
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2016

Analyze Large Multidimensional Datasets Using Algebraic Analyze Large Multidimensional Datasets Using Algebraic

Topology Topology

David Le
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Recommended Citation Recommended Citation
Le, David, "Analyze Large Multidimensional Datasets Using Algebraic Topology" (2016). Master's Projects.
492.
DOI: https://doi.org/10.31979/etd.k9sg-r6wd
https://scholarworks.sjsu.edu/etd_projects/492

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F492&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F492&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F492&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F492&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/492?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F492&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

SAN JOSE STATE UNIVERSITY

MASTER’S WRITING PROJECT

Analyze Large Multidimensional
Datasets Using Algebraic Topology

Author: Advisor:
David A. Le Dr. Tsau Young Lin

Committee Members:
Dr. Jon Pearce

Mr. James Casaletto

A writing project submitted in fulfillment of the
requirements for the degree of Master of Science

in the

Department of Computer Science

May 12, 2016

1

SAN JOSE STATE UNIVERSITY

MASTER’S WRITING PROJECT

Abstract

This paper presents an efficient algorithm to extract knowledge from high-dimensionality, high-

complexity datasets using algebraic topology, namely simplicial complexes. Based on concept of

isomorphism of relations, our method turn a relational table into a geometric object (a simplicial

complex is a polyhedron). So, conceptually association rule searching is turned into a geometric

traversal problem. By leveraging on the core concepts behind Simplicial Complex, we use a new

technique (in computer science) that improves the performance over existing methods and uses far less

memory. It was designed and developed with a strong emphasis on scalability, reliability, and

extensibility. This paper also investigate the possibility of Hadoop integration and the challenges that

come with the framework.

2

SAN JOSE STATE UNIVERSITY

MASTER’S WRITING PROJECT

Acknowledgments

I would like to express my deepest gratitude to my research advisor, Dr. Tsau Young Lin, for his excellent

guidance, direction, and support over the past several years. His profound knowledge has helped me

overcome many challenges during the research phase. With his dedicated patience and vision, I’ve

learned to tackle complex problems from many different angles. Thank you Dr. Lin.

I also would like to thank my committee members, Dr. Jon Pearce and Dr. James Casaletto, for providing

me with many thoughtful suggestions and feedbacks on the project. Their expertise and experience in

the areas of Mathematics and Computer Science have given me a tremendous boost. I couldn’t have

been more fortunate to have this amazing opportunity.

I would like to mention my colleague, my friend and my mentor, Mike Mittmann, who I’ve always

looked up and run to whenever I hit a roadblock. His ability to approach challenging problems and

coming up with proper solutions at lightning speed is unprecedented. He is the first person that I turned

to get some ideas on how to brainstorm the possible solutions to this complicated problem.

Finally, I would like to thank my wife for being by my side and encouraged me every step of the way. It’s

not possible to complete this Master’s project without her unconditional love and support. Thank you

so much “ba xa”. You truly mean the whole world to me.

3

Table of Contents
Abstract ... 1

Acknowledgments ... 2

1. Introduction .. 5

1.1 Motivation ... 5

1.2 Prior Work .. 6

1.3 Contribution ... 6

1.3.1 Our Approach .. 6

2. Simplicial Complex .. 7

2.1 Basic Definition .. 7

2.1.1 Simplexes .. 7

2.1.1.1 Valid Simplexes ... 8

2.1.1.2 Invalid Simplexes ... 8

2.2 Algorithm ... 9

2.2.1 Data Mining ... 9

2.2.1.1 Feature Extraction ... 9

2.2.1.2 Simplex Representation .. 10

2.2.1.3 Inverted Index ... 11

2.2.1.4 Data Structures ... 11

2.2.2 Building Simplexes .. 13

2.2.2.1 Dimensionality Reduction ... 13

2.2.2.2 Ranking Vertices .. 14

2.2.3 Graph Traversal ... 15

2.2.3.1 Topological Cone Construction ... 15

2.2.3.2 Self-Contained Cone Construction .. 17

3. Parallel Computing .. 20

3.1 Big Data .. 20

3.2 Embarrassingly Parallel .. 20

3.3 Distributed Systems ... 21

3.3.1 Hadoop Framework .. 22

3.3.2 MapReduce Paradigm ... 23

4

3.4 Simplicial Complex on Hadoop .. 25

3.4.1 Initial Concept ... 25

3.4.2 Horizontal Scaling.. 26

3.4.3 Input Split .. 26

3.4.4 Map Function .. 27

3.4.5 Reduce Function ... 28

4. Experiment ... 29

4.1 Results .. 29

4.2 Performance .. 30

4.2.1 Comparisons ... 30

4.2.2 Resource Utilization .. 32

5. Conclusion .. 32

5.1 Discovery .. 32

5.2 Future Work ... 32

Appendix ... 33

i Algorithm Code .. 33

ii Simulation Runs .. 35

iii Standard Notations .. 37

Bibliography .. 38

5

1. Introduction

Big data, small data, structured data, unstructured data. Data is everywhere. Data is all around us. To

say that we are living in the information age is an understatement. It was estimated that the total

amount of stored data in the world was approaching 8 zettabytes as of 2015 (1). That is equivalent to

1021 bytes or 8 trillion gigabytes of data. And we constantly generate massive amount of information on

a daily basis. This size of data presents many challenges as well as wonderful opportunities for the

scientific community. Not only we have to deal with its enormous size, but we also have to find

innovative ways to handle its ever-increasing complexity.

In this paper, we present a mathematical concept in algebraic topology to help tackle aforementioned

challenges in Data Science. Our method is based upon a branch of study in algebraic topology called

Simplicial Complex. By using the main principles behind Simplicial Complex, intricate relationships

within high-dimensional datasets can be extracted to give us useful insights and hidden knowledge

about the data that we normally would miss otherwise. But there are several big hurdles that we must

overcome. The problem is not in Mathematics itself, but instead it’s in Computer Science, particularly

when working with high-dimensional, high-complexity datasets. Sometimes what worked in theory

does not always translate well into practice. Our novel approach must take all these measures into

considerations. We were able to develop a solution that can utilize resources more effectively, improve

the performance, and provide a solid framework to integrate with distributed systems for scalability.

1.1 Motivation

This work, led by Dr. Tsau Young Lin, is motivated by years of research at San Jose State University in the

Department of Computer Science. There are many important problems that exist in the world today

which can be solved if we have proper software tools to analyze large amount of data and produce

meaningful results in a timely manner.

List of applicable applications:

 Genetic Diseases

 Business Data Analytics

 Computer Security

 Natural Language Processing (NLP)

 Space Exploration

 Image Recognition

 Effects of Social Media

As more Big Data are showing up everywhere, traditional systems for analyzing small datasets are fast

becoming antiquated. Public sector, private sector, the government, and academia are all scrambling

for better solutions to address the growing concerns as well as looking for potential opportunities. We

understand and embrace these technical challenges from a humble perspective. This is the driving force

behind our motivation.

6

1.2 Prior Work

Traditionally, simplicial homology defines a concept consisting of open simplexes of a specific dimension
within a Simplicial Complex [1]. The classical notion of Simplicial Complex is to decompose a space into
simplexes allowing different faces of a simplex to coincide and dropping the requirement that simplexes
are uniquely determined by the vertices. The idea is very simple and straightforward. If we have a point
in space, adding another point will result in a line that connects the two points. If we have a line in
space, adding a point will create a triangle. And if we have a triangle in space, putting a point down will
result in a tetrahedron.

Basically, all this is saying is that n-simplex would consist of (𝑛 + 1) distinct number of vertices, and that
no other n-simplex has this same set of vertices [2]. It is fairly simple to grasp the concept; however,
number of calculations that are needed to compute a high-dimensional dataset can increase
exponentially. This can pose a tremendous challenge when attempting to analyze the simplex-pair
associations for high-complexity datasets.

1.3 Contribution

Our research, which led by Dr. Tsau Young Lin for past several years, has been trying to come up with
fresh perspectives to tackle this challenging problem by targeting it from different angles. We have
developed several versions of the algorithm, with each one having certain advantages. We carefully
studied the strengths of each one and tried to leverage what we’ve learned in the next revision. Our
goal is to come up with a practical solution to the problem and then define a Simplicial Complex
framework that can be used by the general community. Although we made a significant discovery on
how to efficiently analyze and identify relationships within large datasets, there is still a lot of room for
improvements in this area.

