
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2016

Hybrid Similarity Function for Big Data Entity Matching with R-Hybrid Similarity Function for Big Data Entity Matching with R-

Swoosh Swoosh

Vimal Chandra Gorijala
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Gorijala, Vimal Chandra, "Hybrid Similarity Function for Big Data Entity Matching with R-Swoosh" (2016).
Master's Projects. 484.
DOI: https://doi.org/10.31979/etd.nck7-c4y7
https://scholarworks.sjsu.edu/etd_projects/484

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/484?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F484&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 Hybrid Similarity Function for Big Data Entity Matching

with R-Swoosh

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfilment

of the Requirements for the Degree

Master of Science

by

Vimal Chandra Gorijala

February 2016

© 2016

Vimal Chandra Gorijala

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

 Hybrid Similarity Function for Big Data Entity Matching

with R-Swoosh

by

Vimal Chandra Gorijala

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

February 2016

Dr. Thanh Tran Department of Computer Science

 Dr. Robert Chun Department of Computer Science

 Mr. Sharath Chandra Pilli Sr. Software Engineer at Captora

 ABSTRACT

 Hybrid Similarity Function for Big Data Entity Matching

with R-Swoosh

by Vimal Chandra Gorijala

Entity Matching (EM) is the problem of determining if two entities in a data set refer

to the same real-world object. For example, it decides if two given mentions in the data,

such as “Helen Hunt” and “H. M. Hunt”, refer to the same real-world entity by using

different similarity functions. This problem plays a key role in information integration,

natural language understanding, information processing on the World-Wide Web, and

on the emerging Semantic Web. This project deals with the similarity functions and

thresholds utilized in them to determine the similarity of the entities. The work contains

two major parts: implementation of a hybrid similarity function, which contains three

different similarity functions to determine the similarity of entities, and an efficient

method to determine the optimum threshold value for similarity functions to get

accurate results.

v

 ACKNOWLEDGEMENTS

Firstly, I would like to take this opportunity to thank my project advisor, Dr. Thanh

Tran, for his guidance throughout the project. It would not have been possible without

his support throughout the project.

I would also like to thank my committee members Dr. Robert Chun and Mr. Sharath

Chandra Pilli, for their valuable advices and comments during project report writing

phase.

Furthermore, I would like to thank my brother and parents for always being there for

me during my master’s program. Last but not the least; I would like to thank all my

friends for their tremendous support throughout the completion of this project.

vi

Table of Contents

1 INTRODUCTION ... 9

2 RELATED WORKS…………………………………………………………………………………………….11
2.1 SIMILARITY FUNCTION……………………………………………………………………………………….11
2.2 HYBRID SIMILARITY FUNCTION………………………………………………………………………………….12
2.3 RULE BASED MATCHING……………………………………………………………………………………………12

 2.4 APACHE SPARK FRAMEWORK…………………………………………………………………………..13

3 DEFINITION, EXISTED SOLUTIONS AND PROPOSED SOLUTION……………15
3.1 DEFINITION………15

 3.1.1 PROBLEM FORMULATION……………………………………………………………………....15
 3.1.2 TERMINOLOGY………………………………………………………………………………………..15
 3.2 EXISTING SOLUTIONS…………………………………………………………………………………………….15
 3.2.1 LEARNING BASED APPROACH……………………………………………………………………..16
 3.2.2 NON-LEARNING BASED APPROACH……………………………………………………………17

3.3 PROPOSED SOLUTION………………………………………………………………………………………….18
 3.3.1 HYBRID SIMILARITY FUNCTION…………………………………………………………………18
 3.3.2 R-SWOOSH ALGORITHM………………………………………………………………………………19
 3.3.3 OPTIMUM THRESHOLD VALUE…………………………………………………………………..21

4 IMPLEMENTATION……………………………………………………………………………………………….26
4.1 IMPLEMENTATION DETAILS………………………………………………………………………………26
4.2 SPARK CLUSTER SETUP………………………………………………………………………………………32

 4.3 SAMPLE CODE……………………………………………………………………………………………………….33
 4.4 EXECUTION REPORT…………………………………………………………………………………………….37

5 PERFORMANCE EVALUATION……………………………………………………………………………39
5.1 PRECISION………..39
5.2 RUNNING TIME……………………………………………………………………………………………………..41
5.3 INCREASE IN NUMBER OF REDUCE TASKS AND NODES……………………………….41

