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ABSTRACT

Influence Detection And Spread Estimation in Social Networks

by Madhura Kaple

A social network is an online platform, where people communicate and share

information with each other. Popular social network features, which make them

different from traditional communication platforms, are: following a user, re-tweeting

a post, liking and commenting on a post etc. Many companies use various social

networking platforms extensively as a medium for marketing their products. A fixed

amount of budget is alloted by the companies to maximize the positive influence of

their product. Every social network consists of a set of users (people) with connections

between them. Each user has the potential to extend its influence across this network.

The amount of influence propagated by some users is larger as compared to others.

Companies, given a fixed budget, target this subset of users to attain maximum

influence spread. We can model this as an influence maximization problem. This

subset of users then influence the behavior or choices of other users by methods like

word of mouth, actions etc. through an influence propagation across the network. The

aim of this project is to compare different known and new proposed algorithms for the

influence maximization problem. We measure the efficiency of each algorithm based

on the number of vertices influenced by the initial set of influencers. In addition, a

comparison of computation time required for each algorithm is done using various

synthetic random graphs and real world social network datasets.
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CHAPTER 1

Introduction

Today, social networks have become a popular communication media among

people. Facebook, Twitter, Linkedin are some of the examples of popular social

networking platforms. A social network is modeled as a graph with people acting as

vertices and relationships between people form the edges of the graph. These networks

are useful means to spread information among people. Humans form their opinions

based on the opinions of their friends and peers. They adopt a behavior based on

the behavior of others. Also, their decisions get influenced by their peers and friends.

Viral marketing is a process where companies use social network platforms for the

marketing of their products. It is observed that some people are acting as influencers,

meaning they are more capable of influencing bigger groups of people than others

related to a topic, opinion, behavior or product. These people are termed as seed

set of influencers. A person is said to be influenced by the seed set of influencers if

it is convinced to adopt an opinion, behavior or product. Companies having limited

budget for marketing, try to activate or recruit these influencers in the network to

achieve maximum popularity of their product. Identifying such a set of k-influencers

is termed as the influence maximization problem.

The influence maximization problem was formulated as a discrete optimization

problem by the authors Kempe et al., in paper [11]. The paper defines that a vertex

is activated if it adopts an idea, product or behavior from influencers in the seed

set. Also, once activated, a vertex remains in active state. It is stated as, a social

graph contains people as vertices and the edges correspond to the relationship be-

tween people. Also, the potential influence between the users corresponds to edge
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weights. Given a budget k, find a seed set of k-influencers such that on the activation

the influence spread is maximized across social graph. This influence spread occurs in

discrete steps. The influence spread of the seed set is measured using various propaga-

tion models. Linear Threshold and Information Cascade are two popular information

propagation models. Identifying influencers and measuring the spread of influence

can help in making recommendations to the users in a network [5].

1.1 Problem Formulation

Consider a social graph, G = (V,E) and a fixed budget k. The influence maxi-

mization problem is to find an initial set of k-influencers called seed set 𝑆0 ⊂ V where,

𝑆0 <= k such that influence spread of 𝑆0 under given diffusion model is maximized

[22]. This optimization problem is NP-hard. A greedy approximation algorithm is

used as a solution to this problem. This greedy algorithm guarantees an efficiency

of at least 63% approximation. It works greedily by selecting one vertex at a time

and measuring the number of vertices influenced by it. This process is termed as

spread estimation. The greedy approximation solution has a large number of spread

estimation calls which makes it slow. Thus, it is time consuming for large graphs and

depends heavily on the way we calculate the spread.

This project has the following objectives:

1. Detection of seed set of k - influencers such that it maximizes information spread

across the network, using new proposed methods of seed set detection.

2. Measuring the spread of influence or information diffused by the seed set of k-

influencers, under different scenarios in directed and undirected graphs.

3. Comparison of the new proposed algorithms against the existing greedy approxi-

mation algorithm in terms of the influence spread attained by the k - influencer seed
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set and the computation times.

For detection of seed set of k - influencers, in one of our methods, we use an acyclic

spanning graph based approach for undirected social network graphs. This algorithm

gives faster seed set detection and spread estimation as compared to the greedy ap-

proximation solution. For directed graphs, the seed set is detected using the CELF

algorithm [13]. The performance of CELF algorithm is improved by modifying it

and adding the discovery of vertex cover as a preliminary step in the algorithm. The

Linear Threshold model is used to compute the influence spread of the detected seed

set. A comparison of the results obtained from the the new proposed algorithms and

the existing greedy approximation solution is done.

In chapter 2, we explain the terminology and graph concepts, used in the influ-

ence maximization algorithms.
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CHAPTER 2

Terminology

2.1 Graph Terminology

1. Graph

A Graph G = (V, E) contains a set of vertices n = V and edges m = E . The

vertices are connected to each other by set of links called as edges. The graphs can be

undirected as well as directed. In directed graphs, the edges connecting the vertices

have directions. Graphs are used to model relationships among a collection of items.

2. Degree

An in-degree of a vertex in a graph is defined as the count of incoming edges for a

vertex in the graph. Similarly, out-degree of a vertex is the count of outgoing edges

from that vertex in a graph. In-degree of a vertex v is represented as 𝑑−(𝑣). Similarly,

out-degree of a vertex v is represented as 𝑑+(𝑣)

3. Representations

A graph G = (V, E) having n vertices and m edges where n = V and m = E , is

usually represented using two data structures namely an adjacency matrix and an

adjacency list. In an adjacency matrix representation, we use a 2D array of size nxn

such that if an edge is present in between two vertices, matrix entry will be non-zero

else it will be 0. In an adjacency list, for each vertex v ∈ V we maintain a list of

vertices adjacent to v. With an adjacency list, we can traverse the list and find all

the vertices connected to a particular vertex by corresponding entry.

4. Breadth First Traversal (BFS)

BFS is a traversal algorithm in which we traverse the graph level wise starting from
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the root or starting vertex. We then visit its neighbors before proceeding to their

neighbors. BFS is given in Algorithm 1.

Algorithm 1 Breadth First Search (BFS)
1: procedure BFS(𝐺, 𝑠)
2: Let Q be queue
3: Let visited be array to maintain the visited vertices
4: Initialization: Insert s in queue Q and mark s as visited
5: while Q is not empty do
6: v← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
7: for all neighbors n of v in Graph G do
8: if n is not visited then
9: Insert n in Q

10: Mark n as visited

Example: Consider the graph with 12 vertices and 16 edges given in Figure 1. If we

consider 0 as the starting vertex, then the BFS will be

BFS : 0, 5, 3, 2, 1, 4, 7, 8, 6, 10, 9, 11

Figure 1: Example: Undirected graph
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5. Vertex Cover

A vertex cover of a graph is a subset of vertices where each edge of a graph is incident

to at least one vertex in the set. A minimum vertex cover is the smallest possible size

of vertex cover set. The vertex cover for the graph in Figure 1 is (0, 1, 2, 3, 4, 7, 8).

This is not necessarily the minimum vertex cover.

6. Acyclic Spanning Graph

Acyclic spanning graph is constructed by removing the cycles from the original graph.

It has all the vertices in the original graph. The graph in Figure 1 is an undirected

graph with cycles. The graph in Figure 2 represents the spanning graph constructed

from the graph in Figure 1.

Figure 2: Example: Spanning Graph

2.2 Types of Centralities

In a social network, the centrality of a vertex defines its importance in the

network. Below are some of the types of centralities in the social network graphs [4].
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1. Degree Centrality

Degree centrality is determined by the count of vertices to which a vertex is connected

to. In a directed graph, we define in-degree and out-degree centrality for a vertex.

In-degree centrality is the count of incoming edges of a vertex whereas the number

of outgoing edges of a vertex defines the out-degree centrality. Normalized degree

centrality is obtained by dividing the degree centrality of a vertex by (n - 1) where n

is the number of edges.

