
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2016

Vigene ̀re Score for Malware Detection Vigenere Score for Malware Detection

Suchita Deshmukh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Deshmukh, Suchita, "Vigene ̀re Score for Malware Detection" (2016). Master's Projects. 487.
DOI: https://doi.org/10.31979/etd.35dg-fyke
https://scholarworks.sjsu.edu/etd_projects/487

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/487?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Vigenère Score for Malware Detection

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Suchita Deshmukh

May 2016

c○ 2016

Suchita Deshmukh

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Vigenère Score for Malware Detection

by

Suchita Deshmukh

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2016

Dr. Mark Stamp Department of Computer Science

Dr. Christopher Pollett Department of Computer Science

Fabio Di Troia Department of Mathematics

ABSTRACT

Vigenère Score for Malware Detection

by Suchita Deshmukh

Previous research has applied classic cryptanalytic techniques to the malware

detection problem. Specifically, scores based on simple substitution cipher cryptanal-

ysis and various generalizations have been considered. In this research, we analyze

two new malware scoring techniques based on classic cryptanalysis. Our first ap-

proach relies on the Index of Coincidence, which is used, for example, to determine

the length of the keyword in a Vigenère ciphertext. We also consider a score based

on a more complete cryptanalysis of a Vigenère cipher. We find that the Vigenère

score is competitive with previous statistical-based malware scores.

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Dr. Stamp for his valuable guidance

and supervision throughout the project work. I am also grateful to my committee

members for reviewing my work and providing constructive feedback. Finally, I wish

to thank my husband for his support and encouragement throughout my Master’s

program.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Previous Research . 4

2.1 Simple Substitution Distance Tecnique 4

2.2 Simple Substitution and Column Transposition Scoring Technique 7

3 Vigenère Cipher . 11

3.1 Vigenère Encryption . 11

3.2 Vigenère Decryption . 13

3.3 Breaking Vigenère Cipher . 13

3.3.1 Kasisky Test . 14

3.3.2 Friedman Test . 15

3.4 Vigenère Cipher Score for Malware Detection 17

3.4.1 Score using Index of Coincidence 18

3.4.2 Score using Vigenère Cryptanalysis 19

4 Experiments and Results . 24

4.1 Parameters . 24

4.2 Dataset . 25

4.3 Results . 27

4.4 Results for Varying Key Lengths 30

4.5 SVM Results . 31

5 Conclusions and Future Work . 33

vi

vii

APPENDIX

A Scatter Plots and ROC curves on the basis of Index of Coinci-
dence . 37

B Scatter Plots and ROC curves on the basis of Vigenère Cypt-
analysis . 45

LIST OF TABLES

1 Simple Substitution Key with shift = 3 4

2 Simple Substitution Encryption 5

3 Expected Digraph Distribution Matrix E 6

4 Initial key . 6

5 Digraph Distribution Matrix D 7

6 Digraph Distribution Matrix D 7

7 Substitution Key . 8

8 Transposition Key . 8

9 Intermediate Ciphertext Matrix 8

10 Final Ciphertext Matrix . 8

11 Initial ciphertext matrix . 9

12 Vigenère Encryption . 12

13 Vigenère Decryption . 13

14 Kasisky Algorithm . 15

15 Score using Index of Coincidence 19

16 Cryptanalysis Subroutine . 20

17 findKey Function . 21

18 Compute 𝐸 Matrix . 22

19 Score using Vigenère Cryptanalysis 23

20 Dataset . 27

21 Results . 28

viii

22 SVM Results . 32

ix

LIST OF FIGURES

1 Vigenère Square. 12

2 Flow Diagram of the Proposed Technique. 18

3 No. of Opcodes vs AUC . 25

4 AUC Comparison . 28

5 NGVCK Scatter Plot . 29

6 NGVCK ROC . 29

7 Harebot ROC for lesser key length 30

8 Harebot ROC for greater key length 31

A.9 Cridex Scatter Plot . 37

A.10 Harebot Scatter Plot . 38

A.11 Security Shield Scatter Plot . 38

A.12 Smart HDD Scatter Plot . 39

A.13 Winwebsec Scatter Plot . 39

A.14 Zbot Scatter Plot . 40

A.15 Zeroaccess Scatter Plot . 40

A.16 Cridex ROC . 41

A.17 Harebot ROC . 41

A.18 Security Shield ROC . 42

A.19 Smart HDD ROC . 42

A.20 Winwebsec ROC . 43

A.21 Zbot ROC . 43

x

xi

A.22 Zeroaccess ROC . 44

B.23 NGVCK Scatter Plot . 45

B.24 Cridex Scatter Plot . 46

B.25 Harebot Scatter Plot . 46

B.26 Security Shield Scatter Plot . 47

B.27 Smart HDD Scatter Plot . 47

B.28 Winwebsec Scatter Plot . 48

B.29 Zbot Scatter Plot . 48

B.30 Zeroaccess Scatter Plot . 49

B.31 NGVCK ROC . 49

B.32 Cridex ROC . 50

B.33 Harebot ROC . 50

B.34 Security Shield ROC . 51

B.35 Smart HDD ROC . 51

B.36 Winwebsec ROC . 52

B.37 Zbot ROC . 52

B.38 Zeroaccess ROC . 53

CHAPTER 1

Introduction

Like the poor in the famous Biblical verse, malware will always be with us.

Only six years after the launch of the first personal computer in 1975, the world

was presented with its first computer virus. Ever since, malware has seemed unstop-

pable. According to a 2014 report from Symantec, “[T]he release rate of malicious

code and other unwanted programs may be exceeding that of legitimate software ap-

plications [23].” According to F-Secure, “As much malware [was] produced in 2012

as in the previous 20 years altogether [5].” Malware [2] is an umbrella term for all

malicious software programs. Such programs are designed to harm computer users in

many ways, including stealing personal information, installing illegitimate software

on their systems, reformatting hard drives and deleting files, and so on. In this paper,

we use the terms viruses and malware interchangeably.

For many years, there has been an arms race between malware writers and anti-

virus software. The most common and widely used virus detection technique is signa-

ture detection [2]. In this technique, pattern matching is used to scan for particular

byte patterns that are found in viruses. If a matching pattern is found, the file is cat-

egorized as malware. This is a very simple and often effective technique, but malware

writers have developed various techniques aimed at defeating signature detection.

