San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Winter 2017

Malware Detection using the Index of Coincidence

Bhavna Gurnani
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

b Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons

Recommended Citation

Gurnani, Bhavna, "Malware Detection using the Index of Coincidence" (2017). Master's Projects. 507.
DOI: https://doi.org/10.31979/etd.9mkp-kstb

https://scholarworks.sjsu.edu/etd_projects/507

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/507?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Malware Detection using the Index of Coincidence

A Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Bhavna Gurnani

Dec 2016

© 2016
Bhavna Gurnani

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Malware Detection using the Index of Coincidence

by

Bhavna Gurnani

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

Dec 2016

Dr. Mark Stamp Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Mr. Fabio Di Troia Department of Computer Science

ABSTRACT
Malware Detection using the Index of Coincidence

by Bhavna Gurnani

In this research, we apply the Index of Coincidence (IC) to problems in malware
analysis. The IC, which is often used in cryptanalysis of classic ciphers, is a technique
for measuring the repeat rate in a string of symbols. A score based on the IC is
applied to a variety of challenging malware families. We find that this relatively
simple IC score performs surprisingly well, with superior results in comparison to

various machine learning based scores, at least in some cases.

ACKNOWLEDGMENTS

I am grateful to Dr. Stamp for providing me with the opportunity to work on this
project and guiding me. I would like to thank my committee members for reviewing
my work. Also, special thanks to Fabio Di Troia for helping me throughout the
project. I would also like to thank my brother for constantly motivating me during

the project.

TABLE OF CONTENTS

CHAPTER

1 Introduction 1
1.1 Introduction to Malware 1

1.2 Typesof Malware, 1

1.3 Techniques to detect malware 2

1.4 Technique used 2

2 Background 4
2.1 Previous work and research 4
2.2 Index of Coincidence)
2.2.1 Calculation0)

2.2.2 Application 6

3 Implementation 7
3.1 Choices Made in Calculation 7
3.2 Process to calculate ICo 8

4 Results 10
4.1 With variation of normalizing coefficient 12
4.2 With variation of Train dataset 17
4.3 With variation of Test dataset 21
44 Summary of results Lo 24
4.5 Comparison with other scores 25

5 Observations 27

vi

5.2 Observation 2: 28

5.3 Observation 3: 29

6 Conclusion and Future Work 31
APPENDIX

Generated ROC Curves 34

vil

10
11
12
13
14
A15
A.16
AT
A18
A19
A.20

A21

LIST OF TABLES

Dataset 10
Parameters for cas 26 13
Parameters for cas 79 13
Results with different normalizing coefficients 14
Results with different ¢ and training datasets 16
Parameters for NGVCK as training dataset 18
Parameters for Zeroaccess as training dataset 19
Results with different training datasets 20
Parameters for Cridex as test dataset 22
Parameters for Cleaman as test dataset 23
Results with different testing datasets 23
Comparison across different scores 25
Percentage of matching opcodes 27
Frequency percentage of ‘other’ opcodes 28
Parameters NGVCK-Benign-26 34
Parameters NGVCK-Cleaman-26 34
Parameters NGVCK-Cridex-26 35
Parameters ZeroAccess-Benign-26 35
Parameters Smart HDD-Benign-26 36
Parameters Security Shield-Benign-26 36
Parameters Winwebsec-Benign-26 37

viil

A22
A.23
A24
A.25
A.26
A.27
A28
A.29
A.30
A.31
A.32
A.33
A.34
A.35
A.36
A.37

A.38

Parameters Zbot-Benign-26o 37
Parameters Cridex-Benign-26 38
Parameters Cleaman-Benign-26 38
Parameters Harebot-Benign-26 39
Parameters NGVCK-Benign-79 39
Parameters NGVCK-Zbot-79 40
Parameters NGVCK-Benign-63 40
Parameters NGVCK-Security Shield-63 41
Parameters NGVCK-Benign-50 41
Parameters NGVCK-Winwebsec-50 42
Parameters NGVCK-Benign-45 42
Parameters NGVCK-Smart HDD-45 43
Parameters NGVCK-Benign-34 43
Parameters NGVCK-Zeroaccess-34 44
Parameters NGVCK-Benign-12 44
Parameters NGVCK-Harebot-12 45
Parameters NGVCK-Benign-6, 45

X

10
11
12
13
14
15
16
17
A18
A19
A.20

A21

LIST OF FIGURES

NGVCK-Benign scatter plot, cis 26 11
NGVCK-Benign scatter plot, cis 30 11
ROC curve forcas 26, 12
ROC curve forcas 79 13
AUC with different normalizing coefficients: line graph 14
AUC with different normalizing coefficients: bar graph 15
Different ¢ and train dataset across benign 17
ROC curve for NGVCK as training dataset 18
ROC curve for Zeroaccess as training dataset 19
AUC by different training datasets 20
ROC curve for Cridex as test dataset 22
ROC curve for Cleaman as test dataset 23
AUC by different testing datasets 24
Comparing results with different scores 25
Percentage of matching opcodes 28
Frequency percentage of 'other’ opcodes 29
Opcode Distribution across families 30
ROC Curve NGVCK-Benign-26 34
ROC Curve NGVCK-Cleaman-26 34
ROC Curve NGVCK-Cridex-26 35
ROC Curve ZeroAccess-Benign-26 35

