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ABSTRACT 

DNA in the nucleus of all eukaryotes is transcribed into mRNA where it is then translated into 

proteins. The DNA which is transcribed into mRNA is composed of coding and non-coding regions 

called exons and introns, respectively. It undergoes a post-trancriptional process called splicing 

where the introns or the non-coding regions are removed from the pre-mRNA to give the mature 

mRNA. Splicing of pre-mRNAs at 5΄ and 3ˊ ends is a crucial step in the gene expression pathway. 

The mis-splicing by the spliceosome at different sites known as cryptic splice sites is caused by 

mutations which will affect the primary mRNA product formed and eventually the protein that is 

created. This leads to devastating genetic diseases. 

Consequently it is of extreme importance to understand the reason behind the mis-splicing caused 

by the mutation and why particular splice sites known as cryptic splice sites are chosen instead. 

This work aims to answer this central question. It aims to understand why known cryptic splice 

sites are selected over authentic splice sites and whether we can detect and predict putative cryptic 

splice sites in the human genome.  

This project utilizes two different probabilistic models, namely position weight matrices and 

hidden Markov models, to answer this question. Position weight matrix is a widely used 

computational method in bioinformatics and is used to represent motifs in biological sequences. 

Hidden Markov Model is a statistical method of modeling a system that has several unobserved or 

hidden states. It is an effective method for representing the probability distribution over several 

observable sequences.  We utilized the Baum-Welch algorithm for successfully training the model 

to accurately calculate the probability of an observation sequence. We finally utilized the Forward 

algorithm in order to learn from the trained model and determine the likelihood of an observed 

sequence for that model.
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CHAPTER 1 

Introduction 

1.1 Background 

Eukaryotic chromosomes consist of millions of base pairs, some of which carry genetic material 

and are called genes. In humans, a single gene may be on average around 10 to 50 thousand base 

pairs long. [1] When a gene is expressed, a specific protein is produced. In molecular biology, a 

collective process occurs by which the genetic code is read in order to produce all of the proteins 

in an organism. The first step in this process is called transcription during which introns, which 

are the non-coding regions, are removed from the RNA sequence. For the process of transcription, 

the enzymes use one of the DNA strands within a gene as a template to produce a messenger RNA 

or mRNA. RNA splicing is an important step that occurs during the process of transcription. 

Splicing is performed by the spliceosome, which is a large and complex molecular machine.  

Introns are removed from the pre-mRNA to give the mature mRNA. For the next step in the 

process, the mature mRNA undergoes the process of translation for protein synthesis in the human 

body. The key factors in this process are the introns containing genetic code, exons and the 

spliceosome. 

  

    

 

 

Figure.1: 5ˊ and 3΄ ends on an RNA. [2] 
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For the process of splicing, the spliceosome looks for specific signals, which are the conserved 

nucleotides in the intron.  In the 5ˊ end of the intron, these are GT and in the 3ˊ end of the intron, 

these are AG. These regions signify the beginning and end of the intron. Splicing is conducted by 

the spliceosome which is made up of several proteins and RNA complexes. Normally, splicing 

occurs at the GT region, i.e. the 5ˊ end of the intron and the AG region, i.e. the 3ˊ end of the intron. 

These normal splice sites are known as authentic splice sites. [1] The two exons are then ligated 

together.  

A splice site mutation is a genetic mutation that may insert, delete or change one or several 

nucleotides in a specific region where splicing will occur. [2] Splice site mutations are very harmful 

as they affect the final protein product being produced during translation, and this causes genetic 

diseases. One direct result of splice site mutations is the occurrence of cryptic splice sites. A cryptic 

splice site is an mRNA sequence that has the potential for interacting with the spliceosome. [3] 

Cryptic splice sites are used only when a natural splice site is disrupted by mutation. 

To better understand the mechanics behind the spliceosome’s selection of cryptic splice sites, two 

data sets, consisting of authentic and cryptic 5ˊ splice sites were built. The data sets included 

hundreds of 9-mers: sequences that are 9 bases long. Nucleotides in positions 1-3 lie in the exon 

while nucleotides in positions 4-9 lie in the intron. Positions 4 and 5 are the invariant GT 

dinucleotide; this is characteristic of all 5ˊ splice sites. An additional data set of random 9-mer 

sequences was also utilized for building the probabilistic models. These random 9-mer sequences 

are neither authentic splice sites nor cryptic splice sites to our knowledge.  

We built and implemented two probabilistic models, namely, position weight matrices and hidden 

Markov models for each data set. By statistically calculating the accuracy of the two probabilistic 

models and realizing whether they are the same or are different, we could come to a conclusion 

about the inherent differences and similarities between authentic and cryptic splice sites.  
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Based on the results of the authentic and cryptic probabilistic models, the next step was to 

understand the reason behind the specific choice of the spliceosome. Why has it chosen a specific 

cryptic splice site over other potential candidates for splicing in its neighborhood? So sequences 

comprising of 100 base-pairs downstream and 100 base-pairs upstream of each cryptic splice site 

were extracted using a web crawler software. [4] An analysis of the sequences was conducted and 

probabilistic models of all 9-mers in the vicinity of the cryptic splice sites were built. A comparison 

was made between the results of both the probabilistic models, to further validate the results we 

obtained. This gave us a better understanding of the important features the spliceosome looks for 

in choosing a specific 9-mer to become a 5ˊ cryptic splice site. It helped us to have a clear picture 

of whether or not the consensus in the 9-mer sequences of the cryptic splice sites played the biggest 

role for the spliceosome to make a decision while selecting, or whether there were other biological 

reasons involved which was beyond our understanding. These results will further help us in the 

quest in predicting and detecting putative cryptic splice sites. 

In further chapters, the detailed explanation of the algorithms used and the implementation 

involved for position weight matrices and hidden Markov models are given.  

1.2. Project overview: Comparing and analyzing cryptic splice sites using different 

probabilistic models 

The following is a summary of the different steps involved for the completion of the project: 

a) Collect thousands of 9-mers representing 5ˊ authentic splice sites (5ASpS). 

b) Collect hundreds of 9-mers representing 5ˊ cryptic splice sites (5CApS). 

c) Build probabilistic models PWM and HMM for the 5ˊ authentic splice sites (PWM5ASpS 

and HMMASpS). 

d) Build probabilistic models PWM and HMM for the 5ˊ cryptic splice sites (PWM5CSpS and 

HMMCSpS). 
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e) Implement an algorithm to compare the two HMM models: HMM5ASpS and HMM5CSpS.  

f) Implement an algorithm or alternative method to compare the two PWMs: PWM5ASpS 

and PWM5CSpS. 

g) Extract neighboring sequences 100 base pairs downstream and 100 base pairs upstream of 

each cryptic splice site - and include the 5ˊ cryptic splice site (Seq2005CApS). 

h) Collect all 9-mers from each Seq2005CApS (9mSeq2005CApS). 

i) Score the neighboring sequences Seq2005CApS in HMM5CASpS and PWM5CASpS. 

j) Score the neighboring sequences Seq2005CApS in HMM5CSpS and PWM5CSpS. 

k) Come to a conclusion about the significance of similarity or differences between authentic, 

cryptic and neighboring splice sites.  