6 ADVANTAGES……42

7 CONCLUSION…….43

LIST OF REFERENCES………………………………………………………………………………………………44

vii

LIST OF TABLES
TABLE 1: ACRONYMS [4] 8

LIST OF FIGURES

FIGURE 1. APACHE SPARK ARCHITECTURE .. 14
FIGURE 2. LEARNING APPROACH ... 16
FIGURE 3. NON-LEARNING APPROACH .. 17
FIGURE 4. R-SWOOSH ALGORITHM .. 20
FIGURE 5. THEOREM 1 .. 22
FIGURE 6. THEOREM 2 ... 23
FIGURE 7. THEOREM 3 ... 24
FIGURE 8. SPARK CODE FOR PRE-PROCESSING .. 27
FIGURE 9. SPARK CODE FOR MAP STEP .. 27
FIGURE 10. SPARK CODE FOR TO GROUP SIMILAR ENTITIES TOGETHER 28
FIGURE 11. SPARK CODE FOR IMPLEMENTATION OF HYBRID MATCHER FUNCTION 29
FIGURE 12. THEOREMS IMPLEMENTATION ON LEVENSHTEIN AND LCS 31
FIGURE 13. SPARK CLUSTER UI CONTEXT LINK... 32
FIGURE 14. SAMPLE CODE FOR BASELINE-1 ... 33
FIGURE 15. SAMPLE CODE FOR BASELINE-2 ... 34
FIGURE 16. SAMPLE CODE FOR BASELINE-3 ... 34
FIGURE 17. SAMPLE CODE FOR OPTIMIZATION-1 ... 35
FIGURE 18. SAMPLE CODE FOR OPTIMIZATION-2 ... 35
FIGURE 19. SAMPLE CODE FOR OPTIMIZATION-3 ... 36
FIGURE 20. SAMPLE CODE FOR OPTIMIZATION-4 ... 36
FIGURE 21. GRAPH FOR PRECISION VS SIMILARITY FUNCTION ... 40

viii

ACRONYMS

Table 1: Acronyms [4]

9

 CHAPTER 1

Introduction

In Entity Matching, structured data is given as input and compared with the entities in

the knowledge base and matching entities are identified in a ranked order. For instance,

the mailing lists may have different entries referring to the same physical address, but

the entries may be slightly different with different spellings or missing some

information. Using various matching techniques, the matching entries are found. The

knowledge base has both structured and unstructured datasets. Solved in a generic

manner, entity matching will take O (n*n) comparisons. For instance, if there 10 million

records available it would take 100 million comparisons to find the matching records.

To calculate the matching entities in effective manner techniques like parallel

implementation, dedoop, etc. are being used for large scale entity matching. The

following are sub-tasks involved in large scale entity matching:

i) Evaluation: This task focuses on assessing the quality of the data in the knowledge

base like attributes of the datasets, matching attributes, missing values for each attribute

etc.

ii) Pre-processing: This task involves modifying the raw data using techniques like

stemming, lemmatization, standardization, filling in missing values, stop words

removal, attribute verification, conversion from upper case to lower case etc. This step

increases the chances of finding the matching instances.

iii) Candidate Calculation: In this task, the matching candidates to the input given are

calculated. For example, if we are searching for a person’s bank account information it

is inefficient to search all the data as there are many dissimilar candidates. To overcome

this, similar candidates to the input are calculated using approaches like blocking.

10

Catch, these candidates contain roughly more than 80% similar candidates to the input

records given.

iv) Classification: In here, the matching candidates from the above step are fed to a

similarity function and classified as match and non-match.

This project offers a solution to the last step of the large-scale entity matching

‘Classification’. The main aim is to classify the entities as match and non-match with

good accuracy rate on a large scale.

This project involves implementation of two strategies: different similarity functions

like Jaro similarity, edit-distance similarity, Jaccard similarity, etc. to classify the

entities and a hybrid similarity function, which contains three similarity functions to

classify the entities as match and non-match.

It also involves implementation of an efficient algorithm ‘R-Swoosh’ to reduce the

number of comparisons while calculating the similarity score between entities. This

algorithm reduces the unnecessary comparisons and decreases the time taken for

execution. I have also implemented an efficient strategy to define the optimum

threshold value for the similarity functions. By using this optimum threshold value, we

can obtain better accuracy of results.

