
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-22-2017

Library for Writing Contracts for Java Programs Using Prolog Library for Writing Contracts for Java Programs Using Prolog

Yogesh Dixit
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Dixit, Yogesh, "Library for Writing Contracts for Java Programs Using Prolog" (2017). Master's Projects.
523.
DOI: https://doi.org/10.31979/etd.7htm-dx2g
https://scholarworks.sjsu.edu/etd_projects/523

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/523?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Library for Writing Contracts for Java Programs Using Prolog

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Yogesh Dixit

May 2017

© 2017

Yogesh Dixit

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Library for Writing Contracts for Java Programs Using Prolog

by

Yogesh Dixit

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2017

Dr. Thomas Austin Department of Computer Science

Dr. Jon Pearce Department of Computer Science

Dr. Robert Chun Department of Computer Science

ABSTRACT

Library for Writing Contracts for Java Programs Using Prolog

by Yogesh Dixit

Today many large and complex software systems are being developed in Java.

Although, software always has bugs, it is very important that these developed systems

are more reliable despite these bugs.

One way that we can help achieve this is the Design by Contract (DbC) paradigm,

which was first introduced by Bertrand Meyer, the creator of Eiffel. The concept of

DbC was introduced for software developers so that they can produce more reliable

software systems with a little extra cost. Using programming contracts allows developer

to specify details such as input conditions and expected output conditions. Doing

this makes it easy for the system to assign blame whenever software runs into some

erroneous state. Once the blame is assigned it is easier for the developer to detect the

cause, so that the appropriate actions can be taken to resolve the issue.

My project develops a library in Java that allows developers to write contracts for

their Java programs in Prolog. These contracts are then evaluated by the library with

the help of a Prolog dictionary which acts as the database. Prolog’s declarative style

is a natural fit for writing contracts. With this project, I hope to simplify writing

contracts for Java developers. In this paper, I review my implementation. I further

discuss some performance tests to show the added overhead.

ACKNOWLEDGMENTS

I am very thankful to Dr. Thomas Austin for his continuous guidance through

out the project journey, and also for believing in me. I would also like to thank the

committee members Dr. Jon Pearce and Dr. Robert Chun for their valuable time

and feedback. Finally, I am very thankful to my family and friends for their unending

support and for keeping me motivated throughout my journey of Masters degree.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Contract Conditions . 1

1.2 A Contract for an ATM System 2

1.3 Prolog for Contracts . 4

2 About Contracts . 6

2.1 History and Background . 6

2.2 Benefits of Design by Contract (DbC) 8

2.2.1 Better Design . 8

2.2.2 Meaningful Exceptions . 8

2.2.3 Better Documentation . 9

2.2.4 Fault Isolation and Easy Debugging 9

2.3 Limitations of Contracts . 10

2.3.1 Cost of Writing Contract Rules 10

2.3.2 Contract writing Skills . 10

2.3.3 False Sense of Security . 11

3 Motivation and Contracts in Other Languages 12

3.1 Existing Implementations . 12

3.1.1 Contracts in Racket . 12

3.1.2 The Java Modeling Language 14

3.1.3 Contracts.js for JavaScript 16

vi

vii

3.2 Contract Library for Java by Neha Rajkumar 19

4 Implementation . 21

4.1 Java Custom Annotations . 21

4.2 AspectJ and Reflection . 23

4.3 Prolog for Contract Validation . 29

4.3.1 Basic Prolog Constructs and Syntax 30

4.3.2 Prolog for Contracts . 32

4.4 JIProlog . 34

5 Examples and Performance . 39

5.1 Sample Contract for Bank System 39

5.2 Contract for Quicksort and Performance Results 43

6 Conclusion . 50

LIST OF REFERENCES . 51

LIST OF TABLES

1 Execution Time Metrics for Contract Over Partition Method . . . 45

2 Execution Time Metrics for Contract Over sortwrapper Method . 47

viii

CHAPTER 1

Introduction

The software development lifecycle has evolved from just developing software

systems to developing robust and reliable software systems. The reliability of software

depends on its ability to perform its functions according to the given specifications

and to handle exceptional or abnormal cases [1].

The Design by Contract (DbC) methodology provides software developers with

the ability to construct reliable software systems without much extra effort. DbC

is useful throughout the process of building software, from analysis and design to

implementation, documentation, debugging, and even project management[2]. A

contract is made up of pre-conditions and post-conditions, which are used for making

assertions in the given system. These different conditions define a relationship between

the client (end user) and the supplier (software developer). This relationship is said

to be broken if any of the conditions do not hold true.

1.1 Contract Conditions

• A precondition is a condition that should hold true when a call is made to the

method. If this condition fails, then the call to the method fails and blame can

be assigned to the client for providing incorrect input values.

• A postcondition is a condition on a method that should hold true when the

execution of the method successfully completes. If it does not, then it can be

asserted that something went wrong during execution and blame can be assigned

to the supplier for providing an erroneous system that does not work according

to the given specifications.

• An invariant is something that needs to be true from the start until the end

(throughout the execution), of the call to the method.

1

Given these constructs, if an application completes the execution without the

failure of any of the pre or post conditions provided in the contract, then we can assert

that the written code is doing what it is meant for and nothing less or nothing extra

[2]. However, the quality of the assertion made depends on how well the contracts

conditions are written.

1.2 A Contract for an ATM System

An example of an ATM system given below illustrates the use of contracts. In

this example, the ATM system is our supplier and a person using the ATM system

is the client. Let’s suppose the supplier provides two functions for depositing and

withdrawing money.

• Withdraw : Here the client is obliged to enter a non-zero amount to be withdrawn

from his/her account, which also should be less than the balance in his/her ac-

count. This obligation for the client forms the precondition of our contract. Now,

once the client provides the correct amount to be withdrawn, the supplier (ATM

system) is obliged to update the balance by decrementing the input amount

from it. This obligation for the supplier forms the postcondition of our contract.

2

@Contract (pre_cond = { " i s P o s i t i v e (amount) " , " lessThan (

amount , ␣@balance) " } ,

post_cond = { " checkbalance (ans

) " } , s o u r c e_ f i l e s = { "

bankprolog . p l " })

public double withdraw (Double amount)

{

this . ba lance = balance − amount ;

return balance ;

}

Listing 1.1: Withdraw Contract Example

3

• Deposit : Here the client is obliged to insert the amount to be deposited, which

should be non-zero and less than the maximum limit allowed (let’s say $1500).

This forms the precondition for the contract of the Deposit function. On

successful execution of Deposit function, the supplier is obliged to increase the

balance by the deposited amount. This forms the postcondition of the contract.