 

The remainder of this report is organized as follows: Chapter 2 explains the datasets used for the 

project and the sources from which the data was collected. Chapter 3 includes position weight 

matrices and their definitions. Chapter 4 covers ROC curves and how to determine a good threshold 

value for scoring. Chapter 5 includes motifs and representing sequences as a logo. Chapter 6 

explains hidden Markov models, forward algorithm, backward algorithm and Baum-Welch 

algorithm. Chapter 7 explains the results obtained from the implementation of PWM and HMM. 

Chapter 8 includes a conclusion and future work for the project.  
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CHAPTER 2 

Building the Dataset 

2.1 Dataset Sources 

For collecting thousands of 9-mers representing 5ˊ authentic splice sites, we made use of the 

BRCA-1 gene, which contains 30 authentic splice sites and 38 cryptic splice sites. Additionally, 

we utilized 490 authentic and cryptic splice sites from a mixture of different genes. These 490 pairs 

of 9-mers were collected from a study conducted by Roca, Sachidanandam and Krainer. [5] 

Another location from where test data of authentic and cryptic splice sites was collected was the 

DBASS website: http://www.dbass.org.uk/ [6] which consists of hundreds of 5ˊ cryptic splice sites. 

NCBI’s cryptic splice site finder tool was utilized which is located at: 

https://www.ncbi.nlm.nih.gov/IEB/Research/csf/csf.cgi?page=home.[7] The following link: 

https://www.ncbi.nlm.nih.gov/pubmed [8] contains published examples of cryptic 5′ss activation 

which we have used in this project. Only experimentally verified cryptic 5′ splice sites have been 

included here. 

 

2.2 Collection of the test data 

The test data was collected from the above sources. We made use of a web-crawler script [4] which 

extracted cryptic splice sites from the DBASS database. It extracted 539 cryptic splice sites out of 

which 368 splice sites were unique. The web crawler script was also used to extract the neighboring 

data 100 base pairs downstream and 100 base pairs upstream from the cryptic splice site. It 

extracted 2213 records out of which 1500 records were unique. Using these datasets, we 

implemented position weight matrices, which are covered in the next chapter.  

http://www.dbass.org.uk/
https://www.ncbi.nlm.nih.gov/IEB/Research/csf/csf.cgi?page=home
https://www.ncbi.nlm.nih.gov/pubmed
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CHAPTER 3 

Position Weight Matrices 

3.1 Probability Matrix 

A position weight matrix (PWM) is a commonly used representation of motifs (patterns) in 

biological sequences. [9] A PWM for DNA sequences consists of a 4 X N matrix, where N 

represents the length of the sequence. The matrix has one row for each symbol of the alphabet: 4 

rows for nucleotides in DNA sequences (consists of A,C,G,T) or 20 rows for amino acids in protein 

sequences. It has one column for each position in the pattern.  

 

3.2 Creating a Position Probability Matrix  

The first step in constructing a position weight matrix is calculating the frequency of each 

nucleotide at every position in the sequence. The obtained matrix is known as a frequency matrix 

or weight matrix. 

 

Figure 2: Given Sequences [10] 



 
Computational Analysis of Cryptic Splice Sites 
 
 

7 
 

Given the sequences in Figure 2, we observe the frequencies of occurrence of each of the 

nucleotides {A,C,G,T} at position 1 to 9 and calculate a frequency matrix.  

We end up with the following frequency matrix: 

 

Figure 3: The corresponding frequency matrix (PFM) for the given sequences [10] 

 

The next step is to calculate the corresponding probability matrix, which is obtained by dividing 

each value with the total number of sequences. From the PFM, a position probability matrix (PPM) 

can now be created by dividing that former nucleotide count at each position by the number of 

sequences, thereby normalizing the values. For example, at position 1 we have the following 

values: 

fA,1 =  
3

10
  fC,1 = 

2

10
  fG,1 = 

1

10
 fT,1 = 

4

10
 

Similarly, we can calculate the same values for all sequences given in Figure 2, and we get the 

following table: 

 

 

     

 

 

  Figure 4: The resulting position probability matrix for the given sequences [10] 
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For most sequences at position 4 and 5 we observe only the nucleotides G and T, respectively. 

There may be rare cases where other nucleotides may also be found. To consider such observations, 

we need to do a process called additive smoothing or Laplace smoothing to smooth the categorical 

data. [9] In this case, we add 4 sequences: AAAAAAAAA, CCCCCCCCC, GGGGGGGG, 

TTTTTTTTT (+1 in the numerator). These sequences would give us a pseudocount of 1, called the 

Laplace pseudocount at each position.   

 

fA,1 = 
3+1

10+4
      fC,1 = 

2+1

10+4
  fG,1 = 

1+1

10+4
      fT,1 = 

4+1

10+4
  

 

Updating the matrix given in Figure 4, we obtain the new position probability matrix calculated. 

It is given in the following table:  

 

Table 1: Corresponding PPM for given sequences with Laplace pseudocounts 

  

  

3.3 Log-odds Matrix 

Instead of creating a table of frequencies, we create a table of log-odds. The significance of the 

log-odds scores is that it indicates whether a nucleotide is more likely to occur at a given position 

than it is to occur over the entire sequence.  Log-odds ratios allows us to normalize the values 
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obtained. If the ratios are not taken, then a score that deviates by even a minute number from the 

norm will give a very low score.   

The log-odds matrix is calculated by taking the logs of the ratio of observed frequency of the 

nucleotide from the sequences and the expected frequency of the nucleotide. The expected 

frequency is calculated from a large dataset of sequences. The genome-wide average G and C 

content is 44% and of A and T is 56%. Then the probability of an A and of a T is 0.56/2 = 0.28. 

