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ABSTRACT

Today’s computers are equipped with multiple processor cores to  execute multiple  programs

effectively at a single point of time. This increase in the number of cores needs to be equipped

with a huge amount of physical memory to keep multiple applications in memory at a time and

to effectively switch between them, without getting affected by the low speed disk memory. The

physical memory of today’s world has become so cheap such that all the computer systems are

always equipped with sufficient amount of physical memory required effectively to run most of

the applications. Along with the memory, the sizes of applications have also became huge. This

again arises the problem of memory contention in most of the heavily loaded servers. So the

physical memory has to be handled very effectively to achieve high performance. Many page

replacement algorithms were developed by researchers and everything has its own advantages

and disadvantages. All  the algorithms have one goal of minimizing the page faults with less

background work done [1]. Effectiveness of an algorithm depends on the work load as well. This

paper  discusses  the  various  page  replacement  algorithms,  their  benefits,  their  failures  and

analyses them in certain workloads. Finally it presents an idea of changing the page replacement

algorithms depending on the performance of each algorithm in that particular workload during

runtime using system variables.
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1. INTRODUCTION

1.1  Problem statement 

Increase in the amount of physical memory is always accompanied by the increase in the size of

the  programs  that  are  executed  in  the  computer  systems.  Concurrent  system models  always

require multiple programs to be executed in parallel.  To execute programs in parallel all  the

programs should be in the main memory to increase the performance and to decrease the waiting

time of  the  users.  It’s  impossible  to  keep all  the running programs as  a  whole  in  the  main

memory at all times. Only some portions of the running process can reside in the main memory

and the program is divided into multiple units called pages [16]. By this way important pages of

multiple programs can be kept in the memory. Switching between processes will be faster giving

equal priority to all user programs. But whenever a program is executing if it needs some pages

which are not currently in the main memory, then the pages needs to be copied into the main

memory replacing some pages already in the main memory. This is called demand paging. The

pages will be copied to the main memory only if the process needs to access those pages. This is

the main task of the page replacement algorithm. Page fault is said to happen when the process

which is  currently executing,  requests  for a page which is  not already loaded into the main

memory. Choosing the replacement page from the main memory is a critical decision taken by

the page replacement algorithm. The algorithm should choose a page which is not going to be

used in the near future as the one to be replaced. But predicting the future is not always correct,

so predicting is not a correct solution for the problem. The algorithm should designed in such a

way that the run time of the algorithm should not exceed the time saved between swap in and

swap out of the pages from the main memory to the disk. Algorithms developed so far use many
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approaches  to  handle this  page replacement  problem. This  paper  discusses  those algorithms,

approaches followed by them and a comparison among all those. 

1.2  Solution 

The  paper  finally  provides  an  approach  which  may  be  one  of  the  solution  to  the  page

replacement  problem.  The  solution  goes  as  follows:  instead  of  implementing  one  paging

replacement  algorithm  in  the  operating  system  for  use,  the  solution  implements  multiple

algorithms and a kernel parameter is used to switch between the algorithm depending on the

workload. Kernel parameter can be modified at run time to choose the algorithm that needs to be

executed for the current work load. The main aim of the whole process is to reduce the execution

time of a workload by decreasing the number of page faults without increasing the complexity of

the whole process. Decreasing the page faults involves effectively judging the pages that might

be referenced in the near future.

1.3  Scope

The scope of the project is to provide a support to change of the page replacement algorithms

depending on the current load on the machine. The system assumes that the work load will be the

same during the execution of the machine and a switch to the algorithm which outputs less page

faults can be made manually using the system parameters. The system will adapt to a different

work load  after  certain  period  of  time since the algorithm to use  can  be changed manually

according to the page faults in each algorithm. In worst case if the work load changes every time

a switch needs to be made every time.
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2.  BACKGROUND

The project has two section. The first section introduces the various page replacement algorithms

and their working. The second section provides an approach which may be one of the solution to

the page replacement problem.

2.1  Belady’s Min

Belady’s  Min algorithm is  the  ideal  page  replacement  algorithm which  is  suited  for  all  the

workloads. It states that the algorithm can replace the page which will be used farthest in the

future or which is not used at all [1]. But it’s impossible to predict the future in any case as all the

applications  are  accessed  randomly  in  any  computer  system,  so  it’s  always  impractical  to

implement this algorithm. This algorithm is used as a benchmark for the other algorithms.

2.2  First In First Out (FIFO)

As the  name suggests  the  algorithm chooses  the  page  which  is  first  brought  into  the  main

memory among all the other pages as the replacement one. The pages are added to the tail of the

queue which is a first in first out data structure [2]. The page which is at the FIFO queue’s head

will be replaced in case of page faults. This algorithm is not efficient since the page at the head

of the queue might be used very often. Removing it will lead to an extra page fault [3].

