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                                                          ABSTRACT 

    Hybrid Similarity Function for Big Data Entity Matching  

with R-Swoosh 

 

by Vimal Chandra Gorijala 

 
Entity Matching (EM) is the problem of determining if two entities in a data set refer 

to the same real-world object. For example, it decides if two given mentions in the data, 

such as “Helen Hunt” and “H. M. Hunt”, refer to the same real-world entity by using 

different similarity functions. This problem plays a key role in information integration, 

natural language understanding, information processing on the World-Wide Web, and 

on the emerging Semantic Web. This project deals with the similarity functions and 

thresholds utilized in them to determine the similarity of the entities. The work contains 

two major parts: implementation of a hybrid similarity function, which contains three 

different similarity functions to determine the similarity of entities, and an efficient 

method to determine the optimum threshold value for similarity functions to get 

accurate results. 
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                                                                   CHAPTER 1 

Introduction 

In Entity Matching, structured data is given as input and compared with the entities in 

the knowledge base and matching entities are identified in a ranked order. For instance, 

the mailing lists may have different entries referring to the same physical address, but 

the entries may be slightly different with different spellings or missing some 

information. Using various matching techniques, the matching entries are found. The 

knowledge base has both structured and unstructured datasets. Solved in a generic 

manner, entity matching will take O (n*n) comparisons. For instance, if there 10 million 

records available it would take 100 million comparisons to find the matching records. 

To calculate the matching entities in effective manner techniques like parallel 

implementation, dedoop, etc.  are being used for large scale entity matching. The 

following are sub-tasks involved in large scale entity matching: 

i) Evaluation: This task focuses on assessing the quality of the data in the knowledge 

base like attributes of the datasets, matching attributes, missing values for each attribute 

etc. 

ii) Pre-processing: This task involves modifying the raw data using techniques like 

stemming, lemmatization, standardization, filling in missing values, stop words 

removal, attribute verification, conversion from upper case to lower case etc. This step 

increases the chances of finding the matching instances. 

iii) Candidate Calculation: In this task, the matching candidates to the input given are 

calculated. For example, if we are searching for a person’s bank account information it 

is inefficient to search all the data as there are many dissimilar candidates. To overcome 

this, similar candidates to the input are calculated using approaches like blocking. 
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Catch, these candidates contain roughly more than 80% similar candidates to the input 

records given. 

iv) Classification: In here, the matching candidates from the above step are fed to a 

similarity function and classified as match and non-match. 

This project offers a solution to the last step of the large-scale entity matching 

‘Classification’. The main aim is to classify the entities as match and non-match with 

good accuracy rate on a large scale. 

This project involves implementation of two strategies: different similarity functions 

like Jaro similarity, edit-distance similarity, Jaccard similarity, etc. to classify the 

entities and a hybrid similarity function, which contains three similarity functions to 

classify the entities as match and non-match. 

It also involves implementation of an efficient algorithm ‘R-Swoosh’ to reduce the 

number of comparisons while calculating the similarity score between entities. This 

algorithm reduces the unnecessary comparisons and decreases the time taken for 

execution. I have also implemented an efficient strategy to define the optimum 

threshold value for the similarity functions. By using this optimum threshold value, we 

can obtain better accuracy of results.  

Real world practical datasets are used to evaluate this project. Apache Spark is used to 

implement the whole project in a distributed way and it can handle large-scale datasets. 

The challenges regarding the parallel implementation of large-scale entity matching are 

addressed in the sections below. 

Other concerns regarding previous steps to Classification in large scale entity matching 

are not in the scope of this project and therefore will not be discussed below. 
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                                                           CHAPTER 2 

Related Works 

This chapter consists of introduction to similarity functions, hybrid similarity function, 

Rule based matching and Swoosh algorithm.  