The probability of a G or a C is 0.44/2 = 0.22. [9] 

 

 

 

Figure 5: Significance of probability and log-odds values [9] 

 

If the ratio of the probability of observed vs probability of expected is bigger than 1.0, then the log 

odds will be a positive value. If the nucleotide is less likely to occur at a certain position than it is 

to occur over the entire sequence, then the ratio will be smaller than 1.0 and the log odds will be a 

negative value as indicated in Figure 5. [10] For the given sequences at position 1, where we take 

the background frequencies for A and T to be 0.28 and G and C to be 0.22, we would get the 

following log-odds values: 

 

Log-odds score for A = log2 
0.286

0.28
 = 0.031 

Log-odds score for C = log2 
0.214

0.22
 = -0.039 
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Log-odds score for G = log2 
0.143

0.22
 = -0.621 

Log-odds score for T = log2 
0.357

0.28
 = 0.350 

 

Similarly, for the ten 9-mer sequences given in Figure 2, we get the following log-odds table:  

 

                            Table 2: PWM for given sequences in Figure 2 with log base 2  

 

 

3.4 Scoring the Sequences 

Once a PWM is trained with a significant amount of sequences, the subsequent sequences can then 

be scored using the log-odds table. The sequences can be tested to see if it is a similar sequence by 

adding up the individual values for each position from the log-odds table and then comparing this 

against a threshold value. 

For example, if we want to score a sequence ‘GCAGTACCT’, we add up the log-odds values as 

shown highlighted in the table below: 
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 Table 3: Summing up log-odds values for the given sequences from Figure 2 with log base 2 

 

 

By adding up these individual values, we get the score of the sequence ‘GCAGTACCT’ to be: 

(-0.621) + (-0.039) + (-0.969) + (-0.621) + (-0.969) + 0.836 + (-0.621) + (-0.621) + 0.836 =  

-2.789. 

To determine the threshold value, we make use of Receiver Operating Characteristic (ROC) curves 

which are explained in the next chapter. 

We implemented a PWM for authentic splice sites and a PWM for cryptic splice sites by using a 

training dataset. The training dataset consisted of 80% of the total dataset that we had for authentic 

splice sites and cryptic splice sites. We tested the remaining 20% of the authentic and cryptic splice 

sites in their respective PWM models. The scores for these authentic and cryptic splice sites were 

computed. These scores were then used to implement ROC curves to determine an appropriate 

threshold value and assess whether the model could be considered a good one. 

   

3.5 Cross-Scoring of the PWM 

We scored the test data of the cryptic splice sites in the authentic PWM and the test data of the 

authentic splice sites in the cryptic PWM. This was done to determine the cross-scores of authentic 

and cryptic splice sites which would further give us an idea of their similarities. Random splice 

sites which are neither authentic splice sites nor cryptic splice sites were used for the false dataset 
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values which is required to calculate the accuracy of the model classifier. Additionally, we scored 

the neighboring splice site dataset in the authentic PWM and in the cryptic PWM to determine 

whether they were similar or different.  

 

3.6 Limitations of PWM 

PWMs are popular in terms of measuring and predicting splice sites and are widely used in 

molecular  biology. However, the biggest limitation is that they assume independence between the 

nucleotides at individual positions. Independence between the nucleotides for a given sequence 

may not always hold true. For example, in the sequences given in Figure 2, we can see that the 

nucleotide at position 4 is a G and at position 5 is a T in every sequence in the given example. This 

indicates that GT at these positions almost always occur. This holds true for all the sequences used 

in the datasets for the project-authentic, cryptic, random and neighbor splice sites. However, this 

is not taken into consideration while building a PWM.  

Another limitation is that while calculating the accuracy of the PWM using ROC curves, it was 

noticed that the scores were not as high as those of an HMM. This may be because the PWM is 

trained purely using a single type of dataset. For example, authentic PWM is trained using authentic 

splice sites only. It is not possible to train these PWMs using the random or false dataset, which 

could be considered another disadvantage.  

In the next chapter, we will cover motifs that are created using PWMs and representing sequences 

as logos.  
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CHAPTER 4 

Motifs and Logos 

5.1 Representing sequences as a logo 

DNA motifs are nucleotide sequence patterns of functional significance. Logos are visual 

representations of a set of sequences that are aligned together. These indicate the dominating 

nucleotides present at a particular position.  The size of the character in the stack of characters is 

proportional to the character’s frequency in that position.  The total height of each column is 

proportional to its information content.  Information theory quantifies the amount of information. 

[9] Each logo consists of stacks of symbols, one stack for each position in the sequence. The 

overall height of the stack indicates the sequence conservation at that position, while the height of 

symbols within the stack indicates the relative frequency of each amino or nucleic acid at that 

position.  

 

5.2 Information content of sequence logos 

The total height of a column is proportional to the information content it holds. For sequences with 

4 bases, the information content is given as follows [9]: 

𝐼𝑗   =  𝑙𝑜𝑔2(4) −  𝐻𝑗 

Here , Hj is the entropy of a column j. 

The entropy at a given position j is defined as follows [9]: 

Hj = − ∑ 𝑓𝑥,𝑗𝑙𝑜𝑔2(𝑓𝑥,𝑗) 
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Where 𝑓𝑥,𝑗 is the frequency of a character x at position j. The summation is over all the characters 

in the given sequences at that position. The unit for entropy is in bits.  

Now for any given sequences containing the 4 nucleotides,  we can calculate the information 

content using the formula [9]: 

𝐼𝑗  =  𝑙𝑜𝑔2(4) + ∑ 𝑓𝑥,𝑗𝑙𝑜𝑔2(𝑓𝑥,𝑗) 

= 

𝐼𝑗  =  2 + ∑ 𝑓𝑥,𝑗𝑙𝑜𝑔2(𝑓𝑥,𝑗) 

For a given set of sequences, if one base occurs every time at that position, the information content 

will be maximum, i.e. 2 bits. If two bases occur every time at that position, the information content 

will be 50% i.e. 1 bit. If the nucleotides at a given position are equally distributed, then the 

information content will be lowest i.e 0 bit. 

The website: http://weblogo.berkeley.edu/logo.cgi [13] allows us to upload files containing 

sequences and it gives us the sequence logos in return. Figure 6 to Figure 9 depict the sequence 

logos for authentic, cryptic, neighboring and random splice sites that we used as the dataset for our 

probabilistic models.  

 

 

        Figure 6: Authentic splice sites logo [13] 



 
Computational Analysis of Cryptic Splice Sites 
 
 

15 
 

Figure 6 is the sequence logo of the authentic splice sites. The dataset for creating the logo consisted 

of 770 unique authentic splice sites. From Figure 6, we can see that the nucleotide G at position 4 

and nucleotide T at position 5 is completely conserved. This gives us the highest information 

content of 2 bits at positon 4 and 5. At position 1, we do not have any nucleotides showing and this 

represents very low information content for the position. 