A22
A.23
A24
A.25
A.26
A.27
A28
A.29
A.30
A.31
A.32
A.33
A.34
A.35
A.36
A.37
A.38
A39
A.40

A4l

ROC Curve Smart HDD-Benign-26 36
ROC Curve Security Shield-Benign-26 36
ROC Curve Winwebsec-Benign-26 37
ROC Curve Zbot-Benign-26 37
ROC Curve Cridex-Benign-26 38
ROC Curve Cleaman-Benign-26 38
ROC Curve Harebot-Benign-26 39
ROC Curve NGVCK-Benign-79 39
ROC Curve NGVCK-Zbot-79 40
ROC Curve NGVCK-Benign-63 40
ROC Curve NGVCK-Security Shield-63 41
ROC Curve NGVCK-Benign-50 41
ROC Curve NGVCK-Winwebsec-50 42
ROC Curve NGVCK-Benign-45 42
ROC Curve NGVCK-SmartHDD-45 43
ROC Curve NGVCK-Benign-34 43
ROC Curve NGVCK-Zeroaccess-26 44
ROC Curve NGVCK-Benign-12 44
ROC Curve NGVCK-Harebot-12 45
ROC Curve NGVCK-Benign-6 45

x1

CHAPTER 1

Introduction
1.1 Introduction to Malware

Malware [2]| is an umbrella term for various kinds of malicious software. Such
programs are designed to harm computers in several ways including stealing personal
information, installing illegitimate software, reformatting hard drives, deleting files
and so on. Only six years after the launch of the first personal computer in 1975, the
world was presented with its first computer virus [13]. Ever since, malware has seemed
unstoppable. The rate with which malicious code and other unwanted programs
are released is increasing in comparison to the release rate of legitimate software

applications. In this paper, the terms virus and malware are used interchangeably.

1.2 Types of Malware

There has been an arms race between malware writers and anti-virus software
publishers. The most commonly and widely used malware detection technique is
signature detection [2]. In this technique, pattern matching is used to scan for par-
ticular byte patterns that are found in malware. If a matching pattern is found, the
file is categorized as malware. This is a very simple and often effective technique,
but malware writers have developed various techniques aimed at defeating signature

detection.

Encrypting the body of a virus can effectively defeat signature detection. How-
ever, the decryption routine is not encrypted, and can be susceptible to signature
scanning. As a result, malware authors created the polymorphic [14] and the meta-

morphic virus [6].

A polymorphic virus includes an encrypted body and decryption code. Addition-
ally, polymorphic malware changes the decryption routine with each new infection,
making straightforward signature detection infeasible. However, anti-virus software
can use emulation to detect polymorphic malware. At some point the malware will

decrypt itself and at that point it will be vulnerable to signature detection.

Metamorphic malware are sometimes said to be “body polymorphic” 6], as they
morph the entire body of the malware with each new infection. This changes the inter-
nal structure and, if sufficiently thorough, it will defeat signature scanning. Encryp-
tion is not necessary, and hence is not used, in metamorphic malware. Metamorphic

code can employ a wide variety of code morphing strategies [10].

1.3 Techniques to detect malware

Proposed malware detection mechanisms rely on static analysis or dynamic analy-
sis or some combination thereof [1, 8, 12, 15]. In static analysis, the necessary features
are executed without executing the code. Examples of such features include opcode
sequences, entropy, and so on. In contrast, dynamic analysis extracts the features by
executing (or emulating) code. Dynamic features can be used to determine aspects

of the actual behavior of the code.

1.4 Technique used

This thesis is based on static analysis, including the opcode generation feature.
Different malware families are identified using a popular signature detection technique

known as the Index of Coincidence (IC).

The contents of this report are presented as follows. Chapter 2, briefly describes

the previous work and explains in detail about the Index of Coincidence and Chapter 3

its implementation. Chapter 4 includes several results after implementing IC and
Chapter 5 presents some observations based on the results. Chapter 6 concludes the

report.

CHAPTER 2

Background

2.1 Previous work and research

Cryptography is the technique of translating a piece of plain text to cipher text.
Classical ciphers are some of the simplest ciphers existing today. Most common forms
of classical ciphers are substitution ciphers and transposition ciphers. Substitution ci-
phers are then classified into monoalphabetic and polyalphabetic substitution ciphers.
Monoalphabetic ciphers are vulnerable to attacks and so are easily identified [9].
Alberti used this vulnerability of monoalphabetic ciphers to create polyalphabetic

ciphers [11], which were difficult to break for centuries.

Previous work includes the implementation of several techniques like the Simple
Substitution Distance and the Vigenére Cipher Score for the cryptanalysis of classical
ciphers for malware detection. Simple Substitution Distance (SSD), uses the hill
climbing [7] mathematical technique to first find or guess a possible solution and
then alters the solution to find a more efficient solution. A score is generated to
compare the previous and current solutions. If the current solution is better, then
an incremental change is made to the solution. Otherwise, the solution remains the

Same.

The Vigenére Cipher is a polyalphabetic cipher that is formed by interweaving
a series of simple substitution ciphers [4]. To break the Vigenére cipher one needs
to first find the key length and then divide the cipher text into that many columns.
One can then derive the original key to decrypt the Vigenére cipher using frequency

analysis for each column,

Index of Coincidence, also known as coincidence counting, will be implemented
in this project. This technique calculates the frequency of opcodes to measure the

score.

