
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2017

Question Type Recognition Using Natural Language Input Question Type Recognition Using Natural Language Input

Aishwarya Soni
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Recommended Citation Recommended Citation
Soni, Aishwarya, "Question Type Recognition Using Natural Language Input" (2017). Master's Projects.
542.
DOI: https://doi.org/10.31979/etd.8xd4-79bk
https://scholarworks.sjsu.edu/etd_projects/542

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/542?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

 Question Type Recognition Using Natural

 Language Input

A Writing Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

 By

 Aishwarya Soni

 May 2017

2

 © 2017

 Aishwarya Soni

 ALL RIGHTS RESERVED

3

 The designated Project Committee Approves the Project Titled

Question Type Recognition Using Natural Language Input

 By

 Aishwarya Soni

 APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 SAN JOSE STATE UNIVERSITY

 May 2017

Dr. Thanh D. Tran (Department of Computer Science)

Dr. Robert Chun (Department of Computer Science)

Prof. James Casaletto (Department of Computer Science)

4

ABSTRACT

Recently, numerous specialists are concentrating on the utilization of Natural Language

Processing (NLP) systems in various domains, for example, data extraction and content

mining. One of the difficulties with these innovations is building up a precise Question

and Answering (QA) System. Question type recognition is the most significant task in a

QA system, for example, chat bots. Organization such as National Institute of Standards

(NIST) hosts a conference series called as Text REtrieval Conference (TREC) series

which keeps a competition every year to encourage and improve the technique of

information retrieval from a large corpus of text. When a user asks a question, he/she

expects a correct form of answer in reply. The undertaking of classifying a question type

is to anticipate the sort of a question which is composed in common dialect. The question

is then classified to one of the predefined question types. The objective of this project is

to build a question type recognition system using big data and machine learning

techniques. The system will comprise of a supervised learning model that will receive a

question in a natural language input and it can recognize and classify a given question

based upon its question type. Extracting important textual features and building a model

using those features is the most important task of this project. The training and testing

data has been obtained from the TREC website. Training data comprises of a corpus of

unique questions and the labels associated with it. The model is tested and evaluated

using the testing data. This project also achieves the goal of making a scalable system

using big data technologies.

5

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Thanh Tran, for his continuous guidance, patience,

motivation and enthusiasm throughout this project. His guidance helped me throughout

this project, starting from topic selection and until writing my Masters project. He was

always ready to help whenever I had a question and the discussion with him gave me the

direction to how to approach the problem. The experience of working with him was very

valuable and I really learnt a lot throughout this project.

I would like to thank my committee members Dr. Robert Chun and Prof. James Casaletto

for their continuous support and valuable time to review my work and also guide me by

providing valuable feedback whenever needed.

Finally, I would like to thank my parents, family members and my friends for their

immense support and encouragement throughout my Masters program. This would not

have been possible without them.

