 When implementing the algorithm on big data, it is very important to check the

quality of the data. In the dataset I chose there were many data quality issues like

New line characters: When I ran the code I was not aware of the new line characters

present in few records. Debugging and figuring out what the problem was very time

consuming. There were very few attributes which had new line character, so to retain the

consistency these records were deleted.

Null values: As the dataset is very large it is expected to have null values. There were

many fields in the dataset which had 90% of the records as nulls. Considering such fields

would just create lag in the execution time with no positive effect on the result. So these

fields were removed.

 Baseline implementation 2 is more Spark oriented. The main goal of this paper is

to implement efficient pair-wise similarity computation using Spark. To implement the

algorithm suggested in the paper I used the concept of Data Frames and Windows from

the Spark libraries.

Input: Medical Health dataset with 996,000 records.

Output: Output generated two files named eliminated and matched. Matched file has all

the pair of entities that matched only once. Eliminated file has all the pairs of records that

were supposed to be matched redundantly.

Made use of following pyspark libraries

pyspark.sql.Window: A distributed collection of data grouped into named columns.

pyspark.sql.Row: A row of data in a DataFrame.

pyspark.sql.HiveContext: Main entry point for accessing data stored in Apache Hive

4.2.1 Hive Context: It is a superset of SQL Context as it provides all the functionalities of

SQL and Hive as well.

22

4.2.2 Data Frames: Data frames in spark provide the flexibility of collecting the data from

various data sources such as resilient distributed dataset or external files or Hive tables,

etc. In simple terms it is like creating a table with named attributes. To create a data

frame we first created the schema, column names and their datatypes.

 Generate a new RDD out of list/ tuple of already existing RDDs

aoPair = inRDD.flatMap(lambda line: attr_key(line.split("\t")))

 Define the schema for the data frame. Spark has become so advanced that if the

datatype of the column is not mentioned then it will try to infer from the data what

type it can be by going through some amount of the data which is called sampling

ration[11].

schema = StructType([StructField("attr", StringType(), True), StructField("obj",

StringType(), True)])

 Finally using the createDataFrame function apply the above schema to the RDD

aoDF = sqlCtx.createDataFrame(aoPair, schema)

23

attr obj

1 a

2 a

3 a

1 b

2 b

3 b

1 c

3 c

Figure 25: List of attributes and objects

4.2.3 Window Concept in Spark

 Once the data frame is created with the mentioned schema, we need to perform

operations on this data frame. I used the concept called Windows in Spark. Apache Spark

allow us to perform certain functionalities on group of rows. These group of rows is

known as window. By defining a window we can perform some operations on data

frames[11]. Spark SQL provides 3 kinds of aggregate functions on windows: Ranking,

Analytic and Aggregate functions. window object is in the package called pyspark.sql, So

we need to import it using the following line of code

from pyspark.sql import HiveContext, Row, Window

memorize = aoDF.select("attr", "obj", lag("attr",1, None).over(window).alias("prev"))

 The lag method gets the previous records for the current record and the parameter

1 represents get it from the one previous row and the parameter None represents what to

do when there is no previous value. over(window) defines a windowing column and to

jumps over one window at a time. If the current window is for the obj "a" then it process

the window 'a' and then only jumps to the other window and process that. The alias

function returns a new data frame and in this case we are creating a new data frame called

"prev".

24

attr obj prev

1 a null

2 a 1

3 a 2

1 b null

2 b 1

3 b 2

1 c null

3 c 1

Figure 26: List of attributes, objects and previous values

Finally the data frame created looks like

DataFrame : [attr, obj, prev] → RDD : [(attr, (obj, prev))]

attr (obj, prev)

1 (u'a', None)

2 (u'a', 1)

3 (u'a', 2)

1 (u'b', None)

2 (u'b', 1)

3 (u'b', 2)

1 (u'c', None)

3 (u'c', 1)

Figure 27: List of attributes and object, previous pairs

mappedRDD = memorize.map(lambda row: (row.attr, (row.obj, row.prev)))

groupedByAttr = mappedRDD.groupByKey().mapValues(list).cache()