2.2 Index of Coincidence

Index of coincidence, usually used for cryptanalysis of classic ciphers, is a tech-
nique for measuring the repeat rate or frequency in a piece of text or a string of
symbols. Index of Coincidence [5] is defined as the probability of selecting the same
letter twice, when randomly selecting two letters from the piece of text under consid-

eration.

2.2.1 Calculation

The Index of Coincidence is calculated in several steps. First, the chance of
selecting a letter from the text is calculated. Mathematically, this is the frequency
a letter in the text divided by the length of the text. Next, the chance of selecting
the same letter without replacing the first drawn letter is calculated. This involves
dividing (frequency - 1) by (length -1). By multiplying these two values, the prob-
ability of that particular letter is obtained. In order to get the chances of two of a
kind from the text, we find the probability of each letter and sum those values. Then
by multiplying the sum with a normalizing coefficient, typically 26 for English, we

obtain the value of IC.

Ny nb—l
N vt v =7

+ .o+ (=

where, ¢ is the normalizing coefficient, n, is the frequency of the letter ‘a’ in the text

and N is length of the text. IC can also be calculated as mentioned in Equation 2.

> i ni(ng — 1)
10 = 1N(N_l) (2)

c

where, N is the length of the text and n; through n. are the frequencies of the first

¢ letters. Summation of n; should be equal to N.

2.2.2 Application

IC is useful in the analysis of natural-language plaintext as well as ciphertext [5].
This technique is helpful even when the plaintext is not available and only the cipher-
text is present. During such times, coincidences in the ciphertext are caused since
they are present in the plain text as well. Coinciding counting is helpful in the crypt-
analysis of the Vigenére cipher. More details on the calculation of IC are covered in

the next chapter.

CHAPTER 3

Implementation

3.1 Choices Made in Calculation

Calculating IC mainly depends on different choices. From the last chapter, there

are three major choices involved in IC calculation.

e Value of the normalizing coefficient, c.

e Training family

e Testing family

The normalizing coefficient, as seen in the previous chapter, is the value or con-
stant with which the rest of the IC term is multiplied. For the English language, ¢
is equal to the number of distinct letters, which is 26. But, as the input here is a
set of opcodes, the letters will be replaced by the opcodes. So, different values of
¢ should be considered while calculating the value of IC. While calculating IC, the
distinct opcodes present in a family are obtained, so that the top ¢ opcodes can be
considered and the remaining opcodes are then combined into one category of ‘oth-
ers’. This process happens only for the training malware family. Whereas, once the
top ¢ opcodes are selected for the training family, only those opcodes are considered
for the testing family. The remaining opcodes in the testing family are combined into

one category of ‘others’.

3.2 Process to calculate IC

The first step involved in calculating IC, is to get a sequence of opcodes from
the .asm files. This sequence of opcodes is considered to be the cipher text for the

generation of IC.

To train a family, unique opcodes and their frequencies are generated. The ¢
most frequent opcodes are considered. The remaining opcodes and their frequencies
are combined into one ‘other’ opcode. These top c opcodes and the ‘other’ opcode are
then used to generate the IC of the training family. The opcodes considered during
this process are used for testing different files and families. Let us call these opcodes

as ‘considered opcodes’.

Testing files of the training family includes calculating the frequency of distinct
opcodes in the file. Opcodes present in ‘considered opcodes’ are considered and the
remaining opcodes and their frequency is summed into ‘other’ opcodes. Using these
opcodes, the IC for a family is generated. This process is repeated for each file in the

family:.

For the final score calculation, the IC for both families and files are considered.
Let us call the score of family as x and score of file as y. Then, the final score of the

file will be

2| = ly — | (3)
where, |z| is the absolute value of z, which is the final score of a file. The closer the

value is to 0, the better it matches the expected value for the family.

To test the testing family, all the opcodes from all the files in that family are
combined. Then, unique opcodes and their frequencies are generated. Using only

those opcodes which are present in ‘considered opcodes’ the sum of the frequencies

of the remaining opcodes in ’other’ opcodes is calculated. Using the formula, the 1C
for that family is calculated and the process is repeated for the test family. Once the
final scores for all the files in both families are obtained, ROC curves and AUC values

are generated [3| as described in the next chapter.

CHAPTER 4

Results

Several results were obtained based on different malware families like NGVCK,
harebot, zbot, zeroaccess, cleaman, cridex. The datasets considered in this project

are shown in Table 1.

Family Number of files | Distinct opcodes
NGVCK 200 79
Harebot 54 207

Zeroaccess 230 412
Zbot 242 320
Security Shield 59 177
Winwebsec 161 334
Smart HDD 69 85

Cridex 75 254
Cygwin 40 196
Benign 40 117

Table 1: Dataset

To generate results and to decide the value of the normalizing coefficient, distinct
opcodes of each malware family were obtained. Hence, the count of the distinct

opcodes was also included in Table 1.

Considering the NGVCK and the Benign datasets, and using different values of

¢, some [C scores were computed and plotted as shown in Figure 1 and Figure 2.

10

3.5

]
25 =
]
2 1w
5 - ™ * NGYCk :
|15 .. ! M Benign
|

o 50 100 150 200 250

Figure 1: NGVCK-Benign scatter plot, ¢ is 26

c=30

* NGYCk

M Benign

o 50 100 150 200 250

Figure 2: NGVCK-Benign scatter plot, ¢ is 30

Observing the graph, there is no clear distinction between the two families.