2. Eigenvector Centrality

The drawback of degree centrality is that it assumes that the vertex with the

maximum number of connections is the central vertex. However, this is not true

in all cases in the real world. To overcome this drawback, Eigen vector centrality

accounts for the importance of the vertices that a vertex is connected to. It is given

by the below formula,

𝐶𝑒(𝑣𝑖) =
1

𝜆
*

𝑛∑︁
𝑗=1

𝐴𝑗,𝑖𝐶𝑒(𝑣𝑗) (1)

where,

𝐶𝑒(𝑣𝑖) is the Eigenvector centrality of vertex 𝑣𝑖

𝜆 is a fixed constant

A is the adjacency matrix for social graph

3. Katz Centrality

The drawback of Eigenvector centrality is that in a graph, centrality does not prop-

agate if the vertex does not have any outgoing edges. In the case of directed graphs,

where the vertex has many incoming edges but there is no outgoing edge then the

centrality is not propagated from that vertex. To overcome this drawback, Katz cen-

trality adds a bias while calculating the centrality. Due to this even if the vertex does
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not have any outgoing edge the centrality does not become 0. It is given as below.

𝐶𝐾𝑎𝑡𝑧(𝑣𝑖) = 𝛼 *
𝑛∑︁

𝑗=1

𝐴𝑗,𝑖𝐶𝐾𝑎𝑡𝑧(𝑣𝑗) + 𝛽 (2)

where,

𝐶𝐾𝑎𝑡𝑧(𝑣𝑖) is the Katz centrality for vertex 𝑣𝑖

𝛼 is the fixed constant

𝛽 is a bias term added to avoid zero centrality

A is the adjacency matrix representation for social graph

4. PageRank Centrality

The drawback of Katz centrality is that it gives equal centrality to all its outgoing

edges. However, in real world cases this is not true since all the vertices connected to

the important vertices are not central. Thus, PageRank centrality solves this problem

by dividing the centrality value by the out degree 𝑑+(𝑣) of the vertex.

𝐶𝑝(𝑣𝑖) = 𝛼 *
𝑛∑︁

𝑗=1

𝐴𝑗,𝑖
𝐶𝑝(𝑣𝑗)

𝑑+(𝑣)
+ 𝛽 (3)

where,

𝐶𝑝(𝑣𝑖) is the PageRank centrality for vertex 𝑣𝑖

𝛼 is the fixed constant

𝛽 is a bias term added to avoid zero centrality

5. Betweeness centrality

There are two types of betweeness centralities namely vertex betweeness centrality

and edge betweeness centrality. Vertex betweeness centrality is defined as the number

of shortest paths which pass through the given vertex divided by the number of the

total number of shortest paths in a given graph. Similarly, edge betweeness centrality

of an edge e is the sum of the fraction of all-pairs shortest paths that pass through

8



the edge e.

6. Closeness centrality

It is defined by the distance of a given vertex from the other vertices in the network.

The vertex which has the smallest average distance from other vertices in the network

is defined to be the most central vertex.

7. Group centrality

All the centralities defined above can be defined for a group of n vertices instead of a

single vertex. These are known as group centralities.

2.3 Degree Discount Heuristics

Degree Discount Heuristic is one of the techniques used for finding the set of

influencers in social network. Consider a vertex v in a social graph. Let vertex u

be its neighbor which is in the active state. For vertex v when computing its degree

to determine if it is in the active state we do not consider the edge uv. Hence, we

discount its degree. We follow similar process for all the vertices. Degree discount

heuristics can be used with all cascade models.

2.4 Linear Threshold diffusion model

The Linear Threshold model is one of the popular information diffusion models.

Given a social network graph with a set of vertices and edges connecting the vertices.

This is a weighted graph where each edge has a weight w. A vertex can be in an

active or inactive state. Once activated, the vertex will remain in the active state.

Each vertex randomly selects a threshold 𝜃 : V [0, 1]. A vertex gets activated if the

sum of the incoming edge weights of its active neighbors is greater than the threshold

9



value [22]. The diffusion ends when no more vertices become active.

∑︁
𝑢∈𝑁𝑣

𝑊𝑢,𝑣 >= 𝜃𝑣 (4)

Initially a set of active vertices is given known as seed set. In discrete steps we

evaluate the sum of incoming edge weights of active neighbors of each vertex in the

graph. If the threshold value of a vertex is smaller than the incoming sum, it becomes

active and is added to the influencers set. This process ends when no more vertices

are activated.

2.5 Independent Cascade Model

The Independent Cascade is another popular information diffusion model. Given

a social network graph, such that the edges connecting the vertices are associated with

a probability. A vertex can be in active or inactive state. Once a vertex is activated, it

will not become inactive. Initially we are given a set of active vertices known as seed

set. In the subsequent discrete steps, we compute the influence spread of the seed set.

At each step we determine if a vertex is active by considering the probability of its

edges with the active neighbors. If the probability is greater than the threshold, the

vertex becomes active. However, each vertex has one chance to activate its neighbors.

This process stops when no more vertices become active.

The influence maximization problem is a popular social network research topic.

The chapter 3 gives an overview of the existing research work done to solve the

influence maximization problem.

10



CHAPTER 3

Related Work

3.1 Existing methods for Influence Maximization

Influence detection and spread estimation is a popular research topic in social

networks. In paper [11], authors Kempe et al. describe an approximation greedy

algorithm for finding the K-influencer seed set in social networks. The greedy

algorithm guarantees at least 63% of accuracy. Popular diffusion models like Linear

Threshold and Independent Cascade models are discussed in the paper [11]. These

models provide a better performance as compared to the traditional heuristics of

degree and distance measures. In Linear Threshold model, each vertex is associated

with a weighted threshold and in order to get activated it requires that the sum of its

active neighbors must be at least greater than or equal to its threshold. Independent

Cascade model is a probability based model where each vertex gets only one chance

to activate its neighbors. These models are based on the sub modular functions

and a greedy algorithm is used to attain the performance guarantees. The Physics

publication co-authorship network is used in this paper for the experiments.

The greedy algorithm is time consuming for large graphs. As an improvisation

to the greedy algorithm, CELF algorithm was proposed in the paper [13]. The paper

[13] describes CELF algorithm to improvise the performance of greedy approximation

solution. It uses the property of submodularity and lazy evaluations for computing

the influence spread. As compared to the simple greedy algorithm, CELF algorithm

performs 700 times faster. The algorithm also handles cases like vertices with

different costs in a network. The algorithm is evaluated against the real world

networks. The paper [13] considers the cases of unit costs as well as non-constant

11



costs. In the equal cost, the greedy algorithm iteratively, in step k adds the vertex

𝑠𝑘 with maximum marginal gain.

𝑠𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈ 𝑉
𝐴𝑘−1

𝑅(𝐴𝑘−1 ∪ {𝑠} −𝑅(𝐴𝑘−1) (5)

where,

𝑠𝑘 = seed set

R is a submodular function

In the case of non-constant costs, the greedy algorithm adds the vertex with maximum

benefit by cost ratio. The algorithm is terminated when no more vertices can be added

to the current set.

𝑠𝑘 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈ 𝑉

𝐴𝑘−1

𝑅(𝐴𝑘−1 ∪ {𝑠} −𝑅(𝐴𝑘−1)

𝑐(𝑠)
(6)

𝑠𝑘 = seed set

R is a submodular function

c(s) = cost function

However, this can give poor efficiency. Hence, for a given graph using the cost effec-

tive forward selection property, we compute the solution using both the approaches

(constant weights and non-constant weights) and return the better result. It is opti-

mal as at least one of the approaches will be close to optimal and the better result

is returned. It roughly guarantees an efficiency of 31%. The algorithm explores lazy

evaluation of marginal increments to reduce the computations and attain better effi-

ciency. The Blog dataset and water distribution network are used for experiments in

the paper [13].

