
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Fall 2016 

Web-based Integrated Development Environment Web-based Integrated Development Environment 

Hien T. Vu 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Databases and Information Systems Commons, and the Graphics and Human Computer 

Interfaces Commons 

Recommended Citation Recommended Citation 
Vu, Hien T., "Web-based Integrated Development Environment" (2016). Master's Projects. 499. 
DOI: https://doi.org/10.31979/etd.f6v3-wqu3 
https://scholarworks.sjsu.edu/etd_projects/499 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/499?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Web-based Integrated Development Environment

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Hien T. Vu

December 2016



c○ 2016

Hien T. Vu

ALL RIGHTS RESERVED



The Designated Project Committee Approves the Project Titled

Web-based Integrated Development Environment

by

Hien T. Vu

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2016

Cay Horstmann Department of Computer Science

Ronald Mak Department of Computer Engineering

Thomas Austin Department of Computer Science



ABSTRACT

Web-based Integrated Development Environment

by Hien T. Vu

As tablets become more powerful and more economical, students are attracted to

them and are moving away from desktops and laptops. Their compact size and easy to

use Graphical User Interface (GUI) reduce the learning and adoption barriers for new

users. This also changes the environment in which undergraduate Computer Science

students learn how to program. Popular Integrated Development Environments (IDE)

such as Eclipse and NetBeans require disk space for local installations as well as an

external compiler. These requirements cannot be met by current tablets and thus

drive the need for a web-based IDE. There are also many other challenges of moving

a desktop-based IDE to a web-based one.

There are many web-based IDEs currently in development. However, this project

focuses on four particular open-sourced web-based IDEs: Ace, CodeMirror, ICEcoder

and CloudCoder. Ace, CodeMirror and ICEcoder are web-based code editors and

CloudCoder is a complete web-based exercise system. All of them were found to be

integrable with CodeCheck except for ICEcoder.

The CloudCoder integrated Codecheck was deployed for three classes during the

Fall 2016 term at San Jose State University. Empirical data showed that students

had a better grasp of the subject matter when exposed to exercises hosted by the

enhanced CodeCheck. This was measured indirectly via the scores from projects,

quizzes and exams.



ACKNOWLEDGMENTS

I would like to thank Professor Cay Horstmann for giving me an opportu-

nity to work on this project. I would also like to thank Professors Ronald Mak,

Thomas Austin and Fabio Di Troia for allowing their students to participate in test-

ing the enhanced CodeCheck and for allowing me to collect data to measure the

effectiveness of this system in improving the students’ performance. Last but not

least, I would like to thank Professor Sami Khuri and the Department of Computer

Science for the financial support of the virtual machines.

v



TABLE OF CONTENTS

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Technologies Used in the Project . . . . . . . . . . . . . . . . . . 6

3.1 CodeCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Web-based code editors . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Ace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 CodeMirror . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 CloudCoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Integration of Ace and CodeMirror with CodeCheck . . . . . . 27

5 Integration of CloudCoder with CodeCheck . . . . . . . . . . . 32

5.1 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Edit problem page . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Development page . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Webapp and CodeCheck communication . . . . . . . . . . . . . . 39

6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Enhanced CodeCheck Deployment . . . . . . . . . . . . . . . . . . 43

6.1.1 CS49J - Programming in Java . . . . . . . . . . . . . . . . 43

6.1.2 CS152 - Programming Paradigms . . . . . . . . . . . . . . 45

6.1.3 CMPE180 - Data Structures and Algorithms in C++ . . . 48

vi



vii

6.2 Enhanced CodeCheck Evaluation . . . . . . . . . . . . . . . . . . 50

7 Deployment Challenges . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

APPENDIX

A CloudCoder Compilation and Installation . . . . . . . . . . . . . 63

A.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2 Compiling CloudCoder . . . . . . . . . . . . . . . . . . . . . . . . 63

A.3 Deploying CloudCoder . . . . . . . . . . . . . . . . . . . . . . . . 64

B Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



LIST OF FIGURES

1 CodeCheck - Problem layout . . . . . . . . . . . . . . . . . . . . . 6

2 CodeCheck - Upload problem interface . . . . . . . . . . . . . . . 7

3 CodeCheck - Upload problem selected . . . . . . . . . . . . . . . 7

4 CodeCheck - Uploaded problem submitted . . . . . . . . . . . . . 8

5 CodeCheck - Student interface for a single-file problem . . . . . . 9

6 CodeCheck - Student interface for a multi-file problem . . . . . . 10

7 CodeCheck - Report with compilation errors of a single-file problem 11

8 CodeCheck - Report with compilation errors of a multi-file problem 12

9 CodeCheck - Report with test failing for the simple problem . . . 13

10 CodeCheck - Report with test passing for the multi-file problem . 14

11 Ace example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

12 CodeMirror example . . . . . . . . . . . . . . . . . . . . . . . . . 17

13 CloudCoder - System . . . . . . . . . . . . . . . . . . . . . . . . . 18

14 CloudCoder - Login page . . . . . . . . . . . . . . . . . . . . . . . 19

15 CloudCoder - Student main page . . . . . . . . . . . . . . . . . . 20

16 CloudCoder - Student problem page . . . . . . . . . . . . . . . . 20

17 CloudCoder - Instructor main page . . . . . . . . . . . . . . . . . 21

18 CloudCoder - User management page . . . . . . . . . . . . . . . . 22

19 CloudCoder - Exercises management page . . . . . . . . . . . . . 22

20 CloudCoder - Exercise composer (1 of 6) . . . . . . . . . . . . . . 23

21 CloudCoder - Exercise composer (2 of 6) . . . . . . . . . . . . . . 24

viii



ix

22 CloudCoder - Exercise composer (3 of 6) . . . . . . . . . . . . . . 24

23 CloudCoder - Exercise composer (4 of 6) . . . . . . . . . . . . . . 25

24 CloudCoder - Exercise composer (5 of 6) . . . . . . . . . . . . . . 25

25 CloudCoder - Exercise composer (6 of 6) . . . . . . . . . . . . . . 26

26 Codecheck - Enhanced uploaded problem page . . . . . . . . . . . 27

27 Codecheck - Instructor interface for a simple problem . . . . . . . 28

28 Codecheck - Instructor interface for a simple problem . . . . . . . 29

29 Codecheck - Enhanced student interface for a simple problem . . 30

30 CodeCheck - Enhanced system . . . . . . . . . . . . . . . . . . . 32

31 CodeCheck - Enhanced exercise composer (1 of 6) . . . . . . . . . 36

32 CodeCheck - Enhanced exercise composer (2 of 6) . . . . . . . . . 36

33 CodeCheck - Enhanced exercise composer (3 of 6) . . . . . . . . . 37

34 CodeCheck - Enhanced exercise composer (4 of 6) . . . . . . . . . 37

35 CodeCheck - Enhanced exercise composer (5 of 6) . . . . . . . . . 38

36 CodeCheck - Enhanced exercise composer (6 of 6) . . . . . . . . . 38

37 CS49J - Average number of attempts . . . . . . . . . . . . . . . . 44

38 CS49J - Average number of minutes per attempt . . . . . . . . . 44

39 CS49J - Average project scores . . . . . . . . . . . . . . . . . . . 45

40 CS152 - Average number of attempts . . . . . . . . . . . . . . . . 46

41 CS152 - Average number of minutes per attempt . . . . . . . . . 46

42 CS152 - Exam scores . . . . . . . . . . . . . . . . . . . . . . . . . 47

43 CS152 - Quiz scores . . . . . . . . . . . . . . . . . . . . . . . . . 48

44 CS152 - Quiz scores filtered . . . . . . . . . . . . . . . . . . . . . 49



x

45 CMPE180 - Average number of attempts . . . . . . . . . . . . . . 49

46 CMPE180 - Average number of minutes per attempt . . . . . . . 50

47 CMPE180 - Exam score . . . . . . . . . . . . . . . . . . . . . . . 51

48 CMPE180 - Quiz scores distribution . . . . . . . . . . . . . . . . 52

49 Questions on the effectiveness of the enhanced CodeCheck . . . . 53

50 Questions on the usability of the enhanced CodeCheck . . . . . . 54

51 Questions on the applicability of the enhanced CodeCheck . . . . 55



CHAPTER 1

Introduction

In an introductory or an intermediate programming course, students are encour-

aged to practice writing programs in order to master the language and its syntax. For

this, the common recommendation to students is to install an Integrated Development

Environment (IDE). With some IDEs, there is an additional requirement to install

a compiler and linker. There are many IDEs available [19, 20] and the most widely

known open-source ones are NetBeans and Eclipse. The majority of these IDEs are

intended to be used on desktops or laptops and certainly not intended for tablets and

other small portable devices. This is because local storage is limited and compilers

are not readily available for their architectures.