 

 

Figure 7: Cryptic splice sites logo [13] 

 

Figure 7 is the sequence logo of the cryptic splice sites. The dataset for creating the logo consisted 

of 368 unique cryptic splice sites. From Figure 7, we can see that the nucleotide G at position 4 

and nucleotide T at position 5 is again completely conserved, and therefore it represents 

information content of 2 bits at these positions. At position 1, we again do not have any nucleotides 

showing and this represents very low information content for the position. From Figure 6 and 

Figure 7 we can see that authentic and cryptic splice sites have somewhat similar consensus 

sequences.  
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Figure 8: Neighboring splice sites logo [13] 

 

Figure 8 is the sequence logo of neighboring splice sites, which were extracted 100 base pairs 

upstream and 100 base pairs downstream, from the cryptic splice site for different genes. The 

dataset for creating the logo consisted of 1516 unique neighboring splice sites. From the sequence 

logo, we can observe that nucleotides G and T are conserved at positions 4 and 5 respectively and 

represents information content of 2 bits at these positions. At the other positions in the sequence, 

we have no nucleotides being conserved and this gives us very low information content at these 

positions.  We can infer from the sequence logo that except for the GT dimer, neighboring splice 

sites are otherwise different as compared to authentic and cryptic splice sites. 

 

 

              Figure 9: Random splice sites logo [13] 
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Figure 9 is the sequence logo for random splice sites which we used as the false dataset for our 

experiments with PWM and HMM.  These random splice sites selected were neither authentic 

splice sites nor cryptic splice sites to our knowledge. The dataset for creating the logo consisted of 

13508 unique random splice sites. From the sequence logo, we can observe that nucleotides G and 

T are again conserved at positions 4 and 5, respectively and represents information content of 2 

bits at these positions. At the other positions in the sequence, we have no nucleotides being 

conserved and this gives us very low information content at these positions.  We can confirm from 

the sequence logo that except for the GT dimer, random splice sites are quite different as compared 

to authentic and cryptic splice sites, but have more similarity with neighboring splice sites. 

In the following chapter, we will study the second probabilistic model that we used, i.e. hidden 

Markov models and the various algorithms that we implemented.  

 

  



 
Computational Analysis of Cryptic Splice Sites 
 
 

18 
 

 

CHAPTER 6 

Hidden Markov Models 

6.1 Definition  

A hidden Markov model (HMM) is a statistical tool that is used to detect patterns in a sequence of 

observations. Some of the applications of HMM are gene prediction, differentiating between splice 

sites, speech recognition and detection of malware. Hidden Markov models contain states and a 

distribution of probabilities, i.e. start probabilities, transition probabilities and emission or 

observation probabilities. Emission probability is the probability that some observation has been 

emitted by some state. Transition probability is the probability of moving from one state to the 

next.  

The most common notation used in HMMs are given as follows [14]:  

T = length of the observation sequence  

N = number of states in the model  

M = number of observation symbols  

Q = {q0, q1, . . . , qN−1} = distinct states of the Markov process  

V = {0, 1, . . . , M − 1} = set of possible observations  

A = state transition probabilities  

B = observation probability matrix  

π = initial state distribution  

O = (O0, O1, . . . , OT-1) = observation sequence 
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Figure 10: Hidden Markov Model [14] 

 

Figure  10 depicts a general hidden Markov model. The probability of transition from one state to 

another is denoted by A. Each state emits an observation O with an emission probability denoted 

by B. 

 

6.2 Types of Problems solved by HMM 

Hidden Markov models can be used to solve three problems as follows [14] :  

Problem 1: The Evaluation problem 

Given the model λ = (A, B, π) and a sequence of observations O, find P (O | λ), i.e. the probability 

of an observed sequence O, given the model λ. [14] 

Problem 2: The Decoding problem 

Given the model λ = (A, B, π) and an observation sequence O, determine an optimal state sequence 

for the Markov model, i.e. uncover the most likely hidden state sequence through the model. [14] 

Problem 3: The Learning problem 

Given an observation sequence O and the dimensions N and M (number of states and symbols), 

compute the model parameters λ = (A, B, π) that maximize the probability of O. This can be viewed 

as training a model in order to best fit the observed data. [14] 
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In this project, we have solved Problem 1 and Problem 3. To solve Problem 1, we have used the 

Forward algorithm. To efficiently compute P (O | λ), given the observation sequence O and the 

model λ, we can use two algorithms:  

1) Forward Algorithm        

2) Backward Algorithm 

 

6.3 Forward Algorithm 

The Forward algorithm is used to calculate the probability of emission of an observed sequence. It 

uses the dynamic programming method.  

Before solving Problem 1, we created an appropriate model by training the HMM to represent a 

set of data, which is in the form of observation sequences. 

To find P (O | λ), the forward algorithm, or α-pass, is used. For t = 0, 1, . . . , T −1 and i = 0, 1, . . . 

, N − 1, define  

    αt(i) = P(O0,O1,….,Ot, xt = qi | λ)      

Then αt (i) is the probability of the partial observation sequence up to time t, where the underlying 

Markov process is in state qi at time t.  

The αt(i) value can be computed recursively as follows.  

Step 1: Initialization 

Let 𝛼0 (𝑖)  =  𝜋𝑖𝑏𝑖(𝑂0), 𝑓𝑜𝑟 𝑖 =  0, 1, . . . , 𝑁 −  1         

Step 2: Recursion 

 For t = 1, 2, . . . , T − 1 and i = 0, 1, . . . , N − 1, compute 

𝛼𝑡(𝑖) =  ∑ 𝛼𝑡−1(𝑗)

𝑁−1

𝑗=1

𝑎𝑖𝑗𝑏𝑖(𝑂𝑡) 

Then the combined probability for the sequence can be calculated as follows: 
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𝑃(𝑂|𝜆) =  ∑ 𝛼𝑇−1(𝑖)

𝑁−1

𝑗=1

 

 

The complexity of the forward algorithm is θ(N2T), as opposed to complexity of θ(TNT) for the 

naive approach. [14] 

 

6.4 Backward Algorithm  

The backward algorithm, or β-pass is analogous to the α-pass. It is given as follows: 

For t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1, define 

𝛽𝑡(𝑖)=𝑃(𝑂𝑡+1, 𝑂𝑡+2, … , 𝑂𝑇−1|𝑥𝑡 = 𝑞𝑖 , 𝜆) 

Then the βt (i) can be recursively computed as follows: 

Step 1: Initialization 

Let βT −1(i) = 1, for i = 0, 1, . . . , N − 1.  

Step 2: Recursion 

For t = T − 2, T − 3, . . . , 0 and i = 0, 1, . . . , N − 1 compute 

𝛽𝑡(𝑖) =  ∑ 𝛼𝑖𝑗𝑏𝑗

𝑁−1

𝑗=0

(𝑂𝑡+1)𝛽𝑡+1(𝑗) 

Here, 𝑎𝑖𝑗  represents the expected number of transitions from state i to state j compared to 

expected total number of transitions away from state i. 