As an extension to the CELF algorithm, the paper [9] discusses the CELF++

algorithm which works on the principle that if the previous best vertex is selected as

an influencer in the current iteration, then we do not recompute the marginal gain.
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For each vertex, we associate a tuple consisting of the marginal gain, flag and pre-

vious best vertex. The experiments in the paper [9] are performed using academic

collaboration networks of NetHEPT and NetPHY.

The paper [8] describes an efficient algorithm SIMPATH for maximizing the in-

fluence spread under Linear Threshold model. This algorithm has faster running time

due to the use of vertex cover and Lazy Forward selection optimizations. These are

used to reduce the spread estimation calls. The preliminary step of the algorithm, is

th discovery of vertex cover. For every vertex u ∈ C, its spread is computed on re-

quired subgraphs needed. The spread of non-vertex cover vertices is computed using

Linear Threshold propagation model. Lazy optimizations are implemented using the

priority queue based on the decreasing order of the marginal gains. The paper uses

NetHEPT collaboration network, Last.fm: a popular music platform dataset, Flixter:

a movie social platform and DBLP datasets to perform the experiments.

The paper [6] proposes another approach to find the solution for influence maxi-

mization problem. This solution is adapted from the Independent Cascade Model and

extracts an acyclic spanning graph from the given social graph. The cycles in a social

network will cause a feedback of influence to itself. A vertex in a social network once

activated does not become inactive. Hence, by removing the cycles in a social graph

we get a better influence spread model. Closeness centrality is used to construct the

acyclic spanning graph. This paper describes two algorithms namely SCG-algorithm

for a connected graph and SDG-algorithm for a digraph to identify the k influencer

seed set. The complexity of these algorithms is 𝑂(𝑚𝑛). The Independent Cascade

Model is used to evaluate the spread of the seed set. Results show that the we obtain

a better influence spread using acyclic spanning graph model. The two social network

datasets used for experiments in this paper are com-Amazon communities and Enron

email.
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A modification of the greedy approximation solution is proposed in the paper [3].

The new greedy algorithm proposed in this paper is an improvement over the tradi-

tional greedy algorithm. It works by constructing random graphs at each step. In

every step the new greedy algorithm has to traverse the entire graph whereas the tra-

ditional greedy algorithm traverses only few vertices. Hence, the paper [3] describes

a mixed algorithm, where the first round uses the new greedy IC algorithm and for

further rounds we use the traditional greedy algorithm. An improvement for weighted

cascade model is also discussed in the paper. For this approach we use the Cohen’s

randomization algorithm. It is stated as given a graph, the first step is to traverse

the graph once, compute all strongly connected components into one vertex with the

weight being the size of the strongly connected component. For weighted cascade

model too we have a mixed algorithm similar to the Independent Cascade model.

The above mentioned algorithm improves the performance of traditional greedy al-

gorithm, however, we cannot use this algorithm efficiently over large graphs. As a

solution to this problem, degree discount heuristics approach is discussed in the pa-

per. For a vertex v if u is its neighbor and u is present in the seed set, then when

selecting the vertex v in the seed set we will not consider the edge uv. This principle

is known as degree discount heuristics. The collaboration networks, NetHEPT and

NetPHY are used for experiments in the paper.

Identification of influencers in a social network has many applications. One of the

applications is use of influencers to make recommendations. The paper [5] describes

a two-phase recommendation algorithm for social networks. In the first phase of the

algorithm we detect the influencers in the network. This influence detection is done

only in one cycle unlike Information Cascade algorithm and hence is faster. Once

influencers are detected, each influencer maintains its own list of preferences of items.

Thus, each influencer presents an inactive vertex with a list of its preferences based
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on which recommendations are made. As opposed to the traditional recommender

systems, the proposed framework makes the recommendations for multiple items at

once, without the explicit ratings of the items.

For the first phase of detecting influencers, a greedy algorithm to detect minimum

dominating set is proposed. Once the influencers are detected these are then used

in the recommendation step. For recommendation, the influencers can recommend

either a single item or a list of items. In the case of multiple item recommenda-

tions, voting system will be used to determine the conflict between recommendations

provided by influencers.

𝑅(𝑣, 𝑡𝑗) =

∑︀
𝑣𝑖∈𝑁(𝑣)∩𝐷

𝑠𝑖𝑚(𝑣, 𝑣𝑖).𝑅(𝑣, 𝑡𝑗)∑︀
𝑣𝑖∈𝑁(𝑣)∩𝐷

𝑠𝑖𝑚(𝑣, 𝑣𝑖)
(7)

where,

R denotes the recommendation or preference list for vertex

𝑡𝑗 denotes the member of set T which is a list of available items.

N(V) is a neighborhood of vertex v

For experiments, authors use both synthetic and real world datasets. The datasets

of Astro Physics, Condense Matter and the DBLP collaboration network are used for

experiments.

In addition to graph theory based approaches, there are other data mining and

machine learning approaches for influence maximization problem. One such approach

is discussed in the paper [14]. The authors in this paper propose a system called

Influence Rank which is used to measure the influence on Twitter users. The system

uses a regression based machine learning technique with Influence Rank being used

as a predictor variable. A set of direct and derived features are used to build the

regression model. The system uses nusupport vector machine (nu-SVM) for support
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vector regression. nu-SVM allows us to specify an upper bound on the fraction of

margin errors and a lower bound of the fraction of support vectors that the model

can learn, through the parameter nu. The model takes into consideration the direct

features like the count of followers, re-tweets for a user and the count of public lists

of which a user is a part of. For the derived features, a ratio of count of tweets to

the total tweets, a ratio of count of re-tweets to the total re-tweets and a a ratio of

count of followers to the total followers. After the feature extraction, label generation

is performed on the model. In this process, a system carries out a survey giving

preferences to the influencers. After this step, InfluenceRank algorithm is then run

on the output obtained from the label generation phase, to rank the influencers. This

paper uses Twitter dataset for the experiments.

The importance of a user in a network is an important parameter, to determine

its potential to influence others. The paper [17] describes a methodology to determine

the importance and influence of a Twitter account in a social network. The method

also computes the maximization of diffusion of information in the network. In order

to detect the influencers in a network, a parameter called Influence Metric is proposed

in the paper. It is dependent on the followers to followee ratio as well as the number

of tweets generated by user accounting for user passivity. It is given by below formula

.

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐 =
𝑡𝑤𝑒𝑒𝑡𝑠𝑘

𝐷𝑎𝑦𝑠𝑠𝑖𝑛𝑐𝑒𝑘𝑡ℎ𝑡𝑤𝑒𝑒𝑡

*𝑂𝑂𝑀(𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠)* 𝑙𝑜𝑔10(
𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

𝐹𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
+1) (8)

For information diffusion we calculate the Tweet Transmission Ratio which depends

on the probability of followers generating tweets which includes both new tweets as

well as re-tweets. The Tweet Transmission measurement is given by.

𝑇𝑤𝑒𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝐶𝑅𝑛+1

𝑇𝐶𝑅𝑛

*𝑅𝑇𝑛+1 (9)
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where,

TCR = Tweet Creation ratio

RT = Retweet

Overall Framework:

∙ The process starts with selecting the Twitter user for the experiments.

∙ In the second phase, Twitter characteristics are retrieved.

∙ In phase 3, the followers are classified in two categories based on Influence Metric

and the absolute amount of followers each user has. This is followed by sorting cate-

gories in descending order to select the top k users from each category.

∙ For the selected users, steps 2 and 3 are repeated. This process is continued until a

specified distance, threshold (layers), between Twitter users is reached. A layer graph

is constructed at each step.

∙ During the 5th phase each of the two generated networks is terminated by an ending

vertex (sink). This vertex is connected with all the users-followers of the last layer.

∙ In the last phase, we discover all the paths, starting from the initial identified user

and ending to the sink and consists of exactly 4 steps. Tweet Transmission Ratio is

calculated across these paths which helps to determine the influence spread.