In this project, four open-sourced web-based IDEs (Ace, CodeMirror, ICEcoder

and CloudCoder) were evaluated for their capabilities. Ace, CodeMirror and ICE-

coder are web-based code editors. These can serve as the front-end of an IDE. To

complete an IDE, they need to be integrated with CodeCheck. ICEcoder is a source

file management and code editing tool [13] and uses CodeMirror for its editors [14].

ICEcoder has only a 14-day trial period so it was not evaluated further in this project.

CloudCoder is a complete IDE in that it has a code editor and a builder. It is also

an exercise system like CodeCheck where submissions are automatically graded. Un-

like CodeCheck, CloudCoder supports individual student workspace and provides the

capability to group exercises and students by classes.

This project was split into two phases: 1) evaluate Ace and CodeMirror and

2) evaluate CloudCoder. Both phases also include the integration of the software

1



with CodeCheck. Chapter 3 gives an introduction to CodeCheck, Ace, CodeMirror

and CloudCoder. The integration of the web-based code editors and CloudCoder

are discussed in Chapters 4 and 5 respectively. Chapter 6 discusses in detail the

deployment of the enhanced CodeCheck and the results obtained from the three

classes that participated in its evaluation.

2



CHAPTER 2

Prior work

An automated web-based grading system called Infandango was developed by

Hull, Powell and Klein [12]. The system allows students to submit Java source files

and a backend JUnit test engine compiles and executes a set of predefined tests. The

outcome is then stored in a database and communicated back to the students. The

Infandango system is composed of four components: a web front-end, the CoSign

authentication module, the Jester JUnit tester and the PostgreSQL database. Based

on the authors’ conclusion, the components are loosely coupled and they can be

swapped out with other appropriate components.

Web-CAT, developed by Edwards and Perez-Quinones [5], also provides an auto-

matic web-based grading system. It supports mainly Java and C++ exercises. Web-

CAT exercises can be configured to require the test cases together with the source

files. This is one of the well-known features of Web-CAT. Web-CAT is extensible

with its plug-ins [4]. Plug-ins can be developed to support other programming lan-

guages and they can be configured to collect more statistical data from the students’

submissions.

Pritchard’s approach with Websheet is for an instructor to setup a solution and

provide the locations of the "fill-in-the-blank" areas [18]. Through a browser, students

provide the fill-in and submit for evaluation. Websheet supports both Java and C++

and uses CodeMirror for its text editor. It is designed for in-class exercises or practice

homework problems. After three failed attempts, the solution is made available to

the user.

3



Deeb and Hickey [3] developed Spinoza, which is also a web-based IDE with an

automatic grading engine. With SpinozaExercises, instructors can quickly create a

problem by providing a description and optional skeleton codes. SpinozaHomeworks

are more comprehensive in that solution files and test cases are required so they can be

used to evaluate submitted solutions. A unique feature of Spinoza is the share mode

where instructors can display submitted code to the entire class. The instructor view

offers instructors the current progress of the class. In real time, the instructors can

see the students that have completed the assignment, those that still have syntax

errors and those that have the same equivalent class file. A survey was done by the

authors with 238 students and found that 36% preferred this system over lectures

with Powerpoint. Also, 28% of the students thought Spinoza is as good as a learning

method as Powerpoint lectures.

Collabode from Goldman, Little and Miller [7] enables programmers to syn-

chronously collaborate and immediately share the changes with one another. The

web-based development environment is powered by Eclipse on the server side. Each

user accesses the files via their respective browsers. The multiple editors are sup-

ported by EtherPad, an open-source collaborative online editor [6], which shares the

changes in near real-time. The system supports the Python and Java programming

languages. The authors describe three collaborative scenarios: micro-outsourcing,

test-driven paired programming and mobile instructors. With micro-outsourcing,

many programmers can make small contributions to a developer. And in the last

scenario, instructors can help the students by connecting to their IDEs.

Kurtz, Fenwick, Tashakkori, Esmaili and Tate [16] introduced the Code Mag-

net microlabs into their lecture. Students use tablets during lectures to graphically

compose solutions to in-class conceptual problems. The submitted solutions are eval-

4



uated by Code Magnet and feedback is provided. A control study with two different

groups of students was done at SUNY Stony Brook where three identical questions

were asked on their tests. The questions were taken from lectures on the binary tree

traversals, the building of binary search tree (BST) from postorder traversal and the

building of general binary tree from preorder and inorder traversals. The authors

found that the group that had been exposed to microlabs performed, on average,

better than those that had not been by 8 to 10% with a statistical significance of p

= 0.038.

5



CHAPTER 3

Technologies Used in the Project

3.1 CodeCheck

As described by the developer, CodeCheck is a “convention over configuration”

service for grading of programming assignments [9]. It is a web-based system where

programming problems can be assigned and users’ solutions will be validated auto-

matically. This is intended to be used in an introductory programming class where

students can learn by trial-and-error. The system does not track users’ progress nor

does it have any identification information about the users. It does provide a signed

zip file containing the solution files and its validation report. As an assignment,

students can turn in this zip file to the instructor.

A CodeCheck problem consists of a description file, source files to be completed,

source files for helper or tester classes, input files and solution source files. The files

are laid out according to Figure 1 [9].

Figure 1: CodeCheck - Problem layout

The student and solution are fixed directory names. The description of the

problem is optional and is expected to be in HTML format. CodeCheck recognizes

the description file if its name is problem.html. The student directory contains the

files with partial code that the students will start with. All of the files in this directory

6



will be displayed by CodeCheck except for the input file. The corresponding solution

files for the problem are stored inside the solution directory. Only files that are in

both directories will be made editable by CodeCheck for the students. All of the files

and directories need to be zipped before they can be uploaded onto CodeCheck.

As shown in Figure 2, the instructor uses CodeCheck’s web page interface to

upload a problem zip file.

Figure 2: CodeCheck - Upload problem interface

By clicking on the ‘Browse’ button, a file browser dialog box will appear. The

instructor can then navigate the file system to find the problem zip file. Figure 3

shows an example simple.zip file ready to be uploaded.

Figure 3: CodeCheck - Upload problem selected

Upon clicking on the ‘Submit Query’ button, a new page containing a randomly

generated uniform resource locator (URL) is displayed as shown in Figure 4.

This URL can be given to students to access their programming assignment. The

‘Preview’ link takes the instructor to the generated URL. It can be used to test out

7



Figure 4: CodeCheck - Uploaded problem submitted

the student’s interface. The ‘Report’ link takes the instructor to a validation report.

This report is generated using the solution source files. The instructor can use this

report to make sure that the solution files are correct. If there are issues that need

correction, a new zip file can be uploaded to CodeCheck.

Figures 5 and 6 show the starting web page of problems with single and multiple

files, respectively. Each source file in the student directory is displayed in an individual

HTML textarea. In these two examples, the problem.html file contains the text in

between and including the horizontal bars above the "Complete the following file"

line. Students can directly make changes to the code in the text-area and click on

the ‘Submit Query’ button to submit their solution.