Real world practical datasets are used to evaluate this project. Apache Spark is used to

implement the whole project in a distributed way and it can handle large-scale datasets.

The challenges regarding the parallel implementation of large-scale entity matching are

addressed in the sections below.

Other concerns regarding previous steps to Classification in large scale entity matching

are not in the scope of this project and therefore will not be discussed below.

11

 CHAPTER 2

Related Works

This chapter consists of introduction to similarity functions, hybrid similarity function,

Rule based matching and Swoosh algorithm.

2.1 Similarity Function

Similarity function is defined as a distance metric between different data points. This

function calculates the distance score between the data points and compares it with a

pre-defined threshold value. If the calculated distance is greater than the threshold

value, the data points are a match otherwise they are considered as non-match. There

are different types of similarity functions available. Based on the type of data points we

can choose the similarity function. Some of them are:

Jaccard Distance: The Jaccard similarity coefficient is a statistic used for comparing

the similarity and diversity of sample strings. [6] The Jaccard coefficient measures

similarity between finite sample sets. [6] It is defined as the size of the intersection

divided by the size of the union of the sample sets: J (A, B) = (|A ∩ B|/|A U B| (If A

and B are both empty, we define J (A, B) = 1.) 0≤ J (A, B) ≤ 1. [6]

Jaro Similarity Function: The Jaro similarity defines ‘matching characters’ as

characters in strings s1 and s2 that are (1) the same, and (2) whose indices are no farther

than.[7] If m is the number of matching characters between strings x and y and t is the

number of transpositions, the Jaro distance is defined as 1/3((m/x+m/y + (m-t/m)) when

m is greater than 0, and 0 otherwise. [7]

12

Edit Distance: Given two strings ‘a’ and ‘b’, the edit distance d (a, b) is the minimum-

weight series of edit operations that transforms ‘a’ into ‘b’. [5][8] Each of the operation

has unit cost. Some of the simplest sets of edit operations are

Insertion of a single symbol: If a = uv, then inserting the symbol x produces uxv.

[5][8]This can also be denoted ε→x, using ε to denote the empty string. [5][8]

Deletion: Deletion of a single symbol changes uxv to uv (x→ε). [5][8]

Substitution: Substitution of a single symbol x for a symbol y ≠ x changes uxv to uyv

(x→y). [5][8]

2.2 Hybrid Similarity Function

The hybrid similarity function is combination of different similarity functions. This

function calculates the distance between data points using different similarity functions

in it. Then we take all the distances calculated and apply different techniques on them

to make it into a single distance measure. This distance measure is compared with the

pre-defined threshold value. If the calculated distance is greater than the threshold

value, the data points are a match otherwise they are considered as non-match. The

techniques used to combine different distances calculated are taking the average of

them, assigning different weights to them basing on the importance, etc.

2.3 Rule Based Matching:

In rule based matching usually rules are defined basing on the attributes of the database

we are dealing with. Initially a set of record matching rules are defined and basing on

them, the similar records are found. For instance, a record matching rule can be “if the

records have same telephone number and similar name, they are same.”

13

These record matching rules are defined mainly based on the database schema we are

dealing with. If Schema changes, the rules which are previously defined does not apply.

However, from these rules defined initially we can implement an efficient method to

find the optimum threshold value for different similarity functions we utilize. The

optimum threshold value is determined based on the observation different similarity

functions and thresholds have redundancy. Based on it we can discard the inappropriate

similarity functions.

2.4 Apache Spark Framework

For large scale Entity Matching Parallel programming is the best approach. The best

example for the parallel programming is MapReduce model. Generally, MapReduce

framework, Apache Spark, etc. are famous for parallel implementation of datasets.

Spark can run on different file systems including HDFS. Now-a-days Apache Spark is

considered more over MapReduce framework for parallel programming. Spark is 100x

faster than Hadoop and it handles most of operations ‘in memory’, copying datasets

from distributed physical storage into far faster logical RAM memory. [1] That is why

I have chosen Apache Spark to implement the hybrid matcher function with R-Swoosh.