The data mining based methods can also be used to model the solution for in-

fluence maximization problem. One of the methods is described in the paper [1]. The

authors in this paper, study the software social networks (SSN) Github, to detect the

influencers in the network. To measure the influence, three parameters are consid-

ered namely number of followers, number of forked projects and number of watched

projects. The paper also estimates the spread of influence of the seed set of influ-

encers across multiple programming languages. Below are the steps of the framework

discussed in the paper.

The first step is the parameter analysis phase. Using Spearman correlation, we de-
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termine if the three parameters imply same notion of influence.

In the second step, we observe the behavior of top 30 Git Hub users. This behavior

is analyzed in terms of the above mentioned three parameters.

In the last phase, we study top 10 programming languages used by Git Hub users.

Each language is associated with two metrics, u.fork and u.watch. We compute these

metrics per user for top 10 programming languages. Users are sorted based on their

language specific metrics. From this investigation we study if the influential Git Hub

users extend their influence over multiple languages.

In a social network, a user may consume the information from others in the

network. However, a user may choose to not propagate this information across the

network. This user is termed as a passive user. Some of the research works, consider

passivity of a user while building a solution for influence maximization. The paper

[18] proposes the Influence Passivity (IP) algorithm which measures the passivity of

user to determine the influencers in social networks. IP algorithm assigns a relative

influence score and a passivity score to every user. The algorithm uses below assump-

tions:

1. A user’s influence score depends on the number of people influenced and their

passivity.

2. A user’s passivity score depends on the influence of the exposed users but is not

influenced by it. It also depends on how much the user rejects other user’s influence

scores simultaneously. The authors use Twitter dataset with tweets consisting of urls

for experiments.

Thus, we summarized some of the existing work for the influence maximization

problem. We compare our proposed algorithms for influence maximization with the

greedy approximation solution. In chapter 4, we describe the proposed methodology

for influence maximization problem.

18



CHAPTER 4

Methodology for Influence Maximization

As a part of this project, I studied the greedy approximation algorithm. However,

the greedy algorithm has a large computation time and is not suitable for large graphs.

As an improvisation of the greedy algorithm, CELF algorithm was proposed in paper

[13] which runs 700 times faster and achieves results comparable to that of greedy

algorithm. However, the initialization step of CELF algorithm involves computing

marginal gain of all the vertices in a graph. This is expensive for large graphs. In this

project, we modify the CELF algorithm and compare its results with the existing

models. Also, for undirected graphs we propose an acyclic spanning graph based

algorithm for seed set detection. Once the seed set is detected, we compute the

number of vertices influenced by it using a Linear Threshold model.

4.1 Greedy Approach

The Influence Maximization problem is a NP-hard problem. Kempe et al. in

their work [11] propose an approximation greedy approach to solve the influence

maximization problem. The greedy solution works by selecting one vertex at a time

and estimating the number of other vertices in the network which it influences. This

process is termed as spread estimation process. We use Linear Threshold model to

compute the spread estimation of a vertex. In this model each vertex is assigned a

threshold value. If the sum of the edge weights of incoming active vertices is greater

than the current vertex threshold, then it becomes active. We assign the edge weights

as (1/in-degree) for a non-zero value of in-degree. If the in-degree is zero then, the

edge weight is zero. The greedy algorithm is an approximation solution with an
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approximation of (1 - 1
𝑒

- 𝜖). It gives effective results, however, it is computationally

slow as it computes the spread vertex by vertex. Hence, it is not suitable for large

graphs. The pseudo code for Greedy algorithm is given in Algorithm 2.

Algorithm 2 Greedy Solution
Input: K size of seed set, f monotone submodular function
Output: seed set of influencers
1: procedure Greedy Solution(𝑔,𝐾, 𝑓)
2: Initialization: S <- 𝜑
3: for i = 1 to k do
4: u← 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈

𝑉
𝑆
((𝑓(𝑢 ∪ 𝑆)− 𝑓(𝑆))

5: S← 𝑆 ∪ 𝑢
6: return S

For the spread estimation process Linear Threshold model is used. In this model,

each vertex is associated with a threshold value. A vertex is influenced, if the sum of

its incoming active neighbors is greater than the threshold. Once influenced, a vertex

is said to be in active state. Also, once a vertex is activated it remains in the active

state. The model stops when no more vertices can be added to the influencer set.

The pseudo code for Linear Threshold Model is given in Algorithm 3.
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Algorithm 3 Linear Threshold
Input: K size of seed set, seed set, g, vertex-threshold
Output: Set of influenced vertices
1: procedure compute-k-diffusion(𝑔,𝐾, 𝑠𝑒𝑒𝑑𝑠𝑒𝑡, 𝑣𝑒𝑟𝑡𝑒𝑥− 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
2: Initialization: total-k-influenced <- 𝜑 , curr-active-nodes <- seed-set, total-

influenced <- seed-set
3: while True do
4: total-k-influenced← compute-curr-diffusion(k, g, curr-active-nodes,

vertex-threshold)
5: if Length(total-k-influenced) equals Length(total-influenced) then
6: break
7: total-influenced← total-k-influenced
8: curr-active-nodes← total-k-influenced

9: procedure compute-curr-diffusion(𝑔,𝐾, 𝑎𝑐𝑡𝑖𝑣𝑒− 𝑠𝑒𝑡, 𝑣𝑒𝑟𝑡𝑒𝑥− 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
10: Initialize curr-active-list <- active-set
11: for i = 0 to Length( active-set ) do
12: for n in neighbors of current vertex do
13: Compute sum of edge weights of all active incoming neighbors
14: if sum greater than threshold of vertex then
15: Add vertex to active vertex list
16: return curr-active-list

Example: If we execute the greedy Algorithm 2 on the graph in Figure 1 with the seed

set size (k = 2), we get the influencer vertices as 0 and 8. The vertices influenced by

this seed set are 0, 8, 9, 10 and 11.

The graph in Figure 3 is the output graph of the Algorithm 2. In the output graph

the vertices in red color are the influencer vertices whereas, the vertices green in color

represent the influenced vertices.
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Figure 3: Example: Greedy algorithm output graph

4.2 Influencers Seed Set Detection Using Acyclic Spanning Graph

The centrality of a graph describes the importance of a vertex. Some of the types

of centralities are degree centrality, closeness centrality, betweeness centrality etc.

PageRank centrality defines the importance of a vertex based on the importance of

other vertices it is connected to and the vertices that are connected to it. As PageRank

centrality considers importance of a vertex in computation, in this approach, we use

the PageRank centrality to compute the seed set of influencers in an undirected graph.

One of the steps in this approach is the construction of an acyclic spanning graph from

the given graph. The given undirected graph, consists of self-loops and cycles. These

are known as the feedback edges. The construction of acyclic spanning graph removes

these feedback edges thereby increasing the performance of seed set detection. The

paper [6] uses a similar approach where, the authors use Closeness centrality measure

in their works. We use PageRank centrality as a measure to find the most central

vertices because PageRank centrality is computed considering the importance of a

vertex.

The steps followed in this approach to find the k-influencer seed set are as below:
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1. Compute the most central vertex using PageRank centrality in the original graph.

2. Construct an acyclic spanning graph from the original graph by using the most

central vertex as the starting vertex of the graph.

3. Compute the k most central vertices using the PageRank centrality from the

spanning graph. These form the k- influencer seed set.

The pseudo code for acyclic spanning graph based algorithm for the influencers seed

set detection is given in Algorithm 4.