Upon submission, CodeCheck compiles the submitted files. If there are errors,

the report displays the compiler’s error messages. Examples of the compilation errors

are shown in Figure 7 and 8. These errors are taken directly from the compiler. The

error in Figure 7 is a missing open curly bracket on line 5. There are two missing

semicolons in Figure 8 but only one is caught. This is because the compiler stops

upon detecting the missing semicolon on line 16 of the second source file. Once that

is fixed, the second missing semicolon on line 4 of the first file will be detected. To

fix these errors, the student can use the ‘Go back’ button on the browser to make

correction and then submit again. These steps can be repeated until a successful

8



Figure 5: CodeCheck - Student interface for a single-file problem

compilation.

The compiled codes are tested with the test input from the input files. If the test

fails, then a report is given as shown in Figure 9. Using the solution files, CodeCheck

9



Figure 6: CodeCheck - Student interface for a multi-file problem

10



Figure 7: CodeCheck - Report with compilation errors of a single-file problem

also provides the expected output in the report to the student. CodeCheck compares

the output from the student’s and the solution’s source files so an exact match of the

format of the output is expected. The student can again go back one page on the

11



Figure 8: CodeCheck - Report with compilation errors of a multi-file problem

12



browser to update the source file and re-submit.

Figure 9: CodeCheck - Report with test failing for the simple problem

Upon a successful test, the ‘pass’ validation report is given. As shown in Fig-

ure 10, there is a ‘Download’ link at the bottom to save the report. Students can use

13



this downloaded file as proof of completing the assignment.

Figure 10: CodeCheck - Report with test passing for the multi-file problem

14



3.2 Web-based code editors

3.2.1 Ace

Ace is an embedded code editor written in JavaScript [1]. Its scripts dynamically

modify HTML div elements and turn them into IDE-like editors. Ace supports

several functions similar to an IDE such as syntax highlighting, bracket matching,

auto-completion, auto-indentation and many others. Unlike CodeMirror, Ace has

direct support for the Java language.

To add Ace into a HTML page, the desired addon scripts need to be loaded. Each

HTML div needs to be modified by calling the ace.edit() function. An example of

Ace is shown in Listing B.1 and Figure 11.

Figure 11: Ace example

15



In this example, there are two identical div elements with IDs ‘ExampleA’ and

‘ExampleB’. The latter is modified with the ace.edit() function on line 59. The

modification includes setting the theme, the language and various options. Ace has

all the options that CodeMirror provides and there are several others that are not

available in CodeMirror. These include the ability to show the indentation grid

(displayIndentGuides), to show hidden characters (showInvisibles) and to per-

form syntax checking(useWorker).

3.2.2 CodeMirror

CodeMirror is a web-based text editor implemented in Javascript [2]. Its addon

scripts and cascading style sheets (CSS) turn a HTML textarea into a visual editor

similar to one found in an IDE. CodeMirror supports several functions similar to an

IDE such as syntax highlighting, bracket matching, auto-completion, auto-indentation

and many others.

To add CodeMirror into a HTML page, the desired addon scripts and CSS

need to be loaded. Each HTML textarea needs to be modified by calling the

CodeMirror.fromTextArea() function. An example of CodeMirror is shown in List-

ing B.2 and Figure 12.

In this example, there are two identical textarea elements with IDs ‘Exam-

pleA’ and ‘ExampleB’. The latter is modified with the CodeMirror.fromTextArea()

function on line 57. The modification includes the display of the line numbers, the

auto closing of brackets, the auto code completion and the identification of matching

brackets. In Figure 12, the brackets on line 9 and 16 are shown to be matched by

switching their font’s color to green.

The Java keywords are not highlighted properly because CodeMirror does not

16



Figure 12: CodeMirror example

have specific Java language support. This also prevents the automatic code comple-

tion from working properly.

17



3.3 CloudCoder

CloudCoder is a web-based programming exercise system [10]. It provides a

platform where users can practice their programming skills and where instructors can

assess their students’ progress. The system supports multiple classes and program-

ming exercises in C/C++, Python, Java and Ruby.

As shown in Figure 13, the CloudCoder system is composed of two components:

the web application (webapp) and the builder. The webapp manages the user in-

terfaces and the communication with the database and the builder. In the current

deployment, MySQL is used to store information on the users, the classes, the exer-

cises and the state of users. The builder processes users’ submissions and executes

the compiled programs against a predefined set of test cases.

Figure 13: CloudCoder - System

Students and instructors interact with CloudCoder through a browser. Cloud-

Coder supports basic authentication and users have access to only the classes they

are assigned to. The login page is shown in Figure 14. Once logged in, the users

18



will be given a snapshot of their progress and the list of exercises that they need to

complete. An example is shown in Figure 15.

Figure 14: CloudCoder - Login page

With an exercise is loaded, a user can start working on coding the solution in

the editor. Submissions are checked by the Builder each time the Submit button is

clicked. Figure 16 shows the C "hello world" program. The test failed in this case

because of the missing comma in the output string. The state of the code is also

saved with each submission. The user can leave the problem via either the Back or

Logout button. Upon returning to a problem, the last saved state will be restored so

that the user can continue the exercise.

Instructor accounts have two administrative buttons that manage the exercises

and the students assigned to the selected class, as shown in Figure 17.

Figure 18 shows the user management page for a class where an instructor can

add, edit or delete an individual student’s accounts. A tab separated text file with

19



Figure 15: CloudCoder - Student main page

Figure 16: CloudCoder - Student problem page

20



Figure 17: CloudCoder - Instructor main page

a list of students can also be uploaded via the ’Bulk register’ button. A student’s

progress on the exercises can be monitored by selecting the student’s name and then

clicking on the ’Statistics’ button. CloudCoder also allows the administrator to upload

a comma separated list of students in a class via the command line.

Exercises can be added to a class via the exercise management page, as shown

in Figure 19. Unlike the user management page, exercises cannot be loaded via

the command line. However, exercises can be imported from another class (’Import

course’) or from the exercise repository (’Import’). Various CloudCoder sites can

contribute their exercises to the repository by enabling the permissive license (’Make

permissive’) and by selecting the ’Share’ button. The due dates and the publication of

the exercises can be set quickly via the ’Set dates/times’ and ’Make visible’ buttons,

respectively.

Figures 20 through 25 show the "Edit problem" page and the various properties

21



Figure 18: CloudCoder - User management page

Figure 19: CloudCoder - Exercises management page

22



of an exercise in CloudCoder. There are 8 supported problem types: Java, C, C++,

Python and Ruby functions or methods and Java, C and C++ programs. The full

description and skeleton editors are Ace editors. The test cases are regular expressions

that will be used to validate the user solution’s output. Multiple test cases can be

added by clicking on the ’Add Test Case’ button.

Figure 20: CloudCoder - Exercise composer (1 of 6)

23



Figure 21: CloudCoder - Exercise composer (2 of 6)

Figure 22: CloudCoder - Exercise composer (3 of 6)

24



Figure 23: CloudCoder - Exercise composer (4 of 6)

Figure 24: CloudCoder - Exercise composer (5 of 6)

25



Figure 25: CloudCoder - Exercise composer (6 of 6)

26



CHAPTER 4

Integration of Ace and CodeMirror with CodeCheck

As indicated earlier, Codecheck does not allow the instructor to update a problem

directly. When an issue is encountered, a new zip file has to be uploaded. One of the

first enhancements done in this project is to provide an instructor interface. With a

successful upload of the problem, the new page containing the randomly generated

URL also has a link to ‘Update’ the problem. This is shown in Figure 26.

Figure 26: Codecheck - Enhanced uploaded problem page

The ‘Update’ page allows the instructor to modify the existing files as well as

adding new one. An example of this is shown in Figures 27 and 28.

The enhanced starting web page of the problem is shown in Figure 29.

Both instructor and student pages were enhanced with Ace and CodeMirror edi-

tors respectively. JQuery functions were created to simplify the HTML reformatting.

Listing 4.1 shows an example JQuery function that modified all textarea by referenc-

ing their IDs.