2.1 Similarity Function 

Similarity function is defined as a distance metric between different data points. This 

function calculates the distance score between the data points and compares it with a 

pre-defined threshold value. If the calculated distance is greater than the threshold 

value, the data points are a match otherwise they are considered as non-match. There 

are different types of similarity functions available. Based on the type of data points we 

can choose the similarity function. Some of them are:  

Jaccard Distance: The Jaccard similarity coefficient is a statistic used for comparing 

the similarity and diversity of sample strings. [6] The Jaccard coefficient measures 

similarity between finite sample sets. [6] It is defined as the size of the intersection 

divided by the size of the union of the sample sets: J (A, B) = (|A ∩ B|/|A U B| (If A 

and B are both empty, we define J (A, B) = 1.) 0≤ J (A, B) ≤ 1. [6] 

Jaro Similarity Function: The Jaro similarity defines ‘matching characters’ as 

characters in strings s1 and s2 that are (1) the same, and (2) whose indices are no farther 

than.[7] If m is the number of matching characters between strings x and y and t is the 

number of transpositions, the Jaro distance is defined as 1/3((m/x+m/y + (m-t/m)) when 

m is greater than 0, and 0 otherwise. [7] 
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Edit Distance: Given two strings ‘a’ and ‘b’, the edit distance d (a, b) is the minimum-

weight series of edit operations that transforms ‘a’ into ‘b’. [5][8] Each of the operation 

has unit cost. Some of the simplest sets of edit operations are 

Insertion of a single symbol: If a = uv, then inserting the symbol x produces uxv. 

[5][8]This can also be denoted ε→x, using ε to denote the empty string. [5][8] 

Deletion: Deletion of a single symbol changes uxv to uv (x→ε). [5][8] 

Substitution: Substitution of a single symbol x for a symbol y ≠ x changes uxv to uyv 

(x→y). [5][8] 

2.2 Hybrid Similarity Function 

The hybrid similarity function is combination of different similarity functions. This 

function calculates the distance between data points using different similarity functions 

in it. Then we take all the distances calculated and apply different techniques on them 

to make it into a single distance measure. This distance measure is compared with the 

pre-defined threshold value. If the calculated distance is greater than the threshold 

value, the data points are a match otherwise they are considered as non-match. The 

techniques used to combine different distances calculated are taking the average of 

them, assigning different weights to them basing on the importance, etc. 

2.3 Rule Based Matching: 

In rule based matching usually rules are defined basing on the attributes of the database 

we are dealing with. Initially a set of record matching rules are defined and basing on 

them, the similar records are found. For instance, a record matching rule can be “if the 

records have same telephone number and similar name, they are same.” 
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These record matching rules are defined mainly based on the database schema we are 

dealing with. If Schema changes, the rules which are previously defined does not apply.  

However, from these rules defined initially we can implement an efficient method to 

find the optimum threshold value for different similarity functions we utilize. The 

optimum threshold value is determined based on the observation different similarity 

functions and thresholds have redundancy. Based on it we can discard the inappropriate 

similarity functions. 

2.4 Apache Spark Framework 

For large scale Entity Matching Parallel programming is the best approach. The best 

example for the parallel programming is MapReduce model. Generally, MapReduce 

framework, Apache Spark, etc. are famous for parallel implementation of datasets. 

Spark can run on different file systems including HDFS. Now-a-days Apache Spark is 

considered more over MapReduce framework for parallel programming. Spark is 100x 

faster than Hadoop and it handles most of operations ‘in memory’, copying datasets 

from distributed physical storage into far faster logical RAM memory. [1] That is why 

I have chosen Apache Spark to implement the hybrid matcher function with R-Swoosh.  
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                                         Figure 1: Apache Spark Architecture [1] 

1.  Each application gets its own executor processes. [1] They exist for whole 

duration of the application and runs the tasks in multiple threads. [1] 

2. It supports the local mode by the whole setup in YARN cluster. [1] It can also 

be run in standalone mode. [1] 

3. The driver should run closer to worker nodes as it schedules the tasks overall 

cluster. [1] Mainly jobs are submitted to the spark framework using the spark 

submit script. [1] The driver should be network accessible from the worker 

nodes. [1] 
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                                                          CHAPTER 3 

DEFINITION, EXISTING SOLUTIONS AND PROPOSED SOLUTION  

3.1 Definition: 

3.1.1 Problem Formulation: 

Given a large dataset, the steps before Classification in the large scale entity matching 

create candidate pairs (Entity pairs) with the help of efficient techniques like blocking. 