14

 Figure 1: Apache Spark Architecture [1]

1. Each application gets its own executor processes. [1] They exist for whole

duration of the application and runs the tasks in multiple threads. [1]

2. It supports the local mode by the whole setup in YARN cluster. [1] It can also

be run in standalone mode. [1]

3. The driver should run closer to worker nodes as it schedules the tasks overall

cluster. [1] Mainly jobs are submitted to the spark framework using the spark

submit script. [1] The driver should be network accessible from the worker

nodes. [1]

15

 CHAPTER 3

DEFINITION, EXISTING SOLUTIONS AND PROPOSED SOLUTION

3.1 Definition:

3.1.1 Problem Formulation:

Given a large dataset, the steps before Classification in the large scale entity matching

create candidate pairs (Entity pairs) with the help of efficient techniques like blocking.

These candidate pairs are considered as worthy candidates for matching task. How to

classify these pairs as match and non-match in a scalable and distributed manner in a

minimal amount of time with good accuracy.

3.1.2 Terminology:

The following are the terms used in the report frequently.

Entity: It represents a concept or record, which has a meaning to itself completely. In

this project context, entity represents a record with unique properties and id. It may

include persons, records, subjects, etc.

Candidate Pair: An entity pair derived from the blocking technique. This pairs are

obtained by rigorous filtering of entity comparisons. They are considered as potential

pairs for matching.

Threshold: A numerical value defined based on the attribute. The similarity distance

calculated between the entities is compared with it.

3.2 Existing Solutions:

There are many solutions defined to carry out the matching task in a parallel manner on

a large scale. This is also called as Entity Matching over Big Data. Some of them are

following:

16

3.2.1 Learning based approach:

In learning based approach, we use learning algorithms like Decision Tree, SVM, etc.

while matching to determine the entities are match or not. The main problem for this

approach is that initially training data should be provided for the learning algorithm.

This data should be prepared manually by labelling a sample set of candidate pairs as

match or non-match. This is a very hectic process as domain experts should carry out

labelling and they need to analyze lot of attributes to determine whether two entities

are match or non-match.

 Figure 2: Learning Approach

17

There are some learning based frameworks like Active Atlas, MARLIN, Multiple

Classifier System, Operator Trees, etc., which can be used to carry out the learning

based strategy. This kind of approach is not scalable for large scale entity matching.

 3.2.2 Non-Learning based approach:

In the non-learning based approach, we can use different distance functions to compute

the similarity between the entities and classify them as match and non-match. For the

sub-tasks until candidate calculation, the implementation is the same but differs only at

instance, attribute and relationship level. In learning approaches, learning algorithms

are used while matching and not used in non-learning approaches. The main advantage

here is that there is no need to label the data manually. Here a lot of distance metrics

like edit distance, Tf-Idf, levenstein distance, etc. can used to determine the similarity

of the entities.

 Figure 3: Non-Learning Approach

18

There are some frameworks without training like MOMA (Mapping based Object

Matching), SERF (Stanford Entity Resolution Framework), etc. which can be used to

classify the entities. The frameworks without training uses some distance

computational measures and similarity functions to match the records. These

frameworks can be implemented using big data technologies and they are scalable to

big data. There are other approaches like Active learning, rule based matching, etc. that

can be used to carry out the matching task.

3.3 Proposed Solution:

I have chosen to implement the non-learning approach. To scale the solution to larger

data I have implemented it in Apache Spark. The following are different parts of the

proposed solution.

3.3.1 Hybrid Similarity Function:

The hybrid similarity function is a combination of different similarity functions, which

decides the candidate pair as a match or non-match. Initially the candidate pairs

obtained after the blocking strategy are fed as input to this function. I have chosen to

implement a matcher function, which contains three similarity functions. They are Jaro

similarity, edit-distance similarity and Jaccard similarity. The main goal is to run this

hybrid similarity function parallely on different nodes to get better performance. This

function calculates a similarity score for the candidate pairs taken as input and

compares it with the threshold value. The pairs with score greater than the threshold

value are considered as potential pairs.

The similarity score for the candidate pairs is calculated based on the individual scores

obtained for the pairs from the three similarity functions. Certain weights are assigned

to resulting scores from the similarity functions. Weighted average is taken from them

19

and if it is greater than the threshold value the candidate pair is considered as a potential

match. I have followed other approaches like considering average of the individual

distance scores calculated, considering highest value among calculated distance scores,

etc. While merging distance scores calculated by three similarity functions.