1.3.1 Our Approach

The purpose of this paper is to present a unique perspective on how to deal with the aforementioned
problems. We take the basic principles that have been proven mathematically for Simplicial Complex
and then apply the knowledge gained to address real-world data problems. We came up with a
concept, called Self-Contained Cone Construction, to traverse the topological graph in such manner that
limits the use of system’s resources and boosts the overall performance of an application. Our approach
is simple but effective. It was also designed to work well and can easily be integrated in a distributed
computing environment to run with massive datasets. We will go over more details in the subsequent
sections of this paper.

7

2. Simplicial Complex

2.1 Basic Definition

In algebraic topology, a simplicial complex consists of a finite set of simplexes that are glued together on

a topological space to form a geometric structure in arbitrary dimensions. A simplicial complex K must

satisfy the following conditions [18]:

1. Any face σ ϵ K and any subset τ ⊆ σ implies that τ ϵ K

2. If σ1, σ2 ϵ K then σ1∩ σ2 is either ∅ or a face of both

By definition, the empty set ∅ is a face of every simplex as stated in condition (1), and thus belongs to K.

Condition (2) also allows the two faces to be completely disconnected from one another.

2.1.1 Simplexes

In geometry, a simplex represents the simplest possible polytope in any given space where the vertex of

a polytope is a point in which polytope edges are joined. It generalizes the notion of a triangular or

tetrahedral region of space to k dimensions. Thus a k-simplex is a k-dimensional polytope of a convex

hull that consists of (k + 1) vertices.

Let S be a finite set of (k + 1) points {u0, u1, …, uk} in k-dimensional Euclidean space ℝk+1 such that {u1-u0,

u2-u0, …, uk-u0} are linearly independent. That is they are independent in an affine space of a geometric

structure. Then a convex hull of these points is a k-simplex or Δk and is defined as follows:

 C = { λ0u0 + λ1u1 + … + λkuk | ∑ λ𝑖 = 1𝑘
𝑖=0 where λ𝑖 ≥ 0 for all 𝑖 }

The boundary of this k-simplex has (𝑘 + 1) 0-faces or polytope vertices, (
𝑘(𝑘+1)

2
) 1-faces or polytope

edges, and (𝑘+1
𝑖+1

) 𝑖-faces where (𝑛
𝑘

) is a binomial coefficient. The number of 𝑖-faces of a k-simplex can

also be located on Pascal’s triangle with (𝑖 + 1) columns and (𝑘 + 1) rows, excluding the left diagonal.

𝑖-faces: 0 1 2 3 4

Figure 2.1.2: Pascal’s triangle showing the number of 𝑖-faces up to 4-simplex.

8

2.1.1.1 Valid Simplexes

By definition described in 2.1.1, the standard k-simplex, or Δk , is the subset of ℝk+1 given by

Δk = { (λ0, λ1, … , λk) Є ℝk+1 | ∑ λ𝑖 = 1𝑘
𝑖=0 where λ𝑖 ≥ 0 for all 𝑖 }

The simplex Δk lies in the affine hyperplane that can be obtained by removing the restriction of λi ≥ 0 in

the above equation [1]. The coefficients λi are also called the barycentric coordinates of a point in Δk.

Thus this simplex is often referred to as an affine k-simplex. Figure 2.1.1.1 below shows a list of possible

valid simplexes that form the basis of our Self-Contained Cone Construction simulation later.

Figure 2.1.1.1: Dimensional space for valid simplexes starting from left: ℝ1, ℝ2, ℝ3, ℝ4.

2.1.1.2 Invalid Simplexes

Due to strict requirements of the algorithm that is being presented in this paper, we only operate on the

premise that all simplexes must be labeled as valid. If a simplex somehow violates one or more

conditions as stated in the above definition, it will be classified as invalid and thus will not be considered

in the experiments.

Figure 2.1.1.2: Examples of invalid simplexes that violate the definition of a Simplex.

We can observe that example (a) contains an overlapping edge that is not part of either of two triangles.
The middle segment (edge) does not belong to either of the triangles. This clearly violates the first
condition that was described in Section 2.1, Basic Definition, and so it cannot form a valid simplex. In
example (b), there are two missing vertices and an edge connecting them. This also is not allowed.
Lastly in example (c), the edge of a line is crossing the tetrahedron at an interior segment. This segment
is neither an empty set nor it is a face of both, thus violating the second condition.

9

2.2 Algorithm

2.2.1 Data Mining

Data mining is a process of gathering, analyzing, and discovering of interesting patterns within large

datasets. Data mining tools can be used to predict trends and behaviors, allowing data scientists and

companies to make proactive, knowledge-driven decisions. This is why data mining is also referred to as

knowledge discovery.

2.2.1.1 Feature Extraction

The process of transforming large complex datasets into a reduced set of desirable features is called

Feature Extraction [1]. The purpose is to narrow down our focus to the information that is relevant for a

particular area of interest. Analyzing large datasets with high variability will typically result in more

memory usage and slower performance, not to mention overfitting that could lead to poorer statistical

models. To illustrate what feature extraction is and how it can be applied to our Simplicial Complex

model, we will take look at Table 2.2.1.1, which contains a list of 10 selected features. These features

could be used to represent a variety of subjects. For example, they could be any of the followings:

 Words for understanding of human-computer interactions in NLP

 List of selected genes to study genetic diseases

 Stock symbols to analyze the strength of financial market

 Fortune-500 companies and their successful investments

0 1 2 3 4 5 6 7 8 9

 A B C D E F G H I J

T1 Tetrahedron 1 1 1 0 1 1 0 0 0 0 0

T2 Tetrahedron 2 0 1 1 1 1 0 0 0 0 0

T3 Tetrahedron 3 1 0 0 0 1 1 0 1 0 0

T4 Tetrahedron 4 1 0 0 0 0 1 1 1 0 0

T5 Tetrahedron 5 0 0 0 0 1 0 0 1 1 1

 · · · · · · · · · ·

 · · · · · · · · · ·

 · · · · · · · · · ·

 Table 2.2.1.1: Example of a list of selected features extracted and projected onto a 2D table.

Each feature or column is assigned to a vertex in our Simplicial Complex model. This is equivalent to 0-

simplex (Δ0) on a topological space with no dimension. In other words, it is just a point. To keep things

simple, we use a small dataset that contains only five rows of data. Each row is a tetrahedron, which is

equivalent to 3-simplex (Δ3) on a 3-dimensional topological space.

10

2.2.1.2 Simplex Representation

Given that each column in Table 2.2.1.1 is a vertex or a point in space, we can construct a graphic

representation of that simple dataset with edges linking the vertices. This is depicted in Figure 2.2.1.2.

The mapping results of those data points are considered isomorphic since they both describe the same

object model but in different manners.

Figure 2.2.1.2: A graphical representation of Table 2.2.1.1.

The number of dimensions is directly proportional to the number of features or vertices on the graph.

So the higher the dimension, the more difficult it is to analyze and identify the related patterns within

the dataset. We defined each data row as a tetrahedron for simplicity. We can observe that there are a

total of five 3-simplex objects that are labelled as T1, T2, T3, T4 and T5. They are linked to each other by

a number of different 𝑖-faces. For instance, T1 and T2 are connected by a 3-face element or triangle

BDE, and similarly T3 and T5 are connected by a 2-face element or line EH. As one can imagine, the

number of dimensions for each data row in Table 2.2.1.1 can be as high as the column size minus 1,

which is 9 in this case. Since humans generally prefer to see objects in 3 dimensions or less, we

purposely created each row of data as Δ3. However in any practical dataset, the number of features can

grow as large as required in order to generate a more robust statistical model, but the underlining

principles of Simplicial Complex remain the same. Also in our simple example, each vertex consists of a

maximum of 5 data rows or tetrahedrons. A typical real-world dataset would have a much larger

number of rows, thus each vertex would contain large number of edges and that can be hard to

visualize. This can be addressed by grouping the data points in each vertex into clusters and stretching

them out to different areas on the graph. This was indicated by (· · ·) in Figure 2.2.1.2.

11

2.2.1.3 Inverted Index

To help improve the speed of finding possible edges and links on the constructed graph, we use an

inverted index table that was anchored at the record level. What this allows us to do is to quickly

retrieve not only the data points that are associated with a given vertex, but also access the unified

simplexes that occur during cone construction. We will dive into more details of what cone-construction

process really is in the latter sections. Figure 2.2.1.3 shows how an inverted index was created for Table

2.2.1.1. The inverted-index structure is very crucial in how we will define our data model in the next

section. Another step that utilizes this indexing table is Vertex Unification in order to track the

associations among them.

Figure 2.2.1.3: Inverted index structure that was constructed based on Table 2.2.1.1.

2.2.1.4 Data Structures

When developing a complex algorithm, data structures play a critical role and have tremendous impact
on the efficiency of the algorithm. Different data structures are better suited for different types of
applications while others are more specialized for specific tasks. From a mathematical perspective,
Simplicial Complex is a proven concept with many solid principles to support the idea. It is not always
easy to convert and translate that into applications without proper data structures.

