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INTRODUCTION 

In August 2015, the Santa Clara Valley Water District (SCVWD) experienced a catastrophic 

failure on the Santa Clara Conduit, a 96-inch prestressed concrete cylinder pipeline (PCCP), 

which resulted in the loss of approximately 20 million gallons of water, and over $1.2 million in 

repair cost and property damage (SCVWD, 2015; SCVWD, 2016).  The Santa Clara Conduit is 

part of the San Felipe system that delivers Central Valley Project water from the Sacramento-San 

Joaquin River Delta (Delta) to both San Benito and Santa Clara counties.  The pipe failure 

impacted about 500 customers in San Benito County, who rely on the imported water as a 

significant source of their local supply (Kosmicki, 2015), while residents in Santa Clara County 

had to rely on water supplies coming through the South Bay Aqueduct (SBA), the other key 

route for water from the Delta (Rogers, 2016).  A failure on the SBA at that time could have 

resulted in emergency water shortages to homes and businesses in Santa Clara County (Rogers, 

2016).   

In the wake of the pipeline failure, SCVWD was faced with reviewing pipeline 

replacement strategies and materials, to select the best-fit, right-cost solution to replace the failed 

pipe segment and to determine what pipeline replacement strategies and materials would be 

suitable for replacing future pipelines segments as they reach the end of their service life.  

SCVWD was also faced with revising its pipeline maintenance and operations strategies, in an 

effort to proactively identify distressed pipeline segments prior to their failure, and implement 

the best-fit, most cost effective pipeline replacement strategy for the distressed pipe segments.  

The intent of this study is to evaluate pipeline replacement strategies that would be most cost 

effective for SCVWD to implement.  This study focuses on evaluating pipeline replacement 

strategies for SCVWD’s PCCP, since a majority of SCVWD pipelines are made of this material, 
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and failures in PCCP often result in the highest water losses and involve mostly larger diameter 

pipelines (Grigg, 2013).  

SCVWD Water Infrastructure Overview 

SCVWD was created by an act of the California Legislature, and operates as a state of California 

Special District, with jurisdiction throughout Santa Clara County (SCVWD District Act, 2009).  

SCVWD’s water infrastructure dates back to the 19th century, at a time when natural resources 

were able to sustain the early inhabitants of the Santa Clara Valley, and farming was the main 

activity in the Santa Clara Valley.  The farmers at that time were able to use rainfall run off and 

some groundwater pumping, with the first noted well drilled in San Jose in 1854.  The farmers 

also constructed the first sack dams in the Santa Clara Valley to help spread water around the 

valley for percolation.  This was considered the farmers’ first move towards the recharge of the 

groundwater basin; however, over pumping of the groundwater became an issue in San Jose in 

the 1920s and San Jose sunk by about 4 feet, prompting the need for countywide management of 

water resources (SCVWD, 2012). 

In March 1921, a report to the Santa Clara Valley Water Conservation Committee 

(Tibbetts’ Report) was released which outlined a plan to manage water in the Santa Clara Valley.  

The report recommended the construction of 17 reservoirs, local check dams, pump stations, and 

system conduits to convey water around the county for groundwater recharge.  The construction 

of these improvements was estimated at $10.9 million.  In order to raise funds for the 

recommended water infrastructure outlined in the Tibbetts’ report, voters in the county passed 

the Water Conservation Act in 1929, and approved the creation of a local water conservation 

district to carry out the water conservation activities for the county, which included the 

construction of water infrastructure.  The first projects included the construction of the Calero 
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Dam in 1935 to expand local water supplies, and by 1936, six new reservoirs had been built, 

which collectively allowed for the capture and storage of about 40,000 acre-feet of local water.  

In 1951 and 1952, Anderson and Lexington reservoirs were constructed, which nearly tripled the 

county’s water storage capabilities, and raw water pipelines were installed to convey water to the 

recharge ponds around the county, for replenishment of the groundwater basin; however, local 

water supplies in Santa Clara Valley were still not able to meet the demands of the increasing 

population (SCVWD, 2012).   

To increase the supply of water coming into the Santa Clara Valley, water was imported 

into the Santa Clara Valley in 1951, through the San Francisco Public Utilities Commission’s 

(SFPUC) Hetch-Hetchy pipelines, and this supplied additional water to the communities in the 

south part of the bay area.  As demands for water continued to increase in the county, water was 

imported through the SBA from the north part of Santa Clara County in 1965.  The SBA is part 

of the State Water Project, and it conveys raw water from the Sacramento-San Joaquin Delta.  

Raw water pipelines were installed to convey water from the SBA into recharge ponds in the 

county, and these efforts were successful at halting the land subsidence in the county.  These 

pipelines were made of PCCP and steel, and ranged in size from 66 to 78-inches in diameter.  In 

1987, large raw water pipelines were installed as part of the federally managed Central Valley 

Project’s San Felipe Division, to convey water from the San Luis Reservoir to the Anderson 

Dam in the south county.  These pipelines were made of PCCP and ranged in size from 96 to 

120-inches in diameter.  Additional PCCP raw water pipelines were installed to convey water 

from Anderson Dam to the Calero Reservoir, and into the Almaden Valley area (SCVWD, 

2012).   
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To meet the drinking water needs of the Santa Clara Valley, water treatment plants were 

constructed in 1967 and 1974, along with the treated water pipelines needed to deliver water to 

the east and west portions of the Santa Clara Valley.  These pipelines were made of steel and 

ranged from 30 to 84-inches in diameter.  An additional treatment plant was constructed in 1989 

in the Almaden Valley area, along with treated water pipelines, made of PCCP, which connected 

to existing treated water pipelines in the east part of the Santa Clara Valley.  The final lengths of 

treated water pipelines were made of steel, and installed in 1992 to convey treated water to the 

Milpitas community and unify regional distribution of treated water between SCVWD and 

SFPUC (SCVWD, 2012).  

Today, SCVWD provides wholesale water and groundwater management services to 

local municipalities and private water retailers, who maintain their own distribution system, 

utility billing, meter reading, and deliver drinking water directly to homes and businesses for 

approximately two million people, in seventeen municipalities in Santa Clara County (SCVWD 

Homepage, n.d.).  SCVWD supplies over 121 billion gallons of water annually and effectively 

maintains and operates approximately 142 miles of raw and treated water pipelines (see Table 1), 

with pipeline diameters ranging from 30 inches to 120 inches, throughout the Santa Clara Valley 

(SCVWD Homepage, n.d.).   

In addition to providing wholesale drinking water and groundwater management services, 

SCVWD manages flood protection and maintenance on more than 275 miles of streams in Santa 

Clara County, ten dams and surface water reservoirs, three water treatment plants, an advanced 

recycled water purification center, a water quality laboratory, and nearly 400 acres of 

groundwater recharge ponds (SCVWD Homepage, n.d.).   
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Table 1:   SCVWD Pipeline Inventory Mileage 

Material Type Miles of 
Pipeline 

Percent of Total 

Prestressed Concrete Cylinder Pipe (PCCP) 78 55% 

Welded Steel Pipe (WSP) 50 35% 

Tunnel 8 6% 

Others (RCCP, CPP, and other concrete pipe)  6 4% 

Total 142 100% 

Source:  SCVWD, 2007, p. 2-2 and 2-3 

The Buried Pipeline Replacement Era 

Over a decade ago, the American Water Works Association (AWWA) announced that the U.S. 

was entering into a new era called the replacement era; where water utilities would need to begin 

to rebuild the water infrastructure that was passed down from earlier generations.  AWWA 

issued a report which showed that significant investments would be needed in the coming 

decades in order to maintain the reliability of the buried pipeline infrastructure (AWWA, 2012).  

A majority of the water pipelines today were buried several years ago and these facilities are 

often out of the view of the public.  A 2001 study conducted by AWWA noted that some water 

utilities have pipelines that are more than 100 years old, and patterns of growth in the United 

States indicate that there is currently a large national inventory of pipeline at around 50–60 years 

of age.  As the water infrastructure continues to age, leaks and failures in the water infrastructure 

begin to compromise the reliability of the water system.  This leads to an increased need to invest 

resources into the future replacement and reliability of the buried water infrastructure, since 

maintaining the reliability of the buried pipeline infrastructure is critical to protecting the health 

and safety of the general public.   

Buried water pipes may carry raw water, irrigation water, treated drinking water, raw 

sewage, treated sewage effluent and recycled water, and are typically buried four to twelve feet 
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below the ground.  SCVWD’s buried pipelines are primarily used to convey raw water and 

treated drinking water in Santa Clara Valley.  Over sixty percent of SCVWD pipelines are 60 

inches in diameter or larger, with most pipelines made of either PCCP, welded steel pipe (WSP), 

reinforced concrete cylinder pipe (RCCP), or concrete pressure pipe (CPP).  SCVWD has some 

concrete tunnels as well.  The majority of the SCVWD raw water pipelines are PCCP and most 

of these pipelines are over 30 years old.  The majority of the SCVWD treated water pipelines are 

WSP, and most are over 40 years old (see table 2).   

