
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2017

Intelligent Web Crawler for Semantic Search Engine Intelligent Web Crawler for Semantic Search Engine

Shujia Zhang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Zhang, Shujia, "Intelligent Web Crawler for Semantic Search Engine" (2017). Master's Projects. 508.
DOI: https://doi.org/10.31979/etd.cu4m-suvd
https://scholarworks.sjsu.edu/etd_projects/508

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/508?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

	

	 	

Intelligent Web Crawler for Semantic Search Engine

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirements for the Degree

Master of Computer Science

By

Shujia Zhang

Fall 2016

	

	 	

© 2016

Shujia Zhang

ALL RIGHTS RESERVED

	

	 	

The Designated Committee Approves the Writing Project Titled

Intelligent Web Crawler For Semantic Search Engine

By Shujia Zhang

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE SAN JOSÉ

STATE UNIVERSITY

Nov 2016

Dr. Tsau Young Lin Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. Philip Heller Department of Computer Science

	

	 	

Abstract

A Semantic Search Engine (SSE) is a program that produces semantic-oriented concepts

from the Internet. A web crawler is the front end of our SSE; its primary goal is to supply

important and necessary information to the data analysis component of SSE. The main

function of the analysis component is to produce the concepts (moderately frequent finite

sequences of keywords) from the input; it uses some variants of TF-IDF as a primary tool

to remove stop words. However, it is a very expensive way to filter out stop words using

the idea of TF-IDF. The goal of this project is to improve the efficiency of the SSE by

avoiding feeding junk data (stop words) to the SSE. In this project, we classify formally

three classes of stop words: English-grammar-based stop words, Metadata stop words,

and Topic-specific stop words. To remove English-grammar-based stop words, we

simply use a list of stop words that can be found on the Internet. For Metadata stop

words, we create a simple web crawler and add a modified HTML parser to it. The

HTML parser is used to identify and remove Metadata stop words. So, our web crawler

can remove most of the Metadata stop words and reduce the processing time of SSE.

However, we do not know much about Topic-specific stop words. So, Topic-specific stop

words are identified by a randomly selected sample of documents, instead of identifying

all keywords (equal or above a threshold) and all stop words (below the threshold) on the

whole set of documents. MapReduce is applied to reduce the complexity and find Topic-

specific stop words such as “acm” (Association for Computing Machinery) that we find

on IEEE data mining papers. Then, we create a Topic-specific stop word list and use it to

reduce the processing time of SSE.

	

	 	

ACKNOWLEDGEMENTS

 I would like to thank my academic advisor Dr. Tsau Young Lin for his meticulous

guidance and endless support.

 I would like to thank Dr. Chris Pollett and Dr. Philip Heller for serving on my

Master’s committee and helping me to stay on the right track.

 I would like to thank my family for their endless encouragement and support.

	

	 	

TABLE OF CONTENTS

1. INTRODUCTION……………………………………………………………………1

2. TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY……………….......2

 2.1 Term Frequency………………………………………………………………3

 2.2 Inverse Document Frequency………………………………………………...3

 2.3 Weakness of TF-IDF…………………………………………………………4

3. STOP WORDS…………………………………………………………………….....5

 3.1 Introduction of stop words…………………………………………………....6

 3.2 First class of stop words: English-grammar-based stop words ……………....7

 3.3 Second class of stop words: Metadata stop words……………………………8

 3.4 Third class of stop words: Topic-specific stop words………………………...8

4. WEB CRAWLER TO REMOVE METADATA STOP WORDS……………………9

 4.1 Related Work………………………………………….....................................9

 4.2 Our Study…………………………………………...11

 4.3 Implementation of web crawler………………………………………….......12

 4.3.1 First step: create web crawler program and add HTML parser……13

 4.3.2 Second step: add TF-IDF tool……………………………………..22

5. UNDERSTAND TOPIC-SPECIFIC STOP WORDS AND CREATE A STOP

WORDS LIST………………………………………………………………………..23

 5.1 Our approach…………………………………………………………………23

 5.2 Map part…………………….………………………………………………..31

 5.3 Reduce part……………………………………………………………….….35

	

	 	

 5.4 Understand the Topic-specific Stop Words………………………………….37

 5.5 Re-run Search Engine with new Stop Word List and Compare results….......37

6. CONCLUSION………………………………………………………………………40

7. REFERENCE……………………………………………………………………..….41

	

	 	

LIST OF FIGURES

Figure 1. High-level architecture of Crawler………………………………………….....13

Figure 2. Class diagram for web crawler……………………………………………….14

Figure 3. runSql() Function ……………….……………………………………………..15

Figure 4. Output file generated by web crawler………………………………………...18

Figure 5. The result of web crawler…………………………………………………....21

Figure 6: The number of document VS the processing time ………………………….25

Figure 7. System property. ………………………………………………………….…..26

Figure 8. The code for mapping concepts………………………………………….……32

Figure 9. The code for getting URL pages……………………………………….….…..33

Figure 10. The code for reassigning ID………………………………………….…..…..34

Figure 11. Screen shoot for a Simple program…………………………………………..35

Figure 12. Comparison of the results………..….39

	

	 	

LIST OF TABLES

Table 1. Result for existing web crawler……………………………………………….21

Table 2. Result for our web crawler……………………………………………………22

Table 3. Top 50 concepts with 3 token count …………………………………………27

Table 4. A part of Stop Words filtered by Search Engine……………………………...30

Table 5. A part of Data-Mining Stop Words filtered by human mind …………………36

Table 6. Stop Words table………………………………………………………………38

	 1	

	 	

1. INTRODUCTION

 A Semantic Search Engine (SSE) is a program that produces semantic-oriented

concepts from the Internet. Web crawler is one of the main components for our SSE. The

main functionality of a basic web crawler is to retrieve the HTML pages for SSE.