We are introducing a unique data structure that was designed to address the many challenges such as
resource allocations and performance. We will explain what each component is and how it was used at
different stages of the algorithm. The key thing to take away from this data structure is that it was not
built to store all the data in memory, but instead it was designed to handle the processing of just a single
vertex and all of its dependencies at any given moment. What that means is during the cone
construction, each vertex is not aware of the information that was previously computed for the visited
vertices. This may seem counter-intuitive at first, but we will see later on that this process is remarkably
efficient when it comes to data storage and memory management. Additionally, we will discuss more
how algorithm was able to take advantage of this simplex structure to traverse the graph in such way
that allows it to compute relationships among the vertices very quickly.

12

Figure 2.2.1.4: Layout structure describing inner functions and dependencies of a simplex.

In simplex structure above, the name of a simplex has multiple representations but carry the same
function. It can represent just a single vertex or a unified group of vertices depending on what phase of
cone construction that is being processed. It was designed to support up to (n-1)-simplex where n is
number of selected features, thus giving it the flexibilities to work well with high-dimensional datasets.

The second component in this structure is the number of association rules for the simplex. This is
somewhat a redundant field since we can extract the number of rules from simplex name itself, but for
our convenience, we just pre-calculate and populate it using a 16-bit integer.

The next field, inverted list, is a vector of inverted indices that is associated with each simplex. For a
simplex of single vertex, it is simply a list of all data rows with 1’s in Table 2.2.1.1. As for a simplex of
unified group of vertices, it is a subset of data rows that represents all connected links among the
vertices. The higher the dimension, the smaller this subset will get. This is an important point to
understand since how we order and traverse the vertices really affects the overall performance. We will
cover more on this topic in the next section, Building Simplexes, especially regarding to the part about
ranking of vertices.

The last component contains a list of possible candidates (simplexes) that are connected to the target
simplex. Each element inside the list consists of two parts: (1) Simplex name of the candidate and (2)
An inverted list of 1’s that belongs to the candidate. The purpose of this list of linking candidates is to
speed up the process of identifying simplex-pair associations during the vertex-unification step. If the
dataset is complicated with lots of extracted features, the application could potentially divide the work
into chunks of vertices for parallel processing, and then consolidate the results when all jobs have been
completed. This is not possible without the flexible design of this last component that can provide the
necessary support to accomplish such feat. It is important to note that this simplex structure does not
memorize all previously constructed objects, but only the immediate and relevant ones.

13

2.2.2 Building Simplexes

In this section we will discuss how the simplex model is constructed, processed, and refined to rapidly
identify key relationships and isomorphic patterns within the graph. There are four phases that are
required for building simplexes as well as traversing the graph effectively.

 Use dimensionality reduction to reduce the complexity of input datasets

 Rank and order the vertices to minimize time to connect related vertices

 Apply a new technique called Self-Contained Cone Construction

 Traverse the graph through each vertex using a recursive function

For each phase, we will cover more about the special functions and behaviors in following subsections.
We will also provide step-by-step illustrations and detailed explanations of what makes the algorithm
very capable and highly efficient.

2.2.2.1 Dimensionality Reduction

Dimensionality reduction is a process that is often used in machine learning and statistics to reduce the
number of random variables without impacting the final result much. By lowering the number of
dimensions, it allows us to perform calculations faster and identify patterns more easily. To illustrate
how our algorithm eliminates less dependable vertices, e.g. insufficient data, we apply an artificial
barrier of 0.4 to the qualifying threshold. This essentially requires a vertex to have a minimum of 2 data
points to be selected for further consideration. So the topological space in Figure 2.2.1.1 is now reduced
to six qualified vertices: A, B, D, E, F and H (as depicted in Figure 2.2.2.1). Lower number of vertices also
makes it simpler for us to go over the important concept of Topological Cone Construction in the next
several sections.

 Figure 2.2.2.1: Eliminate vertices with insufficient data by applying artificial threshold of 0.4.

Our Simplicial Complex algorithm defines the qualifying threshold to be a percentage of the maximum #
of data rows. In this example, that is (0.4 × 5) or a minimum of 2 data points. Next we will look at how
the vertices are ranked and ordered, and the compelling reason behind such motive.

14

2.2.2.2 Ranking Vertices

In graph theory, vertex ranking is generally useful for computing vertex-pair similarities. The method
that we used for navigating the graph to find connected vertices is a recursive, semi-repetitive
procedure. This turns out to be quite significant in terms of performance when deciding what vertex to
process next. Thus we need to rank and place the qualified vertices in a certain order.

Let’s take a hypothetical example where vertex A has an inverted list of {T2, T5}, and vertex B has an
inverted list of {T1, T2, T3, T4}. Now imagine we want to find joined edges between them. We can solve
this simple problem in two different ways with both yielding the same result; however, by no means
they are considered identical. Approach #1: For each indexed row in vertex A, we check if it also exists
in vertex B. The result is an intersected list of {T2} after performing two checking operations. Approach
#2: For each indexed row in vertex B, we check if it also exists in vertex A. The result is also an
intersected list of {T2} after performing four checking operations. From this observation, we can
conclude that approach #1 is more effective than approach #2, especially if the number of edges is
vastly different between two vertices.

 Figure 2.2.2.2: Ranked vertices by number of data points from highest (right) to lowest (left).

Figure 2.2.2.2 shows a reduced table with qualified vertices that are ranked from highest (right) to
lowest (left) by the number of data rows and then by the column index. We keep this right-to-left
orientation for the convenience of simulating Self-Contained Cone Construction in the next section. The
order in which the qualified vertices will be visited is strictly defined as follow:

E0, H1, A2, F3, D4, B5

Even though the algorithm does not traverse from one neighbor to the next, it will eventually have to
arrive at every stop listed above. It must do so in order to identify all vertex-pair relationships on the
graph. The key point to take away the Cone Construction mechanism is that the algorithm should make
exactly one stop at each of the vertices, run computations, and then move on and never return.

15

2.2.3 Graph Traversal

Graph traversal is a process of visiting, checking, and updating each node or vertex on a particular graph.
This process is commonly known as graph search in Computer Science. Graph traversal allows some
vertices to be visited more than once. That means redundancy is acceptable but an algorithm must do
so with extra care. As the graph becomes denser, redundancy can immensely increase the computation
time and thus rendering it unusable. So sometimes it is necessary to remember previously visited
vertices while other times it becomes impractical due to system limitations. When it comes to graph
traversal, it is often not possible to develop a highly efficient algorithm without proper design and
support of robust data structures underneath. The opposite can also be true. A lousy algorithm design
can also ruin the best data structure out there. What we are basically saying is that algorithm and data
structure must always go hand in hand.

2.2.3.1 Topological Cone Construction

The idea of a cone construction can be described as building an object on top of what has already been
constructed. It is frequently used in combinatorial topology to connect barycenters of the faces in a
specific way. In geometry, the barycentric subdivision is a standard way of dividing an arbitrary convex
polytope into simplexes with same dimension [1]. Simply put, we can construct a tetrahedron by adding
a point to an existing triangle and creating three edges connecting new vertex to three vertices on the
triangle.

Figure 2.2.3.1a: Visiting order for vertices on a reduced graph in Cone Construction.

The above topological graph is a reduced version of Figure 2.2.2.2 with the intent to help speed up the
algorithm and maintain its truthfulness. All it does is to filter out unnecessary noise from the initial
input data. As a result, we have a robust representation of the graph where each vertex is weighted
depending on its content. Note that the original version of Cone Construction does not care much about
what is actually inside of each vertex and so it treats all vertices as equal. There is no specific or
preferred order of traversal. One possible path to navigate the graph could just be in alphabetical order.
That is to say: A, B, D, E, F, and then H. However, as explained in one of the earlier sections, this could
not have been more unfavorable when searching and identifying simplex-pair associations. The present
of the data points in each vertex (or a column of data) is used as part of the calculation to decide how
significant the vertex is with respect to the rest of vertices on the graph. Now let us take a closer look to
observe what Cone Construction is all about and how we can leverage its key concepts to design a more
efficient algorithm to deal with large multidimensional datasets.

16

Before we dive into the simulation, there are a few points that are worth mentioning first. The purpose
of a Cone Construction is to visit each vertex only once and never look back. All computations that were
completed by the preceding vertices will be remembered. As new vertex arrives, it will rely on the prior
calculated information in order to construct new simplexes. In essence, the construction of each stage

is being built on top of previous stages, hence the name Cone Construction. That is to say Δ1 can only

be constructed if the information for Δ0 is available, Δ2 if both Δ1 and Δ0 are available, and so on.