3.3.2 R-Swoosh Algorithm:

To reduce the unnecessary comparisons occurring on different nodes we have used R-

Swoosh algorithm. The following is the procedure of the algorithm:

i) Initially it takes two entities, compare them and if they match they are merged as one

set. The next incoming entity is compared with only one of the entities in the previous

set and if it matches, the entity is merged to the same set.

ii) If it is not matched, another set is created with the entity in the cases above. This

process goes on continuously.

20

 Figure 4: R-Swoosh Algorithm [3]

By using this algorithm, we can avoid unnecessary comparisons and the performance

is increased. All the entity-to-entity comparisons are avoided and only selected

21

comparisons happen. The O (n2) time complexity is reduced. At the end the entities

which are matching are derived.

3.3.3 Optimum Threshold value:

In General the threshold value used to evaluate the distance score calculated by the

similarity function is given manually. It is guessed based on the type of attribute we are

dealing. For instance, if the attribute is string and threshold value can be anywhere

between [0, 1] for the similarity function chosen, but if the attribute is gender the

threshold value should be exactly 1. Threshold value where the precision or recall will

be maximum is termed as optimum threshold value. It is calculated based on the

observation different similarity functions and thresholds have redundancy. [4]

The rule based matching discussed above is used to derive the optimum threshold value.

Initially based on the attributes of the dataset attribute matching rules and record

matching rules are derived. Based on the theorems defined in the paper “How Similar

is Similar” we can calculate the optimum threshold value. Initially a sample set of

entities from the dataset are taken and positive pairs and negative pairs are separated

from them

22

 Theorem 1:

 Figure 5: Theorem 1 [4]

According to this theorem, we will subtract entity pairs obtained from applying two

threshold values to a similarity function. At least one pair from the resultant set should

match with the positive set defined; otherwise we can prune the lower threshold value

among them. By using this theorem, we can eliminate many threshold value options.

This process is repeated continuously and at the end a set of threshold values are

derived.

23

Theorem 2:

 Figure 6: Theorem 2 [4]

This theorem is used to further prune threshold values obtained from the above set.

According to this theorem, we will subtract entity pairs obtained from applying two

threshold values to a similarity function from the set. At least one pair from the resultant

set should not match with the positive set defined, otherwise we can prune the higher

threshold value among them, as it is redundant. This process is repeated continuously

and at the end a set of threshold values are derived.

24

Theorem 3:

 Figure 7: Theorem 3 [4]

This theorem is used to further prune threshold values obtained from the above set.

According to this theorem, we will take the sets obtained from above step for two

different similarity functions. In them, one threshold value from each set is taken and

based on it the similar pairs and dissimilar pairs are calculated. If similar and dissimilar

pairs in both cases are equal, then we can prune one threshold value from it.

25

By implementing these theorems in a sequential manner, we can narrow down the

threshold values for a similarity function to a very small set. Now we will apply these

threshold values on a sample set of data, calculate precision, and recall percentages of

the result set. Whichever value has higher precision and accuracy will be considered as

optimum threshold value for that similarity function.

26

 CHAPTER 4

 IMPLEMENTATION

4.1 Implementation Details:

For the implementation of the proposed solution, I have chosen Apache Spark

framework. Initially I have experimented on smaller datasets and later done it on the

larger ones and obtained satisfactory results. The following is the procedure for

implementation.

The candidate pairs obtained from the blocking are considered as input. From them we

need to extract the similar entities. The following is an input sample, which is fed to

the spark implementation.

Input:

(2.0,Shum,SelinaWaiSheung)(2.0,Shum,SelinaWaiSheung)

(2.0,Shum,SelinaWaiSheung)(2.01,Pham,CuongHung)

(2.0,Shum,SelinaWaiSheung)(2.02,Kerali,HenryG.R.)

(2.01,Pham,CuongHung)(2.01,Pham,CuongHung)

(2.01,Pham,CuongHung)(2.02,Kerali,HenryG.R.)

(2.01,Pham,CuongHung)(2.02,Kerali,HenryG.R.)

(2.02,Kerali,HenryG.R.)(2.02,Kerali,HenryG.R.)