Hence, for more clarity, AUC values and ROC curves were generated. Results were

11

classified into different categories like variations in the values of the normalizing co-

efficient or different combinations of training and testing datasets.

4.1 With variation of normalizing coefficient

In this section, the results were calculated with different values of the normalizing
coefficient. To generate results NGVCK is used as the training dataset and Benign
is used as the testing dataset. Unique opcodes in the training dataset were found to
determine the range for the value of c¢. There were 79 unique opcodes in NGVCK, so
the values of ¢ cannot exceed 79. AUC were generated with different values of ¢ and

plotted as shown in Figure 3 and Figure 4.

ROC Curve
o |
» e
Q
«©
> °© 7 L
= ;
= ¥
= -
]
L I—
T
o :
O‘ o -
24, —— NGVCK-Benign
[[I [[I
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Figure 3: ROC curve for c as 26

12

Sensitivity

¢ | Training dataset | Testing dataset | AUC
26 NGVCK Benign 0.92725
Table 2: Parameters for ¢ as 26
ROC Curve
e
o o~
5 =
o
© _|
e L
<
o
. e
2 L
24 .- — NGVCK-Benign
| | T | | T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity
Figure 4: ROC curve for c as 79
¢ | Training dataset | Testing dataset | AUC
79 NGVCK Benign 0.93425

Table 3: Parameters for ¢ as 79

AUC generated with different values of ¢ are given in Table 4.

13

¢ | Training dataset | Testing dataset AUC
79 NGVCK Benign 0.93425
63 NGVCK Benign 0.933125
50 NGVCK Benign 0.93325
45 NGVCK Benign 0.933375
34 NGVCK Benign 0.931875
12 NGVCK Benign 0.7775
6 NGVCK Benign 0.7825

Table 4: Results with different normalizing coefficients

In order to obtain a pattern where the result changes, graphs were plotted as

shown in Figure 5 and Figure 6.

AUC by different normalizing
coefficients
1
0.8
0.6
ALUC
0.4
0.2
0
B 12 26 34 45 50 63 78

Figure 5: AUC with different normalizing coefficients: line graph

14

AUC by different normalizing
coefficients

0.8
o6
i TAUC
0.2
o
=1 12 26 34 45 50 63 7a

Figure 6: AUC with different normalizing coefficients: bar graph

For more observations, the results were computed with different values of the
normalizing coefficient for several training datasets, using benign as the test dataset.

The values computed for this scenario are given in Table 5 and plotted in Figure 7.

15

Training dataset

Testing dataset

AUC

117 Harebot Benign 0.7124521
117 Zeroaccess Benign 0.7124521
117 Zbot Benign 0.455735
79 NGVCK Benign 0.93425
79 Harebot Benign 0.3
79 Zeroaccess Benign 0.7127011
79 Zbot Benign 0.456449
63 NGVCK Benign 0.933125
63 Harebot Benign 0.3023585
63 Zeroaccess Benign 0.712318
63 Zbot Benign 0.456
50 NGVCK Benign 0.93325
50 Harebot Benign 0.3037736
50 Zeroaccess Benign 0.7130651
50 Zbot Benign 0.4552903
45 NGVCK Benign 0.933375
45 Harebot Benign 0.3051887
45 Zeroaccess Benign 0.7132759
45 Zbot Benign 0.4566245
34 NGVCK Benign 0.931875
34 Harebot Benign 0.309434
34 Zeroaccess Benign 0.7147318
34 Zbot Benign 0.4566245
26 NGVCK Benign 0.92725
26 Harebot Benign 0.3188679
26 Zeroaccess Benign 0.7189464
26 Zbot Benign 0.4560744
12 NGVCK Benign 0.7775
12 Harebot Benign 0.4462264
12 Zeroaccess Benign 0.6612069
12 Zbot Benign 0.3904846
2 NGVCK Benign 0.8035
2 Harebot Benign 0.4820755
2 Zeroaccess Benign 0.6356897
2 Zbot Benign 0.03591994

Table 5: Results with different ¢ and training datasets

16

Different c and training datasets

09 -
0.8
0.7
06

B Harebot

B feroaccess

0.4
0.3
0.2
01 -

B Zbot
B NGYCE

117 79 63 SO 45 34 20 12 2

Figure 7: Different ¢ and train dataset across benign

It was observed that there is an increase in AUC with the increase in value of
the normalizing coefficient. So, one can summarize the above results by saying that
the value of c¢ is directly proportional to the AUC. But, the values of AUC differ
with each training dataset. This indicates that the occurrence of opcodes and their

distribution plays an important part in determining the AUC.

4.2 With variation of Train dataset

In this section the values of ¢ (26) and test dataset (Benign) are constant. The
training dataset changes from NGVCK to Zeroaccess to Smart HDD. IC was calcu-
lated with these parameters and ROC curves were generated as shown in Figure 8

and Figure 9.

17

Sensitivity

1.0

0.8

0.6

0.4

0.2

0.0

ROC Curve

— NGVCK-Benign

T T
0.2 0.4

T
0.6

1-Specificity

T T
0.8 1.0

Figure 8: ROC curve for NGVCK as training dataset

C

Training dataset

Testing dataset

AUC

26

NGVCK

Benign

0.92725

Table 6: Parameters for NGVCK as training dataset

18

ROC Curve

o -
@ _|
o
@«]
= o
=
.“%
c
[<}]
0 g
%
N
(=]
g .- —— Zeroaccess—Benign
| | T | | T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity
Figure 9: ROC curve for Zeroaccess as training dataset
¢ | Training dataset | Testing dataset | AUC
26 ZeroAccess Benign 0.7189
Table 7: Parameters for Zeroaccess as training dataset
Some more results were computed based on the above scenario and are given in
Table 8.