Algorithm 4 Influencers Seed Set Detection using Spanning Graph
Input: K size of seed set, graph G
Output:K Seed Set of influencer vertices
1: procedure Seed Set Detection(𝐺,𝐾)
2: Compute PageRank centrality of all vertices in G
3: SpanningGraph← Spanning Graph with most central vertex as starting vertex
4: Compute PageRank centrality of all vertices in SpanningGraph
5: seed set← K-most central vertices in SpanningGraph
6: return seed set

7: procedure Construct Acyclic Spanning Graph(𝐺)
8: Initialization: 𝑉𝑆𝐺 ← 𝜑, queue← 𝜑, visited← 𝜑,𝐸𝑆𝐺 ← 𝜑
9: for all vertices in graph do

10: Compute Centrality of vertex C(n)
11: Begin Vertex← Vertex with Maximum centrality
12: queue← Insert Begin vertex
13: while queue not empty do
14: v← Get vertex from queue
15: if v not in visited then
16: visited← Insert v in visited
17: N← Neighbors of vertex v sorted in descending order on centrality
18: for all vertices z ∈ N(v) and z /∈ visited do
19: 𝐸𝑆𝐺 ← 𝐸𝑆𝐺 ∪ {𝑣, 𝑧}
20: 𝑉𝑆𝐺 ← 𝑉𝑆𝐺 ∪ {𝑧}
21: queue← Insert z in queue
22: return 𝑆𝐺

Once the seed set of influencers is detected, we use the Algorithm 3 to compute the
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spread of influencers seed set i.e the number of vertices influenced by the seed set in

the social network model.

Consider the input graph in Figure 1. If we compute the influencers seed set of size

(k = 2) using Algorithm 4 we get the influencer vertices as 0 and 8. The vertices

influenced by this seed set are 0, 8, 9, 10 and 11.

Figure 4 shows the spanning graph constructed from the original graph.

Figure 4: Example: Output Spanning graph

The graph in Figure 5 is the output graph of the Algorithm 4 showing the influencers

in the red color and the green vertices represent the vertices influenced by the seed

set.
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Figure 5: Example: Spanning Graph algorithm output graph with influencers

4.3 Cost Effective Forward Selection Greedy Algorithm (CELF)

This algorithm is an improvisation of the greedy approximation algorithm [13].

It uses the properties of submodularity and Lazy forward selection to reduce the

number of spread estimation calls for the vertices of a graph.

A function f is said to be a submodular function if it satisfies the property that

the marginal gain obtained by adding a single element to a set S will decrease for a

larger value of set size. Thus, submodular functions satisfy the diminishing returns

property [22]. It can be stated as,

𝑓(𝑆 ∪ {𝑢})− 𝑓(𝑆) >= 𝑓(𝑇 ∪ {𝑢})− 𝑓(𝑇 ) (10)

where, S ⊂ T

In the greedy Algorithm 2, consider that in the current iteration the seed set

detected is S and for vertex v ∈ V∖ S the computed spread is f (v | S). Let T be

the seed set detected in the previous iteration of the algorithm such that T ⊂ S. For

vertex u, in the previous iteration u ∈ V∖ T the computed spread is f (u | T). Also,
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f (v | S) >= f (u | T). Hence, by the property of submodularity ,

f(𝑢|𝑆) <= f(𝑢|𝑇 ) <= f(𝑣|𝑆) (11)

Lazy forward selection is based on the submodularity property. We implement it by

maintaining two properties per vertex namely, the marginal gain and the iteration

during which the marginal gain was calculated. A priority queue is used to store the

vertices such that the vertex with the highest marginal gain will be the first element

of the queue. Initially, we compute the marginal gain of all vertices and insert them

in the queue. In the subsequent iterations, the top element of the queue is extracted.

If the iteration of the extracted vertex is the same as the current iteration then it

implies that it is the vertex with the maximum marginal gain for the current seed set

and hence is added to the seed set. If the iteration is lower than the current iteration,

then the marginal gain of the vertex is computed for that vertex considering the

current seed set S and is inserted in the priority queue. Hence, we reduce the spread

estimation calls with forward selection. The pseudo code for CELF algorithm is given

in Algorithm 5.
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Algorithm 5 CELF
Input: K size of seed set, f submodular function, graph G
Output: Seed set of influencers
1: procedure CELF Seed Set Detection(𝐺)
2: Initialization: S← 𝜑,Priority Queue Q← 𝜑, iteration← 1
3: for vertex u in vertices do
4: u.mg← f(u|𝜑)
5: u.iteration← 1
6: Insert vertex u in Q
7: while iteration <= K do
8: Delete top element v from Q
9: if v.iteration equals iteration then

10: S <- S ∪ {v}
11: iteration <- iteration + 1
12: else
13: v.mg← f(v|S)
14: v.iteration← iteration
15: Insert v in Q
16: return 𝑆

Once the seed set of influencers is detected, we use the Algorithm 3 to compute the

spread of influence i.e the number of vertices influenced in a network. If we run the

Algorithm 5 on the input graph in the Figure 1 with seed set size (k = 2) we get the

influencer vertices as 8 and 2. The vertices influenced by this seed set are 8, 2, 9, 10

and 11.

Figure 6 is the output graph of the seed set detection Algorithm 5 and spread

estimation Algorithm 3. The vertices in the red color are the influencer vertices. The

vertices green in color represent the vertices influenced by the seed set.
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Figure 6: Example: CELF Output graph with influencers

4.4 Modified CELF algorithm

In Algorithm 5, in the first step, the marginal gain for all the vertices is computed.

In the case of large graphs, computing marginal gain for all the vertices will deteriorate

the performance of the algorithm.

In order to reduce the computation time at the preliminary step, we compute the

vertex cover of the given graph. In the first step of the Algorithm 6, the marginal

gain of only the vertices in vertex cover is computed. Thus, we reduce the marginal

gain computations in the preliminary step of algorithm. To compute the vertex cover

of the input graph, we use a greedy approximation solution. The pseudo code for the

modified CELF algorithm is given in Algorithm 5.
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Algorithm 6 CELF With Vertex Cover
Input: K size of seed set, f submodular function, graph G
Output: Seed set of influencers
1: procedure CELF Seed Set Detection(𝐺)
2: Initialization: S← 𝜑,Priority Queue Q← 𝜑, iteration← 1, vertex cover← 𝜑
3: vertex cover← 𝐺𝑒𝑡𝑉 𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(𝐺)
4: for vertex u in vertex cover do
5: u.mg← f(u|𝜑)
6: u.iteration← 1
7: Insert vertex u in Q
8: while iteration <= K do
9: Delete top element v from Q

10: if v.iteration equals iteration then
11: S <- S ∪ {v}
12: iteration <- iteration + 1
13: else
14: v.mg← f(v|S)
15: v.iteration← iteration
16: Insert v in Q
17: return 𝑆

18: procedure GetVertexCover(𝐺)
19: G-undirected← Get Undirected Graph from G
20: degree-vertex← Map of vertex, degree sorted in the descending order by degree
21: for vertex u in degree-vertex do
22: neighbors← Neighbors of vertex u
23: if u not in vertex cover then
24: for vertex n in neighbors do
25: if n not in vertex cover then
26: vertex cover← vertex cover ∪ u
27: break

If we execute Algorithm 6 on the graph in Figure 1, we get the results same as

that of Algorithm 5. The vertex cover includes the vertices 0, 1, 2, 3, 4, 7, 8.

The chapter 5 summarizes the experiments and results obtained by execution of

different algorithms on synthetic and real world datasets.
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CHAPTER 5

Experiments

Synthetic as well as real world datasets are used for performing the experiments.

For the preliminary testing of our models, random graphs were constructed using the

Barabasi random graphs model [2]. We use the Python igraph library for various social

network graph operations [16]. The section 5.1 describes the experiments performed

with synthetic random graphs. The experiments performed with various real world

social network datasets are described in the sections 5.2, 5.3, 5.4, 5.5 and 5.6 .