However, the main problem is that all those data from HTML pages may contain a lot of

unnecessary words that we call stop words. Stop words will slow down the SSE and

affect the result produced by the SSE. A standard search engine (SE) divides keywords

and stop words using Term Frequency-Inverse Document Frequency (TF-IDF) and then

indexes keywords. Our SSE finds text patterns, which are called concepts, in documents

using methods imported from data mining and then indexes concepts. These concepts

almost correspond to frequent itemsets. Namely, concepts are very close to frequent

itemsets minus generalized stop words, which are high frequent concepts. To remove

generalized stop words and find the relevant concepts, the analysis component of our SSE

uses some variant of TF-IDF to determine how valuable a concept is to a document in a

collection of documents. However, computing TF-IDF to remove generalized stop words

slows SSE significantly. The standard SE focuses on finding and indexing keywords

(frequent 1-Itemsets), and the SSE focuses on producing concepts (frequent n-Itemsets).

 The primary goal of this project is to reduce the cost of data analysis and improve

our SSE’s efficiency by discarding all types of generalized stop words. There are three

classes of stop words: English-grammar-based stop words, Metadata stop words, and

Topic-specific stop words. Since any existing English stop word list can remove English-

	 2	

	 	

grammar-based stop words, we will focus on removing Metadata stop words and Topic-

specific stop words. We want to create an intelligent web crawler which can remove

unnecessary Metadata stop words from crawling procedure and find key concepts before

passing the input files into the search engine. Our approach is to add an HTML parser

and TF-IDF tool into the web crawler. The HTML parser can parse HTML files and

remove the Metadata stop words before storing the HTML files as text files into local

storage. For removing Topic-specific stop words, we will do an experiment using 10000

documents related to data mining and use MapReduce to understand and find Topic-

specific stop words in the field of data mining and create a domain Stop Word List to

filter them instead of computing TF-IDF to discard them.

 This project is organized as follows: Section 2 describes Term Frequency-Inverse

Document Frequency. Section 3 introduces stop words and describes three classes of stop

words. Section 4 describes how our web crawler removes Metadata stop words. Section 5

describes Topic-specific stop words, how we create a domain stop word list, the result of

an experiment and analysis. The conclusion is outlined in Section 6.

2. TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

 Term Frequency-Inverse Document Frequency (TF-IDF) is a very important

concept in information retrieval (IR) [5] and text mining. TF-IDF is a value that

represents how important a token is to a document in a collection of documents. A token

	 3	

	 	

can be a primary keyword if it appears many times in a document, but it can also be a

stop word or a common word that repeats many times in a collection of documents.

 2.1 Term Frequency (TF)

 Term Frequency is a frequency value that indicates how frequently a token

appears in a document. Since every document is very likely different in size, a token can

appear much more times in longer documents than shorter ones. Therefore, we use the

number of times a token occurs in a document divided by the total number of tokens in a

document to compute a token’s TF value.

 For instance, “data mining” appears 50 times in a document, and there are a total

of 500 words in this document. Thus, Term Frequency for “data mining” is 50/500 = 0.1

= 10%.

 2.2 Inverse Document Frequency (IDF)

 Inverse Document Frequency is a frequency value that measures how important a

word is in a collection of documents. When we compute TF, every token that we find in a

document is equally important for us. However, some tokens, which we call stop words,

such as you, he, she, it and is, appear a lot of times in a document but are less important

than other tokens. Therefore, we need a way to scale up the important tokens, and we can

achieve that by calculating Inverse Document Frequency (IDF). In this project, we use

document frequency for each possible concepts instead of using actual IDF, and then we

set a minimum and maximum threshold points to determine if a possible concept is a key

concept or a generalized stop word.

	 4	

	 	

 The computation of Inverse Document Frequency:

IDF(t) = ln (the total number of documents / the number of documents containing t)

For instance, assuming a token appears in 500 documents and the total number of

documents is 500, therefore

 IDF(t) = ln(500/500) = 0

 IDF(t) is equal to zero. It means that the token is not an important token in the

collection of 500 documents.

 2.3 Weakness of TF-IDF

 The SSE takes a set of documents as input and tokenizes input streams into tokens

and records TF and DF to compute TF-IDF for each token. It uses TF-IDF value to

decide whether a token is a keyword or a stop word. A token can be regarded as a stop

word if its TF-IDF value is nearly equal to zero. However, computing TF-IDF to remove

stop words slows SSE significantly. There are two conditions that cause the TF-IDF

value to nearly equal zero: the first condition is that a token appears a few times in a

document (TF value is very small); the second condition is that a token appears in almost

all of the documents (IDF value is nearly equal to zero). The TF value is very easy to

determine. But the IDF value is very expensive to compute because we have to scan each

word in a collection of documents. Our SSE focuses on indexing all the data from the

	 5	

	 	

World Wide Web. There are billions of webpages on the World Wide Web. If our SSE

uses TF-IDF to filter stop words, we have to scan all the billions of webpages and record

the TF value and the DF value for each token that appears in all the webpages. After we

get TF-IDF values for each token, we use TF-IDF values to decide which tokens can be

discarded as stop words. It will take a significant amount of processing time and

enormous memory to only generate frequent 1-Itemsets, which are keywords such as

{data}, {mining}, {analysis}. Our SSE aims to produce concepts which are frequent

finite sequences of keywords (not necessary in a consecutive order in a document). It

uses a paragraph of keywords to generate different combinations of keywords to form

possible concepts. For example, we have 3 keywords in a paragraph: {data}, {mining},

and {analysis}, and we need to generate {data mining}, {data analysis}, {mining

analysis}, which are frequent itemsets with two keywords (2-Itemsets), and also we need

to generate {data mining analysis}, which is a frequent itemset with three keywords (3-

Itemsets).

We assume that all 30 words are keywords in a paragraph.

the possible 1-Itemsets =
!"!

!! !"!! !
 = 30

the possible 2-Itemsets =
!"!

!! !"!! !
 = 425

the possible 3-Itemsets =
!"!