(2.02,Kerali,HenryG.R.)(2.02,Kerali,HenryG.R.)

(2.02,Kerali,HenryG.R.)(2.02,Kerali,HenryG.R.)

(2.02, Kerali, HenryG.R.)(2.03, Basu, Ananya)

(2.02, Kerali, HenryG.R.)(2.03, Basu, Ananya)

(2.02, Kerali, HenryG.R.)(2.04, Montes-Negret, Fernando)

27

The following is the detailed step-by-step explanation of implementation in spark.

Pre-Processing Step:

 Figure 8: Spark code for pre-processing

Initially the input file is read through spark context and all the data in the text file is

converted into RDD. The entity pairs are split into single entities and pre-processing

like braces removal is applied as indicated in the above code. Then map step is applied

on the resultant RDD from the pre-processing step.

Map Step:

 Figure 9: Spark code for Map Step

28

The map step is performed on the resultant RDD from pre-processing step. The entities

are mapped with the unique blocking key provided initially from blocking and the string

data is concatenated together using stringbuilder. The string data is concatenated to

make it easy for comparison while applying similarity functions. Entities with same

blocking key are mapped together. The blocking unique key plays a key role here as it

brings the similar entities together which avoids unnecessary comparisons between

dissimilar entities. The output for it would be in this manner

Format:

 2.01: PhamCuongHung

 2.01: PhamCuongHung

 2.01: PhamCuongHung

 2.02: KeraliHenryG.R.

 2.02: KeraliHenryG.R.

 2.05: ChallaKrishna

 2.05: ChallaKrishna

 2.05: ChallaKrishna

Reduce Step:

 Figure 10: Spark code to Group similar entities together

29

 Figure 11: Spark code for implementation of Hybrid matcher function and R-Swoosh

Finally by applying the reduce step through groupofdata.collect() function the similar

entities are grouped together and written to the output file. Based on the Blocking

unique key the entities are grouped together. While doing so the mixed matcher

function along with the R-Swoosh algorithm is applied by calling the stringDistance

function, which determines the similar entities. The following is the final output

obtained from the candidate pairs taken initially

Output Format:

CLUSTERS: [Verma Niraj, Verma Niraj, Verma Niraj, Verma Niraj, Verma Niraj,

Verma Niraj]

CLUSTERS: [Berryman SueEllen, Berryman SueEllen, Berryman SueEllen,

Berryman SueEllen, Berryman SueEllen, Berryman SueEllen]

30

CLUSTERS: [Ouedraogo IsmaelS., Ouedraogo IsmaelS., Ouedraogo IsmaelS.,

Ouedraogo IsmaelS., Ouedraogo IsmaelS., Ouedraogo IsmaelS.]

CLUSTERS: [Diou Christian, Diou Christian, Diou Christian, Diou Christian, Diou

Christian, Diou Christian, Diou Christian, Diou Christian, Diou Christian, Diou

Christian, Diou Christian, Diou Christian]

CLUSTERS: [Kubota Keiko, Kubota Keiko, Kubota Keiko, Kubota Keiko, Kubota

Keiko, Kubota Keiko]

CLUSTERS: [Mr.Constant Amouali, Mr.Constant Amouali, Mr.Constant Amouali,

Mr.Constant Amouali, Mr.Constant Amouali, Mr.Constant Amouali]

CLUSTERS: [Prevost YvesAndre, Prevost YvesAndre, Prevost YvesAndre, Prevost

YvesAndre, Prevost YvesAndre, Prevost YvesAndre]

CLUSTERS: [Mr.AdelinoCastelo David, Mr.AdelinoCastelo David,

Mr.AdelinoCastelo David, Mr.AdelinoCastelo David, Mr.AdelinoCastelo David,

Mr.AdelinoCastelo David]

Optimization Implementation:

The main issue is the threshold value, which is provided manually for the hybrid

similarity function. Any approcah to obtain an optimum threshold value for the hybrid

matcher function can increase the precision .By implementing the theorems mentioned

form the paper, “How Similar is Similar” sequentially the optimum threshold value is

found and used for the similarity functions in the hybrid matcher function. The

following are the optimum threshold values for the similarity functions I have used. A

sample entity set is initially considered for determining the optimum threshold value.

Manually we should determine the similar entities and dissimilar entities and group

them as positive and negative sets.