These candidate pairs are considered as worthy candidates for matching task. How to 

classify these pairs as match and non-match in a scalable and distributed manner in a 

minimal amount of time with good accuracy. 

3.1.2 Terminology: 

The following are the terms used in the report frequently. 

Entity: It represents a concept or record, which has a meaning to itself completely. In 

this project context, entity represents a record with unique properties and id. It may 

include persons, records, subjects, etc. 

Candidate Pair: An entity pair derived from the blocking technique. This pairs are 

obtained by rigorous filtering of entity comparisons. They are considered as potential 

pairs for matching. 

Threshold: A numerical value defined based on the attribute. The similarity distance 

calculated between the entities is compared with it. 

3.2 Existing Solutions: 

There are many solutions defined to carry out the matching task in a parallel manner on 

a large scale. This is also called as Entity Matching over Big Data. Some of them are 

following: 
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3.2.1 Learning based approach: 

In learning based approach, we use learning algorithms like Decision Tree, SVM, etc. 

while matching to determine the entities are match or not. The main problem for this 

approach is that initially training data should be provided for the learning algorithm. 

This data should be prepared manually by labelling a sample set of candidate pairs as 

match or non-match. This is a very hectic process as domain experts should carry out 

labelling and they need to analyze lot of attributes to determine whether two entities 

are match or non-match. 

 

 

                                         Figure 2: Learning Approach 
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There are some learning based frameworks like Active Atlas, MARLIN, Multiple 

Classifier System, Operator Trees, etc., which can be used to carry out the learning 

based strategy. This kind of approach is not scalable for large scale entity matching.  

 3.2.2 Non-Learning based approach: 

In the non-learning based approach, we can use different distance functions to compute 

the similarity between the entities and classify them as match and non-match. For the 

sub-tasks until candidate calculation, the implementation is the same but differs only at 

instance, attribute and relationship level. In learning approaches, learning algorithms 

are used while matching and not used in non-learning approaches. The main advantage 

here is that there is no need to label the data manually. Here a lot of distance metrics 

like edit distance, Tf-Idf, levenstein distance, etc. can used to determine the similarity 

of the entities. 

 

 

                                      Figure 3: Non-Learning Approach 
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There are some frameworks without training like MOMA (Mapping based Object 

Matching), SERF (Stanford Entity Resolution Framework), etc. which can be used to 

classify the entities. The frameworks without training uses some distance 

computational measures and similarity functions to match the records. These 

frameworks can be implemented using big data technologies and they are scalable to 

big data. There are other approaches like Active learning, rule based matching, etc. that 

can be used to carry out the matching task. 

3.3 Proposed Solution: 

I have chosen to implement the non-learning approach. To scale the solution to larger 

data I have implemented it in Apache Spark. The following are different parts of the 

proposed solution. 

3.3.1 Hybrid Similarity Function:    

The hybrid similarity function is a combination of different similarity functions, which 

decides the candidate pair as a match or non-match. Initially the candidate pairs 

obtained after the blocking strategy are fed as input to this function. I have chosen to 

implement a matcher function, which contains three similarity functions. They are Jaro 

similarity, edit-distance similarity and Jaccard similarity. The main goal is to run this 

hybrid similarity function parallely on different nodes to get better performance. This 

function calculates a similarity score for the candidate pairs taken as input and 

compares it with the threshold value. The pairs with score greater than the threshold 

value are considered as potential pairs. 

The similarity score for the candidate pairs is calculated based on the individual scores 

obtained for the pairs from the three similarity functions. Certain weights are assigned 

to resulting scores from the similarity functions. Weighted average is taken from them 
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and if it is greater than the threshold value the candidate pair is considered as a potential 

match. I have followed other approaches like considering average of the individual 

distance scores calculated, considering highest value among calculated distance scores, 

etc. While merging distance scores calculated by three similarity functions. 