Below is the simulation for Cone Construction of six selected vertices in Figure 2.2.3.1a. We can follow
the color-coded faces to get an idea of how different stages (colors) use the information from prior
stages to construct new simplexes with higher dimensions.

0-simplex (Δ0) has a total of 6 0-face𝑠:
E0, H1, A2, F3, D4, B5

1-simplex (Δ1) has a total of 15 1-faces:
EH1,
EA2, HA2,
EF3, HF3, AF3,
ED4, HD4, AD4, FD4,
EB5, HB5, AB5, FB5, DB5

2-simplex (Δ2) has a total of 20 2-faces:
EHA2,
EHF3, EAF3, HAF3,
EHD4, EAD4, HAD4, EFD4, HFD4, AFD4,
EHB5, EAB5, HAB5, EFB5, HFB5, AFB5, EDB5, HDB5, ADB5, FDB5

3-simplex (Δ3) has a total of 15 3-faces:
EHAF3,
EHAD4, EHFD4, EAFD4, HAFD4,
EHAB5, EHFB5, EAFB5, HAFB5, EHDB5, EADB5, HADB5, EFDB5, HFDB5, AFDB5

4-simplex (Δ4) has a total of 6 4-faces:
EHAFD4,
EHAFB5, EHADB5, EHFDB5, EAFDB5, HAFDB5

5-simplex (Δ5) has a total of 1 5-faces:
EHAFDB5

Note that the total number of 𝑖-faces elements for each simplex up to Δ5 (or 6 vertices) coincides with
6th row on Pascal’s triangle that excludes the left diagonal. We can also observe from Pascal’s triangle
that adding each dimension to the system increases the total number of faces by a large portion. So for
very high dimensional datasets, the amount of resources that are required to keep all previously
constructed stages will be unthinkable. This is a major flaw in this Cone Construction process. It is just
not a practical solution to use for real-world applications. To better gauge the impact of this problem
and how we can address it, let’s examine it more closely.

17

The following formula can be applied to compute the number of 𝑖-faces elements for k-simplex (Δk).

𝑖-faces 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 2𝑘+1 − 1 for Δk

As you can imagine, the number of 𝑖-faces elements can grow exponentially as the number of vertices or
dimensions increases (Figure 2.2.3.1b).

Figure 2.2.3.1b: Chart depicting exponential grow for # of 𝑖-faces elements.

The graph above is basically saying that the analysis of the dataset can become very complicated, very
fast. This is a vital point in terms of the amount memory required to run and the effects it has on the
overall performance. This also brings us back to the significance of Simplex data structure that we have
designed for this Simplicial Complex algorithm (Figure 2.2.1.4). The aforementioned challenges are the
driving causes behind our efforts to develop a novel method called Self-Contained Cone Construction,
which leads us to the next section.

2.2.3.2 Self-Contained Cone Construction

It has been proven in the earlier section that amount of memory can growth exponentially if we were to
design our system based on traditional cone-construction method. For a much smaller dataset, this old
method works quite well because of the limited memory that is required to run. However it is not very
practical to handle real-world problems because of its inability to scale effectively. We must look for a
more appropriate solution to address this challenging problem. Our research work has led us to an
improved technique called Self-Contained Cone Construction. The key concept behind this particular
technique is the ability to process each vertex independently without having any prior knowledge of
computed vertex-pair relationships. So within context of the processing vertex, connected edges of
previously visited vertices must be re-examined to determine if their associations are still viable. How
can this redundant behavior in an algorithm actually improve the overall performance? Inefficient use
of physical resources can lead to slower performance of an application, even more so if the system relies
heavily on virtual memory (disk) to complete the work. Self-Contained Cone Construction allows the
algorithm to run with just small amount of physical memory and eliminates the need of virtual memory,
thus giving us a huge boost in performance.

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

of vertices
(n-1)-simplex

Simplex Elements

18

Self-Contained Cone Construction has four key requirements:
1. Current vertex must have less edges than preceding vertices
2. Must compute all simplex-pair associations with preceding vertices
3. Vertex traversal must follow from right-to-left order
4. Vertex unifications must merge rightward until none remains

Now let’s go over the graphical simulation of this technique so we can get a better understanding of
what is happening at each critical step in the process. We will continue to use Figure 2.2.2.2 and Figure
2.2.3.1a as example to demonstrate our point.

Simulation Step #1:
We start out at vertex E0 since it has the highest
number of edges. This will ensure that rules #1 and #3
will not be violated. Since this is the first vertex, we
only need to compute all associations up to 0-simplex
or Δ0. For Δ0 E0, this is {T1, T2, T3, T5} and it satisfies
rule #2. Condition #4 does not apply for Δ0 so we are
done with vertex E0.

Simulation Step #2:
Now that we completed the processing of Self-
Contained Cone Construction for vertex E0, and before
we move to the second vertex H1, there are a couple
of important points to remember:

a. All simplex-pair relationships that were
computed from the preceding vertices, e.g.
vertex E0 in simulation step #1, are gone.

b. Only edges from preceding vertices that are
shared with the current simplex or
subsequent unified simplexes will be selected
for further considerations.

c. Starting from the current vertex, the
unification of simplexes can only be combined
in a rightward direction with respect to its
current position until there is none left to
merge.

With the above notes out of the way, let’s move onto vertex H1, which contains the second-highest
number of edges. This is the second vertex in the ordered-traversal list so we need to compute all
associations up to 1-simplex or Δ1. The 1-way associations of H1, or Δ0 H1, are {T3, T4, T5}. Next we will
attempt to unify E0 and H1 by intersecting these two vertices,

Δ0 E0 ∩ Δ0 H1 = Δ1 EH1 or {T3, T5}

By connecting vertex E0 and vertex H1, we can identify two common edges {T3, T5} that are shared
between them. These edges or lines are 1-dimensional objects so the resulting merged vertex is a
unified 1-simplex (Δ1), thus we can label them as Δ1 EH1. With Δ1 EH1 being in the rightmost position,
condition (c) has been activated and we are officially done with self-contained processing of vertex H1.

19

Simulation Step #3:
In this step we can observe that the traversing order
must be strictly enforced to ensure that all simplex-
pair associations are thoroughly covered as well as
operations and computations are optimal. Keep in

mind that the number of 𝑖-faces elements for k-
simplex can still be computed using this formula
below:

𝑖-faces 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 2𝑘+1 − 1 for Δk

Let’s break this step down into multiple iterations and
inspect each of iterations more closely to see what is
going on.

Iteration #1:
Δ1 HA2 = {T3, T4}
Δ1 EA2 = {T1, T3}

Iteration #2:
Δ2 EHA2 = {T3}

Iteration #3:
None left to merge (done)

Notice that the four requirements that were listed at beginning of the simulation must be applied to
each of the three iterations. This also holds true for the conditions (a), (b) and (c) that were mentioned
in Simulation Step #2. By now we can observe that at outer-most layer of this algorithm, the current
“processing” vertex is moving from right-to-left direction where number of edges is in a decreasing
manner. In Section 2.2.2.2, Ranking Vertices, we have shown that identifying simplex-pair associations
can greatly improve the performance if the edges are connected from low-to-high count. This is
indicated by (1) and (2) curved arrows in Iteration #1 diagram above.

Simulation Steps #4, #5 and #6:
As the number of vertices increases, there will be more iteration steps that will be required in order to
fully complete the simulation step. It will be very difficult to describe them in such a way that is not
convoluted. But in case you’re interested of seeing more, an illustration of how to complete the
processing of vertex F3 using Self-Contained Cone Construction can be found in Simulation Step #4 of
Appendix Section (ii), Simulations, (1) Simulation Step #4 of Self-Contained Cone Construction. It is
essentially an extension of what was presented in Step #2 and Step #3 but with higher dimensional
simplexes and more associative connections. It should provide more clarity for the algorithm.

As for steps #5 (D4) and #6 (B5), the same procedure can be repeated as long as the rules of engagement
and stated conditions remain intact. Not only that, we can also expand this proposed concept to much
higher dimensional datasets and the underlining principles still work effortlessly. This is one of the true
benefits of this algorithm design in that it contributes great efficiency, flexibility and scalability. And in
the world of Big Data, this is a big plus.