[(1, [(u'a', None), (u'b', None), (u'c', None)]), (2, [(u'a', 1), (u'b', 1)]), (3, [(u'a', 2), (u'b', 2),

(u'c', 1)])]

Later grouped it by attribute and collected the tuple (obj, prev) into the list

25

Implemented following algorithms by making use of the spark libraries

Figure 28: Algorithm for Map Phase

Figure 29:Algorithm for Reduce Phase

Figure 30:Algorithm for Overlap

26

5. Performance Evaluation

 I have performed the implementation on Spark cluster on virtual machines. This

set up had 3 nodes with one as master node and two others as slave nodes. Each node is

of 2GB RAM and installed with Ubuntu 14.04. Experimentation is done using Apache

Spark version 1.4 with 2.4 Hadoop distribution. The data frames concept in spark was

introduced in the version 1.3, so I had to use version 1.3 or beyond for this

implementation.

 Tested the implementation in the Spark standalone cluster mode on Medical

Health dataset called Plaid which had 996000 records. Without the implementation of

this algorithm the simple Cartesian product have done matching in very naive, compare

one record with each other record present in the dataset. With this implementation we

have narrowed down the search space and reduced the comparisons 163,527. We get

119,369 records as matching and eliminated 44158 matches which reduced the number of

comparisons by 44158/163527 = 27% of the records are eliminated as redundant.

Execution time with and without redundant pairs

Number

of records

Execution time with redundant

pairs(minutes)

Execution time without

redundant pairs(minutes)

100k 34.1 31.7

300k 68.8 65

500k 166.6 105.4

700k 158 149.8

996k 225.8 213.6

Table 1: Execution time with and without redundant pairs

27

Figure 31: Execution times comparison

5.1 Apache Spark Cluster Setup

 Implementation is done in Virtual Machine mode where using VM Workstation

and created two virtual machines with Ubuntu version 1.4 installed. Configured these

VMs with 2 GB RAM, 20GB hard disk and quad core processor.

Figure 32: Screenshot of two VMs in VMWare WorkStation

Install Java on the VM and update the JAVA_HOME in environmental variables

JAVA_HOME=/usr/lib/jvm/java-6-oracle/

0

50

100

150

200

250

100k 300k 500k 700k 996k

Execution time with
redundant pairs(mins)

Execution time without
redundant pairs(mins)

28

Figure 33: Screenshot showing Java version on VM

Download debian version of Scala if you are using Ubuntu

Figure 34: Screenshot for Scala download

and install it from the software center. I installed 2.10.4 version

Figure 35: Screenshot showing Scala version on VM

Clone the master node to get the virtual machine with all the softwares installed till now.

With few modification we set the second virtual machine as Worker node.

29

Figure 36: Screenshot of Master Node

Figure 37: Screenshot of Worker Node

30

Once both machines are ready, install ssh on worker node to give access to the master

node to access worker.

Figure 38: Screenshot for installing ssh

Later RSA key needs to be generated on the master node to obtain remote access.

Connect the master node with the worker node. Copy the public key generated earlier to

each worker node. This gives master to access worker node with SSH

Figure 39: Screenshot showing Master connection

Create a new VM and repeat the same process and take screenshots

Download and install required version of spark on both the nodes.

31

Figure 40: Spark version

 Until now these two nodes are the same as we have not given master or worker

specifications to any node. The main settings should be made in the conf file of the spark

package. conf file consists of following files

Figure 41: Files in conf folder

Make a copy of slaves.template file and spark-env.sh.template file.

Rename "slaves.template(copy)" to "slaves" and "spark-env.sh.template(copy)" to "spark-

env.sh".

Add the IP address of the worker nodes in the slaves file.