6

Table of Contents
1. Introduction .. 8

2. Background .. 10

3. Related Work ... 11

3.1 Drawbacks of the system: .. 11

4. Proposed Solution .. 13

5. Data .. 14

6. Architecture ... 15

6.1 Rules for Classification .. 16

6.2 Challenges while developing the model .. 16

7. Implementation Using Scikit Learn ... 17

7.1 Why SVM for text classification? .. 17

7.2 Data Preprocessing... 18

7.3 Feature Extraction .. 19

7.4 Predictive Modeling ... 25

7.5 Application using Slack ... 29

7.5.1 Implementation of the bot ... 29

7.6 Multiprocessing Using CherryPy WSGI server ... 35

7.7 Load Testing the application .. 36

8. Implementation Using Apache Spark .. 39

8.1 Overview of Spark Architecture .. 39

8.2 Data Preprocessing... 41

8.3 Feature Extraction .. 41

8.4 Predictive Modeling ... 46

9. Spark Streaming ... 47

9.1 Amazon Kinesis Streams ... 48

9.1.1 Amazon Kinesis Streams Architecture ... 49

9.1.2 Prerequisites .. 50

9.1.3 Create a Kinesis Producer ... 51

9.2 Create a Spark Streaming Consumer ... 53

9.2.1 Implementing Spark Consumer Using scikit-learn Classifier ... 53

9.2.2 Implementing Spark Consumer Using Spark Classifier ... 55

10. Performance Improvements ... 58

10.1 EC2 Performance Observations ... 63

10.1.1 Performance Evaluation for Scikit lite Spark Streaming Application 63

10.1.2 Performance Evaluation for Spark Classifier Streaming Application 65

7

11. Conclusion and Future Work ... 67

12. References .. 69

8

1. Introduction

Currently, there is huge amount of information that is available on the web and the web

crawlers are required to be more insightful. Much of the time the client just needs a

particular snippet of data rather than a rundown of reports. Instead of making the client to

peruse the whole report, it is regularly wanted to give the client a brief and short answer.

The QA systems are designed to provide an accurate answer to a particular question. An

ideal QA system is the one which can answer any question in a human readable format.

The study to create an accurate QA systems began in the year 1960 where the first QA

system, BASEBALL was designed [1]. It was capable of answering domain specific

questions, which in this case was the data of baseball games played in American league

over one season. But the QA system was incapable of answering out of domain questions

and that was the limitation that needed to be improved. As the years passed by, the data

became huge on the web and there was a need for a system to retrieve the required

information out of such a huge database. Thus, the need to develop a better QA system

came into focus again. In 1999, TREC began the competition to create a better QA

system. Participants in the TREC competition needed to build a model that can retrieve

the precise answer, from a 10 GB of text corpus which comprises of English sentences.

Designing a precise question answering system has been always a challenging task. It is

different from a document retrieval system where the documents are retrieved based upon

some keywords or text matching.

9

The most challenging task in designing a QA system is to precisely find the intent behind

a particular question. Natural language processing techniques were exploited to build a

system which can process text in any human readable language. In order to correctly

classify a question, the system needs to understand what is the intent behind the question

asked, what are the constraints associated with it and what can be the possible answers to

that question. For example, given a question, " What two states is Washington D.C.

between?" the system needs to identify that the intent is related to some location.

This project is build on the similar concept. It comprises of using advance natural

language processing methods along with machine learning technique. Different

classification algorithms can be used to build a model which can process the textual

features extracted using natural language tool kit.

Model is build using a supervised learning approach. In supervised learning we have the

training data along with the labels and we build a model using this data. We later on

evaluate the model using the testing data to check the accuracy on unknown sentences.

The model is then scaled using Apache Spark to handle a large stream of requests from

multiple users simultaneously. Project is build using several steps which includes data

preprocessing, feature extraction, model training, prediction and testing and evaluating

the performance which are all explained in the later sections.

10

2. Background

Multiple techniques were implemented since 1960, when the first question answering

system was developed. But the drawback for those systems was that they were binded to

a particular domain. During the era of 1970s and 1980s, the interest to use natural

language processing techniques got a boost and the systems were proposed based on NLP

methodologies. UC Berkley came up with a project, The Berkeley Unix Consultant

project (UC) [2]. They build the project on the domain of Unix operating system and

came up with a system that utilized the techniques such as natural language processing,

knowledge representation system and reasoning. Based upon a question, the system

generated a knowledge representation and the answer was tailored based upon the

knowledge the system generated. But due to lack of support for real-world scenarios, the

system was not considered to be used for practical purpose. Rule based systems were

proposed build on the concept of knowledge representation systems, but due to increasing

amount of data, the number of rules increased and it became very difficult to manage the

system with too many rules.

Since the start of the QA track by TREC in 1999, the focus changed from domain

specific systems to Information Retrieval (IR) systems. The most simple QA system was

based on answering factoid questions, for example, "Who was the first person to land on

the Moon?" This is a factual question which has the precise answer. The advent of IR

systems gave birth to open-domain question answering system [2]. This is the current

state of the art on which multiple automated question answering systems are build.