1 $(document).ready(function () {

2 $("textarea").each(function(index) {

3 var textarea_id = $(this).attr(’id’);

27



Figure 27: Codecheck - Instructor interface for a simple problem

4 var editor = CodeMirror.fromTextArea(document.getElementById(

→˓ textarea_id), {

5 extraKeys: {"Ctrl -Space": "autocomplete"},

6 lineNumbers: true ,

7 viewportMargin: Infinity ,

8 matchBrackets: true ,

9 styleActiveLine: true ,

10 autoCloseBrackets: true ,

11 showTrailingSpace: true ,

28



Figure 28: Codecheck - Instructor interface for a simple problem

12 theme: ’neo’,

13 tabSize: 2

14 });

15 });

16 });

Listing 4.1: CodeMirror formatting

Implementing the support for Ace is greatly simplified by using the jQuery-Ace

plugin [15]. Java source files in a HTML page can be classified using the HTML’s

29



Figure 29: Codecheck - Enhanced student interface for a simple problem

class elements and the jQuery code in Listing 4.2 will modify them accordingly.

1 $(’.java’).ace({ theme: ’vibrant_ink ’, lang: ’java’ }).each(function

→˓ (idx , editor) {

2 var ace = $(editor).data(’ace’).editor.ace;

3 ace.setOption("autoScrollEditorIntoView", "true");

4 ace.setOption("displayIndentGuides", "true");

5 ace.setOption("enableBasicAutocompletion", "true");

6 ace.setOption("enableLiveAutocompletion", "false");

7 ace.setOption("enableSnippets", "true");

8 ace.setOption("maxLines", 30);

30



9 ace.setOption("showInvisibles", "true");

10 ace.setOption("tabSize", 2);

11 ace.setOption("useWorker", "true");

12 });

13 $(’.cpp’).ace({ theme: ’tomorrow_night ’, lang: ’c_cpp’ }).each(

→˓ function(idx , editor) {

14 var ace = $(editor).data(’ace’).editor.ace;

15 ace.setOption("autoScrollEditorIntoView", "true");

16 ace.setOption("displayIndentGuides", "true");

17 ace.setOption("enableBasicAutocompletion", "true");

18 ace.setOption("enableLiveAutocompletion", "false");

19 ace.setOption("enableSnippets", "true");

20 ace.setOption("maxLines", 30);

21 ace.setOption("showInvisibles", "true");

22 ace.setOption("tabSize", 2);

23 ace.setOption("useWorker", "true");

24 });

25 $(’.text’).ace({ theme: ’terminal ’, lang: ’plain_text ’ });

26 $(’.html’).ace({ theme: ’chrome ’, lang: ’html’ });

27 $(’.default ’).ace({ theme: ’xcode’, lang: ’text’ });

Listing 4.2: Ace formatting

With the integration of the Ace/CodeMirror editor and the addition of the in-

structor’s interface, the usability of CodeCheck was improved. However, it is still not

possible to track the student’s progress. Also, the student cannot resume working on

an unfinished problem.

31



CHAPTER 5

Integration of CloudCoder with CodeCheck

The integration of CloudCoder and CodeCheck consists of the replacement of the

builder and the support for CodeCheck exercises. The enhanced CloudCoder system

is shown in Figure 30. The swap of the builder with CodeCheck required a change in

the way exercise’s submissions and their results are transferred between the webapp

and the builder. The JavaScript Object Notation (JSON) format was chosen for its

simplicity; more details can be found in section 5.3. The added support for CodeCheck

exercises is more complex because several sub-components of CloudCoder had to be

changed. CloudCoder uses the Model-View-Controller (MVC) architecture so the

model and the view components of this framework have to be enhanced. Sections 5.1

and 5.2 discuss in details the changes in the data model and the user interfaces.

Figure 30: CodeCheck - Enhanced system

32



5.1 Data model

One of the main differences between a CloudCoder exercise and a CodeCheck

exercise is the number of user files and how the users’ solutions are validated. Cloud-

Coder provides a single skeleton file to a user and it validates the user’s submissions

by checking the submitted code’s output using regular expressions. CodeCheck’s ex-

ercise can have one or more skeleton files and it also requires the same number of

corresponding solution files in order to validate the user’s submissions. To support

CodeCheck’s exercises, CloudCoder was enhanced to support multiple student and

solution files.

Data related to a CloudCoder exercise is modeled by the Problem class. The test

case is modeled separately by the Testcase class. These two objects are combined

to form the ProblemAndTestCaseList object. The remote procedure calls (RPC) of

the Google Web Toolkit (GWT) were implemented to transfer these data between

the various components of CloudCoder.

The student and solution files are modeled as objects with two main at-

tributes: name and content. The other attributes are necessary for the storing

of these objects in the database. To leverage the existing RPC implementation,

the ProblemAndTestCaseList class was enhanced to additionally contain lists of

StudentDirVTH and SolutionDirVTH objects.

All persistent data are stored in a MySQL database. So several JDBC database

transactions have been implemented. The solution files are retrieved by the client’s

UI so special transactions were implemented to return a Base64 encoded string.

The CreateWebappDatabase class was enhanced to include the StudentDirVTH’s and

SolutionDirVTH’s schema. This class is used to setup the database inside MySQL.

33



The StoreProblemAndTestCaseList transaction class was enhanced to also write the

student and solution files to the database.

Two editors classes were implemented to support the student and solution files.

The Ace editor is part of CloudCoder so features such as syntax highlighting, auto-

indentation and auto-completion were enabled to enhance the users’ experience. The

StudentDirDataEditor and SolutionDirDataEditor classes also implemented a

"Delete" button to enable the removal of a student or solution file and its corre-

sponding editor from the UI.

5.2 Views

5.2.1 Edit problem page

The "Edit problem" page is composed of panels and widgets from the GWT

library. To support the creating and editing of the student and solution files,

two GWT FlowPanel panels were added to the page. Initially the panels contain

only the "Add Student File" and the "Add Solution File" buttons. The Buttons’

addClickHandler() method instantiates a StudentDirVTH or SolutionDirVTH ob-

ject and adds it to the ProblemAndTestCaseList object residing in the client’s ses-

sion. An instance of the StudentDirDataEditor or SolutionDirDataEditor class

is also instantiated and is added to panel.

Most of the code involving the client/server data transfer does not

need to be modified because the student and solution files are part of the

ProblemAndTestCaseList object. However, one method needed to be enhanced

because it retrieves only the problem’s TestCase using the Problem object. The

loadProblemAndTestCaseList() method is a static method in the SessionUtil

class and is called by the ProblemAdminPage class, which handles the "exercises

34



management" page. The TestCase is retrieved via an RPC call to the server. So in

order to also retrieved the student and solution files via their respective RPC calls,

the RPC calls are chained together as described by Northrop [17]. The student and

solution RPC calls are described in Section 5.2.2.

To reduce the number of required fields, the problem’s type was removed and

all problems have the default "CODECHECK TYPE" type. The "Skeleton code"

editor was removed and was replaced by the student and solution panels. The "Li-

cense" field was removed because these CodeCheck exercises are not shareable to

other CloudCoder servers. The "URL of required external library" and "MD5 check-

sum of required external library" were removed because the CodeCheck problem type

does not support external libraries. Also, the testcases for CodeCheck are included

as part of the student files so the "Test Case" section as shown in Figure 25 was

removed.

The enhanced interface is shown in Figures 31 through 36.

5.2.2 Development page

The "Development" page is also composed of panels and widgets from the GWT

library. To support multiple student files, the editorLayoutPanel object’s type was

changed from a LayoutPanel to a TabLayoutPanel. This is to support multiple

skeleton files. Also, to maintain the student and the solution files, several ArrayList

instances were created. In the UI’s activate() method, the getStudentDir() and

getSolutionDir() method calls use RPC to retrieve the student and solution files

from the webapp. To leverage the existing framework, these RPC methods were

implemented in the GetCoursesAndProblemsServiceImpl class. Because the RPC

calls are asynchronous, a fixed number of Ace editors is created up front and stored in

35



Figure 31: CodeCheck - Enhanced exercise composer (1 of 6)

Figure 32: CodeCheck - Enhanced exercise composer (2 of 6)

36



Figure 33: CodeCheck - Enhanced exercise composer (3 of 6)

Figure 34: CodeCheck - Enhanced exercise composer (4 of 6)

37



Figure 35: CodeCheck - Enhanced exercise composer (5 of 6)

Figure 36: CodeCheck - Enhanced exercise composer (6 of 6)

38



the aceEditors list. The list is trimmed by the asyncLoadCurrentProblemText()

method when the editors are being initialized with the contents.