!! !"!! !
 = 4,060

the possible 4-Itemsets =
!"!

!! !"!! !
 = 27,405

the possible 5-Itemsets =
!"!

!! !"!! !
 = 142,506

	 6	

	 	

the possible 6-Itemsets =
!"!

!! !"!! !
 = 593,775

the possible 7-Itemsets =
!"!

!! !"!! !
 = 2,035,800

 As we can see, the growth of possible n-Itemset is exponential and it quickly

becomes an unmanageable problem. That is because SSE’s data analysis component

(Sutoken program) takes a huge number of comparisons to compute TF-IDF value for

each possible concept. Therefore, TF-IDF’s drawback for this project is obvious.

3. STOP WORDS

 3.1 Introduction of stop words

 Stop words are a set of commonly used words that appear many times in a

document but have less importance. Stop words are a critical part of data mining and text

mining. The simple strategy to determine a stop word is to sort all tokens by collective

frequency, which is the number of times each token appears in the document collection,

and then remove most frequent tokens to reduce the cost of processing and storing

common words.

	 7	

	 	

 Stop words are entirely excluded from vocabulary for us to focus on important

words. For example, there is a phrase “how to create database.” It contains two stop

words “how” and “to.” If search engine tries to use “how,” “to,” “create” and “database”

as keywords to find desired HTML pages, it can find a lot more HTML pages that

contain “how” and “to” than those that contain “create” and “database.”

 Stop words are high frequent words. If we use TF-IDF to remove them, their IDFs

are near zero. In SSE, we need to extract keywords and finite frequent itemsets (sequence

of keywords) [3], but as mentioned, computing TF-IDF is a very expensive way to handle

the job. Therefore, we need to bypass TF-IDF and remove all kind of stop words.

 There are 3 classes of stop words: English-grammar-based stop words, Metadata

stop words, and Topic-specific stop words.

 3.2 First class of stop words: English-grammar-based stop words

 English-grammar-based stop words are a set of common English words to express

our ideas. English grammar can identify English-grammar-based stop words.

For example:

 Determiners: Determiners are used to mark nouns. A noun will usually follow a

determiner. An English phrase “the name” contains a determiner “the” which is followed

by a noun “name.” There are other determiners such as “a,” “an,” “another.”

 Coordinating conjunctions: Coordinating conjunctions are used to connect

words, phrases, and clauses such as “for,” “but,” “or,” “yet,” “so.”

	 8	

	 	

 Prepositions: Prepositions are used to express temporal or spatial relations such

as “in,” “under,” “toward,” “before.”

 In order to remove English-grammar-based stop words, we utilize one of the

existing English stop word lists that contain all English grammar based stop words.

 3.3 Second class of stop words: Metadata stop words

 Metadata stop words are a set of stop words which usually appear in HTML pages.

For instance, most of the metadata stop words appear in a navigation bar such as “home,”

“contact.” The navigation bar is a user interface element within a webpage that contains

many links to other sections of the website. It is one of the main components of a website,

which means that most webpages within the website display the same navigation bar.

This also means that the words contained in the navigation bar will be displayed on most

webpages the users are visiting. Those words, we call “Metadata stop words,” affect the

efficiency of SSE. We intend to use an HTML parser to remove Metadata stop words.

 3.4 Third class of stop words: Topic-specific stop words

 The third class of stop words is Topic-specific stop words, which are not common

English-grammar-based stop words that can be identified by English grammar or the

keywords that we want to capture. Topic-specific stop words usually appear many times

in a specific field. For example, tokens such as “mcg,” “Dr.,” “patient” appears mostly in

clinical documents. These tokens have a large document frequency but less importance.

	 9	

	 	

4. WEB CRAWLER TO REMOVE METADATA STOP WORDS

 Web crawler is a program that automatically crawls HTML pages. It first retrieves

HTML pages from the Internet using a set of URLs as sources, then parses and stores

those pages in a local system for further analysis [2]. In this project, web crawler stores

all HTML pages as text files and feeds them to the Sutoken program, which is the main

program of SSE used to process all HTML pages downloaded by web crawler and

capture possible concepts.

 However, the previous web crawler we used could not filter Metadata stop words.

It simply retrieved all text content from HTML pages and let the search engine handle

filtering stop words and capturing concepts. Therefore, all stop words that appear in

HTML pages can affect accuracy and efficiency of SSE. Our approach to solving this

problem is to provide a web crawler to preprocess data and filter Metadata stop words.

4.1 Related Work

 Web crawlers are written in many different programming languages to provide

services for a variety of purposes. In this section, we describe some well-known web

crawlers and the difference between our web crawler and other well-known web crawlers.

Apache Nutch

 Apache Nutch is an extensible and scalable open source web crawler on Hadoop.

Apache Nutch is written in Java programming language. It aims to index the World Wide

Web and provides a highly modular architecture that extends user’s customized

functionality with the help of some interfaces like Parse, Index, and ScoringFilter. [6]

	 10	

	 	

 The workflow of Apache Nutch is showed below:

1) Initialize Crawler Database and inject seed URL

2) Generate fetch list: select URLs from Crawler Database for fetching

3) Fetch URLs from fetch list

4) Parse documents: extract content, metadata and links

5) Update Crawler Database status, score, and signature, and then add new URLs

6) Invert links: Map anchor text to document the links point to

7) Calculate link rank and update Crawler Database scores

8) Delete duplicate documents by signature

9) Index document content, metadata and anchor text

Googlebot

 Googlebot is a crawling bot used by Google search. The computer program

decides which site should be crawled, how often Googlebot should crawl a certain site,

and how many pages Googlebot should crawl. It provides URL extraction and full-text

indexing and besides its URL server can handle a large amount of URLs. [7]

WebRACE

 WebRACE is a crawler coded in the Java programming language. WebRACE

gets requests from users to crawl certain HTML pages. It is notified and starts to re-crawl

certain page when the provider changes the page. The most important feature is that