3.3.2 R-Swoosh Algorithm:    

To reduce the unnecessary comparisons occurring on different nodes we have used R-

Swoosh algorithm. The following is the procedure of the algorithm: 

i) Initially it takes two entities, compare them and if they match they are merged as one 

set. The next incoming entity is compared with only one of the entities in the previous 

set and if it matches, the entity is merged to the same set. 

ii) If it is not matched, another set is created with the entity in the cases above. This  

process goes on continuously. 
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                                 Figure 4: R-Swoosh Algorithm [3] 

 

By using this algorithm, we can avoid unnecessary comparisons and the performance 

is increased. All the entity-to-entity comparisons are avoided and only selected 
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comparisons happen. The O (n2) time complexity is reduced. At the end the entities 

which are matching are derived. 

3.3.3 Optimum Threshold value:    

In General the threshold value used to evaluate the distance score calculated by the 

similarity function is given manually. It is guessed based on the type of attribute we are 

dealing. For instance, if the attribute is string and threshold value can be anywhere 

between [0, 1] for the similarity function chosen, but if the attribute is gender the 

threshold value should be exactly 1. Threshold value where the precision or recall will 

be maximum is termed as optimum threshold value. It is calculated based on the 

observation different similarity functions and thresholds have redundancy. [4] 

 

The rule based matching discussed above is used to derive the optimum threshold value. 

Initially based on the attributes of the dataset attribute matching rules and record 

matching rules are derived. Based on the theorems defined in the paper “How Similar 

is Similar” we can calculate the optimum threshold value. Initially a sample set of 

entities from the dataset are taken and positive pairs and negative pairs are separated 

from them 
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  Theorem 1:  

 

                                 Figure 5: Theorem 1 [4] 

 

According to this theorem, we will subtract entity pairs obtained from applying two 

threshold values to a similarity function. At least one pair from the resultant set should 

match with the positive set defined; otherwise we can prune the lower threshold value 

among them. By using this theorem, we can eliminate many threshold value options. 

This process is repeated continuously and at the end a set of threshold values are 

derived. 
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Theorem 2: 

 

                                         Figure 6: Theorem 2 [4] 

This theorem is used to further prune threshold values obtained from the above set. 

According to this theorem, we will subtract entity pairs obtained from applying two 

threshold values to a similarity function from the set. At least one pair from the resultant 

set should not match with the positive set defined, otherwise we can prune the higher 

threshold value among them, as it is redundant. This process is repeated continuously 

and at the end a set of threshold values are derived. 
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Theorem 3:  

 

                                         Figure 7: Theorem 3 [4] 

This theorem is used to further prune threshold values obtained from the above set. 

According to this theorem, we will take the sets obtained from above step for two 

different similarity functions. In them, one threshold value from each set is taken and 

based on it the similar pairs and dissimilar pairs are calculated. If similar and dissimilar 

pairs in both cases are equal, then we can prune one threshold value from it. 
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By implementing these theorems in a sequential manner, we can narrow down the 

threshold values for a similarity function to a very small set. Now we will apply these 

threshold values on a sample set of data, calculate precision, and recall percentages of 

the result set. Whichever value has higher precision and accuracy will be considered as 

optimum threshold value for that similarity function.  
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                                                            CHAPTER 4 

                                                    IMPLEMENTATION 

4.1 Implementation Details: 

For the implementation of the proposed solution, I have chosen Apache Spark 

framework. Initially I have experimented on smaller datasets and later done it on the 

larger ones and obtained satisfactory results. The following is the procedure for 

implementation. 

The candidate pairs obtained from the blocking are considered as input. From them we 

need to extract the similar entities. The following is an input sample, which is fed to 

the spark implementation. 

Input: 

(2.0,Shum,SelinaWaiSheung)(2.0,Shum,SelinaWaiSheung) 

(2.0,Shum,SelinaWaiSheung)(2.01,Pham,CuongHung) 

(2.0,Shum,SelinaWaiSheung)(2.02,Kerali,HenryG.R.) 

(2.01,Pham,CuongHung)(2.01,Pham,CuongHung) 

(2.01,Pham,CuongHung)(2.02,Kerali,HenryG.R.) 

(2.01,Pham,CuongHung)(2.02,Kerali,HenryG.R.) 

(2.02,Kerali,HenryG.R.)(2.02,Kerali,HenryG.R.) 