20

3. Parallel Computing

3.1 Big Data

These days Big Data and parallel computing are synonymous. For a very simple reason, we cannot talk
about one topic without directly referring to the other. Big Data is data whose scale, diversity, and
complexity require new architectures, techniques, and algorithms to manage and extract the hidden
knowledge from it [11]. Analyzing data has become tantalizingly difficult due to tremendous growth in
volume, velocity, and variety of the data. We are no longer dealing with gigabytes and terabytes of
data, but more like with petabytes (1015) and exabytes (1018). And in rare instances, we are approaching
the zettabytes (1021) territory. A research from University of Southern California reported that in 2007,
humankind successfully sent 1.9 zettabytes of information through broadcasting networks and GPS
devices. It has been estimated that the Internet traffic alone could reach 1.3 zettabytes by 2016 (2). Not
only volume and velocity of data are problematic, the data can come in various forms. It can be in

structured form, which is what
we were traditionally familiar
with. Another form that it can
take shape is semi-structured.
This is what we are trying to
adapt and use in many of our
current technologies. JSON and
XML formats are perfect
examples of what semi-
structured data would be like.
The third type, unstructured,
carries the most weight since it
does not have to be in any
particular form. Video
streaming, weather forecast,
and universe observations can
generate data in such
unstructured form.

In this section, we will discuss how to take the important concepts that we absorbed from Simplicial
Complex and apply them to Parallel Computing environment. We will also describe the current
methodology in MapReduce paradigm and how it can be trivially integrated with Simplicial Complex.

3.2 Embarrassingly Parallel

In parallel computing, embarrassingly parallel is a technique that requires minimal efforts to break the
problem up into smaller chunks and run them in a parallel manner. The computation can be divided
into a number of independent parts, each of which can be executed by a separate process. Each
separate process is an exact clone of the other and is strictly assigned to work on a specific portion of
the original dataset. This parallel technique is also known as Data Partitioning. The idea is to have as
many of these subtasks running simultaneously as possible. This model actually fits and works quite
well with Simplicial Complex algorithm as we will see later on.

21

Here is a graphical illustration of what an embarrassingly parallel problem consists of. See Figure 3.2
below for more details.

Figure 3.2: Embarrassingly parallel tasks that are divided up to run with one piece of data.

One convenience about this technique is that the subtasks can run with various speeds. Each subtask is
not bound to complete within a certain timeframe. Although it should not take an indefinite amount of
time to run, or it will be at risk of being excluded from consolidation step due to timeout. Let’s take an
example of a program that counts word occurrences in a given book. One way to approach this problem
is to have a single program that can scan the entire book and maintain a hash table to track the number
of occurrences for each word encountered. This may seem like an easy fix but let’s stretch our
imagination a little bit. Let us assume that this is no ordinary book but a colossal one. It is so big in size
that even a supercomputer would have trouble tracking all generated results, not to mention, it would
be very slow to run. Well let’s say we can divide the book into chapters, or even pages, and then assign
each chapter or page to the same program that can run on a separate computer system. Each computer
system would then generate a small map table that contains the counts of all word occurrences within
that chapter or page. Once you have lots of these page results, we just need to write a merge tool that
can consolidate all of them into one final outcome. This is what we commonly refer to as Distributed
Computing, which we will cover more in the next section. In addition to that, we will also go over
Hadoop ecosystem and MapReduce programming model, originally designed by Google, and how Self-
Contained Cone Construction will behave in such platforms. It is important to note that not all Hadoop
challenges will be addressed in this paper, especially the section regarding to dimensionality reduction
in Simplicial Complex.

3.3 Distributed Systems

Distributed system is a model in which components of a software system are shared among multiple
computers to improve the efficiency and performance of the overall system. These nodes inside a
computer network communicate and coordinate with each other using a mechanism called Message
Passing Interface or MPI. Many distributed systems are designed to solve complex computational
problems. One of the key characteristics of a distributed system is the independent failure of

22

components [1]. The failure of one or more nodes does not hinder progress of the remaining nodes.
Referring back to our word-count example, if one page was ripped out and its assigned node was unable
to process it, the overall system would still continue to work and behave normal, albeit the result from
missing page will not be accounted for in the final outcome.

The inner working of a
distributed system (a) is different
from that of a parallel system (b)
as we can see in the figure to the
right. The major distinction
between the two systems is
whether the memory space is
shared among the processors.
Parallel computing is actually a
tightly-coupled form of a
distributed computing. And on
the other hand, distributed
computing can be thought as a
loosely-coupled form of parallel
computing. For the purpose of
this paper on Simplicial Complex,
we will only focus in the
architecture of a distributed
system to process high
dimensional, high complexity
datasets using Self-Contained
Cone Construction technique.
Simplicial Complex.

3.3.1 Hadoop Framework

Today one of the popular distributed computing platforms is the Hadoop framework, which consists of
Hadoop core libraries, MapReduce and Hadoop Distributed File System (HDFS). For the past decade,
Hadoop has evolved very rapidly. When starting out a new Big Data project, you can always build your
own Hadoop system; however, a better approach would be to leverage one of the existing Hadoop
distributions that are currently available on the market. It will help speed up the research and
development work.

Here is a list of Hadoop distributions (1):

 Apache Hadoop – Open-source distribution maintained by Apache Software Foundation.

 Map-R Technologies – Hadoop distribution with some unique features such as NFS mounting.

 Cloudera – Leading distributor of Hadoop, built on top of Apache Hadoop.

 Horton Works – Also built on top of Apache Hadoop with enterprise support.

 AWS Elastic MapReduce – Hadoop distribution by Amazon Web Services

There is also an entire ecosystem that resolves around Hadoop technologies. There are literally
countless projects and tools that are available to software developers and data scientists to make use of

23

when working with Hadoop and MapReduce. Many of these tools were designed to tailor to specific
needs of individual projects or systems. We will briefly cover what these tools are and how they are
used in different scenarios. It is important to have a high-level understanding of what is being provided
by these projects; however, we will not go into the details of each one.

Related projects and tools in Hadoop ecosystem (4):

 Avro: Data serialization framework that allows arbitrary schemas to be defined.

 Pig: Analyzing large datasets using high-level language called Pig Latin.

 Hive: Storing and retrieve Hadoop data using high-level SQL called HiveSQL.

 HBase: Column-oriented, scalable distributed data storage based on Hadoop.

 Mahout: Scalable machine learning (ML) library built for Hadoop.

 YARN: Next-generation of MapReduce, capable of running over very large clusters.

 Ozzie: Workflow scheduler system to create and manage MapReduce jobs.

 Flume: Reliable service for collecting and aggregating log data in HDFS.

 Sqoop: Simplify the transferring of data between Hadoop and relational databases.

 Cascading: Framework for building Hadoop applications.

 Spark: Pipeline for large-scale data processing, supports multiple programming languages.

Now that we’ve slightly covered some of these topics for Hadoop framework, let us shift our focus to
MapReduce and the integration of Simplicial Complex algorithm.

3.3.2 MapReduce Paradigm

MapReduce is a distributed computational model that was introduced by Google in 2004. It is a
programming model for processing and generating large datasets using a distributed algorithm running
on a cluster of computers. The idea is to exploit the locality of reference by bringing the compute
module to where the data resides and not vice versa. Figure 3.3.2a depicts the transitioning from
traditional method of using relational databases to a more robust model of MapReduce.

Figure 3.3.2a: Moving away from traditional method (RDBMS) to MapReduce paradigm.

24

In the past, we normally would have to import the data to wherever the computer system is located.
We can copy or import it to a database server that is residing on the local area network (LAN) before
attempting to run the computations on local computer. This was quite a common practice in the old
days because the size of data was somewhat manageable. It has become increasing difficult to keep up
with this antiquated process as the data grew rapidly over the years. To eliminate this headache,
MapReduce paradigm suggests that the compute module should be copied or transported to where the
data actually resides. This is the very definition of Locality of Reference. This is the single-most
important aspect of MapReduce that allows it to scale the data processing with ease.

The three main problems that MapReduce paradigm addresses:

1. Parallelization –divide a complex problem into subtasks and run them in parallel.
2. Distribution – how to distribute the data across the cluster.
3. Fault-tolerance –handle failure of components gracefully.

MapReduce programming model consists of two key phases. The first is called the mapping phase. The
purpose of this stage is to process and filter the input data. This could be in form of a file or a directory
of files that is stored in HDFS. The input file is passed to the mapping function line by line. If the input
data is enormous, it can be split into multiple pieces and pass along to multiple mapper jobs. Once
completed, the mapper will generate small chunks of data that is usually group by their keys. That
brings us to our second phase, the reducer. This stage is a combination of the shuffle stage and the
reduce stage. The purpose of this stage is to process the data that are generated by the mapper jobs. In
our word-count example, it would simply aggregate the total count for each unique word. So one
reducer job could potentially generate total counts for words starting with letter “A”, and another
mapper jobs would generate the results for words starting with “B”, and so on. Depending on each
project’s needs, the number of mappers and reducers can vary. Figure 3.3.2b is a typical MapReduce
workflow.