Figure 1 First In First Out Queue Representation
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2.3  Second Chance Algorithm

This algorithm is  an advancement  over the FIFO algorithm. Similar  to FIFO, this  algorithm

replaces those pages which are brought first into the main memory among all the other ones. A

reference bit ‘r’ is added to the page structure and will be set as the page is referenced. In case of

page fault, the reference bit of the oldest page in the queue is examined, if it is set, then it is

made zero and the page is added back to the queue [4]. The first page which is having ‘r’ bit as

zero  will  be  chosen as  the  replacement  page.  Second chance  algorithm is  better  than  FIFO

though it’s not the ideal one. In the worst case if all the bits are set, then all the bits are unset, and

the queue head comes back to the original position where it was before and removed from the

main memory. This algorithm requires hardware support for the reference bit [4].
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Figure 2 Second Chance Page Replacement Algorithm [4]

2.4  Enhanced Second Chance Algorithm

This algorithm is an enhanced version of second chance algorithm. Along with the reference bit,

this algorithm also introduces a modify bit. This algorithm also considers the modification done

to the content of the pages. Modification done to the pages needs to be written back to the disk

which takes some time, so the page without modification is chosen as the replacement page when

compared to the page with modification. Whenever a page is accessed and its content is changed

the modify bit is set for that page. Now the replacement policy goes like below.
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(Reference Bit, Modify Bit) Replacement Policy

(0, 0) Not recently referenced and modified. First

page to replace 
(0, 1) Modified recently. Can replace but need to

write out
(1, 0) Not  modified,  but  accessed,  so  rather  not

replace
(1, 1) Modified as well as accessed. Don’t replace

2.5  Least Recently Used (LRU)

This is a good approximation to the ideal page replacement algorithm. The algorithm considers

the  principle  of  locality.  The  pages  which  are  used  heavily  in  the  last  few instructions  are

assumed to be used heavily again or the pages which are not used for ages are assumed to be

probably not used at all [2]. In case of page fault it is good to replace the page which is not used

recently among all the other pages. The algorithm can be implemented using the linked list with

the page which is most recently used at the head and the one which is least recently used at the

tail of the linked list. The pages are replaced from the tail of the linked list. Since the algorithm

always moves the recently used pages to the head of the list, the list needs to be modified after

every  page  reference.  Though  implementing  the  LRU  is  achievable,  it’s  very  difficult  to

implement even in hardware [2].

One way of implementing in the hardware as described in [2] is to have a 64-Bit counter in the

page table entry for all the pages in the memory. This counter value is incremented whenever the

page is accessed. The page table entry is scanned every time and a page with the least counter

value is replaced. The main problem with the LRU is that it behaves worse in case of sequential
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access  of  large  files.  The  infrequent  sequential  access  of  large  files  always  evicts  the  most

commonly used files from the cache [7]. LRU doesn’t perform well for cyclic pattern of access

to a file if the file is little bit greater than the size of the cache. It always evicts the file which will

be used sooner [8].  

2.6  Clock

The algorithm is an approximation for LRU. The pages are added to a circular linked list and a

pointer points to the page which is referenced last. A reference bit is added to the page table entry

of a page and its set whenever the page is accessed. In case of page faults, the reference bit of

those pages with a value of ‘1’ is made 0 and the first page with the reference bit 0 is replaced

[1]. The algorithm is much more like an approximation for LRU with less overhead.

Figure 3 Clock Algorithm[1]
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2.7  Frequency Based Replacement

Frequency based replacement is similar to LRU but it maintains three sections for storing pages:

new, middle and old section [5]. Pages are moved between these sections depending on the time

they are in the main memory. FBR maintains a reference frequency count for all of the pages. If a

page is referenced its stored in the new section. On a page fault the page from the old section

with the lowest frequency count is replaced.  FBR’s failure includes the fact that it  needs to

increase the reference count every time and switch a page between the three sections every time

on a page reference.  

2.8  Least Frequently Used (LFU)

This page replacement algorithm Least Frequently Used works by calculating the frequency of

the access of each page. Each page will be assigned a counter in the page table and the counter is

incremented every time a page is referenced. In case of page faults, the page with the lowest

frequency is replaced. Though the algorithm seems to be very effective since it calculates the

frequency of access instead of time of access which had problems in LRU, this also has its own

disadvantages. Consider a situation where a page is accessed repeatedly many number of times

before a long time period and it’s not going to be used anytime in the future and another page

which is accessed only once and will be accessed in the future for sure. Whenever a page fault

occurs at this time, the page which has high frequency and is not going to be accessed in the

future will reside in the memory and the page with less frequency and which is going to be

accessed in the future for sure will be removed from the memory. This is a failure case for the

LFU algorithm.   
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The algorithm gives low preference to pages that just entered the main memory since they will

be having the low counter even though they might be used very frequently later. Due to these

drawbacks many hybrid varieties of LFU are always used as the page replacement algorithms.