𝑏j is the ratio is the probability of observing symbol k, given that the model is in state qj, which is 

the desired value of bj(k). 
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For t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1, define 

      𝛾𝑡(𝑖) = 𝑃(𝑥𝑡 = 𝑞𝑖| 𝑂, 𝜆) 

Since αt (i) measures the relevant probability up to time t, and βt(i) measures the relevant probability 

after time t, 

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃(𝑂|𝜆)
 

Here, γ is the probability of being in state i given that the observed sequence is O and 

parameters are λ at time t. [14] 

 

6.5 Baum-Welch algorithm  

The Baum-Welch algorithm is used to re-estimate the initial model parameters to best fit the 

observations. The sizes of the matrices (N and M) are fixed but the elements of model λ = (A, B 

and π) are to be determined, subject to the row stochastic condition, that is each row of A, B and π 

adds up to 1. 

For t = 0, 1, . . . , T − 2 and i, j ∈ {0, 1, . . . , N − 1}, we define “di-gammas” as 

    𝛾𝑡(𝑖, 𝑗) = 𝑃(𝑥𝑡 = 𝑞𝑖, 𝑥𝑡+1 =  𝑞𝑗|𝑂, 𝜆) 

 Then γt (i, j) is the probability of being in state qi at time t and transiting to state qj at time t + 1. 

The di-gammas can be written in terms of α, β, A and B as 

   

𝛾𝑡(𝑖, 𝑗) =  
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)

𝑃(𝑂|𝜆)
 

 

For t = 0, 1, . . . , T − 2 ,the γt(i) and γt (i, j) are related by 
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𝛾𝑡(𝑖) = ∑ 𝛾𝑡

𝑁−1

𝑗=0

(𝑖, 𝑗) 

Given the γ and di-gamma values, the model λ = (A, B, π) can be re-estimated as follows: 

 

1. For i = 0, 1, . . . , N − 1, let 

𝛱𝑖 = 𝛾0(𝑖) 

2. For i = 0, 1, . . . , N − 1 and j = 0, 1, . . . , N − 1, compute 

𝑎𝑖𝑗 =  ∑ 𝛾𝑡(𝑖, 𝑗)

𝑇−2

𝑡=0

∑ 𝛾𝑡(𝑖)

𝑇−2

𝑡=0

⁄  

 

3. For j = 0, 1, . . . , N − 1 and k = 0, 1, . . . , M − 1, compute 

𝑏𝑗(𝑘) =  ∑ 𝛾𝑡

𝑡∈{0,1,….𝑇−1}𝑂𝑡=𝑘

(𝑗) ∑ 𝛾𝑡(𝑗)

𝑇−1

𝑡=0

⁄  

 

Re-estimation is an iterative process. First, we initialize λ = (A, B, π) with a best guess or, if no 

reasonable guess is available, we choose random values such that π𝑖 ≈ 1/N and 𝑎𝑖𝑗≈ 1/N and  

bj (k) ≈ 1/M. It’s critical that A, B and π be row-stochastic as well as randomized, since exactly 

uniform values will result in a local maximum from which the model cannot climb. [14] Re-

estimation of the parameters is done until convergence is reached.    

 

The solution to Problem 3 can be summarized as follows:  

1. Initialize, λ = (A, B, π).  

2. Compute αt (i), βt (i), γt (i, j) and γt (i).  

3. Re-estimate the model.  
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4. If P (O | λ) increases by more than some threshold, go to 2. 

 

If P (O | λ) does not increase by a certain number that we have pre-determined, or if the re-

estimations have been done for a maximum number of iterations, then we must stop the re-

estimation. [14] In this project, re-estimation of the model parameters for HMM-Authentic and 

HMM-Cryptic was done for 70 rounds. 

 

6.6 Re-estimation for Multiple sequences 

Since the above formula is for re-estimating the model λ = (A, B, π) for a single observation alone, 

we cannot use a single observation sequence for training the model. In our case, we had multiple 

sequences (770 authentic splice sites and 368 cryptic splice sites) for which the model had to be 

trained. In order to have sufficient data to make reliable estimates of all model parameters, we have 

to use multiple observation sequences. Since the re-estimation formulas are based on the frequency 

of occurrence of multiple events, for multiple observation sequences they can be modified by 

adding together individual frequencies of occurrence for each sequence. [15]  

The modified re-estimation formulas are as given below. 

 

𝑎𝑖𝑗̅̅ ̅̅  =
∑

1

𝑃𝑘

𝑘
𝑘=1  ∑ 𝛼𝑡

𝑘𝑇𝑘=1

𝑡=1 (𝑖)𝛼𝑡
𝑘(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1

(𝑘)
)𝛽𝑡+1

𝑘 (𝑗)

∑
1

𝑃𝑘

𝑘
𝑘=1 ∑ 𝛼𝑡

𝑘(𝑖)𝛽𝑡
𝑘(𝑖)

𝑇𝑘−1

𝑡=1

  

 

and 

  

𝑏�̅�(𝑙) =
∑

1

𝑃𝑘

𝑘
𝑘=1  ∑ 𝛼𝑡

𝑘𝑇𝑘=1

𝑡=1 (𝑖)𝛽𝑡
𝑘(𝑖)

∑
1

𝑃𝑘

𝑘
𝑘=1 ∑ 𝛼𝑡

𝑘(𝑖)𝛽𝑡
𝑘(𝑖)

𝑇𝑘−1

𝑡=1
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In order to avoid the underflow or to avoid getting extremely low values, we computed the absolute 

values of the logarithmic values of the probabilities. 

 

6.7 HMM Model used and Implementation 

The parameter values for the HMMs we used in this project were as given below. 

T = 9 

N = 18  

M = 4 {A,C,G,T}  

Q = {q0, q1, . . . , qN−1} = {0,1……..17}  

V = {0, 1, . . . , M − 1} = set of possible observations  

O = (O0, O1…..O8) = observation sequence 

 

Figure 11: Initial HMM Model used for Authentic and Random Splice Sites before re-estimation 

 

We used Figure 11 as the initial HMM model for authentic and random splice sites and the same 

model as the initial HMM model for cryptic and random splice sites. These models were then re-

estimated using Baum-Welch algorithm for a maximum of 70 cycles or until the difference between 

the probabilities before and after a cycle was 0.00001. 

After re-estimation, we got the new parameters for the models, i.e. initial probability matrix, 

transition probability matrix and emission probability matrix. 
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The training data used for creation of the HMM authentic model included 620 authentic unique 

splice sites and 1400 random unique splice sites. The training data used for creation of the HMM 

cryptic model included 300 cryptic unique splice sites and 1400 random unique splice sites. These 

values were approximately 80% of the total test data. 

Using the re-estimated model, we used the remaining 20% of the dataset for testing. The testing 

data used for the HMM authentic model included 154 authentic unique splice sites and 400 random 

unique splice sites. The testing data used for the HMM cryptic model included 80 cryptic unique 

splice sites and 400 random unique splice sites.  