As the name suggests, the body of an encrypted virus is encrypted, which ef-

fectively defeats signature detection [26]. However, the decryption routine is not

encrypted, and this can be susceptible to signature scanning. As the next step in

this evolution, malware authors created polymorphic [26] and metamorphic virus [9].

1

Like an encrypted virus, polymorphic virus also includes an encrypted body and de-

cryptor code. But in addition, polymorphic malware changes the decryption routine

with each new infection, making straightforward signature detection infeasible. How-

ever, anti-virus can use emulation to detect polymorphic malware—at some point the

malware will decrypt itself, at which point it will be vulnerable to signature detection.

Metamorphic virus are sometimes said to be “body polymorphic”, since they

morph the entire body of the malware with each new infection. This changes the

internal structure and, if sufficiently thorough, it will defeat signature scanning. En-

cryption is not necessary—and hence is not used—in metamorphic malware. Meta-

morphic code can employ a wide variety of code morphing strategies [21].

Proposed malware detection mechanisms can rely on static analysis or dynamic

analysis, or some combination thereof [1, 16, 19, 28]. In static analysis the necessary

features are extracted without executing the code. Examples of such features include

opcode sequences, entropy, and so on. As opposed to static analysis, dynamic analysis

extracts features by executing (or emulating) code. Dynamic features can be used to

determine aspects of the actual behavior of the code.

This research is based on static analysis of opcode sequences. We develop and

analyze software similarity measures that are designed to distinguish malware code

from benign code. Specifically, we focus on software similarity measures based on

cryptanalysis of the Vigenère cipher. This work was inspired by similar malware

research based on scores derived from simple substitution cryptanalysis [16] and a

generalization [19].

This report is organized as follows. In Chapter 2, we briefly discuss previous

malware detection research that is based on classic cryptanalytic techniques. Chap-

2

ter 3 gives a succinct overview of the Vigenère cipher and cryptanalytic techniques

that are used to break the cipher. This chapter also discusses our scoring techniques

that are based on the cryptanalysis of this cipher. In Chapter 4, we present our ex-

periments and results. Chapter 5 concludes this report and we suggest some related

future work.

3

CHAPTER 2

Previous Research

This chapter presents previous research [16, 19] that forms a basis for our imple-

mentation of Vigenère score for malware detection. Even though the cryptanalytic

techniques used in the present research and previous research are different, they are

conceptually based on an idea of performing some cryptanalytic attack on cipher

techniques. Hence, it is necessary to understand the previous research techniques

before discussing the present research technique.

2.1 Simple Substitution Distance Tecnique

This first research technique [16] relies on a cryptanalysis of a simple substi-

tution cipher to classify a malware file from a benign file. The simple substitution

cipher [20] is one of the oldest classical cipher techniques, where each plaintext symbol

is encrypted with a ciphertext symbol, which is some displacement in the alphabet.

It is also known as a Caesar cipher, when a plaintext symbol is encrypted using

ciphertext symbol with a shift of 3. Consider an example given in Table 2 below

to understand the encryption of a message using a simple substitution key given in

Table 1.

Table 1: Simple Substitution Key with shift = 3

A B C D E F G H I J K L . . . S T U V W X Y Z
D E F G H I J K L M N U . . . V W X Y Z A B C

The naive approach in order to cryptanalyze the simple substitution ciphertext

can be an exhaustive search where an attacker has to try 287(26!/2) keys on an

4

Table 2: Simple Substitution Encryption

Plaintext C R Y P T O G R A P H Y
Ciphertext F U B S W R J U D S K B

average to break a cipher, or a frequency analysis of ciphertext. In simple substitution

distance (SSD) paper [16], a Jackobsen’s algorithm [10], which is a faster algorithm

for the cryptanalysis of English ciphertext is analyzed and an analogous algorithm is

implemented for malware detection problem given in [16].

In Jackobsen’s algorithm [10], initially a digraph distribution matrix 𝐸 is calcu-

lated for a plaintext and a digraph distribution matrix 𝐷 is calculated for a ciphertext.

For this initial 𝐷 matrix, a score is calculated using the formula given below:

Score =
∑︁

|𝑒𝑖𝑗 − 𝑑𝑖𝑗| (1)

Also, an initial key 𝐾 is guessed based on a frequency analysis of the ciphertext and

a putaive plaintext is obtained by deciphering the ciphertext using this initial key

𝐾. Again, a matrix 𝐷 is calculated for this putaitive plaintext and a new score is

computed using the formula(1). If the new score is better than the old one, the key

𝐾 is retained, else the key 𝐾 is modified by swapping its adjacent elements. With

this modified key 𝐾, again the ciphertext is decrypted and a matrix 𝐷 is recomputed

and a new score is obtained. This process continues till we obtain the best score for

which the best key 𝐾 is retained.

Consider an example explaining this process in detail. Suppose our alphabet set

consists of only five characters such as J, G ,S V, and P. Here, J is the most frequently

occurring character where as P is the least occurring character. The expected digraph

distribution matrix 𝐸 for the plaintext is given in Table 3. Suppose our ciphertext is

“GPSSPVJPSPSVJGSPJVJGSVSPVS” and our initial key 𝐾 is as shown in Table 4.

5

Using this initial key 𝐾, we decipher a ciphertext to obtain a putative plaintext

“PGJJGSVGJGJSVPJGVSVPJSJGSJ” and calculate the digraph distribution matrix

𝐷 for this putative plaintext as shown in Table 5. We compute a score using these

two matrices 𝐸 and 𝐷. According to Jackobsen’s algorithm, the key 𝐾 is modified

in the next step and the score is recomputed. The key 𝐾 can be modified in the

several ways. The simplest method is to swap the first two elements of the key.

With this new putaitive key 𝐾, the putative plaintext obtained after decryption is

“PJGGJSVJGJGSVPGJVSVPGSGJSG” and its corresponding 𝐷 matrix is shown in

Table 6. On comparing Table 5 with Table 6, it is observed that for each modification

in the key, only the rows and columns of matrix 𝐷 are getting swapped. Thus, instead

of decrypting the ciphetext each time for a modified key, we can build matrix 𝐷 once

and only swap its rows and columns corresponding to the swap of the key elements.

Hence, it helps in reducing the complexity of the algorithm.