Table 2:  SCVWD Pipeline Inventory Age 

Material Type Over 40 years 
old 

30 to 40 years 
old 

Under 30 
years old 

Prestressed Concrete Cylinder Pipe 
(PCCP) 

26 32 20 

Welded Steel Pipe (WSP) 32 10 8 

Tunnels 2 6 0 

Others (RCCP, CPP, other concrete pipe)  3 2 1 

Total 63 50 29 

Source:  SCVWD, 2007, p. 2-2 and 2-3 
 

SCVWD’s water infrastructure has been fairly reliable, with ninety percent of the leaks 

occurring at appurtenances connected to the pipeline and not on the pipelines themselves.  

Reliability of water infrastructure can be measured by physical integrity indicators that include 

the rate at which buried water pipelines fail or leak (Grigg, 2013).  When buried water pipelines 

fail, they often form craters in the ground ranging from twenty-four to fifty feet wide, which can 

cause damage to nearby structures from debris, and some of these craters are capable of 

swallowing cars and portions of roads (AWWA, 2012).  While SCVWD has been fortunate to 

have a low rate of leaks and failures in its buried pipeline infrastructure, other water utilities in 

the United States have unfortunately experienced pipeline failures that have caused a range of 
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impacts to the community.  These failures in our water infrastructure highlight the fact that our 

systems are aging and in need of replacement, as most of our water infrastructure will reach the 

end of its service life in the next 25 to 40 years.   

Social Implications of Water System Failures 

Urban consumers rely on a community-based supply of potable water.  SCVWD serves about 

two million people in seventeen municipalities (SCVWD Homepage, n.d.).  Failure of a major 

water main could deprive households and businesses of water for hours to weeks.  Leaking pipes 

can allow hazardous materials to leach into treated water, creating a public health threat. The 

delivery of tainted water to households in Flint, Michigan has heightened consumer awareness of 

water quality.  Criminal charges against water and environmental officials in Flint demonstrate 

the social responsibility inherent in the water delivery sector (McLaughlin and Shoichet, 2016).

 SCVWD is the special district entrusted with providing water in Santa Clara County. 

Loss of water service to consumers would damage the revenue stream of the district.  Consumer 

confidence in SCVWD could be damaged, resulting in a political backlash against the elected 

Board of Directors of SCVWD.  Damage to an agency’s reputation and loss of public trust are 

hard to quantify, but difficult to repair.  Forbes has called reputational value “irreplaceable,” 

noting that reputations for quality and safety build consumer trust (Brigham and Linssen, 2010). 

When evaluating an investment in system reliability these social and political considerations 

must be included when valuing the cost effectiveness of repairs.  
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METHODOLOGY  

Using the Patton, Sawiki & Clark model for cost-oriented evaluations, this study analyzed the 

cost-effectiveness of pipeline renewal strategies that would meet SCVWD pipeline replacement 

objectives, and includes a recommendation to SCVWD on a cost-effective pipeline renewal 

strategy.   

Cost-Effectiveness Analysis 

A cost-effectiveness analysis is an alternative to the traditional cost-benefit analysis, and it is 

used to compare the relative cost of the outcomes for two or more alternatives used to resolve a 

particular problem or achieve a particular set of objectives, at the lowest cost (Kaplan, 2014; 

Levin, H. M., & McEwan, P. J., 2001).  In a cost-benefit analysis, the outcome of implementing 

a particular alternative can be measured monetarily, whereas, in a cost-effectiveness analysis, 

cost and consequence are taken into account.  Cost-effectiveness analyses often have restrictions 

with monetizing the benefits of a particular action; however, the outcomes of the alternatives 

themselves can be counted and compared (Kaplan, 2014; Levin, H. M., & McEwan, P. J., 2001).   

Cost-effectiveness analysis was first developed in the 1950s by the United States 

Department of Defense, and was used as a means to justify the distribution of resources among 

the various branches of the armed services.  By the 1960s, cost-effectiveness analysis had been 

adopted by other branches of the federal government, as a means of analyzing the efficiency of 

alternative government programs (Levin, H. M., & McEwan, P. J., 2001).  The ratio of cost-

effectiveness of a particular alternative is based on the measured effectiveness divided by the 

cost of a particular alternative, and the highest ratio is considered to be the most cost-effective 

option for implementation (Kaplan, 20014).     
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Measuring Cost Effectiveness 

The basic techniques used in this study were derived from evaluation criteria and the 

identification of alternatives from pipeline renewal strategies used by comparable water utilities.  

This information was combined with cost data and the expected design life of each strategy.  The 

steps used to complete this analysis are (1) selection of evaluation criteria, (2) identification and 

evaluation of renewal approaches, and (3) cost estimation.  The steps for this analysis are 

explained as follows.      

Selection of Evaluation Criteria 

The evaluation criteria used to complete this research is a cost-effectiveness analysis and 

included the collection of pipeline inventory information from the SCVWD, information on 

pipeline renewal programs implemented by comparable water utilities, and a financial analysis of 

pipeline inspection, rehabilitation, and replacement cost.  Information used in the financial 

analyses was obtained from a 2012 Water Research Foundation (WRF) industry survey.   

Identification and Evaluation of Repair Approaches 

Evaluation of renewal approaches began with an analysis of the “No Action/Status Quo” 

approach.  The evaluation of this approach required input on SCVWD’s existing pipeline 

maintenance program and an assessment of the complete inventory of SCVWD pipelines.  

Additional repair approaches for this study came from the Washington Suburban Sanitary 

Commission and the Metropolitan Water District of Southern California, which are comparable 

water utilities to SCVWD and these agencies have implemented pipeline renewal programs.  

Information on the evaluation of the renewal approaches are outlined in the Literature Review, 

and include the cost to replace failed pipeline sections, pipeline inspection cost, steel liner 
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installation cost, and the cost for the installation of carbon fiber reinforced polymer.  Future cost 

for pipeline renewal strategies in this study were established using extrapolative forecasting.          

Cost Estimation 

The cost of a pipeline renewal strategy is defined as the value of the resources that are given up 

by SCVWD to achieve the objective of the pipeline renewal (Kaplan, 2014).  The pipe renewal 

strategies identified in this study were analyzed based on SCVWD pipeline inventory, and the 

present value for each renewal approach was determined in order to measure the efficiency of 

each pipeline renewal strategy for SCVWD implementation.  The methodology steps used in this 

study provided a comprehensive approach to determine the cost-effectiveness of implementing 

pipeline renewal approaches for SCVWD.  Assumptions were made in order to complete the 

analysis and these assumptions are noted in the analysis section of this study. 

Figure 1:  Methodology for Analysis of Pipeline Replacement Strategies 

 

  

Input 
• Inventory of 
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Pipeline renewal 
program 
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• Cost to replace 
failed pipeline 
section 
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LITERATURE REVIEW 

A majority of the water infrastructure in the United States was installed over a hundred years 

ago, and this infrastructure was often buried underneath community roadways.  As the nation’s 

water systems continue to age, the structural condition of the buried infrastructure has become 

compromised, which can impact the hydraulic capacity of the system and decrease the pipes’ 

performance.  The compromised water infrastructure has led to water being wasted from leaking 

pipes, and from complete pipe failures which have also caused damage to roads and adjacent 

infrastructure, such as buried utility lines.   

Based on studies conducted by the ASCE and the AWWA, the nation’s water pipe 

infrastructure will need to be replaced in the near future, as most of these buried pipelines are 

reaching the end of their designed service life (AWWA, 2012; ASCE, 2013).  As noted in the 

ASCE and AWWA studies, the cost for replacements of these water pipes will be high; hence, it 

is important for water utility managers to analyze the condition of their water infrastructure and 

determine the proper timing of these inevitable pipeline renewals, and develop cost effective 

renewal strategies that account for and limit the burden of the replacement cost on the water rates 

paid by individual households.  

A majority of the literature available on this topic emphasizes the need for utility 

managers to develop a sound understanding of the condition of their water infrastructure, so that 

timely repairs on the pipelines can be undertaken long before the complete failure of the system 

is realized.  The literature also highlights the magnitude of the cost needed to renew the aging 

drinking water infrastructure, and cost savings from advanced engineering strategies that can be 

used for pipeline repair and replacement.  The literature related to this study has been divided 

into the following three categories, which will be discussed in the order enumerated below: the 
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need for increased rate of spending, alternatives to traditional replacement, and water 

infrastructure replacement value. 

The Need for Increased Rate of Spending 

This category answers the question of why so many American buried pipelines are in need of 

replacement and provides contextual understanding of key pipeline issues, such as the age of the 

drinking water infrastructure, impacts of water loss resulting from leaks and pipe breaks, and 

performance issues with PCCP.  A large portion of the SCVWD pipeline inventory is made up of 

PCCP.     

Aging Water Infrastructure and Risk 

The potential consequence of failure for aging water infrastructure present risks that result in 

direct cost to rate payers from the cost of the breakage repair, cost of water lost, cost of direct 

damage to nearby properties, and liabilities from flooding.  In addition to the direct costs, failure 

of aging water infrastructure also results in indirect and social costs which include the 

accelerated deterioration of roads and underground utilities, cost of service disruption, cost due 

to disruption of traffic and businesses affected by the location of the failed pipe, cost due to 

disruption of service to special facilities, and social costs due to adverse effects of pipe failures 

on water quality from the intrusion of contaminants into the pipeline (Makar & Kleiner, 2000).  

One of the most severe social costs impacts from a pipeline failure occurred in Chicago in 1933 

where 1,409 people contracted amoebic dysentery from which 98 died (Anderson, 1981).   