Figure 3.3.2b: MapReduce workflow that describes the job functions at different stages.

25

The major advantage of MapReduce programming model is its scalability over multiple large number of
computing nodes. Another advantage is that much of the hard work has already been handled by the
Hadoop framework. This can mostly be done by changing the settings in configuration file. Developers
only have to worry about implementing the functions for mapper and reducer jobs, and let the
framework magically take care of the scaling problem.

3.4 Simplicial Complex on Hadoop

3.4.1 Initial Concept

In this section, we would like to present the initial concept of putting Simplicial Complex on Hadoop
platform and leveraging the MapReduce paradigm. The initial approach of Simplicial Complex algorithm
was designed to run efficiently on a single system, thus it was not designed for scalability. The
components inside the system were tightly coupled. This was a major bottleneck. With the introduction
of Self-Contained Cone Construction technique, we can now safely and reliably scale the system to run
with enormous datasets by taking advantage of the proven principles behind MapReduce model. Figure
3.4.1 describes the general idea of our proposed workflow for putting Simplicial Complex on Hadoop
cluster and how the components interact with each other. One can imagine that additional mapper and
reducer nodes can readily be inserted into the cluster to increase the overall throughput. In the
subsequent sections, we will go over the plan to scale horizontally, split the input data, implement
mapper and reducer jobs, and complete with final consolidation step.

Figure 3.4.1: Running Simplicial Complex algorithm with MapReduce model on Hadoop cluster.

26

Note that the importance of locality of reference is being applied successfully in the proposed model
above. The compute module for Self-Contained Cone Construction technique has been moved to the
location of the partitioned data.

3.4.2 Horizontal Scaling

As shown previously, Simplicial Complex algorithm requires a lot of computational power when working
with high-complexity, high-dimensional datasets. Scaling vertically, which is adding more CPUs and
memory to a single computer, is simpler but not practical. A more ideal solution would to be to
architect and design a distributed system that can vastly increase the computing power by adding more
computers to an existing cluster. In short, what we want is horizontal scaling. We can achieve this goal
by simply integrating our Simplicial Complex algorithm with Hadoop framework. As a result, we can
build a Simplicial Complex framework that is reliable, scalable, and high-performance.

3.4.3 Input Split

Hadoop is built on top of HDFS, which was setup to break down very large files into physical blocks and
store multiple copies on different nodes in the cluster. A typical MapReduce task must process all
records within a given block. Given that the size of a physical block is fixed, it is problematic when
handling records that span the block boundaries. Hadoop solves this problem by introducing a logical
representation of the stored data called Input Splits. In order to properly illustrate how this step works
in our algorithm, we will refer back to our earlier example that was presented in Section 2.2.3.1,
Topological Cone Construction, which consists of five tuples covering six qualified vertices. The six
qualified vertices are: A, B, D, E, F and H.

Let us further assume that the
Hadoop framework somehow break
our input Table 3.4.3 into three
splits. Split 0 has two tuples {T1, T2},
split 1 has only one tuple {T3}, and
finally split 2 has two tuples {T4, T5}.
This will simplify the model and help
us better explain the concept. In
general, the number of splits should
help determine the number of
mapper nodes for an application.
Each input split will get replicated

several times to improve reliability and availability. Hadoop will then use the locality principle to assign
each input split to a mapper node for processing. The diagram below shows a simple cluster with three
mapping nodes that we will continue to use for the remainder of this section.

27

3.4.4 Map Function

The job of the map function in MapReduce model is to take a series of key-value pairs from input split,
perform necessary operations on them, and then generate one more or key-value pairs as output. The
data types for both inputs and outputs can be different from one another. The purpose of this map
stage is to organize and prepare the data for the reduce stage. For example in Simplicial Complex
example, the key is the tuple row, e.g. {T1, T2, T3, T4, or T5}, and the value is an array of data points that
connect the edges to all available vertices. Another possible approach would be to assign the key to the
split number and the value to a two-dimensional array where the rows are tuples within the split and
the columns are vertices. Hadoop framework does have a size limit on each input split, e.g. 64 MB or
128 MB depending on the distribution. Because the restriction in split size is limited, our Self-Contained
Cone Construction algorithm would fit nicely in this model.

To continue working with our simplified
model that was described in Section
3.4.3, Input Split, we can now generate
some output examples of key-value pairs
for each of the three mapper jobs. See
Table 3.4.4a to the right for more details.
The sample outputs of key-value pairs
that came out of this stage are sorted by
the keys, which in this case are simplexes.
We can view this sorting step in our
MapReduce workflow as depicted earlier
in Figure 3.3.2b. It was labelled as “sort”.
We need this step to accommodate the
fact that Simplicial Complex algorithm
traverses the topological graph in some
suggested paths due to ranking of the
vertices. That means the simplex-pair
associations can be written out in an
arbitrary order as long as the
computations can be completed
efficiently. Looking more closely at this
output table, we can observe that there
are 15 permutations calculated for 4
available vertices in split 1. This is identical to the sum of values in row 4 or 3-simplex of Pascal’s
triangle. We can also see that all permutations contain count of exactly 1. This is because split 1 has
just one tuple {T3} that was assigned to map node 1 to process. Lastly, tuples {T4, T5} have 3 and 2
vertices respectively, and together they were able to calculate associations for 9 possible simplexes,
thus leaving the remaining 6 slots as blanks, which were shown as grayed-out cells.

In MapReduce programming model, there is an intermediate stage that generally does not receive the
same recognition as the Map and Reduce stages, but it is equally important. This step is often referred
to as the Shuffle and Sort phase, or sometimes known as the handoff process. To help speed up the
overall MapReduce system, data is immediately moved from mapper nodes to reducer nodes to avoid
contentions for network traffic. The shuffle operation is responsible for transferring of data from
mappers to reducers. The sorting component helps organize the data, and then distribute it to

28

appropriate reducing tasks and trigger them to start. As a result, this can save a lot of time for the
reducer phase. Keep in mind that Shuffle and Sort operations are being performed locally, by each
reducer, for its own input data. Back to our simple MapReduce model, let’s just say we want to
designate each reducer job to process all key-value pairs that start with a unique alphabet letter. By
following this design assumption, a total of 6 reducers would be recommended for handling this part of
workload. Also with this suggested number of reducer nodes, a custom partitioner is required to
distribute the results to appropriate reducers so the next phase can be completed efficiently.

3.4.5 Reduce Function

The job of a reducer is to obtain a sorted list of key-value pairs, aggregate or combine the value list into
one result, and emit a single key-value pair for each input tuple. The value list should contain all values
with the same key that was produced by the mappers. Figure 3.4.5 shows how the sorted lists of key-
value pairs that get propagated from the Shuffle and Sort phase to the Reduce phase for merging and
aggregating the association counts for all distinct simplexes. Note that the input blocks are broken into
3 different splits to show us what happens during Shuffle and Sort stage. For example, key-value pair of
{A, 1} appears in all 3 splits but Reducer 1 actually gets a key-value pair of {A, [1, 1, 1]}.

Figure 3.4.5: The sorted list of key-value pairs being assigned to 6 reducer nodes for aggregation.

For a complete list of the generated output by our Simplicial Complex program, please refer to Appendix
(ii), Simulation Runs, (2) Simplicial Complex Run Results.

29

4. Experiment

4.1 Results

Frequent Pattern (FP) Growth:

 Build FP-Tree structure

 Traverse and extract large item sets

Dataset Time Memory Notes

5k rows 1.38 seconds 8 MB 4 dimensions, 0.097 threshold, 77 columns

65k rows 14.6 minutes 100 MB 4 dimensions, 0.042 threshold, 1257 columns

2 rows 44.7 hours 30 MB 28 dimensions, no threshold, 30 columns

Initial version 1 of Simplicial Complex algorithm:

 Navigate each column and from right-to-left order

 Connect each vertex with all constructed shapes

 Remember all constructed shapes, e.g. cone construction

 Good performance but very memory intensive

Dataset Time Memory Notes

5k rows 7.75 seconds 233 MB 4 dimensions, 0.097 threshold, 77 columns

65k rows 31.4 seconds 3.5 GB 4 dimensions, 0.042 threshold, 1257 columns

2 rows Failed N/A 28 dimensions, no threshold, 30 columns

Improved version 2 of Simplicial Complex algorithm:

 Reduce size of graph based on threshold

 Visit and process each vertex only once

 Use recursion to connect points on graph to each vertex

 Shrink inverted table accordingly for each visited vertex

Dataset Time Memory Notes

5k rows 1.21 seconds 4.7 MB 4 dimensions, 0.097 threshold, 77 columns

65k rows 4.73 seconds 43.3 MB 4 dimensions, 0.042 threshold, 1257 columns

2 rows 29.1 minutes 1.5 MB 28 dimensions, no threshold, 30 columns

Advanced version 3 of Simplicial Complex algorithm:

 Fix initial sorting of reduced graph

 Consolidate qualified columns and counts

 High performance, low memory usage

 Easy to scale horizontally using data partitioning

Dataset Time Memory Notes

5k rows 0.01 sec 2.3 MB 4 dimensions, 0.097 threshold, 77 columns

65k rows 3.18 seconds 35.2 MB 4 dimensions, 0.042 threshold, 1257 columns

2 rows 5.25 minutes 0.8 MB 28 dimensions, no threshold, 30 columns

30

4.2 Performance

4.2.1 Comparisons

To compare the performance of new Simplicial Complex algorithm to traditional Frequent Pattern (FP)
Growth method, we setup a stress testing scheme that allows us to gauge into the kind of
improvements that we have made.