WebRACE does not need a seed URL to crawl the World Wide Web. [8]

	 11	

	 	

Differences between our web crawler and other well-known web crawlers

 Our web crawler is much simpler than other well-known web crawlers. Our web

crawler starts from a seed URL, retrieves an HTML page, parses the HTML page using

an HTML parser (modified to suit our requirements), stores parsed HTML data in txt

files, and processes another URL. The HTML parser is used to remove Metadata stop

words. Our web crawler has very limited functionalities, but it serves our needs. The

reason is that we want to test if our web crawler with a modified HTML parser can work

well as we expected. Thus, a simple web crawler can fulfill our needs and this project

focuses on improving data analysis of our SSE. The primary difference between our web

crawler and other well-known crawlers such as Apache Nutch is that well-known

crawlers extract and index all data from an HTML page but our web crawler aims only to

extract meaningful data by eliminating Metadata stop words.

4.2 Our Study

 The original idea of our web crawler is to let the server side handle removing

Metadata stop words. We intend to send our HTML parser to a server, and the server uses

the HTML parser to remove Metadata stop words, and then the server sends less but more

meaningful data back to our web crawler. However, this idea does not work well.

Therefore, we decided to crawl HTML page and parse it in the local system.

	 12	

	 	

 We want to integrate an HTML parser and TD-IDF into a basic web crawler

program to preprocess the data before we feed the data into SSE. In this way, we can

make our web crawler smarter to pre-analyze data. The HTML parser can parse HTML

files and provide text extraction and link extraction, and also it can remove Metadata stop

words, such as “home,” and “contact” in the navigation and footer menu. By using

HTML parser, we can get rid of all HTML tags and only extract meaningful text data in

HTML files.

4.3 Implementation of web crawler

 The high-level architecture of web crawler as shown in Figure 1 below explains

the data flow from downloaded HTML pages to local disk. The primary objective of the

web crawler is to filter stop words and capture related concepts by using HTML parser

and TF-IDF tool. We split the whole work into the following two steps: The first step is

to create a web crawler program and then add an HTML parser into it; the second step is

that we record TF and IDF for each token to compute TF-IDF.

	 13	

	 	

Figure 1. High-Level architecture of web crawler

4.3.1 First step: create a web crawler program and add an HTML parser

The following Figure 2 is a Class diagram for web crawler:

	 14	

	 	

Figure 2. Class diagram for web crawler

Crawler.java

 The main functionality of Crawler.java is to collect command line input and set

up all required components such as HTML parser. It can start to run the program by

using command line input, which is a root URL. It can also check if there are URLs

that are not visited by the program. If there are URLs in toVisitStack (a queue data

structure which has First In First Out mechanism), it retrieves all data using the first

URL in toVisitStack and sends fetched HTML data to HTML parser.

	 15	

	 	

DB.java

The main functionality of DB.java is to set up a database connection and execute

SQL statement. We create a Crawler_record database that has two tables. One is

isVisitedURL table, which stores all visited URLs. The other table is toVisitedURL

table that stores all unvisited URLs.

Figure 3. runSql() Function

Parser.java

 Parser.java is an abstract class that defines common behaviors, which can be

inherited by subclasses. For example, HTMLParser.java extends Parser.java. In this

program, we only use HTML Parser, but we can implement more parsers to achieve

extended functionalities.

HTMLParser.java

 The main functionality of HTMLParser.java is to parse HTML files and collect

new URLs. All non-alphabetical characters are removed because our HTML parser

can only parse English phrases. HTML parser can remove all HTML tags.

 The data we remove from HTML files are any Scripts such as JavaScript, Image,

and Multimedia. JavaScript is a programming language that does not contain any

	 16	

	 	

useful textual information. Parsing JavaScript not only affects the accuracy of the

search engine but also generates more processing time and memory usage.

Java Compiler Compiler (JavaCC)

 JavaCC is an open source parser generator written in Java programming language.

It can use formal grammar written in EBFN notation to generate the desired parser. In

this project, our web crawler utilizes JavaCC to generate an HTML parser.

HTMLparserByJavaCC is a set of java files created by JavaCC which can also be

used to create other parsers, such as a PDF parser, to preprocess PDF files. We can

integrate more parsers into web crawler to handle different files crawled by web

crawler in the future.

URL.java

 URL.java is used to create URL objects. The program uses URL Objects to store

the Depth of each URL. The Depth variable is used to record how far the crawler

goes in Breadth First Search (BFS).

 We use Breadth First Search (BFS) algorithm in the web crawler to process

URLs. The basic idea of this algorithm is that it starts from the root node and visits all

neighbor nodes at the same level. When all nodes at the same level are visited, it goes

to the next level and visits all nodes at that level. It stops when there is no next level

or the target is found. In this project, BFS suits our situation, and it helps to process

	 17	

	 	

all URLs at the same depth first and then moves to explore all URLs at the next

depth.

The algorithm of web crawler:

While (toVisitStack is not empty) {

 URL link = toVisitUrlList.pop() // get next URL to visit

 If (link.depth <= MaxDepth && link.notVisited()) {

 Download HTML file from Internet use Link

 HTML Parser parses HTML file

 Search for new URLs in the downloaded HTML file

 Store new URLs in toVisitList and update depth for new URLs

 Extract text data from HTML files and store into output file

 Store visited URL into database

 }

}

Use BFS to process URL:

 In the program, we use toVisitStack stack, a FIFO queue, to store new URLs that

are fetched from an HTML page. According to BFS Algorithm, the program starts from

	 18	

	 	

the root URL, visits all neighbor URLs, and then moves to the next level of neighbors.

The toVisitStack stack is used to supply URLs for the crawler.

Run web crawler with HTML parser:

 The following is the text file generated by web crawler. After we run the web

crawler program using “www.sjsu.edu” as the root URL, the program generates a text file

as a result, which contains only text data from www.sjsu.edu. Based on the result below,

we know that the HTML parser successfully removes all HTML tags but the primary

objective of the project is not accomplished.