@Contract (pre_cond = { " nonnegat ive (amount) " , "

maxLimitNotBreached (amount) " } , post_cond = { "

checkbalance (ans) " } , s o u r c e_ f i l e s = { " bankprolog . p l "

})

public double depos i t (Double amount)

{

this . ba lance = balance + amount ;

return balance ;

}

Listing 1.2: Withdraw Contract Example

1.3 Prolog for Contracts

The above two examples show how contract annotations can be specified using

preconditions and postconditions to form queries to a Prolog program. This Prolog

program acts as database file for the library. When these queries are executed

against these rules given in the Prolog program, it results in a boolean assertion

that helps the library evaluate if all the contracts were successful or if they had

some failures. Listing 1.3 shows an example of a Prolog file that can be used

with the bank ATM example illustrated in the above section. The logical syntax

4

of the Prolog code makes it very easy to understand and implement these rules.

i s P o s i t i v e (Var) :− Var > 0 .

lessThan (Var1 , Var2) :− Var1 < Var2 .

checkbalance (Bal) :− Bal > 0 .

nonzero (Var) :− Var \= 0 .

maxLimitNotBreached (Amt) :− Amt < 1000 .

Listing 1.3: Prolog File with Contract Rules

5

CHAPTER 2

About Contracts

Contract Programming, also known as Design by Contract, is a methodology

that can be used for software design and development [2]. This chapter gives a brief

history and walks through different aspects of it.

2.1 History and Background

Use of contracts in the form logical assertions was introduced by Pranas in the

year 1972 [3]. But, the full fledged contract system was introduced in the form of

Design by Contract philosophy to the public by Bertrand Meyer as a part of his

programming language named Eiffel [3]. Contract programming is an integral part of

Eiffel, but the methodology in itself can be used in any language. Listing 2.1 shows

an example of how contracts are written in the Eiffel programming language [2].

6

put (x : ELEMENT; key : STRING) i s

−− I n s e r t x so that i t w i l l be r e t r i e v a b l e

through key .

r e qu i r e

count <= capac i ty

not key . empty

do

. . . Some i n s e r t i o n a lgor i thm . . .

ensure

has (x)

item (key) = x

count = old count + 1

end

Listing 2.1: Contract in Eiffel [4]

Another important aspect of contract programming is that it helps build and

design a robust and fault tolerant software system [5], which is why it has been

used repeatedly by many developers in the form of libraries or as a language feature.

Contract programming uses a contract agreed upon by both the developer of the

software and the user of the software. In Meyer’s terms, a developer is the supplier

and a user is the client [1]. Here the user of the software must agree and abide to the

preconditions that the contract specifies. If the user has done so, then the method

should return the results that satisfy the post-conditions. In this way, when a software

system runs into an error state it is very easy for one to detect who is to be blamed [6].

If the problem is with the preconditions, then it is the client who is to be blamed [7].

7

If the problem is with the results, which means the post-conditions are not met, then

the software system has a defect on the side of the supplier. This way it is ensured

that the software system does what it is supposed to and that any errors can be easily

identified.

2.2 Benefits of Design by Contract (DbC)

Developing a software system using the DbC methodology not only makes it

more reliable but also has some other added advantages. Using DbC ensures that the

software system has a better design, meaningful exceptions, better documentation,

and easier debugging [2].

2.2.1 Better Design

Careful use of DbC by software developers can yield better designed systems.

This is because a relationship between the client and the supplier is more clearly

expressed in the form of conditions. While writing method routines programmers have

to clearly think about the preconditions and post-conditions that are declared. This

ensures that the system being developed adheres to all the functional specifications.

It also makes programmer think about all the exceptional situations that the program

may run into while writing the code. This makes it more reliable and at the same

time helps to achieve a clearer design.

2.2.2 Meaningful Exceptions

In the case of DbC, a program runs into an exception only when it fails

the contract. As a result, it is very easy to identify the exact cause behind

its occurrence. For example, if the exception occurred because of a failed pre-

condition then the cause is that some inconsistent or bad input values were

passed to the method routine. This helps the programmer develop clear and

meaningful exceptions that can be easily understood by the client. Given

8

below is an example of an exception thrown as a result of a failed contract.

Exception in thread "main" annotations.ContractFailException: Contract failure :

preconditions failed for lessThan(900.0, 600.0)

at annotations.JIPInitializer.checkPreCond(JIPInitializer.java:92)

at annotations.asp.ajc$before$annotations_asp$1$78590bef(asp.java:68)

at com.yd.contractprogramming.Bank.withdraw(Bank.java:34)

at com.yd.contractprogramming.Bank.main(Bank.java:51)

2.2.3 Better Documentation

Contracts defined for the system by the developer are part of the code that is

visible to the client. The client can read through the contracts that are defined by

the supplier for the system, forming an easy means of documentation. Also, it may

happen that the user made some modifications to the code but failed to update the

document. However, since contracts are an integral part of the code that change if

the associated code logic has changed, they form a consistent form of documentation.

Also, contracts provide specific and precise information about the method or routine

that they are attached to.

2.2.4 Fault Isolation and Easy Debugging

Determining ans analyzing faults once failure is detected is a time consuming and

difficult process [8]. When some software program runs into an issue, developers end

up debugging the code to find the cause of the failure. These debugging techniques

consume a lot of time and developers spend days or weeks isolating the fault. Specifying

preconditions and postconditions, helps developers to minimize their debugging efforts.

Writing contracts makes it easier for developers to find the cause of the failure and

9

blame assigning becomes easy. When a program without a contract runs into an error,

the point where the error occurred is a point inside the code. Whereas if the program

has contract associated with it point where the error occurred is the location where

contract is specified[8]. Because when a program with contract fails, the reason will

be failure of some contract which makes it easy for developers to find the cause and

whom to blame [6].

2.3 Limitations of Contracts

Using contracts adds a little cost (time) to the development process and to

processing time. This cost includes the cost of writing contract rules (in this case

writing Prolog rules) and the cost of executing those contracts at run time for validation

checking. These overheads should be considered while making a decision of whether

to use the DbC methodology in the development process.

2.3.1 Cost of Writing Contract Rules

Developers will have to invest additional time towards writing contracts along

with the overall code writing time. Some developers might neglect this work, which

can ultimately result into the poor quality contracts [1]. Also, developers need to

think about and invest time in writing contracts in the early phases of the software

development process, which many developers might think of as an unnecessary task.