3.  ADVANCE RESEARCHES IN PAGE REPLACEMENT ALGORITHMS 

3.1  LRU-K

The problem with the LRU algorithm is that it considers only the pages that are recently used as

worthy although the probability of accessing them in the future might be low. The page which is

accessed recently but accessed only once gets the advantage over the page which is not accessed

recently but accessed many times in the past. The page which is referenced many times in the

past is most likely to be referenced again in the future [5]. LRU fails to consider this scenario.

LRU-K which is an advanced version of LRU tries to solve this problem. LRU-K saves the last

K  references  of  each  page.  A reference  probability  is  calculated  using  the  time  difference

between the Kth last reference of the page and the current time is used as a page replacement

policy. The page specific access rate also known as the page’s heat which is used to determine

the access probability is calculated as 

heat (p) = K/ (current time – Kth last reference time) 

Then the access probability of each page in the next ‘T’ time units is calculated as 

 access probability = 1 – e-heat(p)T

The page with the minimum probability value is then used as the replacement page [2]. To gain

the advantage of low overhead implementation it is sufficient to maintain the heat(p) mentioned

above or the last k references of each page. The page with the lowest heat or the oldest k-th last

reference page is considered for replacement. The algorithm gave good results for K = 2. In



17

LRU-2 the algorithm maintains two most recent references of a page and chooses a page with the

least second-most reference time as the replacement one[5].

3.2  Dueling Clock (DC)

Dueling  clock  is  an  adaptive  version  of  CLOCK  algorithm and  has  a  low  overhead  when

compared to LRU. Clock algorithm is not scan resistant i.e.; it  is prone to failure in case of

sequential access of single-use pages which are greater than the memory available. In CLOCK

algorithm the clock pointer always points to the recently added page and the scanning always

starts from the page which is one greater than the recently added page. This might replace a page

which was  added before  and has  been accessed  many times  compared to  the  one  which  is

recently added and accessed only once. So the CLOCK algorithm doesn’t consider frequency.

DC avoids this by starting the scan from the recently added page instead of one page greater than

the recently added page [9]. Line 19 is removed from the figure CLOCK algorithm to implement

the DC algorithm [9].  

3.3  Least Recently/Frequently Used (LRFU)

The  least  recently/frequently  used  (LRFU)  algorithm  is  a  combination  of  LFU  and  LRU

algorithm. Every page is assigned an initial value F(x) = 0. F(x) is updated for every page access,

depending on the parameter y > 0 as 

F(x) = yF(x)  for all the pages other than the page which is referenced

F(x) = 1 + yF(x) for the page which is referenced 

In case of page faults the page with the minimum F(x) value is chosen as replacement one. As y

tends to 0 then F(x) will  be equal to the number of times the page is referenced, hence the

algorithm is similar to LFU. As ‘y’ tends to 1, the page which is recently accessed will have the
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greater value for F(x), so the algorithm behaves similar to LRU. So it’s very critical to choose the

‘y’ value. The performance of the algorithm depends on the ‘y’ value [14].

3.4  Adaptive Replacement Cache (ARC)

The  Adaptive  Replacement  Cache  (ARC)  algorithm  is  an  advancement  to  LRU  and  LFU

algorithm. The algorithm dynamically adapts to different workloads. The algorithm LRU-k and

LRFU uses a parameter which needs to be tuned by the user for different work loads. ARC

doesn’t  use  any  parameter  and  the  implementation  is  simpler  than  the  other  two.  Time

complexity is constant per request of a page.

The implementation consists of two LRU page lists instead of one, L1 and L2 [5]. The pages

which are referenced only once are added to the list L1 and the pages which are referenced more

than once are added to the list L2. The pages which are accessed more than once are likely to be

accessed again, so it can be said that L2 captures frequency and L1 captures recency [5]. L1 is

further separated into B1 and T1, similarly L2 into B2 and T2. T1 is for recently referred pages

and T2 is for frequently referred pages. T1 is extended by B1 which is called a ghost list, since it

has the metadata of those pages which are evicted from T1. It’s to be noted that B1 has only

metadata of all the pages; not the original pages. Similarly, T2 has those pages that are accessed

more than once, and B2 is the ghost list of the pages evicted from T2 [6]. 

The diagram below gives a good view of the ARC algorithm.  

T1 + T2 = c     B1 + B2 = c

L1 + L2 = 2c [6]
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where c denotes the total cache size in the number of pages. Top of L1 is the T1 which contains

the most recently used (MRU) pages; bottom of L1 is B1 which contains the least recently used

pages. Similarly, top of L2 is T2 and bottom of L2 is B2. 

Figure 4 Working of ARC algorithm [6]

Figure 5 Representation Model of ARC algorithm [6]
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In the above figure L1 list is interpreted from right to left, starting from the ! Marker. ^ marker

indicates the size limit of the list T1. The pages that just enter into the cache is placed to the left

of ! and is  gradually moved to the left.  Eventually it  is  moved into the B1 and finally it  is

dropped. In case if a page in T1 is referenced again, it is moved into T2 just to the right of ! and

is moved to the further right gradually, finally its moved into B2. If any of the pages in the T2 is

referenced one more time, then its again added just right of ! and it follows the same process

again.