Figure 4. Output file generated by web crawler

 The main purpose of adding HTML parser is to remove Metadata stop words.

However, we can find a lot of Stop Words such as “Homepage,” “SJSUAbout,” “Events”

	 19	

	 	

and “Life” in this result. If we use this result as an input for SSE, it makes SSE less

efficient and accurate.

How to improve HTML parser:

 After carefully analyzing the results above, we figure out two ways to improve the

HTML parser.

 One way is that we need to remove both the header and the footer from an HTML

file. Most Metadata stop words appear in those two parts. The HTML header contains a

navigation bar, which is a section of a graphical user interface to help the user access

information. The navigation bar is an important component of a website, and every

website has a navigation bar. Also, the same navigation bar appears multiple times in a

website. The HTML footer is the same as the header. The information obtained from

footer appears multiple times but is less important. We modify HTML parser so that it

does not extract any data from the header and the footer. The simple approach to achieve

this is that HTML parser discards the header and the footer, since the header can be

identified as HTML tag <header> or <nav>, and the footer can be identified as HTML

tag <footer>.

 Another way to improve HTML parser is to level each HTML tag in HTML page

and only extract text data from the highest leveled tag. HTML can be converted to a tree

structure, and the most valuable information usually appears in highest tags.

	 20	

	 	

 For example, <html> // the level is 1
 <body> // the level is 2
 < p> the level is 3
 I love computer science
 </p>
 </body>
 <div> // the level is 2
 <a> // the level is 3
 I am a cat lover

 </div>
 </html>

 The highest-level tags are <p> and <a> and thus we extract “I love computer

science” and “I like cat” from HTML files. The highest-level tags contain more relevant

information in HTML pages. Thus, to mark the level of each tag is a critical component

of HTML parser. After we modified the web crawler program and re-ran the program

using same root URL “ www.sjsu.edu,” we get the following result:

	 21	

	 	

Figure 5. The result of web crawler

 We achieve the improved result above in two ways. After discarding the header

and footer in an HTML file and extracting data from the highest tags, the HTML parser

removes most Metadata stop words.

 We did an experiment to measure the performance of SSE. We crawled 500

webpages from www.sjsu.edu using an existing web crawler. Then, we crawled the same

size webpages from the same website using our web crawler. We used two sets of

crawled data to run Sutoken program (the core engine of SSE). The results are shown in

Table 1 and Table 2.

Table 1: Result for existing web crawler

Total number of tokens 268589

Total processing time (second) 4224.8490

	 22	

	 	

Table 2: Result for our web crawler

Total number of tokens 114540

Total processing time (second) 2383.2040

 After we had compared the two results, we found that the total processing time of

our web crawler is far less than the total processing time of the previous web crawler.

The main reason is that our web crawler has an HTML parser to remove Metadata stop

words. The data crawled by the existing web crawler contains many Metadata stop words,

and SSE needs to spend more processing time to filter them.

4.3.2 Second step: Add TF-IDF tool

 The next step is to add TF-IDF into the program. The main purpose of adding TF-

IDF tool is to filter stop words and look for possible concepts. [1]

 However, using TF-IDF tool in web crawler is an inefficient and costly way to

filter stop words and identify keywords. We need to record TF and DF for each token to

compute TF-IDF. When the number of tokens increases, the required memory size will

grow rapidly to store all records of TF and DF.

	 23	

	 	

 Also, web crawler is designed to crawl a large set of HTML pages. In this

situation, counting Document Frequency for all tokens is impossible and very expensive

job for a web crawler. A web crawler requires enormous memory and computing power

to handle such a huge number of comparisons. Therefore, adding TF-IDF is a not good

approach for web crawler.

5. UNDERSTAND TOPIC-SPECIFIC STOP WORDS AND CREATE A STOP

WORD LIST:

 5.1 Our approach

 One way to get Topic-specific stop words is to use a web crawler to crawl a large

set of HTML pages as input files. The web crawler extracts all texts from one HTML

page and stores them as a text format file (.txt file). Then, we feed files that contain all

text data to our SSE.

 Our SSE utilizes TF-IDF tool to filter Stop Words. Therefore, we can run the

Search Engine and keep recording Topic-specific stop words (High document frequency

and IDF is near zero), which are filtered by TF-IDF tool. In this way, we can collect

Topic-specific stop words to create a Stop Words List. However, HTML pages lack

possible concepts and a word that is not a stop word could be filtered as a stop word.

Topic-specific stop words, which are gathered by search engine using HTML pages as

input, cannot meet our needs.

	 24	

	 	

 Another way is to download 10000 documents that are related to Data Mining and

feed those documents to SSE. The 10000 documents are research papers downloaded

from IEEE. Data mining research papers contain related and intended concepts and also

more suitable and reliable Topic-specific stop words, we call “Data Mining stop words.”

 The following steps can illustrate the overall approach to creating a Stop Word

List:

1. Download 10000 documents that are related to Data Mining topics. The reason we use

Data Mining topics is that we already know the content of those Data mining papers.

Based on that, we can easily verify the results of SSE and identify Topic-specific stop

words.

2. Convert PDF files to TXT files. 10000 documents are PDF files, while our SSE

requires TXT files as input. Dr. Lin’s former students had already completed the first two

steps to download 10000 documents and convert them to txt files. It saved us a lot of time

and energy to collect those documents.

3. Feed documents to our SSE (Sutoken program). To prepare for feeding all documents

to SSE, we did an experiment to measure the search engine’s performance. We ran the

Sutoken program for several times, supplied it with a small number of documents each

time and counted its processing time. We prepared five collections of documents: 100

documents, 200 documents, 300 documents, 400 documents and 500 documents.

	 25	

	 	

 Figure 6 shows that search engine’s processing time will grow exponentially

when the number of input files increases.