The probabilities for the splice sites in the testing data were calculated as log probabilities and 

tested for accuracy using the ROC curves. The dataset for the ROC curves were files containing 

the  class- classified as either 0 or 1 for the two classes authentic/random and cryptic/random. 

We cross-scored the authentic splice sites in the cryptic model and the cryptic splice sites in the 

authentic model and checked for accuracy. Similarly, 1516 neighboring splice sites were tested in 

the authentic HMM model as well as the cryptic HMM model. The results obtained for the tests 

performed are given in the following chapter.   

 

6.8 HMM Example 

In the prior sections, we focused on the different problems solved by HMM and the algorithms that 

could be implemented. We can train the HMM using the Baum-Welch algorithm explained in 

section 6.5 and calculate probability scores for these sequences using Forward algorithm explained 

in section 6.3. Example 1 below are ten 9-mer sequences taken from the authentic splice site and 

random splice site testing data sets that we have used:  
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AAGGTGATC 

CCAGTGAGC 

CTGGTCAGT 

CGGGTCAGG 

ACGGTGGGG 

GGAGTTAAG 

ATGGTAGTA 

GGAGTGTAC 

TCTGTACAC 

ATGGTAAAT 

 

Example 1: Authentic and random splice site 9-mer sequences 

 

Example 1 contains ten 9-mer sequences which is a mix of authentic and random splice sites. 

For the sequences given in Example 1, we can calculate the following parameters for the HMM: 

T = 9, is the length of each of the observation sequences 

N = 18, is the number of states we have used in our HMM model as given by Figure 11 

M = 4 {A,C,G,T}, is the  number of observation symbols for the sequences 

Q = {q0, q1, . . . , qN−1} = {0,1……..17}, is the distinct states in the Markov process 

V = {0, 1, . . . , 3}, is the set of possible observations  

O = (O0, O1. . . . ,O8), is the observation sequence 

Π = initial state distribution as given in Table 4 

A = state transition probabilities as given in Table 5 

B = observation probability matrix as given in Table 6 
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The steps for building the HMM are: 

Step 1:  

We need to set the initial values for the parameters π, A and B based on given data. These 

parameters are further trained using the Baum-Welch algorithm until convergence is reached or for 

70 rounds of re-estimation. It is explained as follows. 

Initial probability matrix, π is given as follows: 

 

    Table 4: Initial state probability distribution for the authentic HMM model  

 

 

These state distributions were calculated considering that the authentic splice sites and random 

splice sites in a gene would be approximately in the ratio of 3:7. States 1-9 are for authentic splice 

sites and states 10-18 are for random splice sites as shown in Figure 11.  
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Initial transition probability matrix, A is given as follows: 

 

Table 5: Initial transition probability distribution for the authentic HMM model 

 

 

The transition probability table with the initial values before re-estimation is as shown in Table 5.  

Empty cells indicate a transition probability value of 0.0. States 1-9 represent authentic splice site 

sequence states and states 10-18 represent random splice site sequence states. These transition 

probability values were then re-estimated during the training step of the HMM implementation. As 

given by the HMM model in Figure 11, the values of the probabilities were set in such a way that 

for any given state, we transition to only two possible states.  
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The initial emission probability matrix, B is: 

Table 6: Initial emission probability distribution for the authentic HMM model 

 

 

Table 6 gives us the initial emission probability matrix for the authentic HMM model before the 

Baum-Welch algorithm is implemented. These values were calculated based on the frequency of 

occurrence of a nucleotide at a given position for all the 620 authentic splice sites and 1400 random 

splice sites. States 1-9 represent authentic splice site sequence states and states 10-18  represent 

random splice site sequence states. 
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Step 2: 

We perform a re-estimation of the initial model parameters using the Baum-Welch algorithm until 

convergence is reached. As explained in section 6.5 and section 6.6, we re-estimated the model for 

multiple sequences up to a threshold of 70 rounds.  

Step 3: 

We calculate the log probabilities for the given sequences in the testing phase. We tested multiple 

sequences on the trained model using the test data as mentioned in chapter 7.  

Firstly, the alpha values were computed for a given sequence using the alpha calculation formula 

from the Forward Algorithm given in section 6.3. Then the probabilities for a given sequence were 

calculated as a summation of the alpha values given by the following formula: 

 

𝑃(𝑂|𝜆) =  ∑ 𝛼𝑇−1(𝑖)

𝑁−1

𝑗=1

 

 

To avoid underflow, the absolute values of the log probabilities were calculated as -𝑙𝑜𝑔 (𝑃(𝑂|𝜆)). 

For the sequences given in Example 1, the final log probabilities are given in Table 7. 
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Table 7: Log probability values calculated for the given sequences from Example 1 

Sequence Log Probabilities 

AAGGTGATC 

 

8.39766 

CCAGTGAGC 

 

8.86638 

CTGGTCAGT 8.68164 

CGGGTCAGG 9.05504 

ACGGTGGGG 

 

8.75955 

GGAGTTAAG 

 

10.08453 

ATGGTAGTA 

 

10.30669 

GGAGTGTAC 

 

10.05018 

TCTGTACAC 

 

9.88983 

ATGGTAAAT 9.87123 

 

 

The log probability values obtained above were stored as output in a text file along with the class 

it represents. For example, for the first sequence ‘AAGGTGATC’, the final output would be  

0, 8.39766. Here, “0” represents the authentic splice site sequence or positive class.  Sequence 

‘ATGGTAAAT’, which is a random splice site would have an output value stored as 1, 9.87123. 

Here, “1” represents the random splice site sequence or negative class.  

The output files from scoring the test sequences were then used by a python script for implementing 

ROC curves and determining the accuracy of the models. ROC Curves are explained in the next 

chapter. 
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CHAPTER 6 

Receiver Operating Characteristic Curves   

4.1 Determining the threshold 

An ROC curve is a commonly used method that visualizes the performance of a binary classifier. 

[11] It is a graph that plots values of the true positive rate or sensitivity against the values of the 

false positive rate or 1-specificity for different possible thresholds of a diagnostic test. The actual 

threshold values are determined using the ROC curve as explained below.  

Sensitivity, or true positive rate, is the ratio of those correctly classified as positive to the total 

number of positives. It is also known as recall. A test which has a high sensitivity value would 

mean that the correctly identified positive classes would be high, and the false negatives, or classes 

that are wrongly classified as negative would be low.  It is explained by the following formula: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

Specificity, also known as true negative rate, is the ratio of those correctly classified as negative to 

the total number of negatives. It is explained by the following formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
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Figure 12 depicts different types of ROC curves and their significance. The closer the plotted ROC 

curve is to the top left-hand corner or the top of the y-axis, and the top side of the ROC space, the 

more accurate the test. Similarly, if the ROC curve is closer to the diagonal, depicted as a dashed 

line in Figure 12, it means the accuracy of the test is low. 