Often out of sight and out of mind since their installation, the potential risk from aging 

buried water infrastructure has started to come to the surface, as a number of these facilities 

begin to reach the end of their service life.  In March 2013, a 60-inch PCCP failed in Chevy 

Chase, Maryland, causing water to gush over 30 feet in the air, and left a 20-foot-deep crater in 
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the roadway.  The break in the 33-year-old Chevy Chase pipe resulted in an estimated 60 million 

gallons of water lost (Shaver, 2013).   

Another pipeline failure in the summer of 2014 on Sunset Boulevard, in Los Angeles 

resulted in the loss of about 20 million gallons of fresh water, and flooded out portions of the 

UCLA campus, underground parking garages, and drenched the wooden basketball floor of the 

storied Pauley Pavilion.  Damages from this pipeline break are estimated at about $2.5 million 

from individual claims, and $13 million for damages to UCLA’s Pauley Pavilion arena and other 

parts of the campus (Reyes & Stevens, 2014).  At the peak of the pipe failure, about 75,000 

gallons of water was lost per minute, which is equivalent to the amount of water needed to serve 

over 100,000 customers for a day.  The water loss placed additional strain on customers, during a 

time where California was faced with one of its worst droughts in decades, due to diminished 

hydraulic capacity elsewhere in the system, especially in the hilly areas in and around the UCLA 

campus (Nicholson, 2014).               

 The EPA estimates that about 30% of the drinking water infrastructure, which delivers 

water to more than 100,000 people, is between 40 to 80 years old.  Another 10% of these pipes 

are even older (Kosik, 2011).  A large portion of the U.S. water infrastructure dates back to the 

Civil War era, with a majority of the pipelines installed in three distinct decades: 1880s, 1920s, 

and 1950s.  Pipes installed in the 1880s were generally made from cast iron and had a 120 year 

design life, whereas, pipes installed in the 1920s were predominantly made of cast iron, and 

included some cast iron pipes with cement lining, and had a design life of 100 years.  Pipes 

installed following the boom of infrastructure investment of post-World War II typically were 

predominantly made of cement lined cast iron and asbestos, and had a design life of 75 years 

(AWWA, 2012; Kail, 2004).  Based on the design life of the pipelines installed in these three 
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eras, America is approaching a period of time when three eras of installed pipes will be at the 

end of their design life at about the same time.   

Every 4 years, the ASCE conducts an assessment of the nation’s major infrastructure 

categories.  The cumulative condition assessment grade for America’s infrastructure in 2013 was 

a D+, and the water infrastructure category received a D grade (ASCE, 2013).  In California, the 

water infrastructure condition assessment grade dropped from a C+ in 2006, to a grade of C in 

2012.  A 2012 ASCE analysis estimated that an investment of $4.6 billion would be needed in 

the water infrastructure through 2022 to raise the grade from a C to a B.  Some of the most 

critical water infrastructure in California is part of the State Water Project, which is more than 40 

years old, and the Federal Central Valley Project, which is more than 55 years old (ASCE, 2012).  

These facilities serve as the main water supply source for many California water agencies and 

are also critical to the agricultural industry in the State.   

Pipeline Leaks and Breaks 

The increased age and deteriorated state of the U.S. water infrastructure has brought about 

unexpected leaks and, at times, complete failures in some of the buried water infrastructure.  A 

majority of the water infrastructure has not been inspected since its installation, and according to 

the ASCE, the U.S. has an estimated 240,000 water main breaks each year, which amounts to 

about 700 water main breaks each day.  The water main breaks amount to about 7 billion gallons 

of lost water each day (ASCE, 2013).   

SCVWD water infrastructure mostly consists of large diameter raw and treated water 

pipelines.  Large diameter pipelines have a diameter of 36-inches and larger.  Experts estimate 

that the number of large diameter water main failures in the U.S. is about 500 per year, and the 

average cost of failure is about $500,000 for each incident (Gaewski et al., 2007).  In the Bay 
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Area, it is estimated that water utilities lose about 3 to 16 percent of water treated at drinking 

water treatment plants due to pipe leaks and breaks.  2010 data collected by the California 

Department of Water Resources, and analyzed by The Mercury News, estimates that leaks from 

the Bay Area water providers have resulted in a loss of about 23 billion gallons of water each 

year, which is enough to provide a year’s worth of water to 71,000 families (Krieger, 2014). 

Performance of Prestressed Concrete Cylinder Pipe (PCCP) 

SCVWD operates and maintains approximately 78 miles of PCCP in its water infrastructure 

portfolio.  PCCP was first used in the US in the early 1940s and was considered to be a viable 

alternative to welded steel pipe, due to its lower initial cost and the ability for the pipe to be 

designed for a multitude of internal pipe pressures, loads, and diameters.  About 30,000 miles of 

PCCP were installed in the US and Canada between the 1960s and 1980s (Cromwell, 2002).  A 

majority of the PCCP was produced between 1972 and 1978.  There are two types of PCCP that 

are manufactured – lined cylinder type PCCP and embedded cylinder type PCCP.  Embedded 

cylinder type PCCP is commonly used with most large diameter water transmission facilities 

(Roller, 2013). 

Over time, water utilities began experiencing catastrophic failures with PCCP, due to 

breaks in the prestressing wires in PCCP that provide strength to the pipe.  Multiple prestressing 

wire breaks in close proximity to each other reduces the pressure capacity that the pipe segment 

is able to handle, and can result in a catastrophic rupture of the pipe segment.  Failures occur 

without warning and the impacts can include the interruption of service, costly emergency 

repairs, property damage, and at times threats to life and safety.  As a result of these failures, 

water utilities have been implementing strategies to inspect and monitor the conditions of PCCP 

(Cromwell, 2002).  Rajani, et al. (2006) in their study on PCCP emphasized the importance of 
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using certain observed pipeline distress indicators, obtained from routine and scheduled pipeline 

inspections, to rate the aggregate condition of the pipeline’s health.  These distress indicators 

usually manifest themselves physically within the interior or along the surface of the pipeline and 

its associated appurtenances.  Results from the inspections are used by water utilities to make 

decisions on the repair of distressed pipe sections, and repairs are completed for each pipe 

section identified.  Rajani, et al. (2006) states that utilities have chosen to take a more aggressive 

approach, by choosing to replace several miles of PCCP each year, and have implemented 

rehabilitation strategies to provide full structural rehabilitation of the pipeline to eliminate the 

risk of failure.   

Alternatives to Traditional Replacement 

This category examines some of the advanced engineering repair and replacement strategies that 

have been developed, which offer water utilities a savings on the replacement cost, when 

compared to using traditional replacement methods.   

The strategies discussed in this study include inserting steel cylinders as a liner inside 

existing pipe segments, and strengthening existing pipe segments by installing carbon fiber 

reinforced polymer (CFRP) lining.  These strategies have been proven to provide full structural 

renewal of large diameter pipelines. When pipeline condition assessments find distressed pipe 

segments, decisions must be made by water utilities to repair or rehabilitate the pipeline to 

prevent failure of the water infrastructure.  Large-diameter pipelines are typically more 

consequential when they break and therefore require a more proactive strategy to determine the 

condition of the main and an appropriate renewal strategy.  Pipe renewal can be addressed 

through replacement using conventional open cut methods, repair of the existing pipe segment, 

or rehabilitation with fully structural pipelining solutions.  Rehabilitation of pipelines offers a 
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cost savings in that the excavation of the existing pipe is avoided, as the existing pipe becomes 

part of the renewal work.  Carbon fiber-reinforced polymer (CFRP) and steel sliplining are 

commonly used rehabilitation methods for large diameter pipelines (Mathews, et al., 2012).  

Compared to open-cut pipe replacement methods, the potential cost savings for using alternative 

rehabilitation methods are dependent on how much site restoration activities are minimized, 

since the rehabilitation work is contained inside the existing pipeline (AWWSC, 2002).   

Water Infrastructure Replacement Value 

This category discusses the estimated water infrastructure replacement value for the U.S., based 

on EPA and AWWA studies. 

The EPA estimates that 4,000 to 5,000 miles of pipe are replaced each year, but that 

number will quadruple by 2035, as more pipes reach the end of their design service life.  A 2007 

EPA needs assessment puts the U.S. water infrastructure replacement value at about $334.8 

billion, for a 20-year capital investment need (ASCE, 2013).   A similar study conducted by the 

AWWA in 2012 concluded that the water infrastructure replacement value for more than 1 

million miles of U.S. pipelines was about $2.1 trillion dollars.  The AWWA replacement value is 

higher than the EPA estimate, since the AWWA estimate factors in an increase for water needs 

due to population growth.  In California, the estimated water infrastructure investment need will 

amount to $126 billion by 2020.  By 2040, the capital investment need would increase to $195 

billion (ASCE, 2012). 

Taken together, the literature highlights the fact that the drinking water infrastructure in 

the U.S. is reaching the end of its design life, as evidenced by the increased number of leaks and 

pipe failures that have occurred over the years.  This means that significant investments are 

needed in the water infrastructure in order to inspect, repair, rehabilitate, and replace these aging 
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facilities.  The investment in American water infrastructure will require significant efforts by 

water utilities to analyze cost effective pipeline replacement strategies to help offset severe 

spikes to household water rates.   
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FINDINGS 

History of SCVWD’s Pipeline Management Program 

SCVWD conducts routine maintenance on several miles of water conveyance pipelines in its 

systems.  In the past, maintenance activities have been conducted on a case-by-case basis; 

however, SCVWD pipeline management strategies have been improved over the years, 

beginning with the first recorded major pipeline inspection and rehabilitation efforts in the 

1990s.     