31

 Figure 12: Theorems implementation on Levenshtein and LCS similarity functions

Threshold Output:

By applying the theorems on the sample set using Levenshtein and LCS similarity

functions I have obtained the following candidate threshold sets. Apply these threshold

values on a sample set and calculate precision. The threshold value with highest

precision is the optimum threshold value. For Levenshtein similarity 2.0 gives better

result and for Least common subsequence similarity 3.0 gives better result. Based on

the nature of the dataset maximum, minimum and average value of the candidate

threshold set in the baseline to improve the result.

The Levenshtein candidate set is [4.0, 2.0, 1.0, 3.0]

The Lcs candidate set is [4.0, 2.0, 1.0, 3.0]

I have done the experimentation in two modes. One is on local cluster mode and the

other is on VM cluster mode

32

4.2 Spark Cluster Setup:

In the Virtual Machine mode, I used Ubuntu 1.4 cluster with four nodes each with 2GB

of RAM and 80GB of virtual storage. The following are the steps to setup the cluster.

1. Initially install Java SDK on the Virtual Machine.

2. All the Virtual Machines are provided with remote access inside the cluster.

3. Install Hadoop Distributed File System using Hadoop and configure the

libraries.

4. Download and install the Spark framework.

5. After installation start the Spark cluster.

6. Open chrome browser and type Master IP: 8080 ports to validate the Spark UI

context.

 Figure 13: Spark Cluster UI Context Link

33

4.3 Sample Code:

Sample code of implementation of hybrid matcher function with R-Swoosh algorithm

 Figure 14: Sample code for Baseline -1

34

 Figure 15: Sample code for Baseline -2

 Figure 16: Sample code for Baseline -3

35

Sample Code for implementation of Optimum Threshold value

 Figure 17: Sample code for Optimization -1

 Figure 18: Sample code for Optimization -2

36

 Figure 19: Sample code for Optimization -3

 Figure 20: Sample code for Optimization -4

37

4.4 Execution Report:

Medicare’s Helpful Contacts Dataset is used for the experimentation purpose. I have

done the experimentation in two modes. One is on local cluster mode and the other is

on VM cluster mode. In the Virtual Machine mode, I used Ubuntu 1.4 cluster with four

nodes each with 2GB of RAM and 80GB of virtual storage.

SparkConf().setMaster("spark://192.168.17.248:7077").setAppName(“VimalApp

”);

In local mode, I have use Local mode with four nodes and driver memory of 3 GB.

SparkConf().setMaster("local[4]").setAppName(“VimalApp”);

Spark Distribution:

To perform Entity Matching I have used the same data as source for comparison, for

first round of partitioning, I was dependent on the default partition index of the spark,

which divides the data into default partition size 64 mb. It is same as Hadoop.

 JavaRDD<String> logData = sc.textFile(testFile).cache();

The following is the runtime performance for the experiments I have conducted.

Data Loading: It initially cache the data into a RDD

 JavaRDD<String> logData = sc.textFile(testFile).cache();

For every job, the following are the time taken recorded in seconds. Below all-time

comparison is based on more than 03, 35,433 entities

Time for job initiation: Load data stage 0 time of execution is 91 seconds

Time for map task: Map Task has taken 117 seconds for pairs processing and key

calculation

Time for Reduce task: The reduce task has taken 187 seconds. In it the pairs have

38

Time for writing data back to disk: Spark program had 1 time writing the data into

disk, for Pairs after all comparisons, which is maximum time

The following is the sample Workload distribution among nodes: Spark Default

partition and workload distributions among four nodes

15/10/19 23:17:29 INFO MemoryStore: ensureFreeSpace(189127) called with

curMem=1260025, maxMem=56973721

15/10/19 23:17:29 INFO MemoryStore: ensureFreeSpace(396537) called with

curMem=1496909, maxMem=56973721

15/10/19 23:17:29 INFO MemoryStore: ensureFreeSpace(242217) called with

curMem=1942717, maxMem=56973721

15/10/19 23:17:29 INFO MemoryStore: ensureFreeSpace(437681) called with

curMem=2144943, maxMem=56973721

39

 CHAPTER 5

 PERFORMANCE EVALUATION

I have evaluated the hybrid matcher function using three critical factors:

1. Matching result in terms of Precision

2. Running time with and without the comparison reduction algorithm

3. Configuring number of maps and reduce tasks, number of available nodes in

clusters

5.1 Precision:

Precision is the ratio of the number of relevant match pairs retrieved to the total number

of irrelevant and relevant match pairs retrieved. To validate the precision for this data

I have put a counter in the reduce step which increments whenever we find a match.