5.1 Random Graphs

For experiments, random graphs are constructed using the Barabasi random

graphs model. The random graph constructed is an undirected graph, consisting of

78 vertices and 153 edges. We use the Algorithm 4 to detect the seed set of size 10

(K = 10). We get the influencer seed set of vertices,

1, 3, 0, 4, 9, 5, 18, 24, 27, 26

On computing the number of vertices influenced by the seed set using Algorithm

3, we see that 62 vertices in the graph are influenced by the seed set. Figure 7

represents the output random graph. The vertices in red are the seed set vertices

whereas the vertices green in color are the vertices influenced by the seed set.
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Figure 7: Barabasi Random Graph: Output Graph

In addition, the results are also compared against the greedy seed set detection

Algorithm 2. The seed set consists of vertices

0, 1, 3, 4, 6, 7, 10, 11, 26, 27

On computing the number of vertices influenced by the seed set using Algorithm 3 we
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see that 70 vertices in the graph are influenced by the seed set. Figure 8 represents

the output of the greedy Algorithm 2.

Figure 8: Barabasi Random Graph: Greedy Output Graph
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5.2 Zachary’s Karate Club Dataset

The social network graph for Zachary’s Karate Club, is undirected in nature and

contains 34 vertices and 78 edges [21]. This dataset was compiled by observation

of friendships among members of club for over two years [7]. During the period of

observation, there was a conflict between the administrator and instructor of the club

which lead to splitting of the club in two halves. We use the Algorithm 4 to detect

seed set of size 2 (K = 2). With this we get, the influencers as vertices 0 and 33

which is in correspondence with the actual known values.

On computing the number of vertices influenced by the seed set using Algorithm 3

we see that all the vertices in the graph are influenced by the seed set. Figure 9

represents the social graph of Karate club dataset. The Karate social network graph

is undirected and unweighted in nature.
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Figure 9: Zachary’s Karate Club Social Network Graph

While computing influencers seed set using Algorithm 4, a spanning graph from

the original graph is constructed. Figure 10 shows the acyclic spanning graph for

Zachary’s Karate club dataset. This spanning graph is constructed using 33 as the

starting vertex.
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Figure 10: Zachary’s Karate Club Social Network: Acyclic Spanning graph

Figure 11 shows the output graph of seed set detection Algorithm 4 and spread

estimation Algorithm 3, where the vertices in red are seed set of influencers and the

vertices green in color represent the number of vertices influenced by the seed set of

influencers.
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Figure 11: Zachary’s Karate Club Social Network: Output graph

In addition, the results are also compared against the greedy seed set detection

Algorithm 2. The Algorithms 4 and 2 give the same results with vertices 0 and 33
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asseed set of influencers. This seed set, influences all the other vertices in the graph.

5.3 Novel co-appearance network

This is a co-appearance network of characters in Victor Hugo’s novel "Les Mis-

erables". The characters in the novel form the vertices of the graph. Two characters

who co-appeared in the same chapter of novel are connected with the edges. This

data set is obtained from [12]. The graph is an undirected network with 77 vertices

and 254 edges.

We use Algorithm 4 to detect the seed set of size 7 (K = 7). The output of Algorithm

4 is the influencer seed set of characters Valjean, Gavroche, Myriel, Fantine, Marius,

Thenardier and MlleGillenormand.

On computing the number of vertices influenced by the seed set using Algorithm 3 we

see that 75 vertices in the graph are influenced by the seed set. Figure 12 represents

the co-appearance social network.

37



Figure 12: Novel Co-appearance Network

While computing influencers seed set using Algorithm 4, a spanning graph from

the original graph is constructed. Figure 13 shows the acyclic spanning graph for

co-appearance network. This spanning graph is constructed using 11 as the starting

vertex.
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Figure 13: Novel Co-appearance Network: Acyclic Spanning graph

Figure 14 shows the output graph of seed set detection Algorithm 4 and spread

estimation Algorithm 3, where the vertices in red are seed set of influencers and the

vertices green in color represent the number of vertices influenced by the seed set of

influencers.
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Figure 14: Novel Co-appearance Network: Output Graph

In addition, the results are also compared against the greedy seed set detection

Algorithm 2. With the greedy Algorithm 2, we get influencer seed set of charac-

ters Myriel, Napoleon, MlleBaptistine, MmeMagloire, CountessDeLo, Gavroche and

Fauchelevent. This seed set, influences all the other vertices in the graph. Figure 15
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represents the output graph of the greedy Algorithm 2.

Figure 15: Novel Co-appearance Network: Greedy Output Graph
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5.4 Twitter Dataset

We use the Twitter social network dataset from SNAP which is a dataset repos-

itory from Stanford University [19]. A subset of the dataset is used to construct a

directed social network graph. This graph consists of 236 vertices and 2478 edges.

Figure 16 shows the Twitter social network graph.

Figure 16: Twitter Social Network Graph

We compute the seed set of size 20 using Algorithm 6. In Algorithm 6, we use vertex

cover computation as a preliminary step. Also, Algorithm 3 is used to compute the
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number of vertices influenced by the seed set. Figure 17 represents the output Twitter

social graph of Algorithm 6. The vertices in red represent the seed set of influencers

whereas the vertices in green represent the vertices influenced by the seed set. In

total, 144 vertices are influenced by seed set of size 20.

Figure 17: Twitter Social Network: Output CELF with Vertex Cover

Similarly, we compute the seed set of size 20 using Algorithm 5, CELF without vertex

cover. Also, Algorithm 3 is used to compute the number of vertices influenced by the

seed set. Figure 18 represents the output Twitter social network graph of Algorithm
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5. The vertices in red represent the influencers whereas the vertices in green represent

the vertices influenced by the seed set. In total, 142 vertices are influenced by seed

set of size 20.

Figure 18: Twitter Social Network: Output CELF algorithm

5.5 YouTube Dataset

YouTube is a popular social network for sharing of videos. We use this dataset

to construct a directed social network graph model. This dataset is obtained from
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the Github public open datasets [20]. As a part of the construction of social network

from this data, the first step was the pre-processing of the data.

5.5.1 Data Pre-processing:

The raw dataset obtained is in the form of tab separated text files. It consisted

of 60,205 records. Each entry in the dataset consisted of below fields.

video ID : Unique 11-digit string id

uploader : Username of the uploader

age : an integer number of days between the date when the video was uploaded and

Feb.15, 2007

category : video category

length: length of the video

views : number of views for the video

rate : speed rate of the video

ratings : ratings received for the video

comments : number of the comments

related IDs : up to 20 related video IDs

To construct social graph, we use the videos whose length is greater than 2000 seconds.

The videos form the vertices in the graph. A video is connected to all the videos in

its related videos field by the edges. While pre-processing the data, a metadata file is

created which lists the information of the videos. Hence, we can find the information

like category, uploader’s username, length of the video etc. of the resultant influencers

seed set of videos.
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Figure 19: YouTube Social Network Graph

5.5.2 Results:

Figure 19 represents the social network graph obtained from this dataset. Here,

the vertices represent the videos. A video is connected to its related videos by the

edges. The graph consists of 79 vertices and 551 edges.

When we execute Algorithm 6, on the input graph to find influencers seed set of size

16 we get influencers as below. In Algorithm 6, we use vertex cover discovery as a
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preliminary step of the CELF algorithm.

Table 1: YouTube Social Network: Output influencer seed set by CELF with Vertex
Cover

VideoName Uploaded By Category Length
ℎ𝑎𝑝𝑘𝑅𝑌 𝑥𝐶𝑈8 GoogleDevelopers Science and Technology 2913
kJGG1On2dIA kobiyal Entertainment 2465
5𝑗𝑙𝑒1𝑂𝐽𝐼𝐴𝑄 kobiyal Entertainment 3125
2iSsDlApXwk kobiyal Entertainment 2210
3-km-JgOMOk kobiyal Entertainment 2779
RhSB8ony23A kobiyal Entertainment 2801
O3flLCah7OU kobiyal Entertainment 2375
2zhcscszZtk kobiyal Entertainment 2442
8RIzPes-f4A kobiyal Entertainment 2566

𝑂𝐻𝑂𝐴9𝐺𝐶𝑢𝑍𝑘 kobiyal Entertainment 3170
6fHMoi-IiHI kobiyal Entertainment 2407

iWGHF8hTWp4 kobiyal Entertainment 4304
Qr1aD2frMMs kobiyal Entertainment 2293
QZz4ZDvfc1Y kobiyal Entertainment 2686
1dJMmVnF5L8 tokyomx Entertainment 2685

mqH5RFWYj3M tokyomx Entertainment 2502

From Table 1, we see that the majority of the influential videos belong to the category

Entertainment. Also, among the influential videos, maximum number of videos are

uploaded by user Kobiyal.