1990s to the Mid 2000s 

In the years prior to the 1990s, SCVWD pipeline maintenance consisted primarily of preventive 

maintenance work and the performance of miscellaneous repair activities as needed.  Preventive 

maintenance activities included operating valves, and visual inspection of vaults and above 

ground appurtenances.  These valves and appurtenances were often repaired by field staff if 

found to be in poor condition.  In the late 1990s, SCVWD started to notice an increase in leaks 

on its appurtenances, which was the result of severe corrosion on threaded connections of the 

appurtenances.  As a result of the increase in leaks, SCVWD expanded its pipeline maintenance 

program to include internal inspections of its pipelines (Pipeline Management Strategy Work 

Study Session, 2016).   

In the early 2000s, SCVWD developed its first comprehensive strategy for internal 

pipeline inspections and rehabilitation of all its pipelines.  The main objective of the projects that 

resulted from this effort was to establish a baseline condition for all SCVWD pipelines, to 

facilitate monitoring efforts over the years and SCVWD to measure the rate of decay of its 

pipelines, and allowing for the planning of rehabilitation projects for pipelines and appurtenances 

nearing the end of their useful life.  The initial strategy established a schedule for inspecting and 
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rehabilitating all pipelines based on the pipeline age and any known pipeline conditions that may 

have been noted by staff during routine inspections (Pipeline Management Strategy Work Study 

Session, 2016).   

The first projects under the comprehensive strategy started in 2002, SCVWD’s goal was 

to complete the inspection and rehabilitation of all its pipelines within 10 years; however, 

SCVWD inspection and rehabilitation efforts were limited due to water retailer system 

limitations and operational constraints, and it became evident that a complete inspection and 

rehabilitation of all SCVWD pipelines would take until at least 2017.  In the mid-2000s, new 

technology, known as electromagnetic inspection became available for the inspection of PCCP, 

which allowed SCVWD to start measuring the number of broken prestressed wires in each 

segment of PCCP.  Electromagnetic inspections use a transmitter to produce an electromagnetic 

field, and the prestressed wires in PCCP react to this transmission by amplifying the magnetic 

signal if the prestressed wires are in good condition, or by distorting the magnetic signal if the 

prestressed wires are broken.  The emergence of this new inspection technology, coupled with 

the limitations SCVWD had experienced with the first few projects in the early 2000s, led 

SCVWD to revise its pipeline inspection and rehabilitation strategies.  The inspection and 

rehabilitation strategies included developing a long-term program, which identified a large range 

of pipeline maintenance and rehabilitation activities, and provided protocols and procedures for 

carrying out pipeline inspection and rehabilitation (Pipeline Management Strategy Work Study 

Session, 2016).            

2007 Pipeline Maintenance Program (PMP) 

SCVWD developed a 10-year Pipeline Maintenance Program (PMP) in 2007, which was the first 

major comprehensive rehabilitation effort for many of SCVWD’s raw and treated water pipelines 
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since their construction and placement into service as far back as the 1950’s.  The PMP 

identified the inspection and maintenance process for SCVWD pipelines, listed activities, and 

defined several Best Management Practices (BMPs) aimed at protecting the environment during 

pipeline inspection and maintenance activities (SCVWD, 2007).   

The goals of the program were to have each pipeline in the system inspected at least 

once, and to reduce the number of unplanned shutdowns and emergency repairs due to pipeline 

failures and severe corrosion of appurtenance connections.  The preventive and remedial 

maintenance activities associated with the PMP address SCVWD’s policies regarding asset 

management and protection, and also accounts for changes in design guidelines required by State 

regulatory agencies.  Under the PMP, SCVWD has successfully completed the inspection and 

rehabilitation of over 100 miles of its large diameter raw and treated water conveyance pipelines. 

A typical pipeline inspection and rehabilitation project takes about a full year to complete, and 

consists of the following activities (SCVWD, 2007):   

• Project definition, planning, and design  

• Pipeline shutdown strategy development 

• Valve, flowmeter, pipe, and parts procurement 

• Environmental clearance and permitting 

• Contractor procurement 

• Dewatering, dechlorination, and BMPs  

• Visual inspection and special inspections, such as electromagnetic inspections 

• Maintenance and rehabilitation work 

• Cathodic Protection Installation/Upgrades 

• Disinfection, refill, and return pipe to service 
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• Leak inspection and project closure 

Cathodic Protection/Corrosion Control and Monitoring 

The incorporation of corrosion protection is part of SCVWD’s pipeline maintenance strategy and 

is aimed at prolonging the life of buried pipelines and vault infrastructure in SCVWD’s system.  

Corrosion control has been known as an effective method of protecting and extending the life of 

pipelines and appurtenances, thereby reducing pipeline breaks, associated water loss, and 

improving public safety.  When used and managed properly, corrosion protection has the 

potential to offer significant savings by deferring replacement of pipe sections and 

appurtenances, since the pipeline remains in a safe and reliable condition (Pipeline Management 

Strategy Work Study Session, 2016).   

SCVWD corrosion protection strategy uses a combination of good bonded coatings 

coupled with a well-managed cathodic protection system to protect SCVWD pipelines.  Bitumen 

coal tar and leaded paint coatings have been observed on older pipelines constructed in the 

1950s.  In the 1960s, corrosion test stations were installed as part of pipeline construction 

projects.  These early corrosion control test stations played a role in static monitoring of 

pipelines, looking for variations that might be interpreted as possible corrosion. SCVWD also 

began using non-conductive materials (insulating joints) to separate different pipelines into 

smaller sections, which helped minimize corrosion cells, and began systematically applying 

various coatings as an anticorrosion measure (Pipeline Management Strategy Work Study 

Session, 2016).   

In the 1980s, SCVWD began placing large diameter pipelines and tanks under impressed 

current cathodic protection.  The introduction of PCCP in SCVWD’s pipeline inventory 

presented a challenge, because too much impressed current can actually exacerbate breaks in the 
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prestressed wires in PCCP.  SCVWD routinely monitors the corrosion protection on its pipelines 

in accordance with National Association of Corrosion Engineers (NACE) standards.  Each 

pipeline segment is analyzed to determine the effectiveness of the cathodic protection system, 

and adjustments and repairs are made to ensure that the cathodic protection systems for critical 

pipeline segments and tanks are functioning.  The majority of the SCVWDs large diameter 

pipelines are under cathodic protection, with only a few short sections and valve yards remaining 

unprotected (Pipeline Management Strategy Work Study Session, 2016). 

SCVWD PCCP Management Strategy 

SCVWD’s pipeline management strategy for PCCP currently emphasizes pipeline age, wire 

break data, and duration since the last pipeline inspection as the basis for decision making on the 

timing of inspection and renewal of PCCP.  Before a pipeline can be inspected and renewed, the 

pipeline must be drained to allow access for personnel and equipment.  Draining a pipeline can 

take many weeks to complete and presents the largest time constraint and scheduling issue for 

SCVWD.  Scheduling of any inspection and renewal is also influenced by existing water supply 

agreements in place with SCVWD’s water retailers as to the timing in the year and duration the 

pipeline can be out of service.  Other capital projects and maintenance activities can also 

influence the timing of a pipeline being out of service, in order to avoid the shutdown of multiple 

SCVWD facilities at once.  SCVWD currently conducts an inspection of its PCCP once every 10 

years (visual, sounding, and electromagnetic inspection).  Current repair and renewal strategies 

include installation of seals at leaking joints and structurally reinforcing severely distressed pipe 

sections (SCVWD, 2007).   
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Best Management Practices for PCCP 

In 2012, the Water Research Foundation (WRF) evaluated technologies related to pipeline 

condition assessments, rehabilitation strategies, and monitoring strategies.  The research included 

an industry survey of water utilities to determine what strategies and technologies were being 

used.  The survey was sent out to 64 water utilities, 23 consultants, and 10 service providers (see 

Appendix A-1).  Responses were received from 15 utilities, one consultant, and one service 

provider (Zarghamee et al., 2012).  The results from the survey, along with literature reviewed 

for the WRF research, were used to develop a Best Practices Manual for PCCP (Manual).  The 

Manual provides (1) guidance on the selection of pipeline sections for assessment, (2) a 

summary of the technologies used to identify distressed pipe sections, (3) and guidance on 

pipeline inspection frequencies.   

Selection of Pipeline Sections for Assessment  

Selection of pipelines for assessment is based on a ranking of the criticality of the pipeline 

section.  According to the Manual, the criticality of a pipeline sections is determined based on 

the following (Zarghamee et al., 2012): 

• Determine the Consequence of failure (CoF) – The consequence of failure analysis for a 

pipeline section looks at the impact a pipeline failure would have on public safety, 

interruption of service, political cost, and the cost to the water utility from a loss of public 

trust. 