2.3.2 Contract writing Skills

Writing good contracts is a skill [2]. For developers who are not used to DbC,

learning to write contracts might prove to be a time consuming process. It might be

a very difficult task to find experienced developers who already know about writing

contracts as it is not a commonly followed practice. Developers will have to invest

some extra time initially to learn and understand the skill of writing well designed

contract rules.

10

2.3.3 False Sense of Security

Using contracts increases code reliability, but it does not make them perfect. It

can improve the overall quality of the code, but developers should not assume that

their code is free of bugs simply because all of the contracts hold true.

11

CHAPTER 3

Motivation and Contracts in Other Languages

When thinking of developing new software, people think of using those software

development tools and methods that will result in an increased overall productivity

for the greater benefit. In the object-oriented world, productivity benefits are not just

the result of the correct approach but also depend on how much emphasis is given

to quality [4]. Quality of a software system depends primarily on how reliable the

software system is [4]. In the object-oriented world, a reliable piece of code is given an

extra importance because of its reusable nature. Reusability is an important property

of object-oriented programs, which will lose its relevance if the piece of code to be

reused is not reliable and correct. Java is one of the most widely used object-oriented

programming language that is used for commercial software development [9]. There

are different ways such as static typing and automatic garbage collection in Java that

help ensure reliability. But this is not enough and we still need a better approach

towards developing reliable software systems using Java. This forms the motivation

behind the need of a contract system in Java. This chapter focuses on different

existing implementations of contract programming in Java and other languages along

with their examples.

3.1 Existing Implementations

This section of the chapter lists a few existing implementations of contract

programming available in different programming languages.

3.1.1 Contracts in Racket

Contracts in the Racket programming language are mainly applied at

module boundaries [10]. Thus, contract constraints and promises are im-

posed on the values that are exported from the module. Contracts in Racket

can be attached to a definition or a function using the provide keyword

12

[10]. Listing 3.1 shows an example that illustrates a basic contract in Racket.

#lang racke t

(prov ide (contract−out [amount p o s i t i v e ?]))

(d e f i n e amount . . .)

Listing 3.1: Basic contract example in Racket

Specification in the Listing 3.1 states that the value of the amount variable

should always be positive. Every time the client refers to the amount, Racket’s

contract system keeps a check on the validation of the specified contract. If

at some point the amount is bound to a non-positive number or to some value

which is not a number, the contract system will signal a contract violation and

blame the module breaking the promise [10]. Listing 3.2 shows an example

where the contract in Listing 3.1 fails and contract violation error will be thrown.

#lang racke t

(prov ide (contract−out [amount p o s i t i v e ?]))

(d e f i n e amount 0)

Listing 3.2: Contract violation example in Racket

Racket also allows contracts to be attached to functions [11]. Con-

tracts for functions in Racket are specified using the -> notation.

13

Listing 3.3 gives an example of a bank module in which contracts are applied over

functions of the module using the -> notation.

#lang racke t

(prov ide (contract−out

[depo s i t (−> natura l−number/c any)]

[ba lance (−> natura l−number/c)]))

(d e f i n e amount 0)

(d e f i n e (depo s i t a) (s e t ! amount (+ amount a)))

(d e f i n e (balance) amount)

Listing 3.3: Contract over functions in Racket

In this example, contracts are applied over two functions : deposit and balance

using the -> notation. The contract specified here states that deposit is a function

which accepts a non-negative integer and returns some value that is not specified in

the contract. And, balance is a function that takes in no argument and returns a

non-negative integer.

3.1.2 The Java Modeling Language

The Java Modeling Language (JML) is a behavioral interface specification

language for Java modules [12]. It provides set of some basic constructs that can be

used to write contracts, in precondition and postcondition style for Java programs.

Contracts in JML are provided using special annotation comments and are part

of the Java code [12]. This contract definition, written in the form of comments

are converted into an executable code by the compiler. Thus, if any violation

is detected while the code is executing, it can be immediately detected. Simple

example of how contracts are written in Java using JML is given in Listing 3.4 [13].

14

//@ r e q u i r e s 0 < amount && amount + ba lance < MAX_BALANCE;

//@ a s s i g n a b l e ba lance ;

//@ ensures ba lance == \ o ld (ba lance) + amount ;

public void c r e d i t (f ina l int amount)

{

this . ba lance += amount ;

}

Listing 3.4: JML Contract Example[13]

In this example, lines starting with the characters @ denote a JML notation,

which will be picked up by compiler and converted into executable code for

assertions. JML uses a requires clause to implement a precondition and an

ensures clause to implement a postcondition. The precondition in the 3.4 states

that the amount should be greater than zero and the sum of the amount and the

balance should remain less than the MAX_BALANCE allowed. The postcondition

in the example given above states that the balance result should be equal to

the sum of the old balance and the amount. In JML, contracts can also be spec-

ified in the form of functions. Example given in 3.5 illustrates this type of contract [12].

15

package org . jml spec s . samples . jm l t u t o r i a l ;

import org . jml spec s . models . JMLDouble ;

public class SqrtExample {

public f ina l stat ic double eps = 0 . 0001 ;

//@ r e q u i r e s x >= 0 . 0 ;

//@ ensures JMLDouble . approximate lyEqualTo (x , \ r e s u l t ∗ \

r e s u l t , eps) ;

public stat ic double s q r t (double x) {

return Math . s q r t (x) ;

}

}

Listing 3.5: JML Contract Example with JML function [12]

In the listing 3.5, the postcondition is specified with the help of a function

approximatelyEqualsTo. approximatelyEqualsTo function checks if the produced

result multiplied by itself is approximately equal to the input parameter x. If not,

the code will fail the postcondition, causing an exception in the code execution.

Thus, JML provides set of constructs and tools that allow a Java programmer to

specify Eiffel-like contracts for their Java code. On similar lines, my project provides

systematic approach of writing contracts in Java using custom annotations. However,

there are no extra compilation steps like in the case of JML, that one needs to use.

Contracts are execution ready as they are defined using Java annotations unlike JML

where they are specified using Java comments.

3.1.3 Contracts.js for JavaScript

Contract.js is a library for JavaScript that provides a way to implement a

higher-order behavioral contract system. It uses Sweet.js [14] and lets JavaScript

16

programmers write contracts that dictate how exactly the program should behave.

This library implements a runtime check for validity of contracts; if fault occurs, it

pinpoints the exact section of the code that caused the failure with a descriptive

message [14]. Syntax for writing contracts using Contract.js. is shown in Listing 3.6

@ (. . .) −> . . .

f unc t i on name (. . .) {

. . .