32

Figure 42: Updated Slaves file

Add the following lines in spark-env.sh file.

export SPARK_MASTER_IP=192.168.77.130

export SPARK_WORKER_CORES=1

export SPARK_WORKER_MEMORY=800m

export SPARK_WORKER_INSTANCES=2

Figure 43: Updated spark-env.sh file

To test the installation, run

33

./bin/spark-shell

scala:> sc.parallelize(1 to 1000).count();

(This should give the output as long=1000)

scala:>exit

./bin/run-example SparkPi

(This should give the output of calculated pi value)

5.2 Launching and testing the cluster

The sbin folder has the files to start or stop a master or slave

To start the cluster we need to execute following command in the terminal

./sbin/start-all.sh

and to stop

./sbin/stop-all.sh

34

Figure 44: Files in sbin folder

35

6. Conclusion

 This project implements pair-wise similarity computation without redundancy

using Apache Spark. The implementation is done successfully on large dataset consisting

of 996000 records. As Apache spark is a powerful big data processing engine which has

the concept of windows and data frames using which we tried improving this area of

entity matching has scope for more improvement. Improving the concept of redundant

comparison is a very rare study. This project can be further improvised by implementing

multiple blocking strategies. It can be implemented using Amazons cluster and try it for

more larger dataset. This algorithm with further research and slight modifications can

also be tested upon the datasets consisting of images, text and videos.

36

7. References

[1] Hanna Köpcke, Erhard Rahm, Frameworks for Entity Matching: A comparison.

Database Group, University of Leipzig, Postfach 100920, 04009 Leipzig, Germany,

Journal Data & Knowledge Engineering, volume 69, issue 2, pages 197-210, 2009

http://dl.acm.org/citation.cfm?id=1672420

[2] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Palpanas, and

Wolfgang Nejdl: Eliminating the Redundancy in Blocking-based Entity Resolution

Methods, In Proceedings of the 11th annual international ACM/IEEE joint conference

on Digital libraries, pages 85-94, 2011

http://dl.acm.org/citation.cfm?id=1998093&dl=ACM&coll=DL&CFID=619571752

&CFTOKEN=36873886

[3] Lars Kolb, Andreas Thor, Erhard Rahm: Don’t Match Twice: Redundancy-free

Similarity Computation with MapReduce, In Proceedings of the Second Workshop on

Data Analytics in the Cloud, pages 1-5, 2013

http://dl.acm.org/citation.cfm?id=2486768

[4] Jimmy Lin: Brute force and indexed approaches to pairwise document similarity

comparisons with MapReduce, Proceedings of the 32nd international ACM SIGIR

conference on Research and development in information retrieval, pages 155-162,

2009 http://dl.acm.org/citation.cfm?id=1571970

[5] Groß, A., Hartung, M., Kirsten, T., Kolb, L., Köpcke, H., & Rahm, E. Data

Partitioning for Parallel Entity Matching. CoRR, abs/1006.5309, 2010.

[6] Lars Kolb, Erhard Rahm: Parallel Entity Resolution with Dedoop, volume 13, issue 1,

pages 23-32, Journal Datenbank- Spektrum, 2013,

http://link.springer.com/article/10.1007/s13222-012-0110-x

[7] [Online, accessed on January 2015] Apache Spark programming guide:

http://spark.apache.org/docs/latest/programming-guide.html

[8] [Online, accessed on August 2015] Installing Apache spark on standalone cluster

mode: http://www.trongkhoanguyen.com/2014/11/how-to-install-apache-spark-121-

in.html

http://spark.apache.org/docs/latest/programming-guide.html

37

[9] [Online, accessed on August 2015] PySpark Guide:

https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals

[10] [Online, accessed on August 2015] pyspark.sql.DataFrame and window Guide:

http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFram

e

Image References:

1. [Online, accessed on February 2016] http://studybigdata.co/data-flow/

2. [Online, accessed on February 2016] http://docplayer.net/6327218-Hadoop-

mapreduce-and-spark-giorgio-pedrazzi-cineca-scai-school-of-data-analytics-and-

visualisation-milan-10-06-2015.html

	EFFICIENT PAIR-WISE SIMILARITY COMPUTATION USING APACHE SPARK
	Recommended Citation

	tmp.1464296488.pdf.Vj5OC