Table 3: Expected Digraph Distribution Matrix E

J G S V P
J 2 3 0 4 1
G 1 0 2 1 2
S 1 2 1 0 0
V 1 0 0 1 1
P 1 2 0 1 0

Table 4: Initial key

S P V J G
J G S V P

An analogous process for computing an opcode-based similarity measure for mal-

ware detection is implemented in SSD technique. In this technique, alphabet corre-

sponds to opcodes that are extracted from the malware files. A model is built for

a particular malware family and it is tested against an unknown file. The model is

6

Table 5: Digraph Distribution Matrix D

J G S V P
J 1 4 2 0 0
G 3 0 2 1 0
S 2 0 0 3 0
V 0 1 1 0 2
P 2 1 0 0 0

Table 6: Digraph Distribution Matrix D

J G S V P
J 0 3 2 1 0
G 4 1 2 0 0
S 0 2 0 3 0
V 1 0 1 0 2
P 1 2 0 0 0

treated as a original plaintext and an unknown file is treated as a ciphertext. For the

complete implementation details and the results of this technique refer [16]

2.2 Simple Substitution and Column Transposition Scoring Technique

In this second research [19], a scoring algorithm is implemented based on the

cryptanalysis of simple substitution and column transposition (SSCT) cipher. This is

a more generalized statistical analysis technique in comparison to SSD technique [16].

The cryptanalysis algorithm for scoring relies on a more sophisticated Jackobsen’s

algorithm mentioned in [29].We will first discuss the encryption process of SSCT

cipher and then consider the cryptanalysis of the encrypted text to obtain the original

message.

Suppose the plaintext we want to encrypt is “ATTACKATDAWN” and the sub-

stitution key and the transposition key are shown in Table 7 and Table 8 respec-

tively. After applying the substitution key in Table 7, the intermediate ciphertext is

7

“DWWDFNDWGDZQ”. This intermediate ciphertext is arranged in the matrix shown

in Table 9. Using a transposition key, the final ciphertext “WDWFDNWDGZDQ” is

obtained from the intermediate ciphertext. The final ciphertext is then constructed

by reading the characters row-wise from the matrix given in Table 10.

Table 7: Substitution Key

A B C D E F G H I J K L . . . S T U V W X Y Z
D E F G H I J K L M N U . . . V W X Y Z A B C

Table 8: Transposition Key

2 1 3

Table 9: Intermediate Ciphertext Matrix

D W W
D F N
D W G
D Z Q

Table 10: Final Ciphertext Matrix

W D W
F D N
W D G
Z D Q

Now to obtain the original message from the SSCT ciphertext, an efficient crypt-

analysis algorithm outlined in [29] is used. The fundamental difference between SSD

and SSCT is that, in SSD the plaintext and the ciphertext are continuous stream of

characters while in SSCT the plaintext and the ciphertext are stored in the matrix

form. Suppose initial ciphertext matrix is as shown in Table 11. Then, we need to

compute digraph frequencies for every column based on the transposition key. Also,

8

when this initial matrix is unwounded, the last element of row 𝑖 becomes adjacent to

the first element of row 𝑖+ 1. Hence, for a given transposition key,

𝐾 = (𝑘1, 𝑘2, 𝑘3, ...𝑘𝑛)

the digraph distribution matrix D is given by

𝐷 = 𝐷𝑘1,𝑘2 +𝐷𝑘2,𝑘3 + · · ·+𝐷𝑘𝑛−1,𝑘𝑛 +𝐷𝑘𝑛,𝑘1′

Here 𝐷𝑖,𝑗 is the digraph frequencies matrix when column 𝑗 is next to column 𝑖 and

𝐷𝑖,𝑗′ accounts for the digraph frequencies for the wrap around case. The required data

structure to store all these individual matrices is mentioned in [29]. If a Jakobsen’s

algorithm mentioned in [10] is applied directly in this scenario, then for each loop,

rows and columns of each individual 𝐷𝑖,𝑗 matrix needs to be swapped. This leads to

an increased time and space complexity. To avoid this, a smart approach is discovered

in [29], where instead of swapping rows and columns of an individual 𝐷𝑖,𝑗 matrix, rows

and columns of 𝐸𝑖,𝑗 matrix are swapped that yields the same score computed using

formula(1). Thus, the score is obtained by swapping rows and columns of 𝐸𝑖,𝑗 matrix

increasing an efficieny of an algorithm.

Table 11: Initial ciphertext matrix

⎡⎢⎢⎢⎣
𝑐11 𝑐12 𝑐13 . . . 𝑐1𝑛
𝑐21 𝑐22 𝑐23 . . . 𝑐2𝑛
...

...
... . . .

...
𝑐𝑚1 𝑐𝑚2 𝑐𝑚3 . . . 𝑐𝑚𝑛

⎤⎥⎥⎥⎦

In SSCT [19] scoring technique, the above mentioned process is applied to calcu-

late a score that classifies a malware file form a benign file. Like SSD [16] technique,

9

in this method also opcodes are mapped to English alphabets and an analogous algo-

rithm mentioned in [29] is implemented. The complete account of this method with

the results is outlined in [19].

10

CHAPTER 3

Vigenère Cipher

Monoalphabetic substitution ciphers such as simple substitution cipher are easily

vulnerable to a frequency analysis attack [20]. This weakness of monoalphabetic sub-

stitution ciphers leads to the idea for designing a polyalphabetic cipher by Alberti [17].

He suggested that in order to make ciphertext more secure against potential cryptan-

alytic attacks, use two or more cipher alphabet and also switch between them during

encipherment. Alberti’s idea was converted into a more practical cipher by a French

diplomat, Vigenère and hence the name “Vigenère Cipher.” Vigenère cipher [17] is

a form of polyalphabetic substitution ciphers. Since Vigenère cipher overcome the

weakness in simple substitution cipher, it is considered to be stronger than Simple

Substitution cipher. It generates an encrypted text as an interwoven series of many

simple substitution ciphertexts thus disguising frequency statistics. And hence, this

has remained unbreakable for over three centuries, therefore it is also known as le

chiffre indéchiffrable (indecipherable). In Vigenère cipher, every letter in an alpha-

betic plaintext (message) is encrypted using a different shift that corresponds to a

corresponding letter in the keyword. This approach ensures one extra level of secu-

rity as compared to Simple Substitution where every letter in a message is encrypted

using the same shift.

3.1 Vigenère Encryption

To encrypt a plaintext message, a Vigenère square that is a 26 × 26 matrix is

used. The Vigenère square is shown in Figure 1. Each column index represents a

plaintext letter and each row index corresponds to a keyword letter.

11

Figure 1: Vigenère Square.