In case of page fault, if the referenced page is in the list B1, the page will be moved to the list T1

from B1, moving the indicator ^ towards the right end and the last page in the list T2 will be

moved to B2. If the page to be referenced is in B2, then ^ is moved towards the left end and the

last page in T1 will be moved into B1. If the page is not in both B1and B2, then the page is

added to T1 without affecting the ^ indicator [6].

4.  IMPLEMENTATION

4.1  Current Implementation

The previous section discussed all the page replacement algorithms suggested as of today. Each

one has its own advantage and disadvantage. The algorithm which works in most of the case is

often implemented in many of the current operating systems available these days. Among those,

Least Recently Used (LRU) algorithm is implemented currently in the Linux Kernel. 

The following sections discuss about the implementation details of the Least Recently Algorithm

and implements Least Frequently Used algorithm and modified version of Least Recently Used

algorithm which is Least Recently Used – K (LRU-K). 
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4.2  Factors to be considered for a page replacement algorithm

Before discussing about the implementation, its important to consider some of the factors that

influences  a  page  replacement  algorithm.  The  page  replacement  is  mainly  done  on  three

occasions:

Low on Memory Reclaiming

This condition occurs whenever the kernel detects a low free space in the memory for the

process to start executing. The kernel should replace some pages in the memory before it

can start executing the process or while the process is executing [15].

Hibernation Reclaiming

This condition occurs whenever hibernation happens and the kernel needs to remove all

the pages from the memory [15].

Periodic Reclaiming:

In some linux kernel a thread is invoked periodically to free some space in the memory if

necessary [15].

The algorithm should also consider the different kind of pages that exists in the system. Some of

them are described below. 

• Unreclaimable Pages 

The pages that belong to the kernel. These pages should not be replaced at all and are

identified by PG_reserved flag set, which informs the operating system that the page

should not be replaced at all.

• Swappable Pages 
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These are the pages that belongs to a user process and can be swapped whenever

necessary. These pages can be replaced and can be stored in the swap area whenever

needed.

• Syncable Pages 

These are  pages  that  are  mapped from the  secondary  disk and belongs  to  a  user

process. These can be replaced and needs to be synchronized with its image on the

disk before replacing.

• Discardable Pages 

These are pages of some disk caches and some unused pages included in the memory

caches.  These pages can be replaced and can be discarded while replacing.

4.3  Design of the Page Replacement Algorithm

Selecting the appropriate page for replacement is the most sensitive task in the page replacement

algorithm. Compared to kernel pages,  disk or memory cache or pages of user mode process

should have more chance for replacement. Effective page replacement algorithm should take care

of all these conditions below

Harmless pages can be freed first

• Pages belonging to the caches in the disk or memory and which are not used by the

currently  executing  processes  should  be  first  replaced  than  the  ones  which  belongs  to  the

currently executing user process. In this case, the page tables of the user process need not be

modified as well [15].

User Mode Process Pages should be made reclaimable
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• The next candidate for effective page replacement policy are the pages that belong to

the user mode process and those which are not locked. In this way the pages that belong to a long

sleeping process can be reclaimed [15].

Replacement of a shared page

• The next candidate for effective page replacement policy is the shared pages. Before

replacing a shared page all the page table entries that belong to multiple processes need to be

removed [15].

Replace “unused” pages only

• According to principle of locality the pages that are not referenced for a long time

period will not be mostly referenced again. The algorithm should consider this principle and

replace only the pages which are not referenced for a long time period.

4.4  Current Implementation in Linux Kernel

Least Recently Used (LRU) is the algorithm which is currently implemented in the Linux kernel

[19]. LRU replaces those pages which are not used recently or the oldest pages. The algorithm

maintains two lists namely active list and inactive list to facilitate the page replacement [19]. The

algorithm maintains those pages which are recently accessed in the active list and those pages

which are not accessed for a certain period of time in the inactive list. The page to be replaced is

always taken from the inactive list.  

The states active and inactive are not just enough to handle all the workloads. For example in

case of a logger which will be accessed every hour will be in the inactive list most of the time but

when it is accessed after an hour its immediately moved to the active list, thereby denying the

replacement of the logger pages even though it will not be accessed for the next one hour. To
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avoid this situation an extra flag PG_referenced is added to the page structure. A flag PG_active

is used to indicate whether the page is in the active list (PG_active = 1) or its in the inactive list

(PG_active = 0). Initially a page entering the LRU will be in the inactive list with flag PG_active

= 0 and PG_referenced = 0. Whenever a page is accessed after this PG_referenced flag is set to

1, but the page still remains in the inactive list. If further after this  the page is accessed before

certain period of time, its moved to the active list with PG_active = 1 and PG_referenced = 0. If

its not accessed for a certain period of time when PG_active = 0 and PG_referenced = 1, then

again the PG_referenced will be set to 0. If a page is accessed within a certain period of time

after it reached the active list (PG_active = 0), then its PG_referenced is set to 1. Now clearly

there are 4 accesses needed to move the page to the top of the list. 