The "Submit" button’s handler was modified to call the doCodeCheckSubmit()

method. The method extracts the student, the solution and the sub-

mission files, merges them into a JSON string and sends it to the we-

bapp by the doSubmitCodeCheckRPC() method. This method triggers the

submitCodeCheck() RPC call to the server and waits for the submission’s result.

The onReceiveSubmissionResult() method was enhanced to parse the diagnostic

message and annotate the corresponding editors when compilation failures occur.

The submitCodeCheck() RPC method is implemented in the

SubmitServiceImpl class. The method saves the editor changes made by the users

to the database, instantiates an IFutureSubmissionResult object and adds it to the

session. The IFutureSubmissionResult object is the result of the submission which

is asynchronously obtained from the submitCodeCheckAsync() method implemented

in the OutOfProcessSubmitService class. The submitCodeCheckAsync() method

opens an HTTP connection to the CodeCheck server, sends the JSON and retrieves

the returned JSON. Upon receiving the returned JSON, a OOPCodeCheckSubmission

object, whose class implements the IFutureSubmissionResult interface, is created

to parse the JSON and populate its SubmissionResult attribute.

5.3 Webapp and CodeCheck communication

The communication between CloudCoder and CodeCheck is done via JSON

strings. To support this project, CodeCheck was enhanced to support incoming sub-

missions via an HTTP POST request.

The submission string consists of a JSON object with 4 set of name/value pairs:

39



uid, student, c29sdXRpb24= and submission. The uid is a unique identifier com-

posed of the date and the time of the submission. It is used to identify the ownership

of the submitted code. The value of student is another JSON object containing the

student files. The files’ name and their corresponding contents serve serve as the

JSON name/value pairs. Similarly, the values of c29sdXRpb24= and submission are

JSON objects consisting of the solution and submission files. The c29sdXRpb24= is

the Base64 encoded string of the word solution. It serves as a flag to let CodeCheck

know that the solution files’ content is encoded. The encoding is necessary because

the CloudCoder infrastructure sends the submission which is the JSON object from

the client. Listing 5.1 shows an example JSON string for the "hello world" pro-

gram in the C language. The JSON strings have new lines inserted to improve the

visualization.

1 {

2 "uid":"2016.11.19.14.18.20.97",

3 "student": {

4 "hello.c": "#include <stdio.h >\nint main(void) {\n\t//

→˓ TODO - add your code here\n\treturn 0;\n}"

5 },

6 "c29sdXRpb24=": {

7 "hello.c":"I2luY2x1ZGUgPHN0ZGlvLmg+CgppbnQgbWFpbih2

→˓ b2lkKSB7CgkvLyBUT0RPIC0gYWRkIHlvdXIgY29k

→˓ ZSBoZXJlCiAgICBwcmludGYoIkhlbGxvLCB3b3Js

→˓ ZCIpOwoJcmV0dXJuIDA7Cn0="

8 },

9 "submission": {

40



10 "hello.c":"#include <stdio.h >\nint main(void) {\n\t//

→˓ TODO - add your code here\n printf (\"Hello ,

→˓ world\");\n\treturn 0;\n}"

11 }

12 }

Listing 5.1: JSON from CloudCoder to CodeCheck

The returned string from CodeCheck is shown in Listing 5.2. The JSON object

has the metaData, score and sections. Only the uid inside the metaData value is

used to identify the problem’s submitter. Typically, a score of 0 indicates that there

is a compilation error. Otherwise the score is in the form of a ratio. The sections

contains the information about the exercise and its test results. There are 5 types

of CloudCoder exercises and they are run, unitTest, tester, call and substitution.

Different type of problem produces different content in the sections. The parsing

methodology for each type of exercise is implemented in the parseJSON() method of

the OOPCodeCheckSubmission class.

1 {

2 "metaData": {

3 "Elapsed": "1205 ms",

4 "ID": "hello",

5 "Level": "1",

6 "Problem": "16111922261842942241786536456",

7 "Submission": "submission",

8 "Time": "2016 -11-19T22:26:36Z",

9 "uid": "2016.11.19.14.18.20.97"

41



10 },

11 "score": "1/1",

12 "sections": [

13 {

14 "runs": [

15 {

16 "args": [

17 {

18 "name": "Command line arguments",

19 "value": ""

20 }

21 ],

22 "html": "<p><b>Input:</b></p><pre ></pre ><p><b>

→˓ Output:</b></p><pre >Hello , world </pre >",

23 "input": "",

24 "output": "Hello , world",

25 "passed": true

26 }

27 ],

28 "type": "run"

29 }

30 ]

31 }

Listing 5.2: JSON from CodeCheck to CloudCoder

42



CHAPTER 6

Results

6.1 Enhanced CodeCheck Deployment

The enhanced CloudCoder was deployed on an Elastic Compute Cloud (EC2)

instance hosted by Amazon Web Services (AWS). The instance has one hyperthreaded

Intel Xeon E5-2676 v3 processor and 8 gigabytes (GB) of random access memory

(RAM). Appendix A has the details on compiling and setting up CloudCoder.

Three classes at San Jose State University participated in the study during the

2016 Fall term. Programming in Java (CS49J) and Programming Paradigms (CS152)

are from the Computer Science undergraduate program, and the Data Structures and

Algorithms in C++ (CMPE180) is a graduate Computer Engineering course. The

Programming in Java class had two sections with 30 and 25 students respectively.

The Programming Paradigms class also had two sections with 34 and 29 students

respectively. Only section 1 from both CS49J and CS152 had access to the enhanced

CodeCheck exercises. Section 2 for both courses served as the control group. There

was only one section of Data Structures and Algorithm in C++ class and it had 121

students. Enhanced CodeCheck exercises in Java and in C++, respectively, were

given in the CS49J and CMPE180 classes. Exercises in Racket and JavaScript were

assigned in the CS152 class.

6.1.1 CS49J - Programming in Java

There were a total of 53 exercises given during a span of nine weeks. Using the

data from the 38 exercises given in the last seven weeks only, the average number

of attempts per exercise and the average number of minutes between each attempt

43



are shown in Figures 37 and 38. As the topics of the exercises increased in com-

plexity, a downward trend in the number of attempts and in the number of minutes

between attempts indicate that the students are getting more comfortable with the

Java language.

Figure 37: CS49J - Average number of attempts

Figure 38: CS49J - Average number of minutes per attempt

In Figure 38, the peaks at problem numbers 107 and 171 correspond to relatively

advanced and challenging exercises. Problem number 107 requires the student to

44



write a factory method. Problem number 171 challenges the student to write a list

operation method without using loops and streams.

Two projects were given to students in both sections. The average scores are

shown in Figure 39 below. The improvement between the projects as measured by

the delta in the scores for section 1 is higher than section 2. This supports the

conclusion that the students who were exposed to enhanced CodeCheck exercises are

getting more comfortable with the Java language.

Figure 39: CS49J - Average project scores

6.1.2 CS152 - Programming Paradigms

There were a total of 41 exercises given during a span of six weeks. Using the

data from the 30 exercises given in the last five weeks only, the average number of

attempts per exercise and the average number of minutes between each attempt are

shown in Figures 40 and 41. The slight increase in the number of attempts was caused

45



by the switch between Racket to the JavaScript language. However, the downward

trend of the average number of minutes between attempts indicates that the students

were not having difficulty in solving those problem.

Figure 40: CS152 - Average number of attempts

Figure 41: CS152 - Average number of minutes per attempt

In Figure 41, the spike corresponds to a Racket foldl and foldr exercise where

the odd elements of a list are returned.