We attempted to run a broad range of features but maintain a consistent set of parameters across the
two algorithms. For example, here are some parameters and their correspondent explanations:

 # of association rules – maximum allowable simplex for extracting relationships (100)

 Qualification threshold – consideration limit for dimensionality reduction (0.0)

 # of features in dataset – number of vertices on graph (20, 22, 24, 26, 28, 30)

 # of data rows – how many rows of data for stress testing (2)

By observing the results that were depicted in Figure 4.2.1a, we can conclude that the performance of
our new Simplicial Complex algorithm is much more efficient than that of traditional FP-Growth. By
adding a few more dimensions can practically render FP-Growth useless. The main reason is that the
construction of FP-tree is very time consuming and memory intensive when processing data with large
number of dimensions.

 Time Elapsed (seconds)

of Features
(n-1) dimensions

Simplicial
Complex

Frequent Pattern
(FP)-Growth

Performance
Speedup

20 0.312 67.8 215

22 1.21 584.5 485

24 5.22 1920.2 370

26 20.6 11752.6 570

28 84.9 39342.5 465

30 315.15 161041.1 510

Figure 4.2.1a: Stress-testing runtime table for Simplicial vs. FP-Growth comparisons.

Input data for 20 features:
18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Input data for 22 features:
20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Input data for 24 features:
22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

31

Input data for 26 features:
24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Input data for 28 features:
26 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Input data for 30 features:
28 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Even though the stress tests designed above are quite simple, they allow us the opportunity to see (at
the deepest level) how potent each algorithm really is. Since we were able to scale Simplicial Complex
algorithm horizontally using Hadoop distributed computing, we only need to data rows to illustrate our
point. In stress testing, we purposely make all vertices active except for last two in data row #1 and first
two in data row #2. In reality, the data will be much more sparsely populated, especially for semi-
structured and unstructured data. In either case, Simplicial Complex on Hadoop framework will handle
them gracefully. Notice how Figure 4.2.1b shows a huge spike in slowness of FP-Growth as the number
of features increases.

Figure 4.2.1b: Graph chart of performance benchmark comparisons for stress testing in Figure 4.2.1a.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

20 22 24 26 28 30

time
(secs)

number of features
(n-1) dimensions

Benchmark (stress tests)
Simplicial Complex FP-Growth

32

4.2.2 Resource Utilization

This is one of the important aspects of Computer Science that many programmers often take for
granted. This is due to that fact that nowadays many high-level languages try to take care of the
memory management for them. This is what happened to our first implementation of Simplicial
Complex. The algorithm was very fast but when we attempted to increase the complexity of our dataset
from about 100 features and 1300 features, the application quickly jumped from 200 MB of memory
usage to over 3.5 GB. It also took about 30 seconds to run on this controlled dataset. This caused us to
reinvestigate our initial algorithm and the underlining data structures that it used. This work eventually
led us to our development of Self-Contained Cone Construction technique. And the result is quite
dramatic. For a 100-feature run, the application used only about 2 MB of memory and ran in merely a
fraction of a second. As for 1300 features, it used approximately 35 MB of memory and completed the
run in a little over 3 seconds. This is amazing. Not only it allocated a hundred times less memory, but it
also executed ten times faster than the initial implementation of Simplicial Complex. What we did was
we basically killed two birds with a one stone.

5. Conclusion

In this term paper, we have concluded that Simplicial Complex algorithm, when being used correctly, can

yield a lot of benefits when dealing with large multidimensional datasets. It has also been shown that

the Self-Contained Cone Construction technique within this algorithm is highly is adaptable to Hadoop

ecosystem and MapReduce programming model. Not only that, there are so many Big Data problems

that currently exist in Data Science that can leverage this Simplicial Complex framework to provide fast

and reliable solutions. By publishing our research findings, we hope that the scientific community can

make use of it and then add their own contributions.

5.1 Discovery

One of the important findings that we made in this paper is the idea of Self-Contained Cone Construction
and how it utilizes the system’s limited resources in an efficient manner. We discovered that it is not
always correct to apply what works in theory, mathematics in our case, to practical applications without
considering the designing of proper algorithms and data structures. In addition, we showed that the
scalability bottleneck in traditional method is no longer a concern. We also illustrated how our
proposed concept works and integrates with distributed computing. This allows us to scale Simplicial
Complex like never before.

5.2 Future Work

Even though we made good progress for this research, there is still a lot of work to be done and
improvements to be made. We developed the algorithm and setup the infrastructure so that one can
easily take the existing work and improve upon it. Here is a list of possible future work:

 Performance improvements by applying graph partitioning techniques.

 Dynamically adjust size of input data blocks depending on number of selected features.

 Develop data clustering algorithms based on graph localization and translation.

 Feed results from Simplicial Complex framework into Perceptron model for deep learning.

 Designing of advanced analysis pipeline that incorporate and interact with this framework.

33

SAN JOSE STATE UNIVERSITY

MASTER’S WRITING PROJECT

Appendix

i. Algorithm Code
a. Data Parsing

function loadMatrix

 input: {r1,r2,...,rn}

 input: ri = {j1,j2,...,jk}

 Mi,j  0

 for i in 1 to n

 for each j in ri

 Mi,j  1

 output: Mi,j

b. Dimensionality Reduction

function reduceSpace

 input: Mi,j

 for j in 1 to k

 if count(Mj) >= threshold then

 Q  add(vj)

 output: Q = {v1,v2,...,vk}

c. Graph Traversal

function traverseGraph

 input: Q = {v1,v2,...,vk}

 for k in 1 to m

 ξk(shape)  ∅

 ξk(count)  0

 for j in k down to 1

 name  string(j)

 Δ0new  new(Δ0)

 Δ0
j  buildSimplex(Δ0new,name,vj,Q)

 ξk  connectSimplex(Δ0
j)

 output: {ξ1,ξ2,...,ξm}

 output: ξk = (shape, count)

34

d. Build “Self-Contained” Simplex

function buildSimplex

 input: Δiin(name,simplex,faces,links)

 input: σj = {σ1, σ2,..., σm}
 input: {Δ1, Δ2,..., Δk}

 Δiout  clone(Δiin)

 Δiout(name)  name

 Δiout(simplex)  i

 Δiout(faces)  {σ1, σ2,..., σm}
 for n in (j + 1) to k

 Δ0new  new(Δ0)

 Δ0new(name)  Δn(name)

 Δ0new(simplex)  Δn(simplex)
 for p in 1 to m

 if σp in Δn(faces) then

 Δ0new(faces)  add(σp)

 if Δ0new(faces) >= threshold then

 Δiout(links)  add(Δ0new)

 output: Δiout

e. Cone Construction (connecting simplexes)

function connectSimplex

 input: Δiin(name,simplex,faces,links)

 ξk(shape)  Δiin(simplex)

 ξk(count)  increment by 1

 print(Δiin(name))

 print(Δiin(faces))

 if Δi < Δmax then

 Q: {Δ1, Δ2,..., Δk}

 Q  Δiin(links)

 name_s  Δiin(name)

 for n in 1 to k

 name_l  Δn(name)

 name  name_s + " " + name_l

 Δi+1new  new(Δi+1)

 σj: {σ1, σ2,..., σm}

 σj  Δn(faces)

 Δi+1
n  buildSimplex(Δi+1new,name,σj,Q)

 ξk  connectSimplex(Δ i+1
n)

 output: ξk = (shape, count)

35

ii. Simulation Runs

(1) Simulation Step #4 of Self-Contained Cone Construction:

Iteration #1:
Δ1 AF3 = {T3, T4}
Δ1 HF3 = {T3, T4}
Δ1 EF3 = {T3}

Iteration #2:
Δ2 HAF3 = {T3, T4}
Δ2 EAF3 = {T3}

Iteration #3:
Δ3 EHAF3 = {T3}

Iteration #4:
None left to merge (done)

Each of the iterations must operate within the
four requirements that were explicitly stated in
section 2.2.2.4. In addition, each step must also
satisfy the three conditions listed in Simulation
Step #2 of that same section.