}

Listing 3.6: Contract.js syntax

@ ({ age : Num}) −> Bool

func t i on i sAdul t (o) {

return o . age > 18 ;

}

Listing 3.7: Contract using Contract.js

Listing 3.7 shows an example of a contract written for a JavaScript function using

Contract.js. In this example, there are two parts to the contract specified for the

function isAdult. The first part states that any object o passed as an input parameter

to the isAdult function should have a property named age with a value of type Num.

In the second part of the contract, a valid input function is obligated to return a Bool

value at the end of the execution. Here we can relate the first part of the contract as

a precondition and the second part of the contract as a postcondition. If the program

fails to satisfy any of these two, the program will exit with a well defined error message.

17

i sAdu l t ({

name : " John " ,

}) ;

Listing 3.8: Example of a failed contract

Listing 3.8 shows an example of an error message that is generated when a con-

tract fails to hold true. Here, the age property is missing from the object that

is passed in as an input parameter to the isAdult function, which results in

a failed contract. Listing 3.9 shows an error that code in Listing 3.8 generates.

Error : i sAdul t : cont rac t v i o l a t i o n

expected : Num

given : undef ined

in : the age property o f

the 1 s t argument o f

({ age : Num}) −> Bool

func t i on i sAdul t guarded at l i n e : 2

blaming : (c a l l i n g context for i sAdu l t)

Listing 3.9: Error message on failed contract

Another example of a failed contract with respect to the contract in Listing

3.8, where name property exists but with an invalid type, is given in Listing 3.10.

18

i sAdu l t ({

name : " John " ,

age : " Five "

}) ;

Error : i sAdul t : cont rac t v i o l a t i o n

expected : Num

given : Str

in : the 1 s t f i e l d o f

the age property o f

the 1 s t argument o f

({ age : Num}) −> Bool

func t i on i sAdul t guarded at l i n e : 2

blaming : (c a l l i n g context for i sAdu l t)

Listing 3.10: Example of a failed contract

From these examples, it is clear that the contract system enforced by Contract.js

is for checking type related errors that may occur in the code. It also provides number

basic contracts that check for first order properties [14].

3.2 Contract Library for Java by Neha Rajkumar

Rajkumar [7] developed a contracts library for Java using custom annotations

and AspectJ. This library provides a custom Java annotation @contract using which

a developer can provide preconditions and postconditions over a Java method. These

pre and postconditions constraints are then checked at runtime for their validity using

AspectJ and reflection. At runtime preconditions and postconditions are validated

using Java functions that are executed using custom annotation processing. I will

19

be extending this approach towards building my library, which uses Prolog files to

validate contract conditions.

20

CHAPTER 4

Implementation

This chapter focuses on the implementation details of my project and how to use

the library for implementing contracts in Java.

4.1 Java Custom Annotations

Annotations in Java can be used to retrieve information or data about the

data. It can be termed as a form of metadata which provides more information at

run-time or compile-time about the part of the code that is being annotated. Java

annotations always start with the @ symbol and can be of different forms. Some

annotations like the @override annotation do not have any elements whereas some

annotations like @SuppressWarnings("unchecked") come with a element defined

inside the parentheses. Java also provides a way to define custom annotations using

@interface. In my library, I have used this method to create a custom @contract

annotation, which developers can use to specify the contracts for their Java methods.

Listing 4.1 shows code block for creating the custom annotation type @contract.

21

package annotat ions ;

import java . lang . annotat ion . ElementType ;

import java . lang . annotat ion . Retent ion ;

import java . lang . annotat ion . Retent ionPo l i cy ;

import java . lang . annotat ion . Target ;

@Target (ElementType .METHOD)

@Retention (Retent ionPo l i cy .RUNTIME)

public @inte r f a c e Contract {

St r ing [] pre_cond () default " " ;

S t r ing [] post_cond () default " " ;

S t r ing [] s o u r c e_ f i l e s () default " no f i l e to load " ;

}

Listing 4.1: Custom Annotation Type

The Target element specifies where the annotation type can be used in the code

[15]. In the implementation given in Listing 4.1, it specifies that the @contract

annotation type can be used only with methods. The @Retention element specifies

until what point in the execution cycle of the code should the annotation of this

type be available [15]. In the case of @contract, @Retention specifies that it will

be made available until runtime. The @Contract custom annotation has 3 elements:

pre_cond, post_cond, and source_files. All these three elements are string arrays;

that is, each element can have multiple string values assigned when writing a contract.

All these tree elements come with default values associated to them, which makes

22

them non-compulsory elements of the contract type. Use of each of these elements is

as follows:

• pre_cond: This element is used to specify the preconditions of the contract.

• post_cond: This element is used to specify the postconditions of the contract.

• source_files: This element is used to specify the Prolog files which should be

referred to validate the preconditions and postconditions.

Listing 4.2 gives an example that illustrates how a contract

can be written using the previously defined custom annotation type.

@Contract (

pre_cond = { " i s P o s i t i v e (amount) " , " lessThan (amount , @balance

) " } ,

post_cond = { " checkbalance (ans) " } , s o u r c e_ f i l e s = { "

bankprolog . p l " })

Listing 4.2: using custom annotation to write contract

In the Listing 4.2, isPositive(amount) and lessThan(amount, balance) are

declared as preconditions, checkbalance(ans) is the postcondition. "bankprolog.pl"

is a Prolog file that is specified as a source for validating the contract conditions.

4.2 AspectJ and Reflection

Once the contract is specified over a method using the @contract anno-

tation, its conditions are validated at runtime. Specifically, preconditions are

evaluated just before execution enters the method routine and postconditions

should be evaluated immediately after the method has executed. AspectJ, an

extension of Java, provides this exact granularity and control over the Java

program. AspectJ is an aspect-oriented programming extension created for the

23

Java programming language [16]. It provides pointcuts, which specify well defined

moments in the execution of a program, such as a method call [16]. It also

provides before() and after() routines which can be used for implementing precon-

dition and postcondition contracts. Listing 4.3 pointcuts that I am using in this library.

// po in t cu t to catch execu t i on con t ex t o f any method

po intcut f () : execut ion (∗ ∗ (. .)) ;

// po in t cu t to catch annota t ions from the code

po intcut g () : @annotation (Contract) ;

Listing 4.3: Pointcut in AspectJ

• f : This pointcut is used to catch the execution context of the running Java

program. It uses the wild card syntax "(* * (..))" which specifies that, this

pointcut will pick the execution moment of any method in the executing Java

program, irrespective of its signature.

• g : This pointcut specifically checks for the elements in the executing Java

program that are annotated by the Contract annotation type.

Composing these two pointcuts using the && operation makes it

possible to achieve a pointcut that will be picked up only when a

method annotated with the Contract annotation is called for execution.