(2.02,Kerali,HenryG.R.)(2.02,Kerali,HenryG.R.) 

(2.02,Kerali,HenryG.R.)(2.02,Kerali,HenryG.R.) 

(2.02, Kerali, HenryG.R.)(2.03, Basu, Ananya) 

(2.02, Kerali, HenryG.R.)(2.03, Basu, Ananya) 

(2.02, Kerali, HenryG.R.)(2.04, Montes-Negret, Fernando) 
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The following is the detailed step-by-step explanation of implementation in spark. 

Pre-Processing Step: 

 

                                          Figure 8: Spark code for pre-processing 

 

Initially the input file is read through spark context and all the data in the text file is 

converted into RDD. The entity pairs are split into single entities and pre-processing 

like braces removal is applied as indicated in the above code. Then map step is applied 

on the resultant RDD from the pre-processing step. 

Map Step: 

 

                                          Figure 9: Spark code for Map Step 
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The map step is performed on the resultant RDD from pre-processing step. The entities 

are mapped with the unique blocking key provided initially from blocking and the string 

data is concatenated together using stringbuilder. The string data is concatenated to 

make it easy for comparison while applying similarity functions. Entities with same 

blocking key are mapped together. The blocking unique key plays a key role here as it 

brings the similar entities together which avoids unnecessary comparisons between 

dissimilar entities.  The output for it would be in this manner  

Format: 

 2.01: PhamCuongHung 

 2.01: PhamCuongHung 

 2.01: PhamCuongHung 

 2.02:  KeraliHenryG.R. 

 2.02:  KeraliHenryG.R. 

 2.05:  ChallaKrishna 

 2.05:  ChallaKrishna 

 2.05: ChallaKrishna 

Reduce Step: 

 

                           Figure 10: Spark code to Group similar entities together 
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   Figure 11: Spark code for implementation of Hybrid matcher function and R-Swoosh 

Finally by applying the reduce step through groupofdata.collect() function the similar 

entities are grouped together and written to the output file. Based on the Blocking 

unique key the entities are grouped together. While doing so the mixed matcher 

function along with the R-Swoosh algorithm is applied by calling the stringDistance 

function, which determines the similar entities. The following is the final output 

obtained from the candidate pairs taken initially 

Output Format: 

CLUSTERS:  [Verma  Niraj, Verma Niraj, Verma Niraj, Verma Niraj, Verma Niraj, 

Verma Niraj] 

CLUSTERS:  [Berryman SueEllen, Berryman SueEllen, Berryman SueEllen, 

Berryman SueEllen, Berryman SueEllen, Berryman SueEllen] 
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CLUSTERS:  [Ouedraogo IsmaelS., Ouedraogo IsmaelS., Ouedraogo IsmaelS., 

Ouedraogo IsmaelS., Ouedraogo IsmaelS., Ouedraogo IsmaelS.] 

CLUSTERS:  [Diou Christian, Diou Christian, Diou Christian, Diou Christian, Diou 

Christian, Diou Christian, Diou Christian, Diou Christian, Diou Christian, Diou 

Christian, Diou Christian, Diou Christian] 

CLUSTERS:  [Kubota Keiko, Kubota Keiko, Kubota Keiko, Kubota Keiko, Kubota 

Keiko, Kubota Keiko] 

CLUSTERS:  [Mr.Constant Amouali, Mr.Constant Amouali, Mr.Constant Amouali, 

Mr.Constant Amouali, Mr.Constant Amouali, Mr.Constant Amouali] 

CLUSTERS:  [Prevost YvesAndre, Prevost YvesAndre, Prevost YvesAndre, Prevost 

YvesAndre, Prevost YvesAndre, Prevost YvesAndre] 

CLUSTERS:  [Mr.AdelinoCastelo David, Mr.AdelinoCastelo David, 

Mr.AdelinoCastelo David, Mr.AdelinoCastelo David, Mr.AdelinoCastelo David, 

Mr.AdelinoCastelo David] 

Optimization Implementation: 

The main issue is the threshold value, which is provided manually for the hybrid 

similarity function. Any approcah to obtain an optimum threshold value for the hybrid 

matcher function can increase the precision .By implementing the theorems mentioned  

form the paper, “How Similar is Similar” sequentially the optimum threshold value is 

found and used for the similarity functions in the hybrid matcher function. The 

following are the optimum threshold values for the similarity functions I have used. A 

sample entity set is initially considered for determining the optimum threshold value. 