Figure 6: The number of document vs. the processing time

 The reason why the processing time grows non-linearly is that our SSE needs to

record TF and DF for each token in order to compute TF-IDF, which means when SSE

gets a new token then it goes through all other documents and compares with each token

in order to get the number of documents containing a specific token. The comparison of

each token takes most of the processing time and slows down the program. If we use one

computer to process all 10000 documents, it would be an impossible mission to finish

processing them in a reasonable amount of time.

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

100	 200	 300	 400	 500	

the	number	of	documents	as	input		

To
ta

l p
ro

ce
ss

in
g

tim
e

(s
ec

on
d)

	 26	

	 	

Figure 7. System property

 Figure 7 above shows that the computer we are using installs Windows Server

2008 R2 standard and it has a processor that is AMD A8-3800 APU with Radeon(TM)

and 8GB memory. This is a standard computer with limited power to handle the analysis

of such a large set of data. To process 500 documents, SSE runs 11,718.12 seconds,

which is almost 3.26 hours. If we have a more powerful computer, the processing time

can be reduced. In the future, we may consider Cloud Computing for its powerful

computing technology.

 Our approach for processing all documents is to divide them into batches, assign

one batch to one student and then each student runs search engine program (Sutoken

program) on their computer. There were 60 students who helped us to collect data. We

divided them into 20 groups and assigned 500 documents to each group. Moreover, each

group was required to use only one computer to run the search engine program with all

	 27	

	 	

500 documents as input files. Thus, we had all 20 groups to work in parallel and run the

same search engine program with the same size data. It saved us much time compared

with using one computer to process all 10000 documents.

 Table 3 contains the top 50 concepts with three token counts captured by one of

the 20 groups:

Table 3. Top 50 concepts with 3 token count

ID	 Tokens	
TokenCou
nt	

Frequen
cy	

DocFrequen
cy	 TokensOrigin	

678473	 ab	ac	ad	 3	 14	 6	 abe,	ace,	ade,	
741072	 ab	ac	bc	 3	 19	 4	 ab,	ac,	bc,	

525038	
abstract	algorithm	
associ	 3	 6	 6	 Abstract	algorithm	association	

572312	
abstract	algorithm	
frequent	 3	 13	 10	 Abstract	Algorithm	frequent	

621288	 abstract	algorithm	item	 3	 6	 5	 Abstract	algorithm,	item	
525042	 abstract	algorithm	rule	 3	 5	 5	 Abstract	algorithm	rules	
621291	 abstract	algorithm	set	 3	 4	 4	 Abstract	algorithm,	set,	

775592	
abstract	apriori	
algorithm	 3	 11	 7	 Abstract	Apriori	algorithm	

525043	
abstract	associ	
algorithm	 3	 11	 8	 Abstract	association	algorithm	

517021	 abstract	associ	data	 3	 5	 4	 Abstract	association	data	
621295	 abstract	associ	item	 3	 7	 6	 Abstract	association	item	
517022	 abstract	associ	rule	 3	 36	 23	 Abstract	association	rules	
550950	 abstract	databas	rule	 3	 5	 4	 Abstract	databases	rules	

621301	
abstract	frequent	
algorithm	 3	 5	 4	 Abstract	frequent	algorithm	

601844	 abstract	frequent	data	 3	 9	 7	 ABSTRACT	Frequent	data	
621302	 abstract	frequent	item	 3	 14	 10	 Abstract	frequent	item	

601847	
abstract	frequent	
itemset	 3	 11	 9	 ABSTRACT	Frequent	itemsets	

749022	
abstract	frequent	
pattern	 3	 11	 6	 Abstract	frequent	patterns	

621305	 abstract	frequent	set	 3	 14	 11	 Abstract	frequent	set,	
525082	 abstract	import	data	 3	 6	 5	 Abstract	important	data	

	 28	

	 	

890823	 abstract	item	associ	 3	 5	 4	 Abstract	item	associations	
662737	 abstract	item	data	 3	 6	 4	 abstraction,	item	Data	
963661	 abstract	item	rule	 3	 6	 4	 Abstract	items	rules	
621311	 abstract	item	set	 3	 14	 10	 Abstract	item	set,	
601854	 abstract	itemset	data	 3	 5	 4	 ABSTRACT	itemsets	data	
525089	 abstract	larg	databas	 3	 4	 4	 Abstract	large	databases	

662747	
abstract	paper	
algorithm	 3	 10	 7	 abstraction.	paper,	algorithm	

749024	 abstract	paper	frequent	 3	 6	 5	 Abstract	paper,	frequent	
509115	 abstract	paper	present	 3	 4	 4	 Abstract	paper	presents	

646406	
abstract	problem	
frequent	 3	 6	 4	 Abstract	problem	frequent	

700151	
abstract	propos	
frequent	 3	 5	 4	 Abstract	proposed	frequent	

525100	 abstract	rule	algorithm	 3	 11	 8	 Abstract	rules	algorithm	
517026	 abstract	rule	data	 3	 5	 4	 Abstract	rules	data	
525107	 abstract	rule	import	 3	 6	 4	 Abstract	rules	important	
621335	 abstract	rule	item	 3	 8	 6	 Abstract	rule	item	
662781	 accuraci	data	set	 3	 12	 5	 accuracy	data	sets	