At the end of the study period, an exam was given to students in both sections.

46



The exam contained five Racket questions on recursion, tail recursion, higher-order

functions, macros and contracts. The percentage of students that correctly answered

these questions from both sections are shown in Figure 42. Overall, section 1 has a

higher percentage of students with the correct answers. The two largest differences

in the percentage are with the higher-order functions and the macros. Both of these

two topics were covered extensively by the exercises. Also, the smallest difference in

the percentage is with the contracts and this topic was not covered by the exercises.

Figure 42: CS152 - Exam scores

To confirm the observation from the exam, an in-class quiz on Racket and

JavaScript were given to both sections. The quiz had five questions on recursion

and higher-order functions. One question is on Java and it was used as a control

question. The grade distribution of both sections is shown in Figure 43. Out of 16

points, on average, the scores are 10.5 and 8.6 for section 1 and 2 respectively. If the

control question scores are excluded, the averages drop to 8.0 and 6.1 respectively.

Using the control question to filter out the students who could not answer it correctly,

47



the average for section 1 and 2 increases to 9.3 and 7.3 respectively. The filtered score

distribution is shown in Figure 44. This result confirmed the previous observation on

the exam that the students who had exposure to enhanced CodeCheck exercises did

better in their class.

Figure 43: CS152 - Quiz scores

6.1.3 CMPE180 - Data Structures and Algorithms in C++

There were a total of 61 exercises given during a span of eleven weeks. Using the

data from the 51 exercises given in the last nine weeks only, the average number of

attempts per exercise and the average number of minutes between each attempt are

shown in Figures 45 and 46. Both graphs show a downward trend with a tightening

of the standard deviation.

In Figure 45, problems numbers 115 through 119 have the lowest number of

attempts and these correspond to implementing methods of the BankAccount class

48



Figure 44: CS152 - Quiz scores filtered

Figure 45: CMPE180 - Average number of attempts

and operators of the Time class.

Figures 47 and 48 show the grade distribution of the exam and quizzes against

the CloudCoder exercise completion percentage. From these data, it seems to indicate

49



Figure 46: CMPE180 - Average number of minutes per attempt

that in order to get higher than 80% on the exam and quizzes, the student has to

complete at least 60% of the exercises.

6.2 Enhanced CodeCheck Evaluation

The students from the three classes that participated in the study answered

an online survey on the effectiveness, usability and applicability of the enhanced

CodeCheck. Figures 49 through 51 have the distribution of the answers from 172

students.

As shown in Figure 49, more than 80% of the students agree that this tool is

effective in helping them learn and master the language. If only the questions about

homework and exam are considered, the agreement percentage is increased above

93%. Not all the classes have in-class assignments so the question about in-class

assignment could be interpreted incorrectly.

Figure 50 shows that the students find the tool easy to use but only 58% of them

used the GUI. Among the reasons of using a traditional IDE, the most common one

50



Figure 47: CMPE180 - Exam score

is the debuggability with enhanced CodeCheck. Also, there were other reasons such

as the wait time for the submission results and the lack of a detailed failure output.

More than half of the students find that the exercises given were difficult and 75% of

them spent less than 6 hours to complete the weekly assignment.

Figure 51 shows that more than 85% of the respondents think that this tool could

51



Figure 48: CMPE180 - Quiz scores distribution

be helpful in other programming classes. They would recommend this tool to other

students. Most of the weekly exercises came with six or fewer questions and 96% of

the students feel that this is sufficient for them.

52



Figure 49: Questions on the effectiveness of the enhanced CodeCheck

53



Figure 50: Questions on the usability of the enhanced CodeCheck

54



Figure 51: Questions on the applicability of the enhanced CodeCheck

55



CHAPTER 7

Deployment Challenges

There were several challenges encountered through the course of this project. All

except the last one have been addressed. In chronological order, the challenges are

described below.

Initially, the virtual machines were provided by the Information Technology (IT)

department at San Jose State University. As part of the university resources, these

machines were set up behind a firewall and there is a very strict security policy in

opening Transmission Control Protocol (TCP) ports for external access. For devel-

opment, a browser on the localhost would also enable access to these ports. However,

the machines did not have a Graphical User Interface (GUI) like X Window System

so internal access to the TCP ports were also not possible. These restrictions largely

hindered CodeCheck and CloudCoder developments and deployments because users

interact with them through web browsers, i.e, TCP ports.

As discussed in Appendix A, CloudCoder access is done through the Hypertext

Transfer Protocol (HTTP) over Secure Sockets Layer (SSL), i.e., TCP port 443.

However, the virtual machines were setup to only have TCP ports 80 and 8080 opened

for external accessed. So in order to properly setup CloudCoder, its configuration

was changed from port 443 to 80. With the reverse-proxy setup requirement for

CloudCoder, the server inadvertently became an open web-proxy. This security hole

was exploited and thousands of library articles were downloaded illegally. When this

was discovered, the access to the machines was disable immediately. The incident

also revealed a weakness that any Internet Protocol (IP) address inside the firewall

56



are automatically trusted by the library system. In an academic environment where

virtual machines are made available to students, stricter access protocol should be

implemented to, at minimum, excludes the virtual machines.

Once the virtual machines were setup on AWS, small EC2 instances (1 core with 2

GB of RAM) were used to reduce the cost. However, this is sufficient for CloudCoder

only if the number of simultaneous access is limited to ten or fewer students. During

the deployment for all three classes, the number of simultaneous users was in excess

of 100 students. This increased the load and memory requirement caused the server

to perform very poorly. In order to support around 170 students, a fairly large RAM

capacity host is needed. The monthly cost to maintain a large RAM host was around

$380.

Due to the various issues listed above, the virtual machines had to be reinitialized

several times. With these, the CloudCoder development environment also had to be

redone. The availability of the dependent packages was a roadblock. One such de-

pendency is the CloudCoderLogging/lib/owasp-java-html-sanitizer.jar which

is fetched from http://owasp-java-html-sanitizer.googlecode.com. Even at the

time of this writing, the file is still not accessible. To remove this dependency on the

dependencies’ availability, a copy of the dependent packages were checked into the

repository at web-based-ide/CloudCoder_deps.

There were also several challenges in using GWT’s RPC. They are all related

to the asynchronous nature of the calls. When enhancing the CloudCoder’s user-

facing pages "Edit problem" (5.2.1) and "Development" (5.2.2) pages, there was a

need to get student and solution data from the server. In the "Edit page" case,

the page was designed to retrieve the Problem separately from the TestCase. So in

order to also get CodeCheck’s files, a triple nested RPC is used. When initializing

57



the "Development" page, the number of student files needs to be retrieved from the

server in order to allocate the editors, and, therefore, an asynchronous answer will

not work. To get around this, a maximum number is assumed and used to initialize

the editors. During the initialization of the editors’ content, the number of editors is

reduced. Fortunately, typical CodeCheck exercises have fewer than ten files.

CloudCoder and CodeCheck communicate using JSON strings via HTTP. The

CodeCheck’s JSON serializer has a feature which drops the element when the element

is empty or zero. This was not known so the CloudCoder’s JSON deserializer had to be

updated multiple times. Also, with HTTP, the servers are susceptible to cyber hacks.

The Domain Name System (DNS) of the domain name provider was hacked causing

the play.codecheck.ws and cloudcoder.codecheck.ws domain names for the CodeCheck

and CloudCoder servers to become unavailable for multiple days. These domain

names were used to ease the reinitialization of the virtual machines. With each

reinitialization, the machine’s IP address is different.

Students’ logical errors such as infinite loops can delay the response from

CodeCheck to CloudCoder resulting in a misinterpretation of the failure. There is no

clear way to tell that the connection was lost or the response is delayed.

58



CHAPTER 8

Conclusion

Ace and CodeMirror web-based code editors were successfully integrated with

CodeCheck using JQuery functions. Both editors support IDE-like features such as

syntax highlighting, bracket matching, auto-completion, auto-indentation and many

others. Ace is better than CodeMirror in that it supports the Java language directly.