19

¢ | Training dataset | Testing dataset AUC
26 NGVCK Benign 0.92725
26 NGVCK Cleamen 0.95875
26 NGVCK Cridex 0.9235135
26 ZeroAccess Benign 0.7189464
26 Smart HDD Benign 0.6551471
26 | Security Shield Benign 0.512931
26 Winwebsec Benign 0.4600287
26 Zbot Benign 0.4560744
26 Cridex Benign 0.4351351
26 Cleamen Benign 0.4132
26 Harebot Benign 0.3188679

Table 8: Results with different training datasets

These results were generated by changing the training dataset. So, to make the
results more visually clear and to find the pattern in the result, bar graph was plotted

as shown in Figure 10.

AUC by Training Dataset

0271

Test data set as Benign and c=26

0.8
0T

0.6

ALIC

4

(T
cleaman cridex harebat GV securityshield smarthdd winwehsec that IErOACCess
Training Dataset

Figure 10: AUC by different training datasets

20

The above graph shows that the NGVCK training dataset has the highest AUC
value of 0.9273, whereas zeroaccess, smart HDD and security shield have AUC values
0.7189, 0.6551 and 0.5129 respectively, all of which are above 0.5. This means that
the IC score did a pretty good job with NGVCK as training dataset and a moderately
good job with families like zeroaccess, smart hdd and security shield. Other families,

when used as the training dataset were not detected accurately with the IC score.

4.3 With variation of Test dataset

Similar to the above two sections, the results in this section were computed by
changing the values of the test dataset and the training dataset and the normalizing
coefficient were constant. Several families like Cridex and Cleaman were considered
and AUC values were computed. ROC curves were plotted as shown in Figure 11 and

Figure 12

21

Sensitivity

1.0

0.8

0.6

0.4

0.2

0.0

ROC Curve

—— NGVCK-Cridex

0.4

T
0.6

1-Specificity

T T
0.8 1.0

Figure 11: ROC curve for Cridex as test dataset

C

Training dataset

Testing dataset

AUC

26

NGVCK

Cridex

0.92351

Table 9: Parameters for Cridex as test dataset

22

Sensitivity

ROC Curve

1.0

e

0.8

0.6

0.4

0.2

0.0
|

: —— NGVCK-Cleaman
- I I T I I T
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Figure 12: ROC curve for Cleaman as test dataset

¢ | Training dataset | Testing dataset | AUC
26 NGVCK Cleaman 0.95875

Table 10: Parameters for Cleaman as test dataset

The AUC of all the scenarios considered were combined into the Table 11.

¢ | Training dataset | Testing dataset | AUC
26 NGVCK Benign 0.92725
26 NGVCK Cridex 0.92351
26 NGVCK Cleaman 0.95875

Table 11: Results with different testing datasets

A bar graph has been plotted for the above generated AUC values as shown in

23

AUC by Testing Dataset

¥27 09235

0.8

T

AL

(=]
L[]

Training data set as NGYCK
andc =26

=]
(=]

benign cleaman crices
Testing Dataset

Figure 13: AUC by different testing datasets

As the IC was able to detect well with NGVCK as training dataset and benign
as a testing dataset in the previous section, experiments were made to change the
testing dataset and generate the IC. On observing the graph above, it can be said
that all the three test datasets were detected really well when the training dataset

was NGVCK.

4.4 Summary of results

On observing the above results and graphs, it can be said that IC scores are
highly dependent on the choices made. If the values are chosen in an accurate way,

IC can give better results, which helps in differentiating between two different malware

24

families or between a malware family and a benign family. Please refer to appendix A

to find the ROC curves for the results generated in the previous sections.

4.5 Comparison with other scores

To check the performance of IC, comparison of the results with different scores
like the Vigenére cipher score and the simple substitution distance technique (SSD)
were made. Table 12 contains values of the AUC generated for the different scores

and a graph was plotted for these values as shown in Figure 14.

Malware AUC using AUC using AUC using
Family IC score | Vigenére Cryptanalysis score SSD
NGVCK 0.92725 0.99 1
Zbot 0.4560744 0.9729 0.8664
Winwebsec 0.4600287 0.9996 0.8374
Smart HDD 0.6551471 0.9958 0.8855
Cridex 0.4351351 0.9458 0.5830
Security Shield | 0.512931 0.5979 0.6290
Harebot 0.3188679 0.9057 0.5606
Zeroaccess 0.7189464 0.6588 N/A

Table 12: Comparison across different scores

Results

1.2

B C score

B Vigenére Cryptanalysis score

B 55D

NGWVCK Zbot WinwebsecSmartHDD Cridex Security Harebot Zeroaccess
Shield

Figure 14: Comparing results with different scores

25

Based on the above graph, it can be observed that the IC does not perform as
well as the other scores, as only one factor is involved in the calculation of the IC i.e.

the frequency of opcodes.

26

CHAPTER 5

Observations

A few observations were made based on the results obtained in the previous

chapter.

5.1 Observation 1:

IC is based on the frequency of opcodes and better results can be obtained only

when the top ¢ opcodes from both the training and the test dataset match.