24

// Join ing both the p o i n t c u t s i t w i l l ca tch

// annota t ions in the execu t i on con t e x t

be f o r e () : f () && g ()

{

. . .

}

a f t e r () r e tu rn ing (Object ob j r e t) : f () && g ()

{

. . .

}

Listing 4.4: Pointcut Composition and before-after routines

25

be f o r e () : f () && g ()

{

St r ing [] parameterNames <− Extract names o f a l l the input

parameters o f the method

Object [] arguements <− Extract va lue s o f a l l the input

parameters o f the method

instanceVarNamesList <− Extract a l l the in s t anc e v a r i a b l e s

names

instanceVarNameToValue map <− Create map o f name to value f o r

a l l the in s t ance v a r i a b l e s o f c l a s s f o r the cur rent

i n s t ance

\\ get method annotat ion o f type @Contract

Annotation [] annost = method . getDeclaredAnnotationsByType (

Contract . c l a s s) ;

f o r each dec l a r ed annotat ion from annost []

S t r ing [] pre_cond <− get p r e cond i t i on s s p e c i f i e d in the

annotat ion

St r ing [] s o u r c e_ f i l e s <− get pro log source f i l e s s p e c i f i e d

in the annotat ion

\\ load pro log f i l e

f o r each source f i l e

load the pro log f i l e us ing JIPro log API

26

\\ convert p r e cond i t i on text in to Prolog query by r ep l a c i n g

va r i ab l e names with va lue s

\\example convert pre_cond = { " i s P o s i t i v e (amount) " , "

lessThan (amount , @balance) " } to

\\pre_cond = { " i s P o s i t i v e (300) " , " lessThan (300 , 900) " }

f o r each pre cond i t i on in pre_cond

i f p r e cond i t i on conta in s i n s t ance va r i ab l e name

get the cor re spond ing value from instanceVarNameToValue

map

r ep l a c e p r e cond i t i on va r i a b l e name text with i t s va lue

in p r e cond i t i on

e l s e i f p r e cond i t i on conta in s input parameter name

inputVarValue <− get the cor re spond ing value o f the

input parameter from arguements []

r ep l a c e input parameter name with i t s va lue

inputVarValue

eva luate the pr e cond i t i on us ing JIPro log API

i f eva lua t i on f a i l s

throw an except ion

}

Listing 4.5: Pseudocode for before() routine

27

a f t e r () r e tu rn ing (Object ob j r e t) : f () && g ()

{

instanceVarNamesList <− Extract a l l the in s t anc e v a r i a b l e s

names

instanceVarNameToValue map <− Create map o f name to value f o r

a l l the in s t ance v a r i a b l e s o f c l a s s f o r the cur rent

i n s t ance

\\ get method annotat ion o f type @Contract

Annotation [] annost = method . getDeclaredAnnotationsByType (

Contract . c l a s s) ;

f o r each dec l a r ed annotat ion from annost []

S t r ing [] post_cond <− get po s t c ond i t i on s s p e c i f i e d in the

annotat ion

St r ing [] s o u r c e_ f i l e s <− get pro log source f i l e s s p e c i f i e d

in the annotat ion

\\ load pro log f i l e

f o r each source f i l e

load the pro log f i l e us ing JIPro log API

28

\\ convert po s t cond i t i on text in to Prolog query by r ep l a c i n g

va r i ab l e names with va lue s

\\ example convert post_cond = { " checkPivotVal id (ans , @arr)

. " } to

\\ post_cond = { " checkPivotVal id (2 , [5 , 2 , 6 , 1 26]) "}

f o r each pos t cond i t i on in post_cond

i f po s t cond i t i on conta in s i n s t ance va r i ab l e name

get the cor re spond ing value from instanceVarNameToValue

map

r ep l a c e po s t cond i t i on va r i a b l e name text with i t s va lue

in po s t cond i t i on

e l s e i f po s t cond i t i on conta in s " ans "

\\ us ing ans as keyword f o r re turn va lue s

r e tu rnva lue <− get the value from ob j r e t

r ep l a c e " ans " with i t s r e tu rnva lue . t oS t r i ng ()

eva luate the po s t cond i t i on us ing JIPro log API

i f eva lua t i on f a i l s

throw an except ion

}

Listing 4.6: Pseudocode for after() routine

4.3 Prolog for Contract Validation

Prolog is widely known for its implementations in the area of Artificial Intelligence

and Natural Language Processing. In my implementation of contract programming,

29

Prolog files that contain set of facts and rules will form the basis of contract evaluation.

After analyzing and understanding its basic constructs, I found that Prolog’s declarative

style can be efficiently used to write the set of rules and facts to specify contracts.

Once you have these rules in place, the library will query the Prolog file to evaluate

the validity of the contract conditions.

4.3.1 Basic Prolog Constructs and Syntax

Prolog has three basic constructs that I will be focusing in this part of the chapter

[17].

• Facts

• Rules

• Queries

4.3.1.1 Facts

A fact is a simple statement of the form " chinese (chow_mein). " which results

in true or false value. Given this fact, we can now ask is chow_mein a chinese

dish ? , which will return true. This can be done using Prolog Queries.

4.3.1.2 Rules

A rule is collection of one or more facts. Multiple facts in conjunction or dis-

junction form the result of a rule. Rules are of the form nonnegative(Var):- Var

>= 0. . Using this rule, one can query and check if a number is positive or not.

4.3.1.3 Queries

Queries are an important construct of Prolog which allows us to ask ques-

tions to the Prolog engine and get answers from it. The Prolog file contains

one or more facts and rules based on which our queries will be answered. List-

ing 4.7 gives an example of a simple Prolog code and some associated queries.

30

l i k e s (sam , Food) :−

i nd ian (Food) ,

mild (Food) .

l i k e s (sam , Food) :−

ch ine s e (Food) .

l i k e s (sam , Food) :−

i t a l i a n (Food) .

l i k e s (sam , Food) :−

span i sh (Food) .

l i k e s (sam , ch ips) .

span i sh (c h i c k e n_ch i l l i e) .

ind ian (chicken_curry) .

mild (chicken_curry) .

ch ine s e (chow_mein) .

i t a l i a n (p i z za) .

i t a l i a n (spaghe t t i) .

Listing 4.7: Prolog Queries

For the above Prolog program we can formulate different queries as shown in

Listing 4.8,

31

?− l i k e s (sam ,What) .

What = chicken_curry ;

What = chow_mein ;

What = pizza ;

What = spaghe t t i ;

What = ch i c k e n_ch i l l i e ;

What = ch ips .