  

Figure 6 Describing the page state in LRU[15]
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4.5  Functions Involved in the Implementation

Default page size used in the Linux kernel is 4kb of memory. Each page in the Linux kernel is

identified by a structure which contains all the information necessary to represent a single page

in the memory. 

Figure 7 Page Structure in Linux Kernel[15]
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The following section discusses the major functions that are involved in the implementation of

the  least  recently  used  algorithm.  It  is  necessary  to  understand  how  the  functions  are

implemented currently before proceeding to the next implementation.

add_page_to_active_list( )

This function is to add a page to the LRU’s active list. The pages are added to the head of

the list and the nr_active flag which denotes the number of pages in the active list is incremented

every time after adding a new page [15].

add_page_to_inactive_list( )

This function is to add a page to the LRU’s inactive list. The pages are added to the head

of the list and the nr_inactive flag which denotes the number of pages in the inactive list is

incremented every time after adding a new page [15].

del_page_from_active_list( )

This function is to remove a page from the active list of the LRU. The flag nr_active is

decremented by one, denoting the removal of a page from the active list [15].

del_page_from_inactive_list( )

This function is to remove a page from the inactive list of the LRU. The flag nr_inactive

is decremented by one denoting the removal of a page from the inactive list [15].

del_page_from_lru( )

This function is to delete the page from the LRU lists. It first checks the PG_active flag,

and depending on the value, removes the page from either the active list or the inactive list and
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decrements the nr_active or nr_inactive flag accordingly in the zone descriptor [15]. Then it

finally clears the PG_active flag 

activate_page( )

This function is to move the page in to the active list if the PG_active flag is set and then

executes del_page_from_inactive_list( ) to delete the page from the inactive list, then executes

add_page_to_active_list( ) to add the page to the active list and finally sets the PG_active flag

[15]. These tasks are executed after acquiring the zone’s lru_lock spin lock.

lru_cache_add( )

This function is invoked to add a page to the LRU list if it is not already in the list. The

PG_lru flag will be set and the page is added to the inactive list of the particular zone by calling

the function add_page_to_inactive_list(). 

lru_cache_add_active( )

This function is invoked to add a page to the LRU list if it is not already in the list. This

function sets the PG_active, PG_lru flag and moves the page to the active list by calling the

function add_page_to_active_list() [15].

mark_page_accessed()

This  is  the important  function in  the whole implementation of  the algorithm. This is

called for every access of a page and depending on the flags in page structure, the page can be

moved to the active list [15]

4.6  LRU-K Implementation

This project implements the LRU-K algorithm in the Linux kernel 4.4.1. In the implementation

of LRU-K choosing a value for K is one of the critical parameter. If the value of K is 1 then its
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LRU algorithm. If K = 2 the algorithm remembers the last two references of a page. If K is

chosen to be greater than 2, then the algorithm provides only somewhat performance over K = 2

when the access pattern is stable [13] and remembering more references of a page would affect

the performance of the algorithm. The algorithm developed in the project takes the value of K to

be equal to 2. The algorithm finds the difference in time interval between the last access of a

page and the current time. It only considers those pages which has time interval less than a

threshold  value  and K = 2  denotes  that  the  page  should  have  been accessed  at-least  twice.

Whenever the page is accessed for the first time, the page’s first reference time is copied to a

variable. This page can be chosen as a replacement page since its accessed only once. Whenever

the page is accessed for the second time, second reference time is copied to a variable. Now

whenever a decision needed to be taken whether to replace this time, the difference between the

current time and the second reference time is calculated and if it is greater than a threshold value

then its considered for replacement. When the page is accessed for the third time, the second

reference time is copied to the first reference time and second reference time is copied with the

current time value.  All the time values noted here are the time since the computer is booted.  

4.7  LFU Implementation

In Least Frequently Used implementation a frequency variable is used to count the number of

references of a particular page.  The frequency variable associated with the page structure is

incremented every time when the page is referenced. The page is considered for replacement

whenever the page frequency count is less than a threshold value. Among those pages which has

the same frequency, the page which is at the tail of the list is considered for replacement [12].

5.  TEST SCENARIOS

All the tests are carried out under the following circumstances:
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1) Hardware Specification:

• PC with 2 GB of RAM.  A 2 GB of RAM plugged into the personal computer will not

always have an exact 2 GB  usage memory. It will be always less than that. So its better

to  use  a  4  GB of  RAM and then limit  the  memory to  2 GB in  the  GRand Unified

Bootloader (GRUB) menu.

• Another option is to have a virtual box with 2 GB of RAM. In this case the hyper visor

will exactly allocate 2 GB of RAM to the guest operating system.  