To support the above observation, the percentage of matching opcodes for each

malware family was computed across the benign set and plotted against the percent-

age of AUC.

Family % of matching opcodes | % of AUC
NGVCK 56.96202532 92.725
Harebot 43.47826087 31.88679

Zeroaccess 24.75 71.89464
Zbot 30 45.60744
Security Shield 29.37853107 51.2931
Winwebsec 29.64071856 46.00287
Smart HDD 48.23529412 65.51471

Cridex 36.61417323 43.51351
Cleaman 31.63265306 41.32

Table 13: Percentage of matching opcodes

27

100

30 \
80 \
70 fs

/
LNy 5
N \‘//\ e e AR N et
A

""--...____ — of AUC

30

20

10

Figure 15: Percentage of matching opcodes

Figure 15 tells us that for most of the families, the aforementioned observation

holds true. But, for families like Harebot and Zeroaccess this scenario is not true.

5.2 Observation 2:

IC can be based on the percentage of frequency of ‘other’ opcodes. To check

whether this observation holds true, statistics were computed as given in Table 14.

Family % frequency of ‘other’ opcodes | % of AUC
NGVCK 4.625928727 92.725
Harebot 6.265612543 31.88679

Zeroaccess 5.321108647 71.89464
Zbot 7.375108016 45.60744
Security Shield 4.183405127 51.2931
Winwebsec 3.787141968 46.00287
Smart HDD 0.289318786 65.51471

Cridex 6.522573331 43.51351
Cleaman 11.36468728 41.32

Table 14: Frequency percentage of ‘other’ opcodes

28

The above values were computed with 26 as the value of the normalizing coefhi-
cient. These values were plotted on a line graph, as shown in Figure 16, to check how

the different families perform when the percentage of other opcodes across percentage

of AUC was considered.

100
Q0

80 \
70 \

o L1\ A\ P
% \ PN /
i \ ~ / % frequency of ‘other’ opcodes
30 \/ % of AUC
20
10 —T"

L ——-_...___-__ ______,,.--""'- —

5
C}- 6\,&(‘ bq.j' ﬁo \\b‘ ‘be \D ‘-F’D 'I‘P‘-} (Pg_"‘s
& @ & & F L >
o R < £ § 1@,\0

Figure 16: Frequency percentage of 'other’ opcodes

Figure 16 does not exactly show the relation between the frequency of other

opcodes to the values of AUC. This indicates that the observation does not hold true.

5.3 Observation 3:

IC can be based on the distribution of opcodes across the malware family. Dis-
tribution of a particular opcode was calculated by first calculating the frequency of
that opcode in both the malware and the benign family. Then, the difference in their
squares are calculated and then by square root of the final value is obtained. For

example, if the frequency of an opcode, say “mov”, in the malware family is x and its

29

frequency in the benign family is y, then the distribution can be calculated as

Opcode Distribution = (2% — ¢?)'/2 (4)

Using equation 4, results were obtained and a line graph was plotted as shown

in Figure 17. Here, the value of the normalizing coefficient is 26 and the test dataset

is benign.
Opcode Distribution
4000000
3500000
3000000 1 e W GV CK -
S artH DD-
2500000 ——Security Shield -
—Cleaman-
2000000: 7T =—=Harebot-
e Criclex-
1500000
~———Zhot-
1000000 +—— | - Winwebsec-
/1™\ Ny Zeroaccess:
500000 At R v i 71
NIV IS s

mov call pushjmpcmp jz test lea pop add sub xor jnz retn incmovoend or dec fstp jb fld jle leave

Figure 17: Opcode Distribution across families

By observing Figure 17, it can be said that the opcodes in NGVCK are distributed
evenly. However, the opcodes in other families either start really high or really low,
which denotes an uneven distribution. So, it can be said that the distribution of

opcodes is an important factor for IC to perform better.

30

CHAPTER 6

Conclusion and Future Work

It can be said that the effectiveness of the 1C score highly depends on the value of
the normalizing coefficient, the training dataset and its corresponding test datasets.
If these values are set properly, then the family of an unknown file can be effectively

identified.

Based on the observations in the previous chapter, we can conclude that the value

of IC is highly related to the distribution of opcodes across the different families.

Future work can focus on the calculation of "kappa" IC [5]. It is calculated using
the null hypothesis, which states that at any given point in time, the expected no-
correlation value is 1.0. Thus, the IC can be calculated as the coincidences observed

divided by the coincidences expected. So, the term becomes

o W (5)

where, N is the common length of the two texts (say A and B), a; is the j term of
the text A, b; is the j term of the text B and the bracketed term is 1 if true and 0

if false.

31

[1]

2]

13l

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

LIST OF REFERENCES

C. Annachatre, T. H. Austin, M. Stamp, Hidden Markov Models for Malware
Classification, Journal of Computer Virology and Hacking Techniques, 11(2):59—
73, May 2015

J. Aycock, Computer Viruses and Malware, Advances in Information Security,
Springer-Verlag, New York, 2006

A. P. Bradley, The Use of the Area Under the ROC Curve in the Evaluation
of Machine Learning Algorithms, Journal Pattern Recognition, 30(7):1145-1159,
1997

S. Deshmukh, Vigenére Score for Malware Detection, Master’s report, Depart-
ment of Computer Science, San Jose State University, 2016,
http://scholarworks.sjsu.edu/etd_projects/487/