?− l i k e s (sam , p i z za) .

t rue

?− l i k e s (sam , burger) .

f a l s e .

?− i t a l i a n (c h i c k e n_ch i l l i e) .

f a l s e .

?− ch ine s e (chow_mein) .

t rue .

Listing 4.8: Prolog example

4.3.2 Prolog for Contracts

Using the facts and rules introduced in the section above we can specify contract

rules effectively. Developers can write their own Prolog files to create custom

contracts. For instance, a developer might write a postcondition contract for a

quicksort partition function. This contract needs to validate that at each iteration a

valid pivot is chosen. This contract can be written using custom annotation like this:

@Contract(post_cond = "checkPivotValid(ans,@arr)."). Once this is done,

the developer has to think on the logic that checkPivotValid should follow. Here, the

32

logic would check if the selected pivot element is greater than all the left elements and

less than all the right elements at each iteration. Once this logic is decided, it can be

easily converted into a Prolog rule. Listing 4.9 shows the Prolog code for this contract.

s u b l i s t (S ,M,N, [_A|B]) :−

M > 0 ,

M < N,

s u b l i s t (S ,M−1,N−1,B) .

s u b l i s t (S ,M,N, [A|B]) :−

0 i s M,

M < N,

N2 i s N−1,

S=[A|D] ,

s u b l i s t (D, 0 ,N2 ,B) .

s u b l i s t ([] , 0 , 0 ,_) .

checkPivotVal id (Pivotindex , L i s t) :−

Pindex i s Pivotindex ,

s u b l i s t (S , 0 , Pindex , L i s t) ,

nth0 (Pivotindex , L i s t , Pivote lement) ,

ch e ck_pre l i s t_ut i l (S , Pivote lement) ,

countElements (L is t , Count) ,

s u b l i s t (N, Pindex+1,Count , L i s t) ,

ch e ck_pos t l i s t_ut i l (N, Pivote lement) .

Listing 4.9: Prolog example

33

countElements ([] , 0) .

countElements ([_| Xs] , Count) :−

countElements (Xs , Count1) ,

Count i s Count1+1.

che ck_pre l i s t_ut i l ([H|T] , N) :−

H =< N,

che ck_pre l i s t_ut i l (T, N) .

ch e ck_pre l i s t_ut i l ([H | []] , N) :−

H =< N.

che ck_pos t l i s t_ut i l ([H|T] , N) :−

H > N,

che ck_pos t l i s t_ut i l (T, N) .

ch e ck_pos t l i s t_ut i l ([H | []] , N) :−

H > N.

Listing 4.10: Prolog example

checkPivotValid rule from the above Prolog code checks if the pivot selected is

greater than all the elements to its left and less than all the elements to its right in

the list.

4.4 JIProlog

JiProlog is a Prolog interpreter written in Java [18].As seen in above sections,

rules for Java contracts are specified in a Prolog file. We need to evaluate these rules

to check the validity of the contracts. For this, we need some way using which we can

query the Prolog files from Java AspectJ code. JIProlog provides APIs using which

34

we can establish this connectivity between a Java and Prolog code [18]. Using these

APIs we can submit a Prolog query from Java code and get the results. This solves

the problem of evaluating contract rules from Java.

35

Listing 4.11 shows a code snippet that illustrates connection achieved between Java

and Prolog code using JIProlog library APIs.

public class J I P I n i t i a l i z e r {

public f ina l JIPEngine j i p = new JIPEngine () ;

public J I P I n i t i a l i z e r ()

{

j i p . setDebug (fa l se) ;

j i p . setTrace (fa l se) ;

j i p . setEnvVar iable (" debug " , " o f f ") ;

try

{

j i p . c o n s u l tF i l e ("

de fau l t_pro log_l ib ra ry . p l ") ;

}catch (JIPSyntaxErrorException ex)

{

System . out . p r i n t l n (" Exception load ing

pro log f i l e : " + ex . getMessage ()

) ;

System . e x i t (0) ;

}

}

}

Listing 4.11: Creating JIPEngine instance

Code snippet given in Listing 4.11 illustrates how to create an instance of the

36

JIPEngine class, which then will be used for loading a Prolog file and making API

calls. JIPEngine is the main class of the JIProlog library [18]. It supplies all the

methods required for the Java-Prolog connection and making queries. Code snip-

pet in given in Listing 4.12 illustrates how to load a Prolog file using JIPEngine instance.

public void l o adF i l e (S t r ing f i leName)

{

try

{

j i p . c o n s u l tF i l e (f i leName) ;

}

catch (JIPSyntaxErrorException ex)

{

System . out . p r i n t l n (" Exception load ing

pro log f i l e : " + ex . getMessage ()

) ;

System . e x i t (0) ;

}

}

Listing 4.12: Loading a Prolog file using JIProlog API

JIPEngine’s consultFile method compiles and loads the Prolog file, whose name is

passed to it as parameter. Once the file is loaded it is ready to be queried using query

API’s. There are two ways to submit Prolog queries using JIPEngine: Synchronously

and asynchronously [18]. For my library I have used synchronous API calls.

37

Listing 4.13 shows how we can submit a query using JIPEngine instance and read the

solution of the submitted query.

JIPQuery j ipQuery = j i p . openSynchronousQuery (queryStr ing) ;

boolean queryResult = readSo lu t i on (j ipQuery) ;

Listing 4.13: Prolog Query Using JIProlog API

JIProlog makes it very easy, querying Prolog rules and facts within Java scope

and forms the connecting piece of the contract library. Next chapter will focus on a

contract example for a QuickSort program and its performance results.

38

CHAPTER 5

Examples and Performance

This chapter illustrates sample programs using my contract library and also

reviews the performance results of it on a Quicksort example. This chapter also provides

a conclusion based on the results and dofferent aspects of contract programming

discussed throughout this report.

5.1 Sample Contract for Bank System

Listing 5.1 shows an example, which illustrates the usage of my

contract library for a Bank class with withdraw and deposit methods.