The Ace editor is currently deployed at http://horstmann.com/codecheck/index.

html.

The CloudCoder was also successfully integrated with CodeCheck. CloudCoder

was enhanced to support multiple CodeCheck’s student and solution files. The GUIs

were also updated to support multiple Ace editors. The CloudCoder’s builder was

replaced with CodeCheck and JSON formatted strings were chosen as the commu-

nication protocol between CloudCoder’s webapp and CodeCheck. The enhanced

CodeCheck was tested and evaluated by 172 students from three different level of

computer programming classes. With a total of 161 exercises and more than 7400

submissions, the enhanced CodeCheck is stabilized and can be used for a larger de-

ployment.

Data collected during the evaluation show that students’ performances improved

with exposure to the enhanced CodeCheck exercises. In the CS152 class, the average

scores on the exam and quizzes were found to be higher for the section where enhanced

CodeCheck exercises were assigned. In CS49J, the improvement in projects’ average

score was found to be higher for the section with exposure to the enhanced CodeCheck

exercises. From the survey, more than 80% of the students that participated in the

59

http://horstmann.com/codecheck/index.html
http://horstmann.com/codecheck/index.html


study believed that the exercises helped them in mastering the language. However,

only 58% of them use the enhanced CodeCheck GUI when working on the exercises.

And, more than 85% of the students believe that the enhanced CodeCheck is beneficial

to have in other programming classes.

60



LIST OF REFERENCES

[1] Ace, https://ace.c9.io/#nav=about

[2] CodeMirror, https://codemirror.net/

[3] F.A. Deeb and T. Hickey, The Spinoza code tutor: faculty poster abstract, Jour-
nal of Computing Sciences in Colleges, 30(6):154–155, 2015

[4] S.H. Edwards, Work-in-Progress: Program Grading and Feedback Generation
with Web-CAT, Proceedings of the first ACM conference on Learning @ scale

conference, 215–216

[5] S.H. Edwards and M.A. Perez-Quinones, Web-CAT: Automatically Grading Pro-
gramming Assignments , Proceedings of the 13th annual conference on Innovation

and technology in computer science education, 328–328

[6] Etherpad, http://etherpad.org/

[7] M. Goldman, G. Little and R.C. Miller, Collabode: collaborative coding in the
browser, Proceedings of the 4th International Workshop on Cooperative and Hu-

man Aspects of Software Engineering, 65–68

[8] C. Horstmann, CodeCheck, https://bitbucket.org/cayhorstmann/

codecheck/

[9] C. Horstmann, Writing a Codecheck Problem, http://horstmann.com/

codecheck/authoring.html

[10] D. Hovemeyer, CloudCoder, https://github.com/daveho/CloudCoder

[11] D. Hovemeyer, AlternateBootstrap, https://github.com/cloudcoderdotorg/
CloudCoder/wiki/AlternateBootstrap

[12] M.J. Hull, D. Powell and E. Klein, Infandango: automated grading for student
programming, Proceedings of the 16th annual joint conference on Innovation and

technology in computer science education, 330–330

[13] ICEcoder, https://icecoder.net/

[14] ICEcoder Github, https://github.com/mattpass/ICEcoder

[15] jQuery plugin for Ace, https://cheef.github.io/jquery-ace/

61

https://ace.c9.io/#nav=about
https://codemirror.net/
http://etherpad.org/
https://bitbucket.org/cayhorstmann/codecheck/
https://bitbucket.org/cayhorstmann/codecheck/
http://horstmann.com/codecheck/authoring.html
http://horstmann.com/codecheck/authoring.html
https://github.com/daveho/CloudCoder
https://github.com/cloudcoderdotorg/CloudCoder/wiki/AlternateBootstrap
https://github.com/cloudcoderdotorg/CloudCoder/wiki/AlternateBootstrap
https://icecoder.net/
https://github.com/mattpass/ICEcoder
https://cheef.github.io/jquery-ace/


[16] B.L. Kurtz, J.B. Fenwick, R. Tashakkori, A. Esmaili and S.R. Tate, Active Learn-
ing During Lecture Using Tablets, Proceedings of the 45th ACM technical sym-

posium on Computer science education, 121–126

[17] B. Northrop, Parallel Asynchronous Calls in GWT, http://www.summa.com/
blog/2010/11/29/parallel-asynchronous-calls-in-gwt

[18] D. Pritchard, Websheets: A Templated Online Coding Exercise System, Proceed-
ings of the 2015 ACM Conference on Innovation and Technology in Computer

Science Education, 335–335

[19] W. Toll, Top 48 Integrated Developer Environments (IDEs) & Code Ed-
itors, https://blog.profitbricks.com/top-integrated-developer-

environments-ides/

[20] Wikipedia, Comparison of integrated development environments, https:

//en.wikipedia.org/wiki/Comparison_of_integrated_development_

environments

62

http://www.summa.com/blog/2010/11/29/parallel-asynchronous-calls-in-gwt
http://www.summa.com/blog/2010/11/29/parallel-asynchronous-calls-in-gwt
https://blog.profitbricks.com/top-integrated-developer-environments-ides/
https://blog.profitbricks.com/top-integrated-developer-environments-ides/
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments


APPENDIX A

CloudCoder Compilation and Installation

The project’s source codes can be download from Bitbucket via a secure

shell (SSH) and git@bitbucket.org:hienvu/web-based-ide.git. The enhanced

CodeCheck is in the CloudCoder subdirectory.

A.1 Prerequisites

The following packages are necessary to deploy CloudCoder [11]:

1. Java Development Kit (JDK) version 1.6 or later

2. MySQL relational database management system version 5 or later

3. Apache HTTP server version 2 or later

These packages are expected to be installed before compiling CloudCoder.

A.2 Compiling CloudCoder

The following instruction assumes that the Linux host has the necessary pack-

ages installed to clone source files from Bitbucket and to compile Java programs.

CloudCoder is built using Google Web Toolkit (GWT) so a sofware development kit

(SDK) version 2.6 or later is needed. With the assumption that the current working

director is web-based-ide/CloudCoder, here are the steps to build CloudCoder:

1. Get the dependencies listed in default.deps file. The fetchdeps.pl is pro-

vided to download all the dependencies to the deps subdirectory and then copy

63



the dependencies to their expected locations. A copy of all the dependencies

are also available inside the repository’s web-based-ide/CloudCoder_deps di-

rectory. So it is also possible to copy them from that directory to the deps

subdirectory and run the fetchdeps.pl. The script will by-pass the download

portion and simply copy the dependencies to their expected locations.

2. Configure the CloudCoder by running the configure.pl script. Information

about the GWT SDK, the MySQL and the Apache HTTP servers are needed to

complete this step. The configuration parameters can be saved into a file with

the cloudcoder.properties as the default name. If the file is present when

the configure.pl script is executed, it will detect it and those parameters can

be setup as default values.

3. Compile CloudCoder withe the build.pl script.

A.3 Deploying CloudCoder

A database needs to be created for CloudCoder in-

side the MySQL server. This can be done using the

org/cloudcoder/app/server/persist/CreateWebappDatabase application. The

following jar files need to be added to the classpath of the Java Virtual Machine

(JVM):

∙ CloudCoderModelClassesPersistence/cloudcoderModelClassesPersist.jar

∙ CloudCoderModelClasses/cloudcoderModelClasses.jar

∙ deps/*

The Apache HTTP server needs to be setup with Secure Socket Layer (SSL)

64



enabled. With SSL, the server can be setup as a reverse-proxy between the users and

the webapp. On Ubuntu Linux, these can be setup following these steps

1. Enable SSL with sudo a2enmod ssl and sudo a2ensite default-ssl

2. Add the following lines inside the <VirtualHost _default_:443> block of the

/etc/apache2/sites-enabled/default-ssl.conf file

1 ServerName 198.199.106.137:443

2 ProxyPass /cloudcoder http:// localhost :8081/ cloudcoder

3 ProxyPassReverse /cloudcoder http:// localhost :8081/ cloudcoder

4 <Proxy http:// localhost :8081/ cloudcoder >

5 Order Allow ,Deny

6 Allow from all

7 </Proxy >

The 198.199.106.137 number is the IP address of the host.