Manually we should determine the similar entities and dissimilar entities and group 

them as positive and negative sets. 
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       Figure 12: Theorems implementation on Levenshtein and LCS similarity functions 

Threshold Output: 

By applying the theorems on the sample set using Levenshtein and LCS similarity 

functions I have obtained the following candidate threshold sets. Apply these threshold 

values on a sample set and calculate precision. The threshold value with highest 

precision is the optimum threshold value. For Levenshtein similarity 2.0 gives better 

result and for Least common subsequence similarity 3.0 gives better result. Based on 

the nature of the dataset maximum, minimum and average value of the candidate 

threshold set in the baseline to improve the result.  

The Levenshtein candidate set is [4.0, 2.0, 1.0, 3.0] 

The Lcs candidate set is [4.0, 2.0, 1.0, 3.0] 

 

I have done the experimentation in two modes. One is on local cluster mode and the 

other is on VM cluster mode 
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4.2 Spark Cluster Setup: 

In the Virtual Machine mode, I used Ubuntu 1.4 cluster with four nodes each with 2GB 

of RAM and 80GB of virtual storage. The following are the steps to setup the cluster. 

1. Initially install Java SDK on the Virtual Machine. 

2. All the Virtual Machines are provided with remote access inside the cluster.  

3. Install Hadoop Distributed File System using Hadoop and configure the 

libraries. 

4. Download and install the Spark framework. 

5. After installation start the Spark cluster. 

6. Open chrome browser and type Master IP: 8080 ports to validate the Spark UI 

context.  

 

 

                                          Figure 13: Spark Cluster UI Context Link 
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4.3 Sample Code: 

Sample code of implementation of hybrid matcher function with R-Swoosh algorithm 

 

                                  Figure 14: Sample code for Baseline -1  
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                                          Figure 15: Sample code for Baseline -2 

 

 

                                          Figure 16: Sample code for Baseline -3 
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Sample Code for implementation of Optimum Threshold value 

 

                                     Figure 17: Sample code for Optimization -1 

 

                                   Figure 18: Sample code for Optimization -2 
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                                   Figure 19: Sample code for Optimization -3 

 

                                   Figure 20: Sample code for Optimization -4 
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4.4 Execution Report: 

Medicare’s Helpful Contacts Dataset is used for the experimentation purpose. I have 

done the experimentation in two modes. One is on local cluster mode and the other is 

on VM cluster mode. In the Virtual Machine mode, I used Ubuntu 1.4 cluster with four 

nodes each with 2GB of RAM and 80GB of virtual storage. 

SparkConf().setMaster("spark://192.168.17.248:7077").setAppName(“VimalApp

”); 

In local mode, I have use Local mode with four nodes and driver memory of 3 GB. 

SparkConf().setMaster("local[4]").setAppName(“VimalApp”); 

Spark Distribution: 

To perform Entity Matching I have used the same data as source for comparison, for 

first round of partitioning, I was dependent on the default partition index of the spark, 

which divides the data into default partition size 64 mb. It is same as Hadoop. 

        JavaRDD<String> logData = sc.textFile(testFile).cache(); 

The following is the runtime performance for the experiments I have conducted. 

Data Loading: It initially cache the data into a RDD  

        JavaRDD<String> logData = sc.textFile(testFile).cache(); 