706314	
accuraci	frequent	
itemset	 3	 18	 4	 accuracy	frequent	itemsets	

848847	 achiev	associ	rule	 3	 12	 4	 achieved	Association	rule	

700176	
acknowledg	author	
thank	 3	 4	 4	 Acknowledgement	authors	thank	

532810	
acknowledg	nation	
foundat	 3	 8	 4	

Acknowledgements	National	
Foundation	

509147	
acknowledg	nation	
natur	 3	 7	 5	

Acknowledgements	National	
Natural	

532813	
acknowledg	nation	
scienc	 3	 6	 4	

Acknowledgements	National	
Science	

509155	 acknowledg	natur	china	 3	 7	 4	 Acknowledgements	Natural	china	

532816	
acknowledg	natur	
foundat	 3	 10	 5	

Acknowledgements	Natural	
Foundation	

532819	
acknowledg	natur	
scienc	 3	 10	 6	

Acknowledgements	Natural	
Science	

532829	
acknowledg	paper	
support	 3	 5	 5	

Acknowledgements	paper	
supported	

630208	
acknowledg	research	
support	 3	 6	 6	

Acknowledgments.	research	
supported	

532833	
acknowledg	scienc	
foundat	 3	 14	 7	

Acknowledgements	Science	
Foundation	

532839	 acknowledg	support	 3	 8	 5	 Acknowledgements	supported	

	 29	

	 	

foundat	 Foundation	

532842	
acknowledg	support	
natur	 3	 7	 6	

Acknowledgements	supported	
Natural	

 The Tokens column represents all concepts captured by the SSE, and each

concept contains multiple tokens. For example, “Abstract Apriori algorithm” concept

consists of “Abstract,” “Apriori” and “algorithm,” and we group 3 tokens together to

capture a concept in the human mind. The TokenCount indicates the number of tokens in

a concept. The DocFreq is not a general Document Frequency. It stores the number of

documents that contain a specific token/concept. The TokensOrigin records the Original

token because the tokens stored in Token column are stemmed using Porter stemmer

algorithm [4].

 The expected results should include concepts related to Data Mining because the

documents we feed are papers related to the topic of “Data Mining.” As we can see,

concepts obtained by SSE contain “Apriori algorithm” and “association rules,” two key

terms of data mining. However, we also find concepts that contain “ab,” “ac” and “bc.”

Those un-meaningful tokens are stop words that survive the TF-IDF test iteration. The

TF-IDF tool cannot filter out all stop words, and it only reduces candidate space. We

need a smarter way to filter those stop words that survive the TF-IDF test iteration.

 The following table contains a small part of Stop Words filtered by TF-IDF test.

The SSE, as mentioned before, uses TF-IDF tool to filter Stop Words. We can collect

potential Data Mining stop words (High document frequency) filtered by TF-IDF test and

add to our Stop Words List. We can simply modify the program to store all potential

	 30	

	 	

Data-mining stop words into a file instead of discarding them. Then, we compare those

potential Data-mining stop words with English-grammar-based stop words to reduce

candidate space. The reason is that English-grammar-based stop words also have high

document frequency and can be filtered by TF-IDF.

Table 4. A part of Stop Words filtered by search engine

removing [stockholm]
 removing [stockjobb]
 removing [stockmey]
 removing [stoica]
 removing [stomach]
 removing [ston]
 removing [stood]
 removing [stoplist]
 removing [stopword]
 removing [storaf]
 removing [storedataitem]
 removing [storytel]
 removing [stouch]
 removing [stq]
 removing [stra]
 removing [straggler]
 removing [straighten]
 removing [strand]
 removing [stranieri]
 removing
[strategyminmaxload]
 removing [straw]
 removing [strawman]
 removing [strcount]
 removing [strcutur]
 removing [strdmdr]
 removing [streak]
 removing [streambas]
 removing [streamglob]
 removing [streamkdd]
 removing [streammzn]
 removing [streamt]
 removing [streetart]

	 31	

	 	

 removing [streetmap]
 removing [strehk]
 removing [strehl]

 4. After we collect all Data-mining stop words that are filtered by search engine,

we start to execute Map Reduce. Map Reduce is a program model that can process and

generate a large data set.

 5.2 Map part:

 In the Map part, we need to map the same concepts together to create a large data

set. After we collected all the concepts captured by the 20 groups, we had a total of 20

datasets because each team ran the search engine program on their computer. The goal

was to map 20 datasets into one large dataset. Our approach is to compare tokens of each

concept. If two concepts have the same tokens, we can map them together.

 Before we started to do the Map, we needed to export all data from the database.

The search engine program use database to store all captured concepts and URL links (we

do not use HTML pages as input. Therefore URL links contain the directories of all

documents). There are three tables containing all data:

1) Concepts table stores all concepts and information about those concepts

2) URLPages table stores all URL links but now it contains all directories of

documents

3) MapConceptsToURL table is used to map concepts to URLs

	 32	

	 	

 We asked each group to export their three tables into 3 flat text files: Concepts.txt,

URLPages.txt and MapConceptsToURL.txt. Then we collected all exported files and

started to do the Map.

 Figure 8 shows the code for mapping concepts. It opens each concepts.txt file and

reads its content row by row. Then, it will check concept_index map to see if this concept

has shown before. If it has, we simply update the existing concept row in

final_concept_rows array by adding the Frequency and DocFrequency of current

processing concept to the Frequency and DocFrequency of existing concept row. If this

concept shows for the first time, we insert a new concept row into final_concept_rows

array. We also need to generate a new ID for each concept instead of using the old ID

which came from students’ data to prevent a collision.

Figure 8. The code for mapping concepts

	 33	

	 	

 Figure 9 showed below opens each URLPages.txt file and starts to read each row

of data. We simply create a new ID for URL row data and insert the URL row into a

final_urlpages_rows array. The reason we create new ID for each URL row is also to

prevent collision. We do not need to update URL row because URLPage.txt contains the

directories of documents and the directory cannot be the same for each group.

Figure 9. The code for get URL pages

	 34	

	 	

 Figure 10 showed below opens each MapConceptsToURL.txt file and read each

row of data. We need to use old concept ID and old URL id to find reassigned concept ID

and URL id. Then, we insert new MapConceptToURL row data with new concept ID and

new URL id. Last, we generate new Concepts.txt, URLPages.txt, and

MapConceptToURL.txt and start to import all concepts data using these three files.

Figure 10. The code for reassigning ID

 When we do the map part, we discover that most tokens that appear in all 20 data

sets are intended concepts we are looking for and those tokens that have high document

frequency and do not appear in all 20 data sets can be regarded as potential Data-Mining

	 35	

	 	

stop words. We need to check if those potential Data-Mining stop words are really stop

words.