11

3. Related Work

Even though there are multiple papers and works that are proposed, I am extending the

work done by Xin Li and Dan Roth [3] while building the solution. They came up with a

system which was based upon the concept of open-domain answering system. The model

that they proposed was build using machine learning and natural language processing

techniques. The model was trained using the train_5500 dataset and evaluated using

TREC_10 dataset. The features such as words, pos_tags, head_chunks, named entities

were extracted and a model was fitted with those features. They achieved the accuracy of

85% with the proposed model.

3.1 Drawbacks of the system:

 Advanced Information Retrieval technique such as term frequency- inverse

document frequency (tf-idf) was not used. TF-IDF helps in recognizing the

importance of a particular word in the entire corpus of text. In this technique, the

word is assigned a weighted frequency depending upon the number of times it

appears in the entire corpus. It is the advanced text mining technique which is

important to consider as some words appear more number of times as compared

to others. According to Wikipedia, around 83% of the text based recommendation

systems uses tf-idf.

 Understanding the semantics is also one of the important feature that the current

question answering systems are build on. It is important to consider the semantics

of a sentence as a single word can be represented in multiple ways. For example,

12

the word "destination" in a sentence can be replaced by the word "last stop". The

meaning of the sentence would still remain the same. It is important to

understand the semantic nature of the sentence

 Ngram helps in understanding the semantics of a sentence. Ngram takes into

consideration the sequence of words that occur continuously in a given sentence.

The value of n defines the model. For example, if n = 2, it is called a bigram

model and if n = 3, it is called as trigram. For the values of n > 3, it is generally

alluded to four grams, five grams etc. For example, if we take n = 2, the bigram

for the sentence, "What is the currency of the USA?" will be,

o What is

o is the

o the currency

o currency of

o of the

o the USA

Ngrams are used as a feature in the text processing model. This is an important

feature to consider as the sequence of words can identify which words are more

frequently used to denote a person, or organization or location or any other entity.

This improves the learning of the model which may help in improving the

performance of classification.

13

 As there are lot many users to use a system, it was necessary to make a scalable

system. Scalability was missing in the system that was implemented.

4. Proposed Solution

The solution proposed tends to build a more accurate question recognition system. It will

incorporate the advance natural language processing techniques to create a better model.

The proposed system will address the drawbacks of the previously build system. The

system will provide a better accuracy and it will be tuned to support multiprocessing and

scalability.

The system will receive a question in an input. It will process the text by extracting

important features and finally the output will be a question type. The system will be fast,

scalable, efficient and will be capable enough to handle bulk of request.

14

5. Data

The dataset has been obtained from the TREC website [4]. The training data train_5500

consists of 5500 labeled questions. The system is evaluated using TREC_10 dataset

which consists of 500 new questions. The dataset consists of six broad categories of

questions and fifty fine categories of questions. The output will be in the format,

BROADCATEGORY:fineCategory. For example, the output of the question "Who is

Zebulon Pike?" will be "HUM:desc". Each question is uniquely classified to a particular

category.

The following figure gives a distribution of different question categories. The numbers in

the # column indicate the total number of questions available in the TREC_10 dataset in

that particular category.

Figure 1. Distribution of question categories

15

6. Architecture

The following diagram depicts the process flow for the proposed solution,

Figure 2. Architecture of Proposed Solution

The entire architecture can be explained as follows,

1. Question corpus is the training data, train_5500 obtained from the TREC.

2. The corpus is preprocessed by removing some unwanted characters and the processed

corpus is then used to extract the features

3. Features such as Term Frequency- Inverse Document Frequency (TF-IDF), Named

Entity Recognition (NER), Parts Of Speech (POS) tags, Related word vectorizer (for

semantic analysis) are extracted and is given to the machine learning algorithm SVM to

build the model.

4. SVM takes all the features, fits the training data.

5. The model is evaluated using TREC_10 testing dataset

6. The model is supplied with new sentence to make a prediction of a question type

7. The output of the model is a question type from the entire question type hierarchy as

shown in Figure 1.

16

6.1 Rules for Classification

Following are the rules for labeling the data,

 If a query starts with Who or Whom: type Person.