• Determine the Likelihood of failure (LoF) – The likelihood of failure is established using 

all available data on the pipeline section, which includes the pipeline age, design, and 

historical data, such as failure history and past performance.    
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• Determine System Constraints – System constraints are determined based on the 

redundancy of the pipeline system, the amount of time that the system can be taken out of 

service, and other system constraints such as pipeline dewatering, operational limitations, 

and access issues.    

• Establish Criticality Ranking for Pipeline Sections – Ranking the criticality of pipeline 

sections can be accomplished using high, medium, and low categories. 

Identifying Distressed Pipeline Sections 

Results from the industry survey conducted during the preparation of the Manual indicated that 

the predominant condition assessment technologies used by water utilities are internal and 

sounding inspections, external visual and sounding inspection, electromagnetic inspection, and 

over the line corrosivity and corrosion surveys.   

Internal Visual and Sounding Inspections  

Internal visual inspection is used to identify cracks on the interior of the pipelines and at joints, 

which could be a sign of additional damage to the prestressing wires that provide strength to 

PCCP.  Observations such as circumferential cracking and openings at joints are recorded during 

the inspection.  In addition to visual inspection, sounding inspections are used to identify hollow 

areas in the core of the pipeline.  Both inspections are performed at the same time and have been 

used by water utilities since the late 1980s (Zarghamee et al., 2012).  SCVWD uses internal 

inspections on all pipelines in its system, and sounding inspections are only used on PCCP.  

Preparation efforts needed to allow for internal inspection and sounding include dewatering, 

identifying and establishing access points, and developing a rescue plan for pipe entry.   
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External Inspection of Pipe Surface 

External pipe inspections can include visual and sounding inspections of the pipe surface.  

SCVWD also works with specialized consultants to conduct wire continuity test on its PCCP.  

Wire continuity testing is used as a direct method to detect wire breaks in PCCP.  Results from 

the inspection are often used to verify results from other condition assessment technologies.  

Although this method requires excavation of the pipeline, the excavation often provides 

opportunities for collecting samples of the pipeline coating, soil, and concrete lining for 

laboratory analysis (Zarghamee et al., 2012).      

Electromagnetic Inspection 

Electromagnetic inspection is a nondestructive method used to identify distressed PCCP sections, 

by identifying the location and number of wires broken in a pipe section.  This information is 

used to determine the amount of useful life remaining on a pipeline section, and used to make 

critical decisions regarding pipeline maintenance, repair, and renewal programs (Zarghamee et 

al., 2012).  SCVWD works with specialized contractors to conduct electromagnetic inspections 

on its PCCP.  SCVWD currently uses wire breaks as one of its main bases for the management 

of PCCP.  A majority of SCVWD’s PCCP have been inspected with this method at least once 

over the past ten years, with the goal of completing a second round electromagnetic inspections 

in order to establish a rate of decay for SCVWD’s PCCP.   

Over the Line Corrosivity and Corrosion Surveys  

Over the line corrosivity is used to identify distressed pipe sections by identifying areas along the 

pipeline with high corrosivity.  This method has been in use since the 1980s and although this 

method does not provide information on the level of distress in a pipe section, information from 
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this survey can be used as an indicator of areas that might require additional attention 

(Zarghamee et al., 2012).  SCVWD’s use of this method has been limited thus far.       

The costs associated with identifying distressed pipeline sections vary widely depending 

on the method selected by the water utility, length of pipe, diameter, access to the pipeline, 

environmental concerns, and many other factors.  The costs listed in Table 3 reflect conditions 

that may vary significantly by regions and from typical projects (Zarghamee et al., 2012).   

Table 3:  Approximate Costs Associated with Identifying Distressed Pipeline Sections 

Item Unit Approximate Cost 

Internal visual and sounding inspection Per mile $2k to $3k 

External visual and sounding inspection Per pipe $10k 

Electromagnetic Inspection Per mile $12.5k to $56k 

Over-the-line corrosion/corrosivity survey Per mile $0.5k to $3k 

Acoustic Fiber Optic Monitoring Per mile per year $70k to $170k 

Dewatering Per mile per inch 
diameter 

$300 to $500 

Source:  Zarghamee et. al., 2012, p. 30 
 
Pipeline Inspection Frequencies 

Pipelines must be inspected periodically in order to record the condition of individual pipeline 

sections and allow for decisions to be made on the renewal of any pipeline sections, if needed.  

SCVWD pipelines are typically inspected once every ten years.  The Manual recommends that 

distressed pipelines or pipelines that were manufactured in the 1970s with Class IV wire and 

poor coating may need to be inspected more frequently (Zarghamee et al., 2012).  On average, an 

inspection frequency of once every 5 years is recommended in the manual; however, highly 

distressed pipeline sections nearing the point of rupture could be inspected every 3 years 

(Zarghamee et al., 2012).       
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Renewal Strategies of Comparable Water Utilities 

Pipeline renewal strategies have been developed over the years to increase the useful life of 

PCCP for water utilities.  The 2012 Manual included a questionnaire with three open-ended 

questions regarding PCCP risk mitigation.  The majority of the water utilities that responded to 

the survey employed the following three main strategies: (1) remove and replace entire sections 

of pipe with new pipe, (2) use CFRP to internally reline distressed pipe sections, and (3) 

sliplining distressed pipe with steel (Zarghamee et al., 2012). 

Pipe Section Replacement 

Pipe section replacement is used when there are limited to no restrictions to right-of-way or 

when there are a large number of distressed pipe sections that need to be repaired.  This option 

has a high cost because the cost of excavating and replacing the distressed pipe section with new 

pipe presents the same challenges that are faced with new construction projects.  The cost for this 

option is often higher when the work takes place in an urban environment.  Welded steel pipe is 

typically used as the replacement pipe material whenever the pipe section replacement option is 

selected (Rahman et. al., 2012).  The estimated cost of this option is $20 per linear foot per 

diameter based on responses received as part of the 2012 WRF questionnaire on engineering 

practices on PCCP (Zarghamee et al., 2012, p. 103).     

Carbon-fiber-reinforced polymer (CFRP) Lining 

The CFRP renewal option has been used since the late 1990s, and was first applied inside a 

PCCP line at a nuclear power plant in Arizona.  Several water utilities have used this option to 

renew distressed pipe sections in their systems (Rahman et. al, 2012).  CFRP liners are suitable 

for pipelines that are 30 inches in diameter or greater, because manned entry is required to apply 

the CFRP material inside the pipeline.  CFRP liners typically consist of a primer, thickened 
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epoxy, epoxy reinforcing fabric, and a top coat (Pridmore et. al., 2014).  The greatest benefit of 

using CFRP liners is that all the installation work is performed internally, with little to no 

disruption to above-ground traffic, except at the man-way access point.  Cure time for CFRP can 

take 24 hours or longer, based on how many layers of CFRP are applied to the distressed pipe 

section (Rahman et. al., 2012).  The estimated cost of this option is $40 – $50 per linear foot per 

diameter based on responses received as part of the 2012 WRF questionnaire on PCCP 

engineering practices on PCCP (Zarghamee et al., 2012, p. 103).           

Steel Sliplining 

Steel sliplining involves the insertion of steel pipe to cover full sections of distressed pipelines, 

which serve as the host pipe.  The installation process also involves filling the annular space 

between the steel sliplining and the host pipe with cement-grout.  This renewal strategy is best 

suited for repairs on nearly straight sections of pipelines and when renewal is needed over long 

lengths of distressed pipe sections.  Although this method has been proven to be simple and 

relatively inexpensive, this method does result in a reduction of the flow capacity in the pipeline.  

The estimated cost of this option is $14 per linear foot per diameter based on responses received 

as part of the 2012 WRF questionnaire on engineering practices on PCCP (Zarghamee et al., 

2012, p. 103).      

Table 4 provides a summarized comparison of the three renewal options discussed in the 

findings, and compares impacts related to traffic disruption, environmental and social impacts, 

and construction duration.   
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Table 4:  Comparison of Renewal Strategies 

Repair Method Traffic 
Disruption 

Environmental
/ Social Impact 

Construction 
Duration 

Pipe Section Replacement High High High 

Carbon-fiber-reinforced polymer (CFRP) 
Lining 

Low Low Moderate 

Steel Sliplining Moderate Moderate Moderate 

Source: Rahman et. al., 2012, p. 499. 
 

Table 5 provides a summary of the renewal cost for each strategy discussed in this study.  

Cost data, along with the technical benefits and limitations for the three renewal options 

discussed in this study were obtained as part of the 2012 industry questionnaire and survey 

conducted by WRF (Zarghamee et al., 2012) (see Appendix A-2).      

Table 5:  Renewal Cost Data Based on 2012 WRF Industry Survey 

Renewal 
Strategy 

Technical Benefits Technical Limitations Comparative 
Cost 

Pipeline Section 
Replacement 

Effective for repair of 
pipeline sections. 

No reduction in internal 
diameter. 

Requires excavation of the 
pipe. 

May require field welding of 
the closure piece. 

Requires an extensive work 
area along the pipeline 
alignment.   

$$$ 

$20 per LF – 
inch diameter 

CFRP Lining Requires a limited work area. 

Minimal reduction of the 
internal diameter. 

Reduction of surface 
roughness. 

Requires monitoring of 
CFRP installation. 

$$$$ 

$40 to 50 per 
LF – inch 
diameter 

Slip Lining of 
Pipe Section 

Effective for repair of nearly 
straight sections of pipelines. 

Minimized welding inside the 
pipe. 