The encryption process is described using an example given in Table 12. In this

example, the keyword used for encryption is “LEMON.” This keyword is repeated

the length of the plaintext. A ciphertext letter L is obtained as an intersection of

row index that corresponds to keyword letter L and column index that corresponds to

plaintext letter A. In a similar fashion, all other letters of the plaintext are encrypted.

This example shows that every plaintext letter is encrypted using a different shift.

Since Vigenère cipher can easily disguise the frequency of appearance of letters, it is

more secure than Simple Substitution cipher.

Table 12: Vigenère Encryption

Plaintext A T T A C K A T D A W N
Key L E M O N L E M O N L E

Ciphertext L X F O P V E F R N H R

12

3.2 Vigenère Decryption

The decryption process is exactly opposite to the encryption process. In this

process using a Vigenère square shown in Figure 1, a plaintext letter is retrieved by

fetching a row having a keyword letter as row index and a ciphertext letter in it.

Thus, the column index corresponding to the position of a cipher text letter in this

row provides a plaintext letter. See the example given in Table 13. Thus, to obtain

Table 13: Vigenère Decryption

Ciphertext L X F O P V E F R N H R
Key L E M O N L E M O N L E

Plaintext A T T A C K A T D A W N

a plaintext letter A first search for a row with row index L and within that row for

letter L, then find the corresponding column index. This column index represents

plaintext letter A. Similarly, the rest of the plaintext letters are obtained.

3.3 Breaking Vigenère Cipher

Although Vigenère cipher resisted any attack for almost three centuries, it was

broken because of the repetitive nature of its key used during encipherment. Like any

other polyalphabetic cipher, Vigenère cipher can hide natural letter frequencies for

plaintext letters. Hence, it is not very obvious to directly use frequency analysis for

cryptanalysis like simple substitution ciphers. It is difficult to draw any conclusions

about possible occurrence of plaintext letters. This is because, unlike simple substi-

tution cipher, the same plaintext letter gets enciphered as different ciphertext letter

at various points in the original message . For example if P is the most frequently

occurring letter in the ciphertext, then it will not represent E in the plaintext in case

of Vigenère cipher. This is because E can be encrypted as different cipher letters each

13

time.

In order to break Vigenère cipher, first find the key length, then divide the

ciphertext into those many number of columns and finally use frequency analysis to

solve an individual column, that is a simple shift cipher. With this process one can

recover an original key that can be used to decipher the ciphertext. There are two

methods to determine the length of the key: Kasisky test and Friedman test.

3.3.1 Kasisky Test

This method [17, 4] takes benefit of the fact that the repeated plaintext segments

may be encrypted using the same keyword letters, if they occur at the distance 𝑑.

Here 𝑑 ≡ 0(mod 𝑚), where 𝑚 is the length of key. The algorithm for this method

is as follows:

1. In a given ciphertext, search for pairs of identical words with length at least

three.

2. Calculate the distance between the two identical words as 𝑑1, 𝑑2,....., 𝑑𝑛.

3. Determine key length 𝑚 as 𝑚 divides gcd(𝑑1, 𝑑2, ..., 𝑑𝑛).

Consider the example in Table 14 to understand this method. Table 14 shows

that the distance between the identical words in the ciphertext is 8. Thus, according

to the algorithm, the most likely key length is 4. This method can produce more

accurate key length if the ciphertext used is sufficiently large so that there are more

occurrences of the identical words.

14

Table 14: Kasisky Algorithm

Key K I N G K I N G K I N G K I N G K I N G K I N G
Plaintext T H E S U N A N D T H E M A N I N T H E M O O N
Ciphertext D P R Y E V N T N B U K W I A O X B U K W W B T

3.3.2 Friedman Test

This method [7] is based on the index of coincidence. The index of coincidence

determines the probability that the two randomly selected letters from the string

x, having n letters are identical. This test makes use of unevenness of the letter

frequencies in the cipher text to break the cipher. The index of coincidence (𝐼𝐶) is

given by formula below:

𝐼𝐶 =

𝑐∑︁
𝑖=1

𝑛𝑖(𝑛𝑖 − 1)

𝑁(𝑁 − 1)/𝑐
(2)

Here, 𝑛𝑖 is the frequency of occurrence of a particular letter in the text

𝑁 is the length of the text

𝑐 is the total number of alphabet. for example 𝑐 = 26 for English

Further, the approximate key length is determined by a formula given as follows:

𝐾𝑝 −𝐾𝑟

𝐾𝑜 −𝐾𝑟

(3)

Here, 𝐾𝑝 is the kappa plaintext. For English 𝐾𝑝 = 0.067, if the underlying plaintext

for the ciphertext is English

𝐾𝑟 is the kappa random. For English 𝐾𝑟 = 0.0385, if the underlying plaintext for the

ciphertext is some random text

𝐾𝑜 is the 𝐼𝐶 calculated using Formula 2

In the context of the English language, if the 𝐼𝐶 of the ciphertext under con-

sideration is close to 0.067 (𝐾𝑝 for English), then the underlying plaintext for this

ciphertext is English. Also, if the 𝐼𝐶 of the ciphertext under consideration is close

15

to 0.0385 (𝐾𝑟 for English), then the underlying plaintext for this ciphertext is some

random text. Note that this method only gives approximate key length. To obtain

more accurate key length ciphertext should be sufficiently large.

Once the key length is determined using either of the above methods, the actual

key is recovered using frequency analysis and correlation [20]. The correlation 𝜒 is a

given by the following formula:

𝜒 =
𝑐∑︁

𝑖=1

𝑛𝑖𝑓𝑖 (4)

Here, 𝑛𝑖 is the letter frequencies for the observed column

𝑓𝑖 is the relative letter frequencies for English

𝑐 is the total number of alphabet. for example 𝑐 = 26 for English

The algorithm to obtain key is as follows:

1. Divide the ciphertext into same number of columns as the key length.

2. For each individual column, try out Caesar cipher decryption for all 26 (A-Z)

possible shifts.

3. Select a shift that produces highest correlation between letter frequencies for

the decrypted column and the relative letter frequencies for the normal English

text. This shift corresponds to a letter in a key.

4. Repeat step 2 and 3 for all remaining key letters.

5. Once the actual key is found, we can decrypt the ciphertext message using

decryption method mentioned above.