39

public class Bank {

private St r ing accOwner ;

private Double balance ;

public Bank(St r ing name)

{

this . accOwner = name ;

this . ba lance = 0 . 0 ;

}

public Double getBalance () {

return balance ;

}

public void se tBa lance (Double balance) {

this . ba lance = balance ;

}

Listing 5.1: Java Contracts for Bank class - I

40

@Contract (pre_cond = { " i s P o s i t i v e (amount) " , " lessThan (amount

, @balance) " } , post_cond = { " checkbalance (ans) " } ,

s o u r c e_ f i l e s = { " bankprolog . p l " })

public double withdraw (Double amount)

{

this . ba lance = balance − amount ;

return balance ;

}

@Contract (pre_cond = { " nonnegat ive (amount) " , "

maxLimitNotBreached (amount) " } , post_cond = { " checkbalance

(ans) " } , s o u r c e_ f i l e s = { " bankprolog . p l " })

public double depos i t (Double amount)

{

this . ba lance = balance + amount ;

return balance ;

}

Listing 5.2: Java Contracts for Bank class - II

i s P o s i t i v e (Var) :− Var > 0 .

lessThan (Var1 , Var2) :− Var1 < Var2 .

checkbalance (Bal) :− Bal > 0 .

maxLimitNotBreached (Amt) :− Amt < 1000 .

Listing 5.3: bankprolog.pl

41

public stat ic void main (St r ing [] a rgs)

{

Bank newAccount = new Bank(" Test Account ") ;

newAccount . depo s i t (100 . 00) ;

newAccount . depo s i t (700 . 00) ;

newAccount . withdraw (900 . 00) ;

}

Listing 5.4: Java Contracts for Bank class

As we can see in the code given in the Listing 5.4, total amount in the

Test Account after two calls for deposit method is 800. When a withdraw

method call with 900 as input parameter is made it fails the lessThan(amount,

@balance) precondition on withdraw method. This condition rule checks if

the amount (parameter) that is to be withdrawn from the account is less than

the total balance in the account. In our case since amount is greater than the

balance it causes the contract failure and program exits with the exception given below.

Exception in thread "main" annotations.ContractFailException: Contract failure :

preconditions failed for lessThan(900.0, 800.0)

at annotations.JIPInitializer.checkPreCond(JIPInitializer.java:92)

at annotations.asp.ajc\$before\$annotations_asp\$1\$78590bef(asp.java:68)

at com.yd.contractprogramming.Bank.withdraw(Bank.java:34)

at com.yd.contractprogramming.Bank.main(Bank.java:51)

42

5.2 Contract for Quicksort and Performance Results

Listing 5.6 shows an example of a quicksort pro-

gram that uses contract library to validate functionality.

private void s o r t (int low , int high)

{

i f (low < high)

{

int pi = pa r t i t i o n (low , high) ;

s o r t (low , pi −1) ;

s o r t (p i+1, high) ;

}

}

Listing 5.5: Quicksort Program with Contract - 1

43

@Contract (pre_cond = { " " } , post_cond = { " checkPivotVal id (

ans , @arr) . " } , s o u r c e_ f i l e s = { " Sub l i s t . p l " })

int pa r t i t i o n (int low , int high)

{

int pivot = ar r [high] ;

int i = (low−1) ;

for (int j=low ; j<=high −1; j++)

{

i f (a r r [j] <= pivot) {

i++;

int temp = arr [i] ;

a r r [i] = ar r [j] ;

a r r [j] = temp ;

}

}

int temp = arr [i +1] ;

a r r [i +1] = ar r [high] ;

a r r [high] = temp ;

return i +1;

}

Listing 5.6: Quicksort Program with Contract - 1

In the code given in Listing 5.6 a postcondition contract is used to validate the

partition function. This contract checks, if the selected pivot is correct at each recur-

sive call. Execution time metrics for this code, against execution time of a quicksort pro-

44

gram without any contracts, collected over different size inputs is given in the table 1.

Table 1: Execution Time Metrics for Contract Over Partition Method

(A) Input
Size

(B) Execution Time
With Contract (In
nano-seconds)

(C) Execution Time
Without Contract (In
nano-seconds)

(D = B/C)

100 2690400443 31262 86509
500 152304489998 369960 411678

1000 652321093085 538378 1211641

In this example, contract is specified over the partition method which has the

almost all the logic code required for the quicksort function. Thus contract specified, is

validating the pivot value at each recursive call, ultimately resulting into an increased

execution time. But, developer can be sure about the correctness of the code and

if there is some error, it can be easily traced. Execution time can be reduced if the

position of the contract is changed as shown in the code given in Listing 5.7. Now,

contract is used over the sortwrapper method instead of partition method. Thus,

contract will validate the result only once the complete execution is over and not at

each recursive call. This will still validate, if the result array is sorted and if not will

throw an error. But in this code developer won’t be able to figure out the error, if

there exists one in the partition method if something goes wrong.

45

int pa r t i t i o n (int low , int high)

{

int pivot = ar r [high] ;

int i = (low−1) ;

for (int j=low ; j<=high −1; j++)

{

i f (a r r [j] <= pivot) {

i++;

int temp = arr [i] ;

a r r [i] = ar r [j] ;

a r r [j] = temp ;

}

}

int temp = arr [i +1] ;

a r r [i +1] = ar r [high] ;

a r r [high] = temp ;

return i +1;

}

private void s o r t (int low , int high)

{

i f (low < high) {

int pi = pa r t i t i o n (low , high) ;

s o r t (low , pi −1) ;

s o r t (p i+1, high) ;

}

}

46

@Contract (pre_cond = { " " } , post_cond = { " ordered (ans) . " } ,

s o u r c e_ f i l e s = { "mypl . p l " })

public int [] sortwrapper (int low , int high)

{

s o r t (low , high) ;

return this . a r r ;

}

Listing 5.7: Quicksort Program with Contract - 2

Table 2 gives the time metrics for the code given in Listing 5.7.

Table 2: Execution Time Metrics for Contract Over sortwrapper Method

(A) Input
Size

(B) Execution Time
With Contract (In
nano-seconds)

(C) Execution Time
Without Contract (In
nano-seconds)

(D = B/C)

100 23999612 31262 767
500 206506677 369960 558

1000 472319108 538378 877

There can be cases, like quicksort program example where, code can be validated

once using contracts and once validated there should be some way where developer

can bypass the contract system to avoid the time overhead. This way developer can

be sure that code is correct and time overhead can be avoided. Code snippet given in

the Listing 5.8, shows the modified quicksort code to illustrate this. In this code,

original partition method which has all the sorting logic wont have any contract

associated to it. We will introduce another dummy method partitionWithContract

which will call the actual partition method and will also have contract associated.