For every job, the following are the time taken recorded in seconds. Below all-time 

comparison is based on more than 03, 35,433 entities 

Time for job initiation: Load data stage 0 time of execution is 91 seconds  

Time for map task: Map Task has taken 117 seconds for pairs processing and key 

calculation 

Time for Reduce task: The reduce task has taken 187 seconds. In it the pairs have 
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Time for writing data back to disk: Spark program had 1 time writing the data into 

disk, for Pairs after all comparisons, which is maximum time 

The following is the sample Workload distribution among nodes: Spark Default 

partition and workload distributions among four nodes   

15/10/19 23:17:29 INFO MemoryStore: ensureFreeSpace(189127) called with 

curMem=1260025, maxMem=56973721 

15/10/19 23:17:29 INFO MemoryStore: ensureFreeSpace(396537) called with 

curMem=1496909, maxMem=56973721 

15/10/19 23:17:29 INFO MemoryStore: ensureFreeSpace(242217) called with 

curMem=1942717, maxMem=56973721 

15/10/19 23:17:29 INFO MemoryStore: ensureFreeSpace(437681) called with 

curMem=2144943, maxMem=56973721 
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                                                          CHAPTER 5 

                                           PERFORMANCE EVALUATION 

 

I have evaluated the hybrid matcher function using three critical factors: 

1. Matching result in terms of Precision 

2. Running time with and without the comparison reduction algorithm 

3. Configuring number of maps and reduce tasks, number of available nodes in 

clusters 

5.1 Precision: 

Precision is the ratio of the number of relevant match pairs retrieved to the total number 

of irrelevant and relevant match pairs retrieved. To validate the precision for this data 

I have put a counter in the reduce step which increments whenever we find a match. 

The ratio of the counter to the total number of pairs I have initially fed to the matcher 

function gives us the precision. 

I have calculated the precision for the dataset with the hybrid matcher function and each 

of the similarity function in the matcher functionally individually. I have found that 

using a hybrid matcher function increased the precision to an extent. 

The following graph shows us the precision values against similarity functions I have 

used on the dataset. It shows the precision have increased for the hybrid matcher 

function we have used 
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                        Figure 21: Graph for Precision Vs Similarity Function 

To derive the threshold value for the hybrid matcher function there are many 

approaches like MIN-MAX approach, weighted approach, average approach, etc. I 

have tried all of these approaches and observed that weighted approach yields better 

results. Different weights are assigned to the calculated similarity scores of the 

similarity functions in the hybrid matcher function. These weights are summed to a 

score and if it is greater than the threshold value for the hybrid matcher function then 

the pair is considered as match. For example, ‘0.9’ is considered as the threshold value 

and if all the weights of the similarity functions calculated is greater than 0.9 then the 

entity pair is considered as match otherwise as non-match. 
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5.2 Running Time: 

I have calculated the running time for the hybrid matcher function without the 

comparison reduction algorithm and with it. I have observed that the running time with 

the algorithm is lesser than the regular approach. By using R-swoosh algorithm, we can 

reduce the number of comparisons. 

The issue with the hybrid matcher function is that we will be giving the threshold value 

manually and based on it the entities are classified as match or non-match. By 

implementing the optimum threshold value for the hybrid matcher function, we can see 

an increase in the precision. 

5.3 Increase in number of Reduce Tasks and nodes: 

By increasing the number of reducers, the execution time decreases as the distribution 

of the reduce task has increased. 

To increase the precision of the resultant pairs we can optimize the baseline solution by 

implementing the “Optimum threshold value” concept mentioned above. I have 

implemented the approach and used the optimum threshold values obtained for 

different similarity functions obtained from it and observed that the precision of 

resultant set have increased. 
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                                                                        CHAPTER 6 

ADVANTAGES 

1. The precision of the entity matching can be increased by implementing the 

hybrid matcher function with optimum threshold value. 

2. The unnecessary comparisons while matching can be reduced by using R-

Swoosh algorithm along with hybrid matcher function  

3. Higher precision is obtained by implementing the optimum threshold value, 

which eliminates threshold redundancy and similarity function redundancy. 

4. Implementation using spark reduce the writing multiple times into disc to single 

entry to disc. 
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                                                                        CHAPTER 7 

Conclusion 

The proposed hybrid matcher function approach with R-swoosh algorithm for 

parallelizing matching task of Entity resolution using the widely available MapReduce 

framework effectively distributes the workload and returns the entity pairs, which are 

a match. Our evaluation in a real cluster environment with one master and two worker 

nodes using real-world data demonstrated that approach works effectively and scale 

with available number of nodes. The optimized hybrid matcher function approach using 

Optimum threshold value improved the Precision. 
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