 If a query starts with Where: type Location.

 If a query contains Which or What, the head noun phrase determines the class, as

for What X questions.

6.2 Challenges while developing the model

 Precisely predict the k semantic classes.

 Using advanced NLP techniques to understand the semantics of a given question

rather than just extracting a key term

 Make a scalable model

 Ability to handle load

17

7. Implementation Using Scikit Learn

Scikit-learn is a machine learning library in Python which is used for data analysis and

data mining. It consists of various machine learning libraries which can be used for

classification, regression or clustering. Question type recognition is a classification

problem and so we are using a classification library which is Support Vector Machine

(SVM).

7.1 Why SVM for text classification?

During the course of the years, researchers have tried using different algorithms

combination for text classification. But Support Vector Machine (SVM) performs better

than most of the algorithms. Thorsten Joachims have mentioned a few reasons why SVM

outperforms the other algorithms [5],

 SVM can handle large feature space. There are lot many features to handle while

making a model for text classification, so there may be a chance of overfitting the

data so as to cover all the features as close as possible. Since SVM can prevent

overfitting with an appropriate regularization parameter (C), it does not have to

rely on the quantity of features, they can possibly deal with large number feature

spaces.

 There is no need of feature selection in text classification as most of the textual

features are important. So unlike other types of classification where algorithms

are used to perform feature selection, SVM does not need to do this in text

classification.

18

 Text classification problem is linearly separable. SVM is the best classification

algorithm if a problem is linear separable.

 Apart from C, we don't need to optimize any algorithm parameter, unlike other

algorithms. We usually perform grid search to find the best set of parameters to

use. This can be avoided in case of SVM.

 Training time for SVM is faster than other classification algorithms.

7.2 Data Preprocessing

The dataset obtained from TREC had certain junk characters in the form of Greek

symbols such as  or ¶. So we removed the characters other than a-Z and A-Z. Removal

of stop words was done during the training of the model itself. A stop words list was

passed as a parameter during the training step.

After removal of the junk characters, the dataset looks like as shown in Figure 3,

Figure 3. Sample training dataset train_5500.txt

19

7.3 Feature Extraction

Feature extraction is the most important step in any predictive modeling. The processed

dataset is imported and we use the advance natural processing techniques to extract the

features for the model. We are using Python's Natural Language Toolkit (NLTK) library

to extract most of the features. For text classification, following are features that we are

interested in,

 tf-idf Vectorizer- tf-idf vectorizer helps in identifying the importance of a

particular word in a text in the entire corpus. The importance of the word is

decided by the frequency of appearance of the word in the corpus. This is done

while calculating the term frequency. But we don't want to put more importance

on the words such as "a", "the", "and", etc. After calculating the frequency of the

words, in order to precisely assign the weight, we calculate the inverse document

frequency to identify the most relevant words. The word that appears less is

assigned more importance or weight. This feature makes the classifier understand

what words to focus on while learning.

While performing tf-idf, n-grams are also taken into consideration. N-grams helps

in identifying which words are more frequently used to denote a person, or

organization or location or any other entity. So it helps in identifying the

importance of certain stop words while denoting an entity. The tf-idf score

changes accordingly and it helps in better modeling of the predictive algorithm. In

20

this project, we are using a standard tf-idf() function which is available in Python

NLTK library.

 Parts Of Speech (POS) tagging - A POS tagger is software in which each word

is assigned a parts of speech depending upon the neighboring word. As we also

consider the adjacent word while tagging a particular word, n-grams are also

considered while tagging a word. POS tagging helps in predicting what can be the

next word in a series of concurrent words. It also helps as a basis of syntactic

parsing and then meaning extraction. In the project, we are using a standard POS

tagging function pos_tag() which is available in Python NLTK library. The parts

of speech can be any of the following or a combination of it as shown in the

diagram,

Figure 4. Different type of Parts of Speech

21

Figure 5. POS Tagger class

Figure 6. Extracting POS tags

22

 Named Entity Recognition (NER)- Named entity corresponds to classifying a

word in any of the categories such as Persons, Products, Organizations, Locations

etc. A NER tagger helps in classifying a word into any of the named entities.