Reduction of diameter may 
results in loss of flow 
capacity. 

Requires extensive work area 
and removal of several pipe 
sections. 

$ 

$14 per LF – 
inch diameter 

Source:  Zarghamee et. al., 2012, p. 120 
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PCCP Management Strategies of Comparable Water Utilities 

The risk of PCCP failures has prompted water utilities to begin implementing strategies to 

monitor, inspect, and repair or replace distressed PCCP sections.  The strategies often consists of 

either a localized repair and/or a comprehensive replacement approach, based on the 

consequence of failure, risk of failure, and associated Lifetime Total Costs of the approach 

utilized (Coghill, 2013; Faber et al., 2012).  Localized repairs consists of the removal and 

replacement of distressed sections of PCCP with steel pipe, or use of CFRP, while 

comprehensive replacement consists of the replacement of full sections of PCCP with collapsible 

steel cylinder reliners (Kenny & Rahman, 2014).  Water utilities with PCCP management 

strategies now exist across the United States in agencies such as Washington Suburban Sanitary 

Commission on the east coast, to the Metropolitan Water District of Southern California on the 

west coast (Foellmi et. al., 2015).   

Washington Suburban Sanitary Commission (WSSC) 

Washington Suburban Sanitary Commission (WSSC) was established in 1918 and ranked as the 

8th largest water and wastewater utility in the United States.  WSSC pipeline network consists of 

nearly 5,600 miles of fresh water pipeline and over 5,400 miles of sewer pipeline. WSSC’s 

service area spans nearly 1,000 square miles in Prince George’s and Montgomery counties in 

Maryland, serving 1.8 million residents.  WSSC operates approximately 145 miles of large-

diameter PCCP equal to or greater than 36-inches in diameter (Pure Technologies, n.d.).   

 WSSC’s PCCP management strategy consists of Geographic Information System (GIS) 

maps of the pipeline network, and a risk rating system, which assigns a score for each section of 

PCCP.  The score is the result of an empirical formula, which accounts for a number of risk 

factors such as operational needs, known manufacturing defects, repair history, date last 
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inspected, pipe diameter, and land use.  The risk score is used to establish the order for future 

inspections.  At the current schedule, WSSC inspects 18 miles of pipe per year, with each pipe 

section inspected once every 6 years.  Pipe inspections consist of leak detection, pipe draining, 

visual and sounding inspection, and an inspection for wire breaks in the pipeline.  WSSC utilizes 

a localized repair approach, where pipe sections found to be distressed are either replaced or 

repaired using CFRP.  WSSC is also using continuous monitoring technology to monitor wire 

break activity in the pipeline until the next inspection.  Less than 2 percent of WSSC’s pipe 

segments have been found to be in need of replacement or renewal (WSSC, 2014).  This 

percentage is in line with research conducted by Pure Technologies, a leader in the development 

of innovative inspection technology for pipelines, who have conducted extensive research and 

collected data on over 500 miles of PCCP, and found that the average distress rate is less than 

four percent, with about 1.4% in need of immediate repair.  The study concludes that 98.6% of 

PCCP sections are found to have no damage or low levels of damage and low risk of failure 

(Higgins et. al., 2012).      

Metropolitan Water District of Southern California (MWDSC) 

The Metropolitan Water District of Southern California (MWDSC) was formed in 1928 and is a 

regional wholesaler that delivers water to 26 member public agencies – 14 cities, 11 municipal 

water districts, one county water authority – which in turn provides water to more than 19 

million people in Los Angeles, Orange, Riverside, San Bernardino, San Diego and Ventura 

counties.  MWDSC provides 40 to 60 percent of Southern California’s water supply (MWDSC 

homepage, n.d.).  MWDSC operates approximately 163 miles of PCCP in its system, ranging in 

diameter from 30 inches to over 200 inches (Metropolitan Water District General Obligation 

Refunding Bond, 2015). 
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 The initial components of MWDSC’s PCCP management strategy were established in 

1996 and consisted of pipeline inspection, protection, evaluation, and repair.  MWDSC inspects 

35 to 40 miles of its pipelines each year for wire breaks, with inspections conducted on a 5-year 

cycle.  In addition, MWDSC is using cathodic protection to protect its pipelines, and conducts 

corrosion surveys every 1 to 2 years.  Repairs and replacements were completed on an individual 

basis, and through December 2014, MWDSC had spent $65.3 million, and had estimated that 

continued use of a localized repair approach could result in more than $5.5 billion in costs 

(Foellmi et. al. 2015).   

MWDSC’s revised long-term PCCP management strategy includes a system to rank and 

prioritize PCCP sections based on risk.  The revised strategy utilizes a comprehensive 

replacement approach, which consists of the systematic replacement of the most at-risk pipelines 

from the ranking by relining the PCCP with steel cylinders.  This approach was analyzed to be 

more cost effective than conducting periodic inspections and repairs (Foellmi et. al., 2015).  The 

first stage of this effort would replace 30 miles of PCCP, over an 8 to 10-year period, and cost 

approximately $500 million.  The estimated cost to reline all 100 miles of MWDSC’s PCCP is 

about $2.6 billion (Metropolitan Water District General Obligation Refunding Bond, 2015).  A 

similar approach has been undertaken by the San Diego County Water Authority (SDCWA), 

which has completed the relining of over 40 miles of the 83 miles of PCCP in its system.  The 

SDCWA program is for 30 years, with a budget of $780 million (Northwest Pipe Company, n.d).                 
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ANALYSIS AND CONCLUSION   

The intent of this study is to evaluate pipeline renewal strategies that would be most cost 

effective for SCVWD to implement.  In addition, recommendations are provided for the 

improving of SCVWD’s PCCP management strategies.  The recommendations and analysis 

discussed below are based on identified gaps in SCVWD’s current PCCP management strategy, 

based on a review of best management practices (BMPs) and PCCP management strategies 

currently being implemented by comparable water utilities.   

PCCP Management Program     

A major finding in this study is the need for SCVWD to establish a comprehensive program for 

the management of PCCP.  The components of the management program would address (1) 

inspection to establish a baseline of the current condition of the pipe and record the rate of 

degradation, (2) evaluation to identify any areas in urgent need of repair and determine the 

approximate remaining life of the pipe section, and (3) repair or replacement methodologies.  

Achievement of these objectives would be gained through the use of strategies such as proper 

data management, risk rating, pipe inspections, use of appropriate assessment technologies, and 

the implementation of a cost-effective renewal approach.        

A comparison of the findings of this study indicate that SCVWD is using some of the 

BMPs and strategies of comparable water utilities for PCCP management; however, there are 

certain strategies that would be beneficial for SCVWD to implement.  The table below shows the 

strategies in use among the comparable water utilities reviewed for this study, as well as the 

BMPs developed as part of WRF’s 2012 research for PCCP (Zarghamee et al., 2012). 
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Table 6:  PCCP Management Strategies Comparison 

 WSSC MWDSC SCVWD BMPs 

Data 
Management 

Visual mapping 
of pipelines (GIS 
map) used for 
CoF.  LoF from 
pipe age, wire 
breaks, and 
known pipe 
defects. 

 LoF determined 
based on pipe age 
and wire breaks. 

Establish factors 
CoF, LoF, system 
constraints, and 
factors from 
condition 
assessment (wire 
breaks, failure 
analysis). 

Established 
Risk Rating 
System 

Empirical 
formula and risk 
rating system to 
prioritize 
inspections 

Rank and 
prioritize PCCP 
sections based on 
established risk 
rating system. 

None Establish ranking 
criteria of critical 
pipeline sections 
(e.g. use high, 
medium, and low 
categories).   

Pipeline 
Inspection 
Frequency 

18 miles of pipe 
per year, 6 year 
inspection cycle. 

35 to 40 miles of 
pipe per year, 5 
year inspection 
cycle. 

Varying lengths 
of pipeline per 
year, 10 year 
inspection cycle. 

Once every 5 
years or every 3 
years for highly 
distressed 
pipeline sections 

Inspection 
Technology 
Utilized 

Leak detection, 
internal visual 
and sounding 
inspection, and 
EM inspection for 
wire breaks 

EM inspection for 
wire breaks, and 
corrosion surveys 
every 1-2 years. 

Internal visual 
inspections and 
EM inspections 
for wire breaks. 

(1) Internal visual 
and sounding, (2) 
external visual 
and sounding, (3) 
EM inspections, 
and (4) over-the-
line corrosion/ 
corrosivity survey 

Renewal 
Strategies 
Implemented 

Pipe sections are 
either replaced or 
repaired using 
CFRP 

Systematic 
replacement of 
most at risk pipe 
sections by 
relining PCCP 
with steel 
cylinders.   

Pipe sections are 
replaced with 
steel pipe, 
repaired with 
CFRP, or welded 
steel liners. 

(1) Remove and 
replace entire 
sections of pipe 
with new pipe, (2) 
CFRP lining of 
distressed pipe 
sections, and (3) 
sliplining 
distressed pipe 
with steel. 

Source: Data for WSSC from Pure Technologies, n.d., for MWDSC from Foellmi et. al., 2015, 
for SCVWD from SCVWD, 2007, and BMPs from Zarghamee et al., 2012.   
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Data Management 

To assist SCVWD’s data management for PCCP, SCVWD should leverage the use of maps in 

GIS and use the maps to make determinations on the consequence of failure for each PCCP 

section in its system.  If SCVWD leveraged the GIS mapping of the pipelines, it would assist 

them in understanding the relationship between the PCCP in the ground and the land above.  