2) Software Specification:

• Ubuntu 16.04 

• Linux Kernel 4.4.1

• A large file of size 3 GB created using dd command

• Graphical User Interface (GUI) was disabled in the Ubuntu operating system, since GUI

process consumed around 250 MB of memory while executing. Because of this, the test

were  not  able  to  properly  get  executed,  since  the  available  free  memory  always

fluctuated. 

• Networking is disabled. 

3) Before executing each test case, the pages in the current memory is dropped.

4) The readahead feature in the kernel should be disabled. Readahead is a feature which

prefetches next few consecutive bytes of memory from a file into the cache, when a file is read,

so that the next access for the file can be directly made from the cache instead of the disk [10].
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This  feature  will  be  enabled  by  default.  The  test  was  initially  carried  out  with  this  feature

enabled, because of that the page faults occurred were found not to be the one expected. 

5) A system parameter kernel.page_algorithm defined in the sysctl.h is used to determine

which algorithm is currently executing [17].

kernel.page_algorithm = 0 LRU is being executed

kernel.page_algorithm = 1 LRU-K is being executed

kernel.page_algorithm = 2 LFU is being executed

A system parameter kernel.page_threshold is used to set  the threshold value for LRU-K and

LFU.

6) Page Faults and the execution time are noted for the current algorithm and the system

parameter is modified to execute the next algorithm.

7) Finally the page faults and the execution time [11] are taken for all the algorithms and the

results are compared with each other.

5.1  Test scenario 1:

This  test  is  to  showcase  the  performance  of  LRU-K  algorithm  over  the  other  two

algorithms (LRU & LFU). The following steps are executed using a separate Linux process in a

sequential manner. The input file of size 3 GB mentioned above is accessed across all the steps in

the test. 

Steps Involved

1) Read 512 MB of memory from 1 GB to 1.5 GB in the 3GB input file. Since the file is

read for the first time, the number of faults should be equal to (512 MB/ 4096) (Default page

size) in all the page replacement algorithms.
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2) Sleep for 10 seconds

3) Then read the same 512 MB which is  read in  the first  step again.  Since the page is

already in the cache, all the page replacement algorithms will have zero page faults.

4) Sleep 10 seconds

5) Now read 750 MB of memory from 0 to 750 MB in the 3GB input file. Since this 750

MB is read for the first time, the number of faults should be equal to (750 MB/ 4096) (Default

page size) in all the page replacement algorithms.

6) Again read the same 750M of memory for three times without any delay. In case of LRU-

K page access difference value will be updated and the pages belonging to the 750 MB will be

moved to active list. In case of LRU, reference bit will be set and the pages will be moved to

active list as well. In case of LFU, since the threshold is 5, the page will be still in the inactive

list.

7) Read 512M of memory ( from 1 to 1.5 GB ) again. In case of LRU, this page will be in

the inactive list before and now the reference bit will be set and it will be moved to active LRU

list. In case of LRU-K page access difference value will be updated but the value will be greater

than threshold value (10 secs) because the difference between current reference time and last

reference will be at least 60 seconds. At this stage, in LRU both 750M and 512M array will be in

active list and pages of 512M array will be in head of list since it is recently referred. In LRU-K

750M will be in active list but 512M will be in inactive list. The value of threshold determines

whether the 512M will be in the active list or inactive list. Any value less then 60 secs will make

the 512M to be in the inactive list, for simplicity the value is chosen to be 10 secs. In case of

LFU, both the pages will be in the inactive list. The threshold value (reference count) for LFU is
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chosen in  such a  way that  both  the  pages  will  be  in  the  inactive  list.  In  this  test  scenario,

threshold value for LFU is 5 counts.

8) Now read first 2GB array for two times(./temp). Since the RAM won't have space for

entire 2GB some pages from page cache will be removed to accommodate for new pages. In case

of LRU, the pages of 750M array will be in the first place to be removed compared to pages of

512M array. In case of LRU-K it is opposite; pages of 512M will be in first place to be removed

since it is in inactive list. In case of LFU, both will be in the inactive list and 750M will be in the

tail of list since it is not accessed last and so will be replaced.

9) Now read the first 1GB of memory (0 – 1GB). At this step, LRU and LFU technique

should throw large number of faults compared to LRU-K, since the first 750MB (0-750 MB) was

replaced in case of LRU and LFU, so a fetch of 0-1GB will throw more page faults. In case of

LRU-K a small  amount of 0-750 MB only would have been replaced, so there will  be less

number of page faults. 

Results

The results from the previous test shows that LRU-K performs better than LRU and LFU. The

test was executed for 10 iterations and in case of LRU the average page fault obtained is 912537.

In case of LFU average page fault is 938372 and in case of LRU-K the average page fault is

786787.  Average Execution time for LRU, LFU, LRU-K are 96 seconds, 97 seconds and 86

seconds respectively. This is 11% increase in the efficiency in case of LRU-K.
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34

5.2  Test Scenario 2

This test is to showcase the performance of LRU algorithm over the other two algorithms (LRU-

K & LFU). The following steps are executed using a separate Linux process in a sequential

manner. The input file of size 3 GB mentioned above is accessed across all the steps in the test. 