The above algorithm was initially implemented for English ciphertext to test

its efficacy. We have experimented with varying key lengths and varying sizes of

16

ciphetext. It is observed that in order to completely recover the plaintext from ci-

phertext for a particular key length, each column of the ciphertext matrix should at

least contain 30 characters. For example, for a key “boxfish” of length 7, we obtained

a correct plaintext for a ciphertext of size 230 characters.

3.4 Vigenère Cipher Score for Malware Detection

This section describes the complete implementation of the scoring technique used

for the malware detection. The proposed techniques is shown in Figure 2. The

implementation involves two steps. The first step is computing key length with the

help of the index of coincidence technique [7]. This key length is used in the second

step to recover the key and decrypt the ciphertext to give putative plaintext using

this recovered key. The digraph distribution of this putative plaintext is used in the

scoring part that tells whether a particular file is malware or not. Before discussing

the above mentioned steps, it is necessary to talk about the process that involves

generation of alphabetic ciphertext from opcode sequence of a malware or benign file.

We will consider the opcode sequence from the known virus files as plaintext and

the opcode sequence from an unknown virus files as ciphertext. We will refer to all

virus files of the same family as model and unknown files to score as sample. After

extracting the opcodes from the virus files, these opcodes are mapped to the English

alphabet depending on the computed monograph statistics of a particular malware

family. Thus, the ciphertexts and plaintexts consist of the English alphabet. The

details about opcode extraction process, choice of 26 distinct opcodes and opcode to

alphabet mapping can be found in Chapter 4 under Experiments and Results.

17

Figure 2: Flow Diagram of the Proposed Technique.

3.4.1 Score using Index of Coincidence

This is the first step that involves the computation of index of coincidence (𝐼𝐶)

for a model and various test samples which is further given to scoring function. 𝐼𝐶

for a model is referred as familyIC whereas 𝐼𝐶 for a sample is referred as 𝐼𝐶. The

formula for computing 𝐼𝐶 is given in (2). In order to compute familyIC, first a

set of all opcodes for all virus files in that family is obtained. Thus, according to

𝐼𝐶 formula(2), 𝑛𝑖 is frequency of occurrence of a particular opcode in that set and

𝑁 is total number of opcodes in the set. In a similar way, for an unknown file,

𝐼𝐶 is calculated. In case of an unknown file, 𝑛𝑖 is frequency of occurrence of a

particular opcode in that file and 𝑁 is the length of that file. Then a score function

is implemented as given in Table 15 that classifies a sample as malware or not. Also,

the obtained score is used as a key length in step 2 that is explained in the next

18

section.

Table 15: Score using Index of Coincidence

Algorithm Parameters:

familyIC- Expected IC for a particular malware family
IC- Calculated IC for a test sample

score = |familyIC − IC|
if score ≤ threshold

unknown file is a virus of the same family
else

unknown file is not a virus of the same family
end if

3.4.2 Score using Vigenère Cryptanalysis

This is the second step that involves implementation of a scoring technique based

on the cryptanalysis [4] of ciphertext of test samples. The ciphertext for test samples is

assumed as some form of Vigenère encryption. This ciphertext is the opcode sequence

in the form of the English alphabet. This ciphertext along with its key length that is

obtained in section 3.4.1 is provided to a cryptanalysis subroutine given in Table 16.

The complete process for scoring a test sample is given below.

1. Generate ciphertext for a test sample in the form of the English alphabet.

2. Input the generated ciphertext and key length obtained using index of coin-

cidence to a cryptanalysis subroutine given in Table 16 .This cryptanalysis

subroutine has a findKey and decrypt functions that gives key and putative

plaintext respectively. The findKey function is given in Table 17.

19

3. Compute normalized digraph distribution matrix E for original plaintext for a

model. The method is explained in Table 18.

4. Compute normalized digraph distribution matrix D for putative plaintext. The

process for computation of matrix D is same as matrix E. Both the matrices E

and D are normalized to avoid sparse matrices.

5. Input E and D matrices to a scoring function explained in Table 19.

6. This score determines whether a test sample is malware or not.

Table 16: Cryptanalysis Subroutine

Algorithm Parameters:

ciphertext, keyLength, putativePlaintext, key

if keyLength ≤ 0
putativePlaintext = ciphertext

else
key = findKey(ciphertext, keyLength)
putativePlaintext = decrypt(ciphertext, key)

20

Table 17: findKey Function

Algorithm Parameters:

ciphertext, keyLength, putativePlaintext, key
FreqAlphaMapping - HashMap with alphabets as key and count of alphabets as value
monostat - monograph statistics for a particular malware family

Initialize key to 0
Initialize monostat to opcode frequences
Initialize row to 𝑙𝑒𝑛𝑔𝑡ℎ(ciphertext)/keyLength
Initialize col to keyLength
CT = generateCipherMatrix(ciphertext, row, col)
for each column in CT

freqCount = freq(column)
end for
for 𝑖 = 0 to 25

FreqAlphaMapping.put(65+𝑖, freqCount[𝑖])
end for
sort(FreqAlphaMapping)
Initialize maxCorr to 0

while loop < 26
corr = 0.0
𝑐 = 65 + loop
for 𝑗 = 0 to 25

𝑑 = (FreqAlphaMapping[𝑗].alpha − 𝑐+ 26) mod 26
corr = FreqAlphaMapping[𝑗].count * monostat[𝑑]

end for
if corr > maxCorr

𝑚 = loop
maxCorr = corr

end if
next loop

end while
key+ = m + 65

end for

21

Table 18: Compute 𝐸 Matrix

Algorithm Parameters:

Plaintext- Alphabetical plaintext generated for malware family
normFactor- One dimensional array holding total occurrences of opcodes per row
𝐸 Matrix- Normalized digraph distribution matrix for malware family

Initialize 𝐸 to 0
for 𝑖 = 1 to Length of plainetxt

𝐸[Plaintext.𝑐ℎ𝑎𝑟𝐴𝑡(𝑘 − 1)− 65][Plaintext.𝑐ℎ𝑎𝑟𝐴𝑡(𝑘)− 65]+ = 1
end for
for 𝑗 = 1 to 26

for 𝑘 = 1 to 26
normFactor[𝑗]+ = 𝐸[𝑗][𝑘]

end for
end for
for 𝑖 = 1 to 26

for 𝑗 = 1 to 26
if normFactor[𝑖] ̸= 0

𝐸[𝑖][𝑗] = 𝐸[𝑖][𝑗]/normFactor[𝑖]
end if

end for
end for

22

Table 19: Score using Vigenère Cryptanalysis

Algorithm Parameters:

𝐸 Matrix- Normalized digraph distribution matrix for malware family
𝐷 Matrix- Normalized digraph distribution matrix for test sample

for 𝑖 = 1 to 𝑛
for 𝑗 = 1 to 𝑛

score[𝑖][𝑗] = |𝐸[𝑖][𝑗]−𝐷[𝑖][𝑗]|
score+ = score[𝑖][𝑗]

end for
end for
if score ≤ threshold

unknown file is a virus of the same family
else

unknown file is not a virus of the same family
end if

23

CHAPTER 4

Experiments and Results

This chapter illustrates the experiments and the results obtained via implementa-

tion of the scoring algorithm in Java. Initially, the gathered executable files from both

malware and benign dataset were disassembled using ollydbg [14]. Then the opcodes

from these disassembled files were extracted using GivemeASM3.jar. The various

malware families used for experimentation and the results of these experiments are

explained in the subsequent sections.