Factors for the consequence of failure should include land use, environmental impacts, and 

potential impacts from flooding.  In addition, factors beyond wire breaks, pipe age, and the 

duration since the last pipe inspection are needed in order to update SCVWD’s pipeline 

management strategies for the likelihood of a PCCP failure.  Repair history and known 

manufacturing defects such as the type of joints and class of the prestressing wire used, and 

system constraints should be documented for each pipe segment and used to determine the 

likelihood of failure for each section.  System constraints and data from previous condition 

assessments should also be collected for each pipe section.       

Risk Rating System 

As shown in the Findings, SCVWD has not implemented a risk ranking system for PCCP 

management.  A risk rating system should be developed using the likelihood of failure, 

consequence of failure, system constraints, and condition assessment factors collected from the 

data management efforts.  WSSC uses a risk rating system to develop a safety analysis score, 

which is used for rating pipelines 36 inches in diameter and larger, and this model could be 

adopted by SCVWD.  Alternatively, SCVWD could adopt a tool developed by WRF to provide 

water utilities with a method to integrate the cost of failure into decision making on asset 

management (Grigg et. al., 2013).  The risk rating system should be performed for each section 

of pipe to identify any areas in urgent need of repair and determine each section’s probability of 
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failure.  The development of a tool or empirical formula for calculating the rating for all PCCP 

would guide SCVWD decisions makers on prioritizing which pipe sections need to be inspected 

and renewed.  

Figure 2:  Risk Rating System Development Flow Chart 

 

Pipeline Inspection Frequency 

The pipeline inspection frequency for PCCP should be revised from 10 years to 5 years, to match 

the inspection frequency listed in the Manual (Zarghamee et al., 2012) and to be in line with 

comparable water utilities.  This would require increasing the length of inspections each year 

from approximately 8 miles to 16 miles.  Operational and budgetary considerations would need 

to be further explored in order to determine whether such an aggressive inspection schedule is 

feasible for SCVWD to implement for its PCCP.      

Inspection Technology 

The use of electromagnetic inspection for the identification of wire breaks in PCCP is a practice 

used by comparable water utilities and is a recommended BMP.  SCVWD should continue to use 
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electromagnetic inspections in order to identify wire breaks in PCCP.  SCVWD should also 

include the use of leak detection and internal sounding of the pipeline with each inspection. 

Renewal Strategies 

Pipeline renewal strategies vary from one water utility to another and from one region to another.  

SCVWD has implemented CFRP, steel liners, and the removal and replacement of distressed 

and/or failed pipe sections in its system.  Renewal strategies should be in accordance with a long 

term strategy to replace longer reaches of distressed pipe sections versus repairing pipe sections 

individually.  The actual renewal strategy implemented would be based on the land use in the 

area of the pipe section, i.e. open land areas, urban areas, major roads, and similar features.     

Cost-effectiveness Analysis 

Cost-effectiveness analysis is used to determine “the least expensive” way to achieve a given 

objective; hence, the cost-effective analysis is used in this study since the benefits from pipeline 

renewal strategies are the same.  For this study, a renewal strategy is cost-effective if, on the 

basis of the lifetime total cost analysis of competing strategies, it is determined to have the 

lowest costs expressed in present value terms.  The cost-effective analysis in this study is based 

on direct cost to SCVWD, as indirect cost require much more effort to determine, and social cost 

are often difficult to quantify and would require more research (Makar & Kleiner, 2000).          

Pipeline Dewatering and Inspection Cost 

A cost estimate for dewatering and performing a complete cycle of inspections of the District’s 

PCCP is shown in the table below.  The cost estimate covers a five-year inspection period, and 

assumes all SCVWD PCCP pipelines would be inspected at least once during the five year 

timeframe.  The cost estimate assumes SCVWD would need to mobilize two separate pipeline 

inspection teams per year, to complete the inspection of all PCCP in its pipeline network.  Tables 
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7 and 8 show the dewatering and pipeline inspection cost estimate for SCVWD’s PCCP.  Unit 

cost data information for dewatering and pipe inspection were obtained from the 2012 WRF 

industry survey (Zarghamee et al., 2012, p.103).       

Table 7:  Pipeline Dewatering Cost Estimate 

Pipe Diameter  Length Unit Costs Total 

DEWATERING EXPENSES ($500/mile/inch diameter) 

60 inches 4.75 miles $30,000 $142,500 

66 inches 15 miles $33,000 $495,000 

72 inches 14.5 miles $36,000 $522,000 

78 inches 14.5 miles $39,000 $565,500 

96 inches 20.7 miles $48,000 $993,600 

120 inches 7.9 miles $60,000 $474,000 

SUBTOTAL DEWATERING EXPENSES $3,192,600 

Engineering Support and Administration (15%) $478,890 

TOTAL DEWATERING EXPENSES (2012 dollars) $3,671,490 

TOTAL DEWATERING EXPENSES (2016 dollars) $3,950,814 

Source:  Data for dewatering cost per mile per inch from Zarghamee et al., 2012 and SCVWD 
pipe length and diameter data from SCVWD, 2007. 
 
Table 8:  Pipeline Inspection Cost Estimate 

Description Quantity Unit Costs Total 

Leak Detection Inspection 77 miles $11,000 $850,850 

Internal Visual and Sounding Inspection 77 miles $17,000 $1,314,950 

Electromagnetic Inspection 77 miles $25,000 $1,933,750 

Mobilization and Reporting (assume 30% markup) $1,229,865 

SUBTOTAL PIPE INSPECTION EXPENSES $5,329,415 

Engineering Support and Administration (15%) $799,412 

TOTAL PIPE INSPECTION EXPENSES (2012 dollars) $6,128,827 

TOTAL PIPE INSPECTION EXPENSES for a 5-year cycle 
inspection program (2016 dollars) $6,595,102 

Source:  Data for SCVWD pipe length and diameter data from SCVWD, 2007 and pipe 
inspection expense data from Zarghamee et al., 2012. 
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The cost estimate above would be applicable to any renewal approach implemented by SCVWD 

and includes an additional 15% of the total costs of the pipeline dewatering and inspection to 

account for contract administration and engineering support.  In order to update the 2012 cost 

estimate to 2016 dollars, the 2012 cost estimate is multiplied by an inflation rate of 1.85%.  The 

inflation rate used in this study was determined based on data from the United States Bureau of 

Labor Statistics, on the average annual inflation rates from 2012 to 2016 (see Appendix A-4).  

The cost estimate does not include items such as traffic control and permitting costs.   

No Action/Status Quo Approach 

Under the “No Action/Status Quo” approach, the frequency of PCCP condition assessments 

would remain on a 10-year cycle with distressed pipe section renewal occurring during each 

inspection. Under this approach, SCVWD would conduct no more than two pipeline inspections 

per year, on pipelines of varying lengths.  Renewal of distressed pipe sections would be 

completed using a localized repair approach, and would involve open cut and replacement with 

steel pipe, repair with CFRP, or the use of welded steel liners, depending on the ease of access to 

the distressed pipe section.  This approach is not consistent with BMPs, since the approach does 

not meet standards currently being used by comparable water utilities due to the 10-year cycle 

between pipe inspections.        

Inspection and Localized Repair Approach 

The “Inspection and Localized Repair” approach increases the frequency for the inspection of all 

PCCP in the system from a 10 year to 5-year cycle, with distressed pipe section renewal 

occurring during each inspection.  The cost for implementing this approach includes the costs 

necessary to dewater, inspect the pipeline, and renew any distressed pipeline segments found 

during the inspection for the lifetime of the pipeline, based on the assumption that 98.6% of the 



 

Ndah, The Buried Pipeline Replacement Era        Page 44 

pipelines inspected will be in a good condition, while 1.4% of the pipelines would require 

renewal (Higgins et. al., 2012).  This approach also includes annual cost for a third party acoustic 

monitoring for the lifetime of the pipeline.  The cost information used in this study to analyze 

this approach are based on 2012 WRF industry survey information collected (Zarghamee et al., 

2012) and reflects water utility experiences that may differ from typical projects.   

In addition to pipeline inspection and dewatering cost, this approach also includes cost 

for acoustic monitoring of the pipeline, which would be required for the lifetime of the pipeline.  

Installation costs for acoustic monitoring includes the cost for cables, hardware, and third party 

monitoring cost, estimated at $100,000 per mile of cable installation, $350,000 per computer for 

every 10 miles of cable installed, and annual third party monitoring costs of about $13,000 per 

mile (Litterski, 2013; Zarghamee et al., 2012 ).  A breakdown of the acoustic monitoring costs is 

provided in Table 9.  