 5.3 Reduce Part:

 Reduce Part is to let the human mind check if those potential Data-Mining stop

words are really stop words. We have already collected some of the Data-Mining stop

words that are filtered by TF-IDF test. However, there are still a lot of Data-Mining stop

words that remain in concepts. TF-IDF cannot help us identify those stop words hiding in

concepts. Thus, we decided to let humans read the concepts within the short paragraphs

where we found these concepts to help us check the results.

 60 students participated in the Reduce part. We randomly assigned 300 concepts

to each student and provided the Token Original and a short paragraph, where we found

the concept. Figure 11 shows how the Reduce part works:

Figure 11. Screen shoot for a Simple program

	 36	

	 	

 We created a simple program and let a student read the Token Original and

Source and then decide whether we should keep the concept or not. If the student decided

that we should not keep the concept, it means that the concept contains unfiltered stop

words and then we let the student decide which words should be stop words. The tokens

we provided for all students were high frequent tokens, i.e., those that have high

document frequency. If the student decided that we needed to keep the concept, it meant

that it was an intended concept.

 After collecting all the reports of the Should I Keep This Concept program, we

got 1584 Data-Mining stop words. Table 5 shows the top 100 of them that are found by

using the human mind.

Table 5. A part of Data-Mining Stop Words filtered by human mind

confer	 487	
sigmod	 440	
acm	 422	
set	 370	
larg	 363	
proceed	 310	
intern	 308	
item	 286	
pp	 177	
srikant	 164	
agraw	 160	
imielinski	 160	
proc	 136	
comput	 134	
discov	 131	
support	 131	
washington	 128	
scienc	 114	
engin	 111	

	 37	

	 	

 5. The last step is to collect all Data-mining stop words and create a final Stop

Word List. We had already collected a part of Data-Mining stop words that are filtered by

TF-IDF test before. Then, we collect a part of Data-Mining stop words that survive the

TF-IDF but were identified by the human mind. We combined two sets of Data-Mining

stop words and created a Stop Word List.

 5.4 Understand the Topic-specific stop words

 English grammar cannot identify Topic-specific stop words. As we mentioned,

they appear mostly in a specific field, and the common English-grammar-based stop

words list does not cover such Topic-specific words. We needed to do the experiment on

10000 documents about “data mining” to collect Data Mining stop words, which can be

used to filter the stop words that are hiding in the possible concepts. In the future, we

hope to find the patterns of Topic-specific stop words and create different domain stop

word lists for different topics or fields.

 5.5 Re-run Search Engine with new Stop Word List and compare results

 Inserting Stop Word List is straightforward. Our SSE uses the database to store all

stop words in a StopWord table. All we need to do is to add all stop words into this table.

Our SSE will filter all stop words in a document using the table to find matches. Table 6

shows a part of the StopWord table.

	 38	

	 	

Table 6.StopWord table

 After we inserted Stop Word List into the SSE, we ran the Sutoken program using

the same system and the same input documents: 100 documents, 200 documents, 300

	 39	

	 	

documents, 400 documents and 500 documents. Figure 12 shows the results of this

experiment.

Figure 12. Comparison of the results

 The blue line represents the result of the previous experiment. The red line

represents the result of this experiment. It is evident that using a new Stop Word List can

significantly reduce the processing time of SSE. By using Stop Word List, the SSE only

need to remove all kind of stop words once, and then it can focus on finding more

suitable and relevant frequent itemsets. Therefore, we can achieve the objective of this

project.

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

100	 200	 300	 400	 500	

To
ta
l	p
ro
ce
ss
in
g	
tim

e	
(s
ec
on
d)
	

The	number	of	documents	as	input	

	 40	

	 	

6. CONCLUSION:

 In this project, we classified three classes of stop words: English-grammar-based stop

words, Metadata stop words, and Topic-specific stop words. We created a web crawler

program and added a modified HTML parser into it to discard Metadata stop words and

reduce the processing time significantly for SSE.

 We successfully generated a large set of data and brought human effort into this project.

We used MapReduce to collect Topic-specific stop words from 10000 documents about data

mining. In the end, we created a final Stop Word List and inserted it into the SSE. Moreover,

we re-did the first experiment with the same conditions, but this time our SSE used our final

Stop Word List to filter Data-mining stop words. The result of the second experiment shows

that our approach improves the SSE’s efficiency, and we have achieved this project’s

objective.

	 41	

	 	

REFERENCES

[1] Tsau Young (T. Y.) Lin, Albert Sutojo and Jean-David Hsu: Concept Analysis

and Web Clustering using Combinatorial Topology (2006)

[2] Christopher Olston and Marc Najork: Web Crawling,

http://infolab.stanford.edu/~olston/publications/crawling_survey.pdf

[3] Tsau Young (T.Y) Lin: Attribute (Feature) Completion – The Theory of

Attributes from Data Mining Prospect

[4] http://nlp.stanford.edu/IR-book/html/htmledition/normalization-equivalence-

classing-of-terms-1.html

[5] Manning, C., Raghavan, P., & Schutze, H: Introduction to Information Retrieval

(2008) Cambridge University Press.

[6] Rohit Khare, Doug Cutting, Kragen Sitaker, Adam Rifkin: Nutch: A Flexible

and Scalable Open-Source Web Search Engine, http://commerce.net/wp-

content/uploads/2012/04/CN-TR-04-04.pdf

[7] https://en.wikipedia.org/wiki/Googlebot

[8] Demetrios Zeinalipour-Yazti, Marios Dikaiakos: Design and Implementation of a

Distributed Crawler and Filtering Process

	Intelligent Web Crawler for Semantic Search Engine
	Recommended Citation

	Microsoft Word - Cs298_writing_project_by_ShujiaZhang_lin_12_26.docx