4.1 Parameters

It is mentioned in [15] that there are more than 130 opcodes in any particular

processor. Thus, if a matrix is constructed for scoring using such opcodes, it will

be too large to compare. Moreover, only a subset of opcodes out of all such opcodes

contributes to a particular behavior of a file, that is either malicious or benign. Hence,

it is appropriate to choose only frequently occurring opcodes and put all non-frequent

opcodes into “other” category to build 𝐸 and 𝐷 matrices for scoring. To come up

with such topmost occurring opcodes, an experiment was conducted over 643 files

from Zbot, Winwebsec and Cygwin datasets. The purpose of this experiment was to

choose top 𝐾 opcodes which contribute to most of the functionality. A graph given in

Figure 3 is plotted between number of opcodes on X-axis and AUC values on Y-axis

to find such 𝐾 opcodes. It was seen from the Figure 3 that 𝐾 = 25 gives the highest

AUC value. Thus, in both of the above mentioned approaches, total 26 opcodes were

used to conduct experiments. These 26 opcodes consists of 25 frequently occurring

opcodes and all non frequently occurring opcodes grouped into “other" category.

24

Figure 3: No. of Opcodes vs AUC

4.2 Dataset

The dataset used for this project consists of malware dataset and benign dataset.

The malware dataset includes various malware families such as Next Generation Virus

Generation Kit (NGVCK), Harebot, Zeroaccess, Zbot, Security Shield, Winwebsec,

Smart HDD, Cridex. These families are described succinctly below:

∙ NGVCK [25] is a metamorphic virus that replicates itself using code morphing

techniques such as subroutine reordering and dead code insertion.

∙ Harebot is a windows rootkit that opens up the user system to remote hackers

allowing them to perform malicious activities.

∙ Zeroaccess is a trojan horse that mainly infects Microsoft Windows OS. It down-

loads other malware on an infected computer system with the help of botnets

25

that are mainly used in bitcoin mining and click frauds.

∙ Zbot [24] is also known as Zeus, designed to carry out malicious and criminal

tasks such as stealing banking information of users using techniques such as

form grabbing and keystroke logging.

∙ Security Shield [11] is a variant of Win32/Winwebsec family that generates fake

warnings about nonexistent threats and asks users to register to paid software

to remove these threats.

∙ Winwebsec [12] is a type of malicious software that targets Windows users.

It generates fake alerts and detections in order to convince users to purchase

illegitimate software that impersonates legitimate anti-virus software.

∙ Smart HDD is a malicious program that represents itself as a hardware mon-

itoring system and generates misleading warning for hard drive failures and

memory errors.

∙ Cridex [13] is a trojan that adds the compromised system to the network of

botnets and injects itself into victim’s web browser to collect confidential infor-

mation such as banking credentials.

Since all the above mentioned malicious programs are mainly designed for win-

dows platform, it is logical to use benign files belonging to the same environment for

scoring. Thus the benign dataset used consists of Cygwin utility files. The Table 20

shows total number of files in the malware and benign dataset. Since there are fewer

number of files in each dataset, we performed a five-fold cross validation to get most

out of it. We divided each malware dataset into five sets; four out of five sets are used

26

for training and the remaining one set is used for testing. This process is repeated

five times, each time selecting different sets for training and testing.

Table 20: Dataset

NGVCK 200
Harebot 54

Zeroaccess 230
Zbot 242

Security Shield 59
Winwebsec 161
Smart HDD 69

Cridex 75
Cygwin 40

4.3 Results

The similarity scores obtained using the scoring algorithms mentioned in Chap-

ter 3 for the comparison of various malware families with virus files in the same family

and the benign files are described in this section. The results are shown in terms of

AUC values. The AUC values [3] are obtained by plotting Receiver Operating Curve

(ROC). The ROC [6] is a plot between false positive rate on the X-axis and true

positive rate on the Y-axis. The accuracy of our detection system is calculated using

AUC that is an area under ROC curve. Table 21 shows comparison between our

detection system and previous research. Graphically this comparison is shown in

Graph 4. It can be seen from Graph 4 that our detection system performed better

in case of malware families such as NGVCK, Zbot and Smart HDD. In case of an

NGVCK malware family, Scatter plot in Figure 5 reveals a clear distinction between

malware files and benign files. In Figure 5, the blue solid dots corresponds to malware

files where as orange solid dots corresponds to benign files. Hence, we got an AUC

of perfect one for NGVCK which is an ideal condition and is shown in ROC curve in

27

Table 21: Results

Malware AUC using AUC using AUC using AUC using
Family IC score Vigenère Cryptanalysis score SSCT SSD

NGVCK 1 0.99 1 1
Zbot 0.8801 0.9729 0.8670 0.8664

Winwebsec 0.8914 0.9996 0.7328 0.8374
Smart HDD 0.6146 0.9958 1 0.8855

Cridex 0.825 0.9458 0.9628 0.5830
Security Shield 0.7167 0.5979 1 0.6290

Harebot 0.6989 0.9057 1 0.5606
Zeroaccess 0.8029 0.6588 N/A N/A

Figure 4: AUC Comparison

Figure 6. For Zbot, the AUC value is better than both previous research techniques.

In case of Smart HDD, the AUC value is closer to AUC value of SSCT technique

but better than AUC value of SSD technique. In almost all cases, our technique is

performing better than the SSD technique and in some case it reaches closer to SSCT

technique as mentioned above. We tested our detection system for one more family,

28

Figure 5: NGVCK Scatter Plot

Figure 6: NGVCK ROC

Zeroaccess, which is not considered in SSCT and SSD techniques. Even though the

results obtained for this family are not very good, we have still included them in our

result set for comparison in the future. For better visualization of the results, the

scatter plots and ROC curves for the rest of the malware families for both scoring

29

algorithms are given in the Appendices A and B.