Table 9:  Acoustic Monitoring Cost Estimate 

Description Quantity Unit Costs Total 

Installation Cost 

Fiber cable installation 77 miles $100,000 $7,735,000 

Monitoring Hardware 8 units $350,000 $2,800,000 

TOTAL INSTALLATION COST (2013 dollars) $10,535,000 

TOTAL INSTALLATION COST (2016 dollars) $11,130,577 

Monitoring Cost 

3rd Party Monitoring Cost per year  

(2013 dollars) 77 miles $13,200 $1,021,020 

ANNUAL 3rd Party MONITORING COST PER YEAR (2016 
dollars) $1,078,742 

 Source:  Acoustic monitoring cost data for from Litterski, 2013 and Zarghamee et al., 2012.  
SCVWD pipe length and diameter data from SCVWD, 2007.    
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 The pipeline renewal strategies analyzed under the inspection and localized repair 

approach includes open-cut replacement and CFRP.  The analysis uses cost data from the 2012 

WRF industry survey (Zarghamee et al., 2012).  The unit cost obtained from the 2012 WRF 

industry survey data and used in this analysis for open-cut replacement and CFRP was $20 and 

$40 per linear foot – inch diameter respectively (Zarghamee et al., 2012).  The analysis assumes 

a 50 year project lifecycle for the lifetime total costs of this approach.  Table 10 provides cost 

estimates for the renewal strategies for this approach.  The cost in the table includes an additional 

15% of the total costs of the repair approach to account for contract administration and 

engineering support.  Also, the 2012 cost estimate was updated to 2016 dollars, using a 1.85% 

inflation rate.   
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Table 10:  Inspection and Localized Repair Approach Cost Summary  

Diameter 
(inches) 

Assumed Length of 
Distressed Pipe in feet 

Open-cut 
Replacement CFRP 

60 352 $422,400 $844,800 

66 1,109 $1,463,880 $2,927,760 

72 1,072 $1,543,680 $3,087,360 

78 1,072 $1,672,320 $3,344,640 

96 1,531 $2,939,520 $5,879,040 

120 584 $1,401,600 $2,803,200 

SUBTOTAL LOCALIZED REPAIR 
APPROACH FOR ONE CYCLE OF 5 
years $9,443,400 $18,886,800 

Engineering Support and Administration 
(15%) $1,416,510 $2,833,020 

TOTAL LOCALIZED REAPIR 
EXPENSES FOR ONE CYCLE (5 YEARS) 
IN 2012 dollars $10,859,910 $21,719,820 

TOTAL LOCALIZED REAPIR 
EXPENSES FOR ONE CYCLE (5 
YEARS) IN 2016 dollars $11,686,121 $23,372,241 

TOTAL DEWATERING EXPENSES 
(2016 dollars) $3,950,814 $3,950,814 

TOTAL PIPE INSPECTION EXPENSES 
for a 5-year cycle inspection program (2016 
dollars) $6,595,102 $6,595,102 

TOTAL LOCALIZED REPAIR COST 
OVER ONE 5 YEAR CYCLE $22,232,037 $33,918,157 

Acoustic Monitoring Installation Cost $11,130,577 $11,130,577 

Annual 3rd Party Acoustic Monitoring Cost $1,078,742 $1,078,742 

TOTAL LIFETIME COST  OVER 50 
YEARS  

 
$506,717,446 

 
$718,640,011 

Source:  Data for SCVWD pipe length and diameters from SCVWD 2007 and pipeline renewal 
cost data from Zarghamee et al., 2012.     
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Comprehensive Replacement Approach  

The pipeline renewal strategy used for the comprehensive replacement approach is the use of 

steel sliplining.  The analysis uses cost data from the 2012 WRF industry survey and estimates 

the costs for steel sliplining at $14 per linear foot – inch diameter (Zarghamee et al., 2012).  

Total lifetime cost for this approach assumes bond financing at a 5.5% interest rate and a 30 year 

lending period.  The analysis includes the cost for one initial round of inspections, to prioritize 

the order of repairs, and dewatering in order to perform the required repairs.  Table 11 provides 

cost estimates for the comprehensive replacement approach. 

Table 11:  Comprehensive Replacement Approach Cost Summary 

Diameter Length (miles) Length (feet) Steel Sliplining 
60 4.75 25,080 $21,067,200 
66 15 79,200 $73,180,800 
72 14.5 76,560 $77,172,480 
78 14.5 76,560 $83,603,520 
96 20.7 109,296 $146,893,824 
120 7.9 41,712 $70,076,160 

COMPREHENSIVE REPLACEMENT APPROACH $471,993,984 
Engineering Support and Administration (15%) $70,799,098 
TOTAL COMPREHENSIVE REPLACEMENT APPROACH COST 
IN 2012 dollars $542,793,082 
TOTAL COMPREHENSIVE REPLACEMENT COST IN 2016 
dollars  
at 1.85% inflation rate $584,088,206 
TOTAL DEWATERING EXPENSES (2016 dollars) $3,950,814 
TOTAL PIPE INSPECTION EXPENSES for a 5-year cycle inspection 
program (2016 dollars) $6,595,102 
TOTAL COMPREHENSIVE REPLACEEMNT APPROACH 
COST $594,634,122 
  
TOTAL LIFETIME COST OVER A 30 YEAR LENDING 
PERIOD $1,237,966,906 

Source:  Data for SCVWD pipe length and diameters from SCVWD 2007 and pipeline renewal 
cost data from Zarghamee et al., 2012. 
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The cost in the table above includes an additional 15% of the total costs of the pipeline 

dewatering and inspection to account for contract administration and engineering support.  In 

order to update the 2012 cost estimate to 2016 dollars, the 2012 cost estimate is multiplied by an 

inflation rate of 1.85%.   

Economic Implications 

The cost of a properly managed pipeline network is often less than the cost associated with pipe 

failures or the cost of implementing an unnecessarily conservative renewal strategy.  The annual 

cost for the selected pipeline renewal approach would need to be funded by SCVWD through the 

cost per acre-foot of water consumed by SCVWD’s municipal and industrial users.  These costs 

would be passed on to the wholesalers, and ultimately to the consumers, who would need to 

understand the increased cost of water as an investment in system reliability and safety.  In order 

to determine the revenue required to implement either pipeline renewal approach, the annual cost 

for each approach is distributed into the total water consumed by municipal and industrial water.  

For this study, the total volume of water used by SCVWD municipal and industrial users is about 

201,000 acre-feet, based on data from SCVWD’s FY 2015-16 Protection and Augmentation of 

Water Supplies report.   

 Table 12:  Pipe Renewal Revenue Requirement per Acre-foot 

Renewal Strategy 
Lifetime Total Cost 

over 50 years 
Equivalent Annual 

Expense over 50 years 

Revenue 
Requirement per 

Acre-Foot 
Localized Repair Approach 
Open-cut Replacement $506,717,446 $6,246,838 $31 
CFRP $718,640,011 $8,859,430 $44 
Comprehensive Replacement Approach 
Steel Sliplining $1,237,966,906 $15,261,718 $76 

Source:  Data for pipeline renewal cost data from Zarghamee et al., 2012, dewatering costs, and 
pipe inspection expense data from Zarghamee et al., 2012. 
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The revenue requirements per acre-foot of water consumed represents the amount water 

rates would need to be increased in order to fund a PCCP renewal approach for SCVWD.  For 

the purpose of this study, the total lifetime cost for implementing PCCP renewal approaches 

were spread out over a 50 year project period for cost comparison purposes, and assumes an 

inflation rate of 1.85%.     

Conclusion and Recommendations 

It is recommended that SCVWD leverage use of GIS mapping of its pipelines, to assist with 

understanding the relationship between the PCCP in the ground and the land use above the 

pipeline.  This would help SCVWD with the decision making on the consequence of failure for 

each PCCP section in its system and the information could be used to and establish a risk rating 

system to guide decisions on what pipe sections are in need of urgent repair.  It is also 

recommended that SCVWD revise its pipeline inspection frequency to a 5-year cycle on its 

PCCP to be in line with BMPs and comparable water utilities.  The operational needs of the 

SCVWD system would need to be evaluated in order to determine the feasibility of 

implementing such an aggressive inspection schedule for PCCP.      

The cost-effectiveness analysis found that the Localized Repair approach using open-cut 

replacement or CFRP would be the most cost effective strategy for SCVWD to implement.  This 

approach would reduce the risk of pipeline failures and would be more sustainable in terms of 

lifetime total costs and economic implications to rate payers.  In some areas, steel sliplining may 

also be installed, but as noted in the Findings, use of steel sliplining is most suited for straight 

sections of pipe, where there is enough area to establish access pits for the steel cylinders used 

for the slip lining, and in areas where there are multiple distressed pipe sections in close 

proximity.   
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The distress rate used for the cost-effectiveness analysis in this study assumes 1.4% of 

pipelines inspected would be in need of immediate repair.  As SCVWD completes more cycles 

of inspections on its PCCP, an assessment of the pipe degradation rate would need to be 

completed, as an increase in the distress rate would influence whether it is most cost-effective to 

continue using a Localized Repair approach, or whether to switch to a Comprehensive 

Replacement approach for all PCCP in the system.        
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APPENDIX A 

Appendix A - 1:  List of 2012 WRF Survey Respondents 

 

Source: Zarghamee et al., 2012, 103  
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Appendix A - 2:  2012 Survey Response Regarding Cost/Benefit of Renewal Strategy 

 

Source: Zarghamee et al., 2012, p. 120 
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Appendix A - 3: Summary of Mitigation Strategies from 2012 WRF Survey 

Source: Zarghamee et al., 2012, p. 117. 
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Appendix A - 4: Rate of Inflation for 2012 to 2016 

 

Source:  United States Bureau of Labor Statistics. 
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