1) Read 1GB of memory (from 0 to 1GB) from the file for first time. All three algorithms

will show same number of page faults.

2) Sleep for 15 seconds

3) Read the same 1GB (from 0 to 1GB) memory again. All three algorithms will show zero

page faults
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4) Sleep for 15 seconds

5) Read 512MB of memory from 1G to 1.5G for the first time

6) Read 512MB of memory again for four times without a delay. In case of both LRU and

LRU-K, 512MB pages will be in active list and the reference bit is set. In case of LFU the pages

will be in inactive list since the access count is 2 which is less than the threshold value.

7) Read 1GB of memory again(from 0 to 1G). In case of LRU, reference bit will be set and

it is moved to active list. In case of LRU-K, since these array pages are accessed after LRU-K

threshold seconds, it won't be moved to active list and it remains in inactive list. The value of

threshold determines whether the 1GB pages will be in the active list or inactive list. Any value

less then (15 secs + time taken to access 512MB of memory) will make the 1GB to be in the

inactive list, for simplicity the value is chosen to be 10 secs. In case of LFU it remains in inactive

list as well since the threshold count is chosen to be 5.

8) Read 2GB array (from 0 to  2G) two times.  In case of  LRU, 512 MB pages will  be

replaced first to accommodate for new pages and in case of LRU-K and LFU, 1GB pages will be

replaced first. So In case of LRU-K and LFU more number of 1GB pages will be replaced.

9) Now read 1GB array of pages again. As expected, LRU-K and LFU will throw larger

number of faults compared to LRU. Execution time of LRU should be less than the LFU and

LRU-K.

Results

The results from the previous test shows that LRU performs better than LFU and LRU-K. The

test was executed for 10 iterations and in case of LRU the average page fault obtained is 726642.

In case of LRU-K average page fault is 933426 and in case of LFU the average page fault is
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950348.  Average Execution time for LRU, LRU-K, LFU are 88 seconds, 102 seconds and 103

seconds respectively. This is a 10% increase in the efficiency in case of LRU.
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Figure 10  Chart comparing page faults of LRU with LFU and LRU-K
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5.3  Test Scenario 3

This test is to showcase the performance of LFU algorithm over the other two algorithms (LRU

& LRU-K). The following steps are executed using a separate Linux process in a sequential

manner. The input file of size 3 GB is accessed across all the steps in the test. Threshold chosen

for LRU-K is 10 secs and for LFU threshold is 3 counts.

Steps Involved

1) Read 512 MB of memory from 1 GB to 1.5 GB in the 3GB input file. Since the file is

read for the first time, the number of faults should be equal to (512 MB/ 4096) (Default page

size) in all the page replacement algorithms.

2) Sleep for 1 second
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3) Then read the same 512 MB which is  read in  the first  step again.  Since the page is

already in the cache, all the page replacement algorithms will have zero page faults.

4) Sleep 1 second

5) Now read 750 MB of memory from 0 to 750 MB in the 3GB input file. Since this 750

MB is read for the first time, the number of faults should be equal to (750 MB/ 4096) (Default

page size) in all the page replacement algorithms.

6) Again read the same 750M of memory for three times without any delay. In case of LFU,

since the threshold is 3 and the page is accessed more than thrice the page will be moved to the

active  list.  In  case  of  LRU-K page  access  difference  value  will  be  updated  and  the  pages

belonging to the 750 MB will be moved to active list. In case of LRU, reference bit will be set

and the pages will be moved to active list as well. 

7) Read 512M of memory ( from 1 to 1.5 GB ) again. In case the pages are referenced 3

times since its not greater than the threshold value which is 3, the pages are not moved to active

list. In case of LRU, now the reference bit will be set and it will be moved to active LRU list. In

case of LRU-K page access difference value will  be updated and the value is  less than the

threshold value (10 secs) so the pages will be moved to active list as well. Since this test was to

showcase the performance of LFU over LRU and LRU-K, the threshold value in LRU-K is

chosen in such a way that the 512M of memory is moved to active list as well. Any value larger

than the time taken to read 712M of memory (which was around 5 secs) will move the pages to

active list. For simplicity the threshold value is chosen to be 10 secs. At this stage, In LFU 750M

will be in the active and 512M will be in the inactive list. In LRU and LRU-K, both the pages

will be in the active list.
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8) Now read first 2GB array for two times(./temp). Since the RAM won't have space for

entire 2GB some pages from page cache will be removed to accommodate for new pages. In case

of LRU and LRU-K, the pages of 750M array will be in the first place to be removed compared

to pages of 512M array. In case of LFU it is opposite, pages of 512M will be in first place to be

removed since it is in inactive list. 

9) Now read the first 1GB of memory (0 – 1GB). At this step, LRU and LRU-K technique

should throw large number of faults compared to LFU, since the first 750MB (0-750 MB) was

replaced in case of LRU and LRU-K, so a fetch of 0-1GB will throw more page faults. In case of

LFU a small amount of 0-750 MB only would have been replaced, so there will be less number

of page faults.