47

Once we have this structure in place, now when the developer wants to run the

system through the contract system he will call the partitionWithContract method

and when he wants to bypass the contract system he will call the partition method.

int pa r t i t i o n (int low , int high)

{

int pivot = ar r [high] ;

int i = (low−1) ;

for (int j=low ; j<=high −1; j++)

{

i f (a r r [j] <= pivot) {

i++;

int temp = arr [i] ;

a r r [i] = ar r [j] ;

a r r [j] = temp ;

}

}

int temp = arr [i +1] ;

a r r [i +1] = ar r [high] ;

a r r [high] = temp ;

return i +1;

}

48

@Contract (pre_cond = { " " } , post_cond = { " checkPivotVal id (

ans , @arr) . " } , s o u r c e_ f i l e s = { " Sub l i s t . p l " })

int part i t ionWithContract (int low , int high)

{

return pa r t i t i o n (low , high) ;

}

private void s o r t (int low , int high)

{

i f (low < high) {

// i n t p i = par t i t i onWi thContrac t (low , h igh) ;

int pi = pa r t i t i o n (low , high) ;

s o r t (low , pi −1) ;

s o r t (p i+1, high) ;

}

}

Listing 5.8: Quicksort Program with Contract - 3

49

CHAPTER 6

Conclusion

With the increasing volume and complexity of code involved in different software

systems, reliability and robustness have become important aspects of the software

development industry. Use of DbC methodology in software development can help in

developing such reliable software systems.

The library designed as a part of this project allows developers to write contracts

for their Java programs. Although it adds few overheads to the overall execution

time, side-effects of using contracts of increased execution time can be reduced using

some simple strategies discussed in Chapter 5.

In the future work scope for this library, it can be extended to support invariants

along with preconditions and postconditions in the contract definition. Support for,

accessing old value of instance variables also needs to be added in the library. This

will help developers write more accurate and efficient contracts for their Java methods.

50

LIST OF REFERENCES

[1] B. Meyer, ‘‘Applying’design by contract,’’ Computer, vol. 25, no. 10, pp. 40--51,
1992.

[2] R. Mitchell and J. McKim, Design by Contract, by Example. Addison-Wesley,
2002.

[3] R. B. Findler, ‘‘Behavioral software contracts,’’ in ACM SIGPLAN Notices,
vol. 49, no. 9. ACM, 2014, pp. 137--138.

[4] B. Meyer, ‘‘Building bug-free oo software: An introduction to design by contract,’’
Availabe at http://www.eiffel.com/values/design-by-contract/introduction/, 1998.

[5] R. Ceballos, R. M. Gasca, and D. Borrego, ‘‘Constraint satisfaction techniques for
diagnosing errors in design by contract software,’’ in ACM SIGSOFT Software
Engineering Notes, vol. 31, no. 2. ACM, 2005, p. 11.

[6] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen, ‘‘Correct blame for
contracts: no more scapegoating,’’ in ACM SIGPLAN Notices, vol. 46, no. 1.
ACM, 2011, pp. 215--226.

[7] N. Rajkumar, ‘‘Designing a programming contract library for java,’’ Master’s
thesis, San Jose State University, 2015.

[8] L. C. Briand, Y. Labiche, and H. Sun, ‘‘Investigating the use of analysis contracts
to support fault isolation in object oriented code,’’ in ACM SIGSOFT Software
Engineering Notes, vol. 27, no. 4. ACM, 2002, pp. 70--80.

[9] ‘‘Why is java the most popular programming language? (oracle university),’’ https:
//blogs.oracle.com/oracleuniversity/entry/why_is_java_the_most, (Accessed
on 04/04/2017).

[10] ‘‘7.1 contracts and boundaries,’’ https://docs.racket-lang.org/guide/contract-
boundaries.html, (Accessed on 04/12/2017).

[11] ‘‘7.2 simple contracts on functions,’’ https://docs.racket-lang.org/guide/contract-
func.html, (Accessed on 04/14/2017).

[12] G. T. Leavens and Y. Cheon, ‘‘Design by contract with jml,’’ 2006.

[13] ‘‘Java modeling language - wikipedia,’’ https://en.wikipedia.org/wiki/Java_
Modeling_Language, (Accessed on 04/30/2017).

51

https://blogs.oracle.com/oracleuniversity/entry/why_is_java_the_most
https://blogs.oracle.com/oracleuniversity/entry/why_is_java_the_most
https://docs.racket-lang.org/guide/contract-boundaries.html
https://docs.racket-lang.org/guide/contract-boundaries.html
https://docs.racket-lang.org/guide/contract-func.html
https://docs.racket-lang.org/guide/contract-func.html
https://en.wikipedia.org/wiki/Java_Modeling_Language
https://en.wikipedia.org/wiki/Java_Modeling_Language

[14] ‘‘Contracts.js,’’ http://www.contractsjs.org/, (Accessed on 03/25/2017).

[15] ‘‘Java annotations tutorial with examples,’’ http://beginnersbook.com/2014/09/
java-annotations/, (Accessed on 05/01/2017).

[16] ‘‘Aspectj - wikipedia,’’ https://en.wikipedia.org/wiki/AspectJ, (Accessed on
05/01/2017).

[17] ‘‘Learn prolog now!’’ http://www.learnprolognow.org/lpnpage.php?pagetype=
html&pageid=lpn-htmlch1, (Accessed on 05/01/2017).

[18] ‘‘jiprolog/jiprolog wiki,’’ https://github.com/jiprolog/jiprolog/wiki, (Accessed on
05/01/2017).

52

http://www.contractsjs.org/
http://beginnersbook.com/2014/09/java-annotations/
http://beginnersbook.com/2014/09/java-annotations/
https://en.wikipedia.org/wiki/AspectJ
http://www.learnprolognow.org/lpnpage.php?pagetype=html&pageid=lpn-htmlch1
http://www.learnprolognow.org/lpnpage.php?pagetype=html&pageid=lpn-htmlch1
https://github.com/jiprolog/jiprolog/wiki

	Library for Writing Contracts for Java Programs Using Prolog
	Recommended Citation

	Introduction
	Contract Conditions
	A Contract for an ATM System
	Prolog for Contracts

	About Contracts
	History and Background
	Benefits of Design by Contract (DbC)
	Better Design
	Meaningful Exceptions
	Better Documentation
	Fault Isolation and Easy Debugging

	Limitations of Contracts
	Cost of Writing Contract Rules
	Contract writing Skills
	False Sense of Security

	Motivation and Contracts in Other Languages
	Existing Implementations
	Contracts in Racket
	The Java Modeling Language
	Contracts.js for JavaScript

	Contract Library for Java by Neha Rajkumar

	Implementation
	Java Custom Annotations
	AspectJ and Reflection
	Prolog for Contract Validation
	Basic Prolog Constructs and Syntax
	Prolog for Contracts

	JIProlog

	Examples and Performance
	Sample Contract for Bank System
	Contract for Quicksort and Performance Results

	Conclusion
	LIST OF REFERENCES