W. F. Friedman, The index of coincidence and its applications in cryptology,
Department of Ciphers. Publ 22. Geneva, Illinois, USA: Riverbank Laboratories,
2014

H. Rana, M. Stamp, Hunting for Pirated Software Using Metamorphic Analysis,
Information Security Journal: A Global Prospective, 2014

G. Shanmugam, Vigenére Simple Substitution Distance and Metamorphic De-
tection, Department of Computer Science, San Jose State University, 2012,
http://scholarworks.sjsu.edu/etd_projects/270/

G. Shanmugam, R. M. Low, and M. Stamp, Simple substitution distance and
metamorphic detection, Journal of Computer Virology and Hacking Techniques,
9(3):159-170, 2013

M. Stamp and R. M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real
World, Wiley, 2006

M. Stamp, Information Security: Principles and Practice, second edition, Wiley,
2011

S. Sing, The code book: the science of secrecy from ancient Egypt to quantum
cryptography, Anchor, 2011

S. Srinivasan, SSCT Score for Malware Detection, Master’s report, Department
of Computer Science, San Jose State University, 2015,
http://scholarworks.sjsu.edu/etd_projects/444/

32

http://scholarworks.sjsu.edu/etd_projects/487/
http://scholarworks.sjsu.edu/etd_projects/270/
http://scholarworks.sjsu.edu/etd_projects/444/

[13] Symantec Annual Security Report 2008, http://www.realwire.com/releases/
symantec-announces-messagelabs-intelligence-2008-annual-security-
report

[14] Understanding and Managing Polymorphic viruses https://www.symantec.
com/avcenter/reference/striker.pdf

[15] S. Vemparala, Malware Detection Using Dynamic Analysis,Master’s report, De-
partment of Computer Science, San Jose State University, 2015
http://scholarworks.sjsu.edu/etd_projects/403/

33

http://www.realwire.com/releases/symantec-announces-messagelabs-intelligence-2008-annual-security-report
http://www.realwire.com/releases/symantec-announces-messagelabs-intelligence-2008-annual-security-report
http://www.realwire.com/releases/symantec-announces-messagelabs-intelligence-2008-annual-security-report
https://www.symantec.com/avcenter/reference/striker.pdf
https://www.symantec.com/avcenter/reference/striker.pdf
http://scholarworks.sjsu.edu/etd_projects/403/

APPENDIX

Generated ROC Curves

c 26
train | NGVCK
test | Benign

Table A.15: Parameters NGVCK-Benign-26

ROC Curve

— NGVCK-Benign
T T

1-Specicity

Figure A.18: ROC Curve NGVCK-Benign-26

C 26
train | NGVCK

test | Cleaman

Table A.16: Parameters NGVCK-Cleaman-26

ROC Curve

1-Specicity

Figure A.19: ROC Curve NGVCK-Cleaman-26

34

C 26
train | NGVCK
test Cridex

Table A.17: Parameters NGVCK-Cridex-26

ROC Curve
e
@9 .
S
©
z °]
=
z
3
[s
3
.
S
g - —— NGVCK-Cridex
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Figure A.20: ROC Curve NGVCK-Cridex-26

C 26
train | ZeroAccess
test Benign

Table A.18: Parameters ZeroAccess-Benign-26

ROC Curve
o |
< |
S
o |
> ©
s
7
2
3
@ <
=
o
o
S ., ’ —— Zeroaccess-Benign
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Figure A.21: ROC Curve ZeroAccess-Benign-26

35

C 26
train | Smart HDD
test Benign

Table A.19: Parameters Smart HDD-Benign-26

ROC Curve
o
@
©
o
z °7
=
-
5
» s
ha
o
8
= — SmartHDD-Benign
a T T T T T
0.0 02 04 0.6 0.8 1.0

1-Specificity

Figure A.22: ROC Curve Smart HDD-Benign-26

c 26
train | Security Shield
test Benign

Table A.20: Parameters Security Shield-Benign-26

ROC Curve
e
@ |
2
@
> o
<
B
2
&
«» «
=
o
o
2. — Securityshield-Benign
T T T T T T
0.0 02 0.4 06 08 1.0

1-Specificity

Figure A.23: ROC Curve Security Shield-Benign-26

36

Table A.21:

C 26
train | Winwebsec
test Benign

Parameters Winwebsec-Benign-26

ROC Curve

1.0

08

Sensitivity
06

0.4

0.2
1

— Winwebsec-Benign
T

0.0

Figure A.24: ROC Curve Winwebsec-Benign-26

0.6

1-Specificity

c 26
train | Zbot
test | Benign

0.8 1.0

Table A.22: Parameters Zbot-Benign-26

ROC Curve

Sensitivity

0.4

0.2

0.0

—— Zbot-Benign

Figure A.25: ROC Curve Zbot-Benign-26

1-Specificity

37

T T
0.8 1.0

C 26
train | Cridex
test | Benign

Table A.23: Parameters Cridex-Benign-26

ROC Curve

1.0

08

Sensitivity
06

0.4

0.2

0.0
1

1-Specificity

Figure A.26: ROC Curve Cridex-Benign-26

c 26
train | Cleaman
test | Benign

Table A.24: Parameters Cleaman-Benign-26

ROC Curve

Sensitivity

0.4

0.2

0.0

i i —— Cleaman-Benign
= T T T T T T
0.0 02 0.4 06 0.8 1.0

1-Specificity

Figure A.27: ROC Curve Cleaman-Benign-26

38

C 26
train | Harebot
test | Benign

Table A.25: Parameters Harebot-Benign-26

ROC Curve

1.0

08

Sensitivity
06

0.4

0.2
1

1-Specificity

Figure A.28: ROC Curve Harebot-Benign-26

C 79
train | NGVCK
test | Benign

Table A.26: Parameters NGVCK-Benign-79

ROC Curve
o
@ |
S
o |
= B
s
2
2
5
«» «
4
o
o
2 s — NGVCK-Benign
T T T T T T
0.0 0.2 04 0.6 0.8 1.0
1-Specificity