The ratio of the counter to the total number of pairs I have initially fed to the matcher

function gives us the precision.

I have calculated the precision for the dataset with the hybrid matcher function and each

of the similarity function in the matcher functionally individually. I have found that

using a hybrid matcher function increased the precision to an extent.

The following graph shows us the precision values against similarity functions I have

used on the dataset. It shows the precision have increased for the hybrid matcher

function we have used

40

 Figure 21: Graph for Precision Vs Similarity Function

To derive the threshold value for the hybrid matcher function there are many

approaches like MIN-MAX approach, weighted approach, average approach, etc. I

have tried all of these approaches and observed that weighted approach yields better

results. Different weights are assigned to the calculated similarity scores of the

similarity functions in the hybrid matcher function. These weights are summed to a

score and if it is greater than the threshold value for the hybrid matcher function then

the pair is considered as match. For example, ‘0.9’ is considered as the threshold value

and if all the weights of the similarity functions calculated is greater than 0.9 then the

entity pair is considered as match otherwise as non-match.

41

5.2 Running Time:

I have calculated the running time for the hybrid matcher function without the

comparison reduction algorithm and with it. I have observed that the running time with

the algorithm is lesser than the regular approach. By using R-swoosh algorithm, we can

reduce the number of comparisons.

The issue with the hybrid matcher function is that we will be giving the threshold value

manually and based on it the entities are classified as match or non-match. By

implementing the optimum threshold value for the hybrid matcher function, we can see

an increase in the precision.

5.3 Increase in number of Reduce Tasks and nodes:

By increasing the number of reducers, the execution time decreases as the distribution

of the reduce task has increased.

To increase the precision of the resultant pairs we can optimize the baseline solution by

implementing the “Optimum threshold value” concept mentioned above. I have

implemented the approach and used the optimum threshold values obtained for

different similarity functions obtained from it and observed that the precision of

resultant set have increased.

42

 CHAPTER 6

ADVANTAGES

1. The precision of the entity matching can be increased by implementing the

hybrid matcher function with optimum threshold value.

2. The unnecessary comparisons while matching can be reduced by using R-

Swoosh algorithm along with hybrid matcher function

3. Higher precision is obtained by implementing the optimum threshold value,

which eliminates threshold redundancy and similarity function redundancy.

4. Implementation using spark reduce the writing multiple times into disc to single

entry to disc.

43

 CHAPTER 7

Conclusion

The proposed hybrid matcher function approach with R-swoosh algorithm for

parallelizing matching task of Entity resolution using the widely available MapReduce

framework effectively distributes the workload and returns the entity pairs, which are

a match. Our evaluation in a real cluster environment with one master and two worker

nodes using real-world data demonstrated that approach works effectively and scale

with available number of nodes. The optimized hybrid matcher function approach using

Optimum threshold value improved the Precision.

44

LIST OF REFERENCES

[1] http://spark.apache.org/docs/latest/cluster-overview.html. [Accessed: 01-
Dec- 2015].

[2] Vibhor Rastogi, Nilesh Dalvi and Minos Garofalakis∗, “Large-Scale Collective

Entity Matching”

[3] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Euijong

Whang and Jennifer Widom, “Swoosh: a generic approach to entity resolution”

[4] Jiannan Wang, Guoliang Li, Jeffrey Xu Yu and Jianhua Feng, “Entity Matching:

How Similar Is Similar”

[5] https://github.com/tdebatty/java-string-similarity [Accessed: 23- Nov- 2015].

[6] https://en.wikipedia.org/wiki/Jaccard_index [Accessed: 23- Nov- 2015].

[7] https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance [Accessed: 23-

Nov- 2015].

[8] https://en.wikipedia.org/wiki/Edit_distance [Accessed: 23- Nov- 2015].

	Hybrid Similarity Function for Big Data Entity Matching with R-Swoosh
	Recommended Citation

	tmp.1465085340.pdf.4Z518