The key point to take away from these simulation
steps is how each vertex is operating on its own
and still able to leverage the concept of
topological cone construction within the context
of its ordered proximity. This is why we named
this technique the “Self-Contained Cone
Construction”. And as soon as it moves out of its
scope and into the next vertices, everything that
was computed and stored by the previously
visited vertices will be forfeited. This is absolutely
necessary due to the exponential growth in number of permutations that are required to handle
datasets with high number of selected features.

(2) Simplicial Algorithm Run Results:

Run command:
<nrules> <threshold> <ncols> <nrows> <data-file>
SimplicialComplexNew.exe ^
4 0.0 10 5 ^
Inputs\dataSample-thesis-reduced.dat

36

Inputs\dataSample-thesis-reduced.dat
<nvertices> <array-of-active-vertices>
4 0 1 3 4
3 1 3 4
4 0 4 5 7
3 0 5 7
2 4 7

Output results:
[E] 4
[H] 3
[H E] 2
[A] 3
[A H] 2
[A H E] 1
[A E] 2
[F] 2
[F A] 2
[F A H] 2
[F A H E] 1
[F A E] 1
[F H] 2
[F H E] 1
[F E] 1
[D] 2
[D A] 1
[D A E] 1
[D E] 2
[B] 2
[B D] 2
[B D A] 1
[B D A E] 1
[B D E] 2
[B A] 1
[B A E] 1
[B E] 2

37

iii. Standard Notations

Symbol Meaning Description

Δk Delta-k (cap) An k-simplex in k-dimensional space

Δ0 Delta-0 (cap) 0-simplex or a vertex on topological space

Δ1 Delta-1 (cap) 1-simplex or a line on topological space

Δ2 Delta-2 (cap) 2-simplex or a triangle on topological space

Δ3 Delta-3 (cap) 3-simplex or a tetrahedron on topological space

ℝk A topology space with k dimensions

Mi,j A matrix of i rows and j columns

S A finite set of points in k-dimensional Euclidean space (ℝk)

C A convex hull of a finite set of points in Euclidean space

K Kappa A finite set of simplexes on a graph

Є Epsilon A subset of a given set

ζ Zeta Zeta function associated with a finite graph

∑ Summation Summation of values from … to …

σ Sigma Any face of a simplex

τ Tau Subset of any face of a simplex

Ψ Psi A geometric flag of an n-polytope

Ο Big O Limiting behavior of a function

ω Omega Asymptotically dominant quantity in big Ο notation

Ω Omega (cap) An asymptotic lower bound in big Ο notation

α Alpha 1st angle in a triangle

β Beta 2nd angle in a triangle

γ Gamma 3rd angle in a triangle

Γ Gamma (cap) Neighborhood of a vertex on graph

δ Delta The minimum degree of any vertex on graph

η Eta The partial regression coefficient in statistics

θ Theta The angle to the x-axis in xy-plane

λ Lambda A scalar coefficient in linear algebra

μ Mu A scalar coefficients Points in a topological space

ν Nu Dimension of null space in mathematics

ξ Xi A universal set of objects in geometric space

ϕ Phi A scalar field to every point in space

π Pi Projection in relational algebra for databases

⊆ Subset A subset of another set with less or same # of elements

∩ Intersect Intersection between two sets of data

∪ Union Union between two sets of data

∅ An empty set

This table was generated based on mathematical symbols described in this Wikipedia page [1]:
https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering
#.CE.91.CE.B1_.28alpha.29

https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering#.CE.91.CE.B1_.28alpha.29
https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering#.CE.91.CE.B1_.28alpha.29

38

SAN JOSE STATE UNIVERSITY

MASTER’S WRITING PROJECT

Bibliography

[1] Wikipedia, “The Free Encyclopedia”, Wikimedia Foundation, Inc., a non-profit organization, 2016.

[2] Allen Hatcher, "Algebraic Topology", 3rd Edition, Cornell University, 2002.

[3] James W. Vick, "Homology Theory: An Introduction to Algebraic Topology", 2nd Edition, 1994.

[4] T.Y. Lin, "Attribute (Feature) Completion - The Theory of Attributes from Data Mining Prospect", Data

Mining, 2002 IEEE International Conference on Data Mining.

[5] T.Y. Lin, Albert Sutojo, Jean-David Hsu, "Concept Analysis and Web Clustering using Combinatorial

Topology", SJSU Computer Science, IEEE International Conference on Data Mining.

[6] Jovan Popovic, Hugues Hoppe, "Progressive Simplicial Complexes (PSC)", Carnegie Mellon University,

Microsoft Research, ACM SIGGRAPH 1997 Proceedings, 217-224.

[7] Rakesh Agrawal, Tomasz Imielinski, Arun Swami, "Mining Association Rules Between Sets of Items in

Large Databases", IBM Research Center, 1993.

[8] Richard Hennigan, "Fast Simplicial Complex Construction for Computing the Persistent Homology of

Very Large and High Dimensional Data Sets", UML Computer Science, 2015.

[9] Anton Dochtermann, Alexander Engstrom, "Algebraic Properties of Edge Ideals via Combinatorial

Topology", Stanford University, 2008.

[10] P.Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson & G.

Carlsson, "Extracting Insights from the Shape of Complex Data using Topology", Nature Scientific

Reports, Stanford University, 2013.

[11] MapR Technologies, "Introduction to Big Data", 2014.

[12] Dominique Attali, Andre Lieutier, David Salinas, "Efficient Data Structure for Representing and

Simplifying Simplicial Complexes in High Dimensions", 27th Annual Symposium on Computational

Geometry (SoCG 2011), Jun 2011, Paris, France, 2011. <HAL-00579902>

[13] Anna Gundert, "On the Complexity of Embeddable Simplicial Complexes", 2009.

39

[14] William Harvey, Yusu Wang, Rephael Wenger, "A Randomized O (m log m) Time Algorithm for

Computing Reeb Graphs of Arbitrary Simplicial Complexes", Ohio State University, 2010.

[15] Laszlo Lovasz, "Topological Methods in Combinatorics", Ohio State University, 2013.

[16] Bradford Barber, David P Dobkin, Hannu Huhdanpaa, "The Quickhull Algorithm for Convex Hulls",

University of Minnesota, Princeton University, Configured Energy Systems, Inc., 1996.

[17] Jeffrey Dean, Sanjay Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters", Sixth

Symposium on Operating System Design and Implementation, San Francisco, CA, 2004.

[18] Milka Doktorova, "Constructing Simplicial Complexes Over Topological Spaces", Dartmouth College,

2012.

[19] Tsau-Young (T. Y.) Lin, David Le, Jingjing Yang, "High Speed Association Mining – Data Analysis Using

Topology", Department of Computer Science, San Jose State University, 2015.

40

(1) NetApp, IDC Worldwide Big Data Technology and Services, 2012-2015 Forecast, #233485, March 2012.

http://siliconangle.com/blog/2012/05/21/when-will-the-world-reach-8-zetabytes-of-stored-data-infographic/

 (2) High Scalability, “Building Bigger, Faster, More Reliable Websites”, September 2012.

http://highscalability.com/blog/2012/9/11/how-big-is-a-petabyte-exabyte-zettabyte-or-a-yottabyte.html

(3) The Medium, “The History of Hadoop”, April 2015.

https://medium.com/@markobonaci/the-history-of-hadoop-68984a11704

(4) Neev Technologies, “Hadoop Ecosystem at a Glance”, March 2013.

http://www.neevtech.com/blog/2013/03/18/hadoop-ecosystem-at-a-glance/

(5) Netflix Life, Netflix image, September 2014.

http://netflixlife.com/files/2014/09/d3302ac4b1333f5017b25a9cf8bc1198_large.jpeg

http://siliconangle.com/blog/2012/05/21/when-will-the-world-reach-8-zetabytes-of-stored-data-infographic/
http://highscalability.com/blog/2012/9/11/how-big-is-a-petabyte-exabyte-zettabyte-or-a-yottabyte.html
https://medium.com/@markobonaci/the-history-of-hadoop-68984a11704
http://www.neevtech.com/blog/2013/03/18/hadoop-ecosystem-at-a-glance/
http://netflixlife.com/files/2014/09/d3302ac4b1333f5017b25a9cf8bc1198_large.jpeg

	Analyze Large Multidimensional Datasets Using Algebraic Topology
	Recommended Citation

	tmp.1465919043.pdf.DNORD