We compute the influence spread of this seed set using Algorithm 3. The total number

of vertices influenced by this seed set is 66.

Figure 20 shows the output of the seed set detection algorithm 6 and the spread

estimation algorithm 3 on the YouTube social network. The vertices in red are the

influencers whereas the vertices in green represent the number of vertices influenced

by the seed set of influencers.

47



Figure 20: YouTube Social Network: Output CELF with Vertex Cover

We also find the seed set using Algorithm 5. Table 2 summarizes the information

of influencer seed set obtained using Algorithm 5.
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Table 2: YouTube Social Network: Output influencer seed set by CELF algorithm

VideoName Uploaded By Category Length
ℎ𝑎𝑝𝑘𝑅𝑌 𝑥𝐶𝑈8 GoogleDevelopers Science and Technology 2913
kJGG1On2dIA kobiyal Entertainment 2465
5𝑗𝑙𝑒1𝑂𝐽𝐼𝐴𝑄 kobiyal Entertainment 3125
2iSsDlApXwk kobiyal Entertainment 2210
NVllAEPHTn4 kobiyal Entertainment 3350
yxP4BydUaaA kobiyal Entertainment 2671
3-km-JgOMOk kobiyal Entertainment 2779
6fHMoi-IiHI kobiyal Entertainment 2407

𝑂𝐻𝑂𝐴9𝐺𝐶𝑢𝑍𝑘 kobiyal Entertainment 3170
Qr1aD2frMMs kobiyal Entertainment 2293

iWGHF8hTWp4 kobiyal Entertainment 4304
RhSB8ony23A kobiyal Entertainment 2801

Ekv14HTwmBQ kobiyal Entertainment 2347
QZz4ZDvfc1Y kobiyal Entertainment 2686
2zhcscszZtk kobiyal Entertainment 2442

O3flLCah7OU kobiyal Entertainment 2375

Similar to the results in Table 1, from Table 2 we see that the majority of the

influential videos belong to the category Entertainment. Also, among the influential

videos, maximum number of videos are uploaded by user Kobiyal.

We compute the influence spread of this seed set using Algorithm 3. The total num-

ber of vertices influenced by this seed set is 55.

Figure 21 shows the output of the seed set detection Algorithm 5 and spread estima-

tion Algorithm 3 on YouTube social network. The vertices in red are the influencers

whereas the vertices in green represent the number of vertices influenced by the seed

set of influencers.
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Figure 21: YouTube Social Network: Output CELF algorithm

Similarly, we compute the seed set of influencers using greedy Algorithm 2. Ta-

ble 3 summarizes the information of the influencers obtained using Algorithm 2.

50



Table 3: YouTube Social Network: Influencer seed set by Greedy Algorithm

VideoName Uploaded By Category Length
o5yrJ2irAmI tokyomx Entertainment 2552
sZYueEqL2-A tokyomx Entertainment 2648

mqH5RFWYj3M tokyomx Entertainment 2502
H2K9JDjh-vA tokyomx Entertainment 2842
-F-3E8pyjFo GoogleDevelopers Science and Technology 3465
ℎ𝑎𝑝𝑘𝑅𝑌 𝑥𝐶𝑈8 GoogleDevelopers Science and Technology 2913
vwhdo-kMgrc googletechtalks People and Blogs 3145
chmANWyUfrs googletechtalks People and Blogs 3035
Wolw2gOARPk soultimepromotions Music 3627
2iSsDlApXwk kobiyal Entertainment 2210

EVXoWiMsQAU tokyomx Entertainment 2649
cdTVcFo2EQw googletechtalks People and Blogs 3048
1dJMmVnF5L8 tokyomx Entertainment 2685
-alaG2pBCpk uchannel People and Blogs 3550
5𝑗𝑙𝑒1𝑂𝐽𝐼𝐴𝑄 kobiyal Entertainment 3125

kJGG1On2dIA kobiyal Entertainment 2465

From Table 3, we see that the majority of the videos have category Entertain-

ment. However, the uploaders of these videos vary as opposed to the previous results

we got from the CELF algorithms.

We compute the influence spread of this seed set using Linear the Algorithm 3. The

total number of vertices influenced by this seed set is 79. Thus, we see that with

greedy Algorithm 2 the seed set influences all the vertices in the graph.

Figure 22 shows the output of Algorithm 2. The vertices in red are the influencers

whereas the vertices in green represent the influence spread of the seed set.
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Figure 22: YouTube Social Network: Output Greedy algorithm

While performing the experiments, different values of seed set size were used

to observe the performance of the algorithms. The performance of the algorithms

is measured in terms of the number of vertices influenced by the seed set. The

computation time for each seed set size run is compared for different algorithms.

Table 5 summarizes the number of vertices influenced by each algorithm for different

seed set sizes. In addition, Table 4 summarizes the computation time required by
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each algorithm for different seed set sizes.

Table 4: YouTube Social Network: Computation Time in seconds comparison

Seed Set Size (K) CELF with Vertex Cover CELF Greedy algorithm
4 6.06 5.65 33.177
8 5.789 5.73 70.82
12 5.681 5.33 98.79
16 6.153 5.625 123.78
20 6.63 6.37 160.1
24 7.01 6.57 178.121
28 7.55 6.99 174.174

Table 5: YouTube Social Network: Spread Estimations comparison

Seed Set Size (K) CELF with Vertex Cover CELF Greedy algorithm
4 55 55 64
8 55 55 73
12 55 55 79
16 66 55 79
20 68 66 79
24 70 68 79
28 74 72 79

Figure 23 shows a graphical comparison of the modified CELF Algorithm 6,

CELF Algorithm 5 and greedy Algorithm 2 in terms of the spread estimations attained

for different seed set sizes.
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Figure 23: YouTube Social Network: Spread Estimations Comparison

We observe that seed set detected by Greedy Algorithm 2 attains maximum

spread for different seed set sizes. The spread attained by the Algorithm 6 is better

than that of Algorithm 5.

Figure 24 shows a graphical comparison of modified CELF Algorithm 6, CELF Algo-

rithm 5 and greedy Algorithm 2 in terms of the computation times for different seed

set sizes.
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Figure 24: YouTube Social Network: Computation Times Comparison

We observe that the time taken by the Greedy Algorithm is very large as com-

pared to the CELF algorithms. The computation time for Algorithm 6 and Algorithm

5 are comparable.

Thus, even though seed set detected by Greedy Algorithm 2 has better spread esti-

mation, the computation time is very large as compared to CELF algorithms. Thus,

Greedy Algorithm 2 is not suitable for large graphs.
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5.6 Netscience Co-authorship Network

The Netscience dataset is a co-authorship network of scientists working on net-

work theory and experiment, as compiled by M. Newman in May 2006 [15]. The

network was compiled from the bibliographies of two review articles on networks, M.

E. J. Newman, SIAM Review 45, 167-256 (2003) and S. Boccaletti et al., Physics

Reports 424, 175-308 (2006), with a few additional references added by hand. This

is an undirected network with authors forming the vertices of graph and the authors

who co-authored a paper are connected by edges.

To detect the seed set of influencers we use Algorithm 4. Once the seed set is detected,

we measure the number of vertices it influences by Algorithm 3.

The results obtained by Algorithm 4 are compared with the modified CELF Algo-

rithm 6 which uses vertex cover computation as the preliminary step and the CELF

Algorithm 5.

Figure 25 represents the social network graph for the Netscience co-authorship net-

work. This graph has 1589 vertices and 2742 edges and is undirected in nature.