Figure A.29: ROC Curve NGVCK-Benign-79

39

C 79
train | NGVCK
test Zbot

Table A.27: Parameters NGVCK-Zbot-79

ROC Curve
|
@9 .
=
©
z °]
z
z
3
D«
g
.
=
g o . —— NGVCK-Zbot
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Figure A.30: ROC Curve NGVCK-Zbot-79

C 63
train | NGVCK
test | Benign

Table A.28: Parameters NGVCK-Benign-63

ROC Curve
o
@ |
S
o |
» ©
s
2
2
5
«» «
3
~
o
2 s — NGVCK-Benign
T T T T T T
0.0 02 0.4 06 0.8 1.0
1-Specificity

Figure A.31: ROC Curve NGVCK-Benign-63

40

c 63
train NGVCK
test | Security Shield

Table A.29: Parameters NGVCK-Security Shield-63

ROC Curve
|
@9 .
=
©
z °]
z
3
3
D«
g
.
=
= —— NGVCK-Security Shield
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Figure A.32: ROC Curve NGVCK-Security Shield-63

C 50
train | NGVCK
test | Benign

Table A.30: Parameters NGVCK-Benign-50

ROC Curve
o
@ |
S
o |
» ©
s
2
2
5
«» «
3
~
o
2 s — NGVCK-Benign
T T T T T T
0.0 02 0.4 06 0.8 1.0
1-Specificity

Figure A.33: ROC Curve NGVCK-Benign-50

41

C 50
train | NGVCK
test | Winwebsec

Table A.31: Parameters NGVCK-Winwebsec-50

ROC Curve
|
@9 .
=
©
z °]
z
z
3
D«
g
.
=
g =, — NGVCK-Winwebsec
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Figure A.34: ROC Curve NGVCK-Winwebsec-50

c 45
train | NGVCK
test | Benign

Table A.32: Parameters NGVCK-Benign-45

ROC Curve
o
@ |
S
o |
» ©
s
2
2
5
«» «
3
~
o
2 s — NGVCK-Benign
T T T T T T
0.0 02 0.4 06 0.8 1.0
1-Specificity

Figure A.35: ROC Curve NGVCK-Benign-45

42

C 45
train NGVCK
test | Smart HDD

Table A.33: Parameters NGVCK-Smart HDD-45

ROC Curve
o |
@9 .
S
©
z °]
=
z
3
[s
3
.
S
3. — NGVCK-Smart HDD
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Figure A.36: ROC Curve NGVCK-SmartHDD-45

C 34
train | NGVCK
test | Benign

Table A.34: Parameters NGVCK-Benign-34

ROC Curve
o
@ |
S
o |
» ©
s
2
2
5
«» «
3
~
o
2 s — NGVCK-Benign
T T T T T T
0.0 02 0.4 06 0.8 1.0
1-Specificity

Figure A.37: ROC Curve NGVCK-Benign-34

43

C 34
train | NGVCK
test | ZeroAccess

Table A.35: Parameters NGVCK-Zeroaccess-34

ROC Curve
|
@9 .
=
©
z °]
z
z
3
D«
g
.
=
g =, —— NGVCK-ZeroAccess
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Figure A.38: ROC Curve NGVCK-Zeroaccess-26

C 12
train | NGVCK
test | Benign

Table A.36: Parameters NGVCK-Benign-12

ROC Curve
o
@ |
S
o |
» ©
=
B
2
5
«» «
3
~
o
2 s — NGVCK-Benign
T T T T T T
0.0 02 0.4 06 0.8 1.0

1-Specificity

Figure A.39: ROC Curve NGVCK-Benign-12

44

¢ 12
train | NGVCK
test | Harebot

Table A.37: Parameters NGVCK-Harebot-12

ROC Curve

1.0

0.6
1

0.4

0.2

0.0

; —— NGVCK-Harebot
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Figure A.40: ROC Curve NGVCK-Harebot-12

c 6
train | NGVCK
test | Benign

Table A.38: Parameters NGVCK-Benign-6

ROC Curve

1.0

0.8
|

0.6
1

0.4

0.2

0.0

% — NGVCK-Benign
= T T T T T T
0.0 02 0.4 06 0.8 1.0

1-Specificity

Figure A.41: ROC Curve NGVCK-Benign-6

45

	Malware Detection using the Index of Coincidence
	Recommended Citation

	Introduction
	Introduction to Malware
	Types of Malware
	Techniques to detect malware
	Technique used

	Background
	Previous work and research
	Index of Coincidence
	Calculation
	Application

	Implementation
	Choices Made in Calculation
	Process to calculate IC

	Results
	With variation of normalizing coefficient
	With variation of Train dataset
	With variation of Test dataset
	Summary of results
	Comparison with other scores

	Observations
	Observation 1:
	Observation 2:
	Observation 3:

	Conclusion and Future Work
	Generated ROC Curves