The CloudCoder’s webapp can be started by running this jar file

CloudCoderWebServer/cloudcoderApp.jar with the start option. The shutdown

option is used to stop the server.

To setup a new course, the webapp need to be run with the createcourse option.

The transcript below shows how the Object-Oriented Design class was created for Fall

2016 term.

1 $ java -jar webapp/cloudcoderApp.jar createcourse

2 Create a CloudCoder course

3 What term?

4 0 - Winter

5 1 - Spring

6 2 - Summer

65



7 3 - Summer 1

8 4 - Summer 2

9 5 - Fall

10 [Enter value in range 0..5] 5

11 What year? 2016

12 Course name (e.g., "CS 101")? "CS 151"

13 Course title (e.g., "Introduction to Computer Science")? "Object -

→˓ Oriented Design"

14 Course URL?

15 Instructor username? cay

16 What section is this instructor teaching (integer)? 5

17 Add another instructor? (y/n)y

18 Instructor username? hien

19 What section is this instructor teaching (integer)? 5

20 Add another instructor? (y/n)n

21 Success!

Students can be registered for a course via the user management page as shown

in Figure 18. Students can be registered individually or all together at the same

time via the ’Bulk register’ button. The group registration can also be done at the

command line with the webapp’s registerstudents option. A tab-separated file

containing the list of students is needed for the group registration. Each line in this

text file contains the following information of each student: user name, first name,

last name, email address, password and section number. The transcript below shows

how students were registered for the Object-Oriented Design class.

1 $ java -jar webapp/cloudcoderApp.jar registerstudents

2 For which course would you like to register students?

3 0 - CCDemo - CloudCoder demo course

4 1 - "CS 49J" - "Programming in Java"

66



5 2 - "CodeCheck" - "CodeCheck problem type"

6 3 - "CS 151" - "Object -Oriented Design"

7 [Enter value in range 0..3] 3

8 Enter the name of the file containing a tab -separated list student

→˓ registration entries in this format:

9 username firstname lastname email password

→˓ section

10 Usernames in the datbase will be re-used , but the names/email/

→˓ password will not be updated ,and users will not be registered

→˓ for a course if they are already registered

11 [default: ] ==> /home/hvu/cs151_5.txt

12 Note that this may be a slow operation

13 Some logging results will be appended to logs/cloudcoder.log rather

→˓ than echoed to stdout

14 Registered 40 students for "CS 151"

67



APPENDIX B

Source Code

1 <html>

2 <head>

3 <style type="text/css" media="screen">

4 #ExampleB {

5 height: 300px;

6 width: 600px;

7 }

8 </style>

9 </head>

10 <body>

11 <script src="ace/ace.js" type="text/javascript" charset="utf -8"></

→˓ script >

12 <script src="ace/mode -java.js"></script >

13 <script src="ace/ext -language_tools.js"></script >

14

15 <h1>Ace example </h1>

16 <p>Java code</p>

17 <div id="ExampleA">

18 import java.util.Scanner;

19 public class ExampleA

20 {

21 public static void main(String [] args)

22 {

23 Scanner in = new Scanner(System.in);

24 boolean done = false;

25 while (!done)

26 {

68



27 System.out.println("Enter a number , 0 to quit");

28 int n = in.nextInt ();

29 if (n == 0)

30 done = true;

31 else

32 System.out.println("The square is " + n * n);

33 }

34 }

35 }

36 </div>

37 <p>Java code with Ace</p>

38 <div id="ExampleB">import java.util.Scanner;

39 public class ExampleB

40 {

41 public static void main(String [] args)

42 {

43 Scanner in = new Scanner(System.in);

44 boolean done = false;

45 while (!done)

46 {

47 System.out.println("Enter a number , 0 to quit");

48 int n = in.nextInt ();

49 if (n == 0)

50 done = true;

51 else

52 System.out.println("The square is " + n * n);

53 }

54 }

55 }

56 </div>

57 <script >

69



58 ace.require("ace/ext/language_tools");

59 var editor = ace.edit("ExampleB");

60 editor.setTheme("ace/theme/eclipse");

61 editor.getSession ().setMode("ace/mode/java");

62 editor.setOptions ({

63 autoScrollEditorIntoView: true ,

64 displayIndentGuides: true ,

65 enableBasicAutocompletion: true ,

66 enableLiveAutocompletion: false ,

67 enableSnippets: true ,

68 maxLines: 16,

69 showInvisibles: true ,

70 tabSize: 2,

71 useWorker: true

72 });

73 </script >

74 </body>

75 </html>

Listing B.1: Ace example

1 <html>

2 <body style="font -family: sans;">

3 <link rel="stylesheet" href="codemirror -5.3/ lib/codemirror.css">

4 <link rel="stylesheet" href="codemirror -5.3/ theme/neo.css">

5 <link rel="stylesheet" href="codemirror -5.3/ addon/hint/show -hint.

→˓ css">

6 <script src="codemirror -5.3/ lib/codemirror.js"></script >

7 <script src="codemirror -5.3/ mode/css/css.js"></script >

8 <script src="codemirror -5.3/ addon/hint/show -hint.js"></script >

9 <script src="codemirror -5.3/ addon/hint/anyword -hint.js"></script >

10 <script src="codemirror -5.3/ addon/edit/matchbrackets.js"></script >

70



11 <script src="codemirror -5.3/ addon/edit/closebrackets.js"></script >

12

13 <h1>CodeMirror example </h1>

14 <p>Java code</p>

15 <textarea id="ExampleA" rows="17" cols="66">

16 import java.util.Scanner;

17 public class ExampleA

18 {

19 public static void main(String [] args)

20 {

21 Scanner in = new Scanner(System.in);

22 boolean done = false;

23 while (!done)

24 {

25 System.out.println("Enter a number , 0 to quit");

26 int n = in.nextInt ();

27 if (n == 0)

28 done = true;

29 else

30 System.out.println("The square is " + n * n);

31 }

32 }

33 }

34 </textarea >

35 <p>Java code with CodeMirror </p>

36 <textarea id="ExampleB" rows="17" cols="66">

37 import java.util.Scanner;

38 public class ExampleB

39 {

40 public static void main(String [] args)

41 {

71



42 Scanner in = new Scanner(System.in);

43 boolean done = false;

44 while (!done)

45 {

46 System.out.println("Enter a number , 0 to quit");

47 int n = in.nextInt ();

48 if (n == 0)

49 done = true;

50 else

51 System.out.println("The square is " + n * n);

52 }

53 }

54 }

55 </textarea >

56 <script >

57 var editor = CodeMirror.fromTextArea(

58 document.getElementById("ExampleB") ,{

59 extraKeys: {"Ctrl -Space": "autocomplete"},

60 lineNumbers: true ,

61 matchBrackets: true ,

62 autoCloseBrackets: true ,

63 theme: ’neo ’,

64 tabSize: 2

65 });

66 </script >

67 </body>

68 </html>

Listing B.2: CodeMirror example

72


	Web-based Integrated Development Environment
	Recommended Citation

	Introduction 
	Prior work 
	Technologies Used in the Project 
	CodeCheck 
	Web-based code editors 
	Ace 
	CodeMirror 

	CloudCoder 

	Integration of Ace and CodeMirror with CodeCheck 
	Integration of CloudCoder with CodeCheck 
	Data model 
	Views 
	Edit problem page 
	Development page 

	Webapp and CodeCheck communication 

	Results 
	Enhanced CodeCheck Deployment
	CS49J - Programming in Java
	CS152 - Programming Paradigms
	CMPE180 - Data Structures and Algorithms in C++

	Enhanced CodeCheck Evaluation

	Deployment Challenges 
	Conclusion 
	CloudCoder Compilation and Installation 
	Prerequisites
	Compiling CloudCoder
	Deploying CloudCoder

	Source Code 