56



Figure 25: Netscience Co-authorship Social Network

Figure 26 represents the output social graph we get on executing the seed set

detection Algorithm 4 for seed set size of 160 and the spread estimation Algorithm 3.

The vertices in red are the influencers and the vertices in green represent the vertices

influenced by the seed set. In total the seed set influences 379 vertices.
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Figure 26: Netscience Co-authorship Network: Output graph for seed set detection
using spanning graph

Figure 27 represents the output social graph we get on executing the seed set

detection Algorithm 6 for seed set size of 160 and the spread estimation Algorithm 3.

The vertices in red are the influencers and the vertices in green represent the vertices

influenced by the seed set. In total the seed set influences 472 vertices.

58



Figure 27: Netscience Co-authorship Network: Output graph for seed set detection
using CELF with vertex cover

Figure 28 represents the output social graph we get on executing the seed set de-

tection Algorithm 5 for seed set size of 160 and the spread estimation Algorithm 3.

The vertices in red are the influencers and the vertices in green represent the vertices

influenced by the seed set. In total the seed set influences 389 vertices.
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Figure 28: Netscience Co-authorship Network: Output graph for seed set detection
using CELF

While carrying out the experiments, different values of seed set size are used to observe

the performance of the algorithms. The performance of the algorithms is measured

in terms of the number of vertices influenced by the seed set. The computation time

for each seed set size run is compared for different algorithms. Table 6 summarizes
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the number of vertices influenced by each algorithm for different seed set sizes. In

addition, Table 7 summarizes the computation time required by each algorithm for

different seed set sizes.

Table 6: Netscience Co-authorship Network: Spread Estimations comparison

Seed Set Size (K) Spanning Graph CELF with Vertex Cover CELF
160 379 472 389
320 379 674 540
480 587 895 681
640 791 1128 768
800 948 1332 959

Table 7: Netscience Co-authorship Network: Computation Time in seconds compar-
ison

Seed Set Size (K) Spanning Graph CELF with Vertex Cover CELF
160 7.51 936.743 2298.87
320 6.84 1534.34 3102.8
480 7.8 1714.86 4724.67
640 8.48 2176.94 3924.95
800 9.32 3103.36 5345.23

Figure 29 shows the graphical representation comparing the performance of the Al-

gorithms 4, 5 and 6 in terms of the number of vertices influenced by the seed set

obtained by running different sizes of seed set.
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Figure 29: Netscience Co-authorship Network: Spread Estimations comparison

We observe that the influence spread of Algorithm 6 increases as the seed set

size increases. The performance of Algorithm 6 in terms of the number of vertices

influenced by particular seed set is better than the other two algorithms. The results

of the other algorithms are comparable with each other.

Figure 30 shows the graphical representation comparing the performance of Algo-

rithms 4, 5 and 6 in terms of the computation times. We carry out the experiments

for different sizes of seed set.
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Figure 30: Netscience Co-authorship Network: Computation Time comparison

On observing the computation time of each algorithm from the graph in Figure 30,

Algorithm 4 performs better than Algorithm 5. The computation time required by

Algorithm 4 is less as compared to the other two. Also, it remains constant for

increasing seed set size. For Algorithm 5, the computation time increases as the seed

set size increases.

Thus, we observe that Algorithm 6 achieves larger influence spread but has large

computation time. The influence spread of Algorithm 4 is slightly less as compared

to Algorithm 6, however its computation time is much lesser as compared to CELF

based algorithms.
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In this chapter, we discussed about the experiments performed as a part of this

project. In chapter 6, we discuss some of the applications of influence maximization

problem in real world.
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CHAPTER 6

Application

In this chapter, we discuss about the real world applications of influence maxi-

mization problem. The section 6.1 discusses the use of influence maximization in the

operations of Smart Cities.

6.1 Influence Maximization in Smart Cities

Social network platforms have plethora of applications. Use of social networks

in building of smart cities is one such application [10]. Building a smart city is a

gradual process, where identifying current problems that a city faces is the primary

step. Examining the different factors and players of each local government can be

the first step towards proposing smart city initiatives. Citizens play an important

role in identifying such challenges. Involvement of the public is important to build a

smart city. People must voice their opinion on various issues faced as well as share

ideas for the betterment of the city with others. Social networks is widely used as a

communication platform to share information. Various social networking platforms

like Facebook, Twitter etc provide a central location for sharing information among

remote users. The like, comment and forming of groups features of Facebook or

re-tweet, follow features of Twitter provide an effective way of sharing information.

Micro blogging is another popular social medium where users express their opinions

about any issue with others. Use of these social networks will benefit in building

the smart cities, in the planning and managing of resources. People express different

opinions about different issues using social networks. We can group these people in

the network, based on the common issues as well as common sentiments about a par-
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ticular issue to form different communities. The communities, can propose solutions

and ideas for overcoming the problems or challenges faced using technology. Polls and

surveys can be conducted via social medias, to finalize such proposals. People can

also keep track of the status of the implementation of plan via social networks. Thus,

use of social networks increases the public participation in smart cities and enhances

local government accountability.

In each community, some people are more active in voicing their opinions. For

example, some micro bloggers are more popular and have large number of follow-

ers, some journalists are more effective in spreading the information. They act as

influencers in their network. The opinion and behavior of the rest of the people par-

ticipating in that network is influenced by such influencers. Their positive comments

and writing motivates people. Finding such influential individuals, called influencers,

in a community will influence the community at large. This will benefit in campaigns

of spreading awareness, increasing public participation in the planning process etc.

Thus, finding influencers in communities can lead to effective and organized planning

to build smart cities. A city can be modeled into a social graph. We can use the

proposed Algorithm 4, for the undirected graph to find k-influencers seed set in each

community, where each community is considered a subgraph. Similarly, for directed

graphs, we can use Algorithm 6 k-influencers seed set detection. The information

spread by this subset of people across the community can be measured using Algo-

rithm 3.

Some of the other applications of influence maximization are viral marketing,

finding the influential blogger, identifying cause of contaminants, finding influential

person on social network platforms like LinkedIn and Twitter, outbreak detection and

optimal placement of sensors.
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CHAPTER 7

Conclusion

Social networks are widely used as a communication platform. Influence maxi-

mization problem, is a popular problem in social networks and has many applications

like viral marketing, building smart cities, detection of contaminants, placing sensors

etc. As a part of this project, I studied approximation based solutions for the influence

maximization problem. The greedy approximation algorithm, has an efficiency of at

least 63%. Moreover, the greedy algorithm selects one vertex at a time and computes

its influence spread, which is time consuming and not suitable for large graphs. CELF

algorithm, an improvisation of the greedy algorithm, reduces the spread estimation

calls by maintaining a priority queue of the vertices in the descending order of the

marginal gain. It performs 700 times faster than the simple greedy approximation

algorithm. As a part of this project, I modified the CELF algorithm to add a vertex

cover discovery as a preliminary step of the algorithm. The CELF algorithm, in the

preliminary step computes the marginal gain for all the vertices. Hence, the discovery

initially of a vertex cover improves the computation time of the CELF algorithm since

it considers only those vertices.

For undirected graphs, we use an acyclic spanning graph based approach for seed

set detection of k-influencers. This algorithm uses PageRank centrality to construct

the acyclic spanning graph. From the experiments, we observe that the computa-

tion time of the acyclic spanning graph based approach is better than the greedy

approximation algorithm with comparable spread. Also, the computation time of

the spanning graph based algorithm remains constant with an increase of seed set

size whereas the computation time of greedy algorithm increases as the seed set size
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increases. Once the seed set is detected we compute the spread of the influence using

the Linear Threshold model. We use the real world social networks and synthetic

graphs to perform the experiments.

As a part of the future work, I plan to explore probability based Independent Cas-

cade model for influence spread estimation. In addition, the implementation frame-

work, will be enhanced to support the distributed graph processing.
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