 

Figure 12: Significance of different types of ROC Curves [12] 

 

4.2 Area Under ROC Curve 

The area under an ROC curve, known as AUC (area under curve), is used to measure discrimination 

between classes being used for the test. It is measure of test accuracy. In Figure 12, the blue curve 

indicates a perfect test as the line goes from zero straight to the top-left hand corner of the ROC 

space. The closer the curve comes to the 45-degree diagonal (black dashed line) of the ROC space, 

the less accurate the test. The values for an AUC curve and their meanings are given in  Figure 13. 
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Figure 13: Significance of different values of AUC [12]  

 

 An AUC of 1 indicates a perfect model which can classify correctly with no false positives or false 

negatives. An AUC of 0.5 indicates the model to be a worthless one.  

In the next chapter, we discuss the datasets used and the results we obtained from these ROC 

curves.  
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CHAPTER 7 

7.1 Dataset and Results   

For this project, we made use of a large dataset formed by collecting splice sites from different 

sources as explained in Chapter 2. The dataset consisted of 770 authentic splice sites and 368 

cryptic splice sites. The neighboring splice sites were 1516 in number and were extracted 100 base 

pairs downstream and 100 base pairs upstream from the cryptic splice site. Random splice sites, 

which are neither authentic nor cryptic, were 1400 in number and were used as the false dataset for 

all the tests in PWM and HMM. 

The above dataset was split in the ratio of 80% for training and 20% for testing respectively. The 

models for PWM and HMM for authentic and cryptic splice sites were built using the methods 

described in chapter 3 and chapter 5.  

As input to the ROC curves, we gave comma separated values containing the class and the 

probability, i.e. 0 for positive class and 1 for the negative class, followed by the log probability 

values that were calculated using HMM or the probability values using PWM. These values were 

retrieved from a file which was created during the implementation of the PWM and the HMM. 

Figure 14 to Figure 25 represent the results we obtained by scoring and cross-scoring the splice 

sites in the different models. ROC curves were implemented using the matplotlib and sklearn 

Python library.  
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1) Dataset:  

154 Authentic splice sites,   

400 Random splice sites 

 

Figure 14: ROC Curve for Authentic splice sites in Authentic PWM 

 

 

 

Figure 15: ROC Curve for Authentic splice sites in Authentic HMM 
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Figure 14 is the ROC curve of authentic splice sites in the authentic PWM model. The AUC value 

was 0.89 which indicates the model had a very good accuracy value. Figure 15 is the ROC curve 

of authentic splice sites in the authentic HMM model. The AUC value was 0.93 which indicates 

the model had a very good accuracy value.  

The authentic and random splice sites were approximately in the ratio of 3:7 which is the ratio of 

authentic splice sites to random splice sites in an RNA. The HMM performed slightly better than 

the PWM. This is probably because the PWM was trained on authentic or true dataset alone as it 

cannot be trained on a false dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Computational Analysis of Cryptic Splice Sites 
 
 

39 
 

2) Dataset:  

73 Cryptic splice sites 

400 Random splice sites 

  

        Figure 16: ROC Curve for Cryptic splice sites in Authentic PWM 

 

 

         Figure 17: ROC Curve for Cryptic splice sites in Authentic HMM 
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Figure 16 is the ROC curve of cryptic splice sites in the authentic PWM model. The AUC value 

was 0.81. Figure 17 is the ROC curve of cryptic splice sites in the authentic HMM model. The 

AUC value was 0.87.  

These AUC values, which are above 0.80 indicate that there is a high degree of similarity between 

authentic and cryptic splice sites.  

The HMM again performed slightly better than the PWM since the PWM was trained on cryptic 

or true dataset alone as it cannot be trained on a false dataset.  
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3) Dataset:  

1516 neighbor splice sites 

 400 random splice sites 

  

     Figure 18: ROC Curve for Neighboring splice sites in Authentic PWM 

 

 

      Figure 19: ROC Curve for Neighboring splice sites in Authentic HMM 
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Figure 18 is the ROC curve of neighboring splice sites in the authentic PWM model. The AUC 

value obtained was 0.53 which indicates the accuracy of the model to be very low. 

Figure 19 is the ROC curve of neighboring splice sites in the authentic HMM model. The AUC 

value for this model was 0.56 which is again quite low. These results from the PWM and the HMM 

indicate that the neighboring splice sites differ from the authentic splice sites.    
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4) Dataset:  

73 cryptic splice sites,  

400 random splice sites 

  

     Figure 20: ROC Curve for Cryptic splice sites in Cryptic PWM 

 

 

        Figure 21: ROC Curve for Cryptic splice sites in Cryptic HMM 
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Figure 20 is the ROC curve of cryptic splice sites in the cryptic PWM model. The AUC value was 

0.80 which indicates the model had a good accuracy value and could correctly classify cryptic 

splice sites. Figure 21 is the ROC curve of cryptic splice sites in the cryptic HMM model. The 

AUC value was 0.83 which again indicates the model had a very good accuracy value.  

The HMM again performed slightly better than the PWM.  
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5) Dataset:  

154 authentic splice sites 

400 Random splice sites 

  

     Figure 22: ROC Curve for Authentic splice sites in Cryptic PWM 

 

 

     Figure 23: ROC Curve for Authentic splice sites in Cryptic HMM 



 
Computational Analysis of Cryptic Splice Sites 
 
 

46 
 

Figure 22 is the ROC curve of authentic splice sites in the cryptic PWM model. The AUC value 

was 0.87. Figure 23 is the ROC curve of authentic splice sites in the cryptic HMM model. The 

AUC value was 0.89.  These AUC values, which are above 0.80 further confirm that there is a high 

degree of similarity between authentic and cryptic splice sites.  
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6) Dataset:  

1516 authentic splice sites 

400 Random splice sites 

 

     Figure 24: ROC Curve for Neighboring splice sites in Cryptic PWM 

 

 

     Figure 25: ROC Curve for Neighboring splice sites in Cryptic HMM 
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Figure 24 is the ROC curve of neighboring splice sites in the cryptic PWM model. The AUC value 

obtained was 0.60. Figure 25 is the ROC curve of neighboring splice sites in the cryptic HMM 

model. The AUC value for this model was 0.53 which is again quite low. These results from the 

PWM and the HMM indicate that the neighboring splice sites have different consensus sequence 

as compared to cryptic splice sites. 