4.4 Results for Varying Key Lengths

We know that our approach II scores are dependent on the key lengths obtained

during approach I. These are approximate key lengths and thus we wanted to check

if varying the key lengths can improve the approach II scores. We experimented on

harebot malware family since it can be an interesting case to see if its auc value

improves from 0.9057. We used the key length one lesser as well as one greater than

the actual key length for all harebot test samples. The results of these experiments

are shown in Figure 7 and Figure 8. It is observed that there is no change in the

auc value when the key length is greater than the actual key length and it slightly

improved when the key length is lesser that the actual key length. Moreover, the same

experiments can be conducted for the remaining malware families under consideration

in the future.

Figure 7: Harebot ROC for lesser key length

30

Figure 8: Harebot ROC for greater key length

4.5 SVM Results

SVM [22] is an acronym for support vector machine, is used as a binary classifier.

It is a supervised learning technique that means it needs labelled data. Due to the fact

that SVM acts as a classification technique, it is very natural to apply the technique

to a set of scores, as opposed to a raw data itself. Hence although, it is a challenging

task to determine a good technique to combine scores to build a strong score, SVM

is a reasonable technique to combine such scores rather than using an ad hoc score

combination. Therefore, in our case we used SVM to combine our approach I and

approach II scores. We tested two kernel functions such as polynomial and Gaussian

with different parameters to determine the accuracy of our classification technique.

The results for our experiments is shown in Table 22. In the Table 22, the parameters

P and C are known as the degree of a polynomial learning function and the trade-off

between a training error and a margin respectively. It is observed that a gaussian

kernel function with parametr C=3 gives a better accuracy in all cases.

31

Table 22: SVM Results

Family Kernel Accuracy

Cridex

Polynomial (P=2, C=0) 73.39%
Polynomial (P=2,C=3) 77.06%

Gaussian (C=0) 75.23%
Gaussian (C=3) 79.82%

NGVCK

Polynomial (P=2, C=0) 50.00%
Polynomial (P=2,C=3) 53.12%

Gaussian (C=0) 100.00%
Gaussian (C=3) 100.00%

Harebot

Polynomial (P=2, C=0) 80.00%
Polynomial (P=2,C=3) 21.00%

Gaussian (C=0) 81.00%
Gaussian (C=3) 88.00%

Winwebsec

Polynomial (P=2, C=0) 84.51%
Polynomial (P=2,C=3) 90.85%

Gaussian (C=0) 90.14%
Gaussian (C=3) 90.85%

Security Shield

Polynomial (P=2, C=0) 78.43%
Polynomial (P=2,C=3) 21.57%

Gaussian (C=0) 83.33%
Gaussian (C=3) 87.25%

SmartHDD

Polynomial (P=2, C=0) 89.62%
Polynomial (P=2,C=3) 98.11%

Gaussian (C=0) 98.11%
Gaussian (C=3) 98.11%

32

CHAPTER 5

Conclusions and Future Work

We modeled and implemented an opcode-based static analysis technique for mal-

ware detection. This technique uses a scoring algorithm based on cryptanalysis of

Vigenère cipher [4]. We built a training model from a dataset of various malware

families mentioned in Section 4.2 and tested this model against virus files from the

same malware family as well as benign files. We tested our scoring algorithm on wide

range of malware families in order to analyze their reaction for our scoring technique.

This algorithm proves to be efficient in almost all cases of malware families as com-

pared to SSD. In comparison to SSCT, our algorithm performed better in case of

NGVCK, Zbot and Smart HDD. Thus, for a particular threshold value, our detection

technique effectively classifies a malware file from a benign file.

Presently, our detection system is only able to distinguish a malware file from a

benign file. In future, this detection technique can be modified to classify a test file

to a particular malware family it belongs based on higher level calculations of index

of coincidence values. Also, in this project morphed variants of the virus files are not

analyzed. This could be a future scope, where one can build a morphing engine [18]

to create a morphed variants of virus files using the dataset used in this project and

analyze how our technique performs. Although, our second scoring technique based

on complete Vigenère cryptanalysis is performing better than the SSD technique, it

is not doing well compared to the SSCT technique in all the malware families. Hence,

in future our approach II scores can be improved by implementing an automated

approach which will consider varying key lengths, as opposed to only approximate

key lengths, which are presently used.

33

LIST OF REFERENCES

[1] C. Annachatre, T. H. Austin, M. Stamp, Hidden Markov Models for Malware
Classification, Journal of Computer Virology and Hacking Techniques, 11(2):59–
73, May 2015

[2] J. Aycock, Computer Viruses and Malware, Springer, 2006

[3] A. P. Bradley, The Use of the Area Under the ROC Curve in the Evolution of
Machine Learning Algorithms, Pattern Recognition, 30:1145–1159, 1997

[4] Cryptanalysis of Vigenère Cipher and Substitution Cipher http://shodhganga.
inflibnet.ac.in/bitstream/10603/26543/10/10_chapter5.pdf

[5] F-Secure Annual Security Report 2007, https://www.f-secure.com/
documents/10192/1118990/AnnualReport_2007_en.pdf/

[6] T. Fawcett, An Introduction to ROC Analysis, Pattern Recognition Letters,
27(8):861–874

[7] W. F. Friedman, The index of coincidence and its applications in cryptography,
Aegean Park Press, 1987

[8] C. Hosmer, Polymorphic and Metamorphic Malware, https://www.blackhat.
com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_
Malware.pdf

[9] Hunting for Metamorphic https://www.symantec.com/avcenter/reference/
hunting.for.metamorphic.pdf

[10] T. Jakobsen, A fast method for the cryptanalysis of substitution ciphers, Cryp-
tologia, 19:265–274, 1995

[11] Microsoft Malware Protection Center, SecurityShield, http://www.
microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?
Name=SecurityShield

[12] Microsoft Malware Protection Center, Winwebsec, https://www.microsoft.
com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%
2fWinwebsec

[13] Microsoft Malware Protection Center, Cridex, http://www.microsoft.com/
security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2FCridex