Results

The results from the previous test shows that LFU performs better than LRU and LRU-K. The

test was executed for 10 iterations and in case of LRU the average page fault obtained is 952899.

In case of LRU-K average page fault is 861541 and in case of LFU the average page fault is

729527.  Average Execution time for LRU, LRU-K, LFU are 75 seconds, 70 seconds and 60

seconds respectively. This is a 20% increase in the efficiency in case of LFU.
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Figure 12  Page Faults of LFU over LRU and LRU-K 
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5.4  Test Scenario 4

The  following  steps  are  executed  in  a  sequential  manner  to  prove  that  LRU-K  algorithm

performs better than LRU. In this test case instead of using the same input file, the input file to

be read is varied for 10 different execution times. For this test case, the free memory available

was 1GB before executing the test case.

Steps Involved

1. First read 512MB of memory from the input file starting from 512MB to 1GB. 

2. sleep for 10 seconds

3. Then read the same 512 MB of memory again

4. sleep 10 seconds

5. Read another 512 MB of memory starting from 0 to 512MB from the input file.

6. Again read the same 512MB of memory for three times without any delay. In case of LRU-K

page heat value will be updated and it will be moved to active list and in case of LRU, reference

bit will be set and it will be moved to active list.

7. Now read the 512MB of memory from 512MB to 1GB again. In case of LRU, reference bit is

set and it will be moved to active list. In case of LRU-K page heat value will be updated but the

page  heat  value  will  be  less  than  threshold  value  because  the  difference  between  current

reference time and last reference will be at-least 60 seconds. LRU-K threshold value is 10.

At this stage, In LRU both 512MB (512MB-1GB) and 512M (0 – 512MB) array will be in active

list and pages of 512M (512MB – 1GB) array will be in head of list since it is recently referred.
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In LRU-K (0 - 512MB) will be in active list but pages of  512MB – 1GB memory will be in

inactive list.

8. Now read 512MB of memory from 1GB to 1.5 GB of memory from the input file for four

times. Since the RAM won't have space for the new 512MB, some pages from page cache will

be  removed to  accommodate  for  new pages.  In  case  of  LRU,  the  pages  of  first  512Mb of

memory will be in the first place to be removed compared to pages of second 512MB (512MB -

1GB) of  memory. In case of LRU-K it is opposite; pages of second 512MB (512MB – 1GB) of

memory will be in first place to be removed since it is in inactive list.

9. Now read first 512MB of memory from 0 – 512MB from the input file. At this step, LRU page

replacement algorithm should throw large number of faults compared to LRU-K.

Results

This experiment was executed for 10 different input files of the same size 2 GB and found the

results to be same for all the files. LRU-K throw less number of page faults when compared to

LRU. On average LRU-K throws on average 393216 page faults  while LRU throws around

524288 page fault. The average execution time taken by LRU was 42 seconds while LRU-K took

40 seconds, which is 5% increase in the efficiency. 
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6.  CONCLUSION

The  results  obtained  from  the  previous  test  scenarios  proves  that  the  efficiency  of  a  page

replacement  algorithm  depends  on  the  work  load  at  that  particular  moment  and  also  the

parameters used in the algorithms. Many test scenarios can be developed to prove the advantage

of  one  algorithm  over  another.  Its  not  always  easy  to  predict  the  work  load  and  also  the

parameters before in advance in case of the real time systems. So its very difficult to employ a

page replacement algorithm which gives always the best result for all the work loads. It is better

to employ an approximation algorithm which gives some good results to all  the work loads.

Least frequently Used (LFU) always considers the number of times the page is used, but a page

might be used heavily in the past, but not at all the future, which will always lead to more page

faults since the page heavily used in the past will not be replaced at all. Least Recently Used

(LRU)  and  Least  Recently  Used  -  K  (LRU-K)  are  the  best  approximation  to  the  optimal

algorithm, since the page which is used recently is likely to be used again. The K value in the

LRU-K makes it  better  suited,  since the page which is  accessed more than twice (K == 2)

recently is more likely to be used again. So the project concludes saying the LRU and LRU-K

algorithm are the best choices for all the work loads.

7.  FUTURE WORK

This project work suggests to change the page replacement algorithm manually by changing the

system  parameters  in  the  kernel,  whenever  the  work  load  changes.  There  should  be  a

findings/proof that a particular algorithm works good among others for a particular workload and

the  system administrator  needs  to  change  the  parameter  when  the  workload  executes.  This

project can be extended to dynamically change the page replacement algorithm by the kernel

itself.  For  this  to  get  implemented  the  kernel  should  calculate  all  the  page  replacement
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algorithm’s page faults at all times and switch to an algorithm with the least number of page

faults after a scheduled timer. Care should be taken such that the time complexity and the space

complexity of the algorithm will not exceed the current algorithm.
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