In the next chapter, we conclude by analyzing our results and discussing the possible future work 

for our project.  
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CHAPTER 8 

Conclusion and Future Work 

From all the results we obtained, we can say that the spliceosome chooses a cryptic splice site when 

a mutation occurs in the authentic splice site because the cryptic splice site is the next closest in 

consensus to an authentic splice site. Secondly, neighboring splice sites which are 100 base pairs 

downstream and 100 base pairs upstream from the cryptic splice site are not selected by the 

spliceosome because they differ in their consensus as compared to an authentic or cryptic splice 

site. This has been validated multiple times by the PWM and HMM models by cross-scoring all 

the values. 

The cryptic splice site project gave us insights on the role of mutations in the RNA sequence in 

activating cryptic splicing. We performed a thorough analysis of the results generated from the 

position weight matrix and hidden Markov model algorithms. A cross-verification was done 

through the cross-scoring of the different datasets in the authentic and cryptic PWM and HMM 

models, and this verification strengthened the validity of the results obtained. 

We could successfully analyze the consensus sequences of neighboring splice sites and score them 

using PWMs and HMMs to be authentic and cryptic splice sites. As expected, the scores we 

obtained were consistently very low. This indicated to us that the neighboring splice sites would 

not be selected by the spliceosome as the consensus sequence differed from that of the authentic 

splice sites. 

We can utilize this knowledge widely in the medical field for further research, to prevent the 

harmful effect of genetic diseases caused by mutations. Since we now have knowledge of the 

reasons for the cryptic splice site selection by the spliceosome, this information can be used to  

even predict where the splicing would occur and what kind of effects it would cause in the offspring 

of patients who already have  a genetic mutation. This has far-reaching possibilities in the future 
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in the medical field for the prevention of devastating diseases, such as cancer, β-thalassemia and 

sickle cell anemia. 

As part of the future work for this project, we would like to collect an even larger number of splice 

sites from the human genome -authentic as well as cryptic- and perform an analysis. We would 

also like to work on 3΄ splice sites as opposed to the 5ˊ splice sites alone. We can use this 

information to learn from known cryptic splice sites to predict and detect putative cryptic splice 

sites in other genes in the human genome. 

Additionally, a similar kind of analysis for prediction of splice sites can be done on individual 

genes. The effect of a mutation, such as occurrence of a frame shift or the inclusion and deletion 

of hydrophobic and hydrophilic nucleotides in the gene, can be analyzed.  Another improvement 

that could be done is to make use of more probabilistic models, such as different types of decision 

trees and maximal dependence decomposition models to perform the same experiment.    

  



 
Computational Analysis of Cryptic Splice Sites 
 
 

51 
 

 

7. REFERENCES 

[1] Genetic Mutations, Splice site mutations, Simple Science : 

https://www.youtube.com/watch?v=DJUQwuwFT5A; January 25, 2016. 

[2] Splice site mutations, in Wikipedia , Retrieved April 18, 2017, from 

https://en.wikipedia.org/wiki/Splice_site_mutation. 

[3] mRNA Splicing explained, ndsuvirtual cell, Retrieved on April 18, 2017, from 

https://www.youtube.com/watch?v=FVuAwBGw_pQ 

[4] Authored by Pratikshya Mishra, May 2017 

[5] Roca X., Sachidanandam R. and Krainer A., Intrinsic differences between authentic and 

cryptic 5′ splice sites, Retrieved on February 15, 2017, from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC275472/#gkg830c33 

[6] DBASS website, a database for 5ˊ cryptic splice sites: http://www.dbass.org.uk/DBASS5/, 

Retrieved on February 15, 2017 

[7] NCBI Website: https://www.ncbi.nlm.nih.gov/ncbisearch , Retrieved on March 3, 2017 

[8] NCBI Website for Journal publications, Retrieved on March 3, 2017, from 

 https://www.ncbi.nlm.nih.gov/pubmed,  

[9] Khuri S. (2016) Motifs and Logos, Retrieved on September 12, 

2016 from : 

http://www.cs.sjsu.edu/~khuri/AUA_2016/Motifs/AUA_2016_SIX_

Motifs.pdf 

[10] Position Weight Matrices, in Wikipedia, Retrieved on October 

20, 2016, from https://en.wikipedia.org/wiki/Position_weight_matrix 

https://www.youtube.com/watch?v=DJUQwuwFT5A
https://en.wikipedia.org/wiki/Splice_site_mutation
https://www.youtube.com/watch?v=FVuAwBGw_pQ
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC275472/#gkg830c33
http://www.dbass.org.uk/DBASS5/
https://www.ncbi.nlm.nih.gov/ncbisearch
https://www.ncbi.nlm.nih.gov/pubmed
http://www.cs.sjsu.edu/~khuri/AUA_2016/Motifs/AUA_2016_SIX_Motifs.pdf
http://www.cs.sjsu.edu/~khuri/AUA_2016/Motifs/AUA_2016_SIX_Motifs.pdf
https://en.wikipedia.org/wiki/Position_weight_matrix


 
Computational Analysis of Cryptic Splice Sites 
 
 

52 
 

[11] ROC Curves and Area under the Curves explained: Retrieved on March 17, 2017 from: 

https://www.youtube.com/watch?v=OAl6eAyP-yo 

[12] Generating ROC Curves : Retrieved on March 17, 2017 from : 

https://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture22.htm 

[13] WebLogo. Retrieved October 12, 2016, from http://weblogo.berkeley.edu/logo.cgi. 

[14] M. Stamp (2012). A Revealing Introduction to Hidden Markov Models. Retrieved on 

February 8, 2016, from : http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf 

[15] Lawrence R. Rabiner. “A Tutorial on Hidden Markov Models and Selected Applications 

in Speech Recognition,” Proceedings of the IEEE 77, no. 2 (February 1989), p. 257-86. 

[16] Khuri S. Hidden Markov Models: Retrieved on February 10, 2016, from : 

http://www.cs.sjsu.edu/~khuri/AUA_2016/HMM/AUA_2016_SEVEN_HMM.pdf 

[17] Kapustin Y. et.al, Cryptic Splice Sites and Split Genes: Retrieved on April 18, 2017, from 

http://nar.oxfordjournals.org/content/early/2011/04/04/nar.gkr203.ful 

 

https://www.youtube.com/watch?v=OAl6eAyP-yo
https://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture22.htm
http://weblogo.berkeley.edu/logo.cgi
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf
http://www.cs.sjsu.edu/~khuri/AUA_2016/HMM/AUA_2016_SEVEN_HMM.pdf
http://nar.oxfordjournals.org/content/early/2011/04/04/nar.gkr203.ful


 
Computational Analysis of Cryptic Splice Sites 
 
 

53 
 

 


	Computational Analysis of Cryptic Splice Sites
	Recommended Citation

	tmp.1495480884.pdf.EDJjP