34

http://shodhganga.inflibnet.ac.in/bitstream/10603/26543/10/10_chapter5.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/26543/10/10_chapter5.pdf
https://www.f-secure.com/documents/10192/1118990/AnnualReport_2007_en.pdf/
https://www.f-secure.com/documents/10192/1118990/AnnualReport_2007_en.pdf/
https://www.blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf
https://www.blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf
https://www.blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf
https://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
https://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=SecurityShield
http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=SecurityShield
http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=SecurityShield
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2FCridex
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2FCridex

[14] OllyDbg http://www.ollydbg.de/

[15] N. Runwal, R Low, and M. Stamp, Opcode graph similarity and metamorphic
detection Journal of Computer Virology and Hacking Techniques, 8(2):37–52,
2012

[16] G. Shanmugam, R. M. Low, and M. Stamp, Simple substitution distance and
metamorphic detection, Journal of Computer Virology and Hacking Techniques,
9(3):159–170, 2013

[17] S. Sing, The code book: the science of secrecy from ancient Egypt to quantum
cryptography, Anchor, 2011

[18] S. M. Sridhara, Metamorphic worm that carries its own morphing en-
gine, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.344.
549&rep=rep1&type=pdf, 2012

[19] S. Srinivasan, SSCT Score for Malware Detection, Master’s report, Department
of Computer Science, San Jose State University, 2015,
http://scholarworks.sjsu.edu/etd_projects/444/

[20] M. Stamp and R. M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real
World, Wiley, 2006

[21] M. Stamp, Information Security: Principles and Practice, second edition, Wiley,
2011

[22] M. Stamp, Machine Learning with Applications in Information Security, first
edition, unpublished manuscript, 2015

[23] Symantec Annual Security Report 2008, http://www.realwire.com/releases/
symantec-announces-messagelabs-intelligence-2008-annual-security-
report

[24] Symantec Security Response, ZBOT, http://www.symantec.com/security_
response/writeup.jsp?docid=2010-011016-3514-99

[25] P. Szor, The Art of Computer Virus Research and Defense, Pearson Eduction,
2005

[26] Understanding and Managing Polymorphic viruses https://www.symantec.
com/avcenter/reference/striker.pdf

[27] H. Van Tilborg, An introduction to cryptology, Springer Science and Business
Media, Vol. 52, 2012

35

http://www.ollydbg.de/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.344.549&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.344.549&rep=rep1&type=pdf
http://scholarworks.sjsu.edu/etd_projects/444/
http://www.realwire.com/releases/symantec-announces-messagelabs-intelligence-2008-annual-security-report
http://www.realwire.com/releases/symantec-announces-messagelabs-intelligence-2008-annual-security-report
http://www.realwire.com/releases/symantec-announces-messagelabs-intelligence-2008-annual-security-report
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
https://www.symantec.com/avcenter/reference/striker.pdf
https://www.symantec.com/avcenter/reference/striker.pdf

[28] S. Vemparala, Malware Detection Using Dynamic Analysis,Master’s report, De-
partment of Computer Science, San Jose State University, 2015,
http://scholarworks.sjsu.edu/etd_projects/403/

[29] J. Yi, Cryptanalysis of Homophonic Substitution-Transposition Cipher, Depart-
ment of Computer Science, San Jose State University, 2014,
http://scholarworks.sjsu.edu/etd_projects/357/

36

http://scholarworks.sjsu.edu/etd_projects/403/
http://scholarworks.sjsu.edu/etd_projects/357/

APPENDIX A

Scatter Plots and ROC curves on the basis of Index of Coincidence

In this section, we present the scatter plots and ROC curves for the various

malware families scored on the basis of Index of Coincidence. When performing the

experiments on the malware families mentioned in Section 4.2, we stored the malware

and benign scores in .txt files and used these score to plot scatter plots as shown in

Figures A.9 − A.15. Using these score, we further calculated true positive and false

negative rates to generate ROC curves given in Figures A.16 − A.22 to obtain AUC

values.

Figure A.9: Cridex Scatter Plot

37

Figure A.10: Harebot Scatter Plot

Figure A.11: Security Shield Scatter Plot

38

Figure A.12: Smart HDD Scatter Plot

Figure A.13: Winwebsec Scatter Plot

39

Figure A.14: Zbot Scatter Plot

Figure A.15: Zeroaccess Scatter Plot

40

Figure A.16: Cridex ROC

Figure A.17: Harebot ROC

41

Figure A.18: Security Shield ROC

Figure A.19: Smart HDD ROC

42

Figure A.20: Winwebsec ROC

Figure A.21: Zbot ROC

43

Figure A.22: Zeroaccess ROC

44

APPENDIX B

Scatter Plots and ROC curves on the basis of Vigenère Cyptanalysis

In this section, we present the scatter plots and ROC curves for the various

malware families scored on the basis of Vigenère Cyptanalysis. The scatter plots are

shown in Figures B.23 − B.30 and ROC curves are given in Figures B.31 − B.38.

Figure B.23: NGVCK Scatter Plot

45

Figure B.24: Cridex Scatter Plot

Figure B.25: Harebot Scatter Plot

46

Figure B.26: Security Shield Scatter Plot

Figure B.27: Smart HDD Scatter Plot

47

Figure B.28: Winwebsec Scatter Plot

Figure B.29: Zbot Scatter Plot

48

Figure B.30: Zeroaccess Scatter Plot

Figure B.31: NGVCK ROC

49

Figure B.32: Cridex ROC

Figure B.33: Harebot ROC

50

Figure B.34: Security Shield ROC

Figure B.35: Smart HDD ROC

51

Figure B.36: Winwebsec ROC

Figure B.37: Zbot ROC

52

Figure B.38: Zeroaccess ROC

53

	Vigenère Score for Malware Detection
	Recommended Citation

	Introduction
	Previous Research
	Simple Substitution Distance Tecnique
	Simple Substitution and Column Transposition Scoring Technique

	Vigenère Cipher
	Vigenère Encryption
	Vigenère Decryption
	Breaking Vigenère Cipher
	Kasisky Test
	Friedman Test

	Vigenère Cipher Score for Malware Detection
	Score using Index of Coincidence
	Score using Vigenère Cryptanalysis

	Experiments and Results
	Parameters
	Dataset
	Results
	Results for Varying Key Lengths
	SVM Results

	Conclusions and Future Work
	Scatter Plots and ROC curves on the basis of Index of Coincidence
	Scatter Plots and ROC curves on the basis of Vigenère Cyptanalysis