Extracting NER tags from a text helps in identifying whether a question is related

to person, organization, or location or any of the six broad question type

categories. For this project, we are using Stanford NER tagger which internally

has functionality to extract the required named entity

Figure 7. NER Tagger class

Figure 8. Tokenizing and extracting NER tags

23

 Semantically Related Words- Performing semantic analysis is one of the

important steps in text classification. A single sentence can be modified and

represented in multiple ways. It is important to analyze the meaning of the

sentence no matter how it is represented. In this project, we are providing a

word list which consists a directory of most commonly used words and its

different representations. Sample directory structure is shown below,

Figure 9. Directory structure of related word list

First we create a dictionary of all the related words with key as the file_name and

value as a list all the words inside that file. This process can be shown using the

following implementation,

24

Figure 9. Building a word list from the related words directory

Then for each tokenized word of the text, we compare the word with this dictionary to

check in which category (which is the key of the dictionary) does the tokenized word fall.

Once we find the all the keywords, we create a string that resembles all the category and

pass it as a feature. So no matter how differently a sentence is constructed, the semantics

will always be the same. This reduces the learning efforts of the classifier as it does not

have to learn and recognize each sentence in a different manner. By doing semantic

analysis, a classifier can recognize any semantically related sentence to what it learned

during training phase. This process is shown in the following implementation,

Figure 10. Related Word Vectorizer Class

25

Figure 11. Building string for related words

7.4 Predictive Modeling

After extracting all the features, we create a model using a machine learning

classification algorithm Support Vector Machine (SVM). The model is created using a

function called as pipeline(). In the pipeline() function, we give a list of transformers and

a estimator. Estimator can be any machine learning algorithm, in this case it is SVM.

Pipeline helps in reducing the necessity to call the transform() method after every

transformation. All the transformations are done when we call the fit() method. Finally

the estimator, which has the fit() method gets the final set of features that is needed to

train the model.

26

Following is the code snippet for the pipeline implementation,

Figure 12. Pipeline implementation

FeatureUnion() estimator function helps in concatenating the output of all the

transformations. The transformations are applied in parallel for each input data and then it

concatenates the results in the end. This final feature set is given to the estimator, which

can be any machine learning algorithm.

After all the pre-processing and the feature extraction phases, the data point includes

 Named entity for each tokenized words,

 The tf-idf vectors,

 POS tags for each word and,

 The set of related words from the bag of words for each tokenized word

27

Additionally, the n-gram parameter has been set to take values between 1 to 4 while

creating the model pipeline. This enhances the learning process for the model.

After we train the model , the model is evaluated using the TREC_10 dataset. The model

gave an accuracy of 93%.

Figure 13. Evaluation results

The model is now ready for making prediction. Following code snippet shows a sample

run of the prediction,

28

Figure 14. Sample run for making prediction

After creating the model we save the model so that we can use it for later purpose.

Figure 15. Saving the model

As a part of the real life application, the trained classifier was integrated with Slack. So

instead of making prediction by taking user inputs from the console, we created a bot

application on Slack.

29

7.5 Application using Slack

Slack is an online messaging platform. It helps the teams to collaborate and communicate

at the same time. The idea behind creating a Slack bot was to create an application where

we can use our classifier. So we decided to create a bot using the botkit framework [6].

Botkit is a library that is used to create conversation bots by easing the process of

creation. Botkit has compatibility with different platforms such as Slack, Twilio,

Microsoft bot framework and Facebook.

7.5.1 Implementation of the bot

The bot was developed in the two phases,

1. Using wit.ai

2. Using the classifier by writing a custom middleware

7.5.1.1 Implementation using Wit.ai

Initially, before the classifier was developed, a simple bot was created using wit.ai. Wit

provides an online console and API's to create a smarter conversation bot. It uses NLP

techniques to make an intelligent bot. It maps the user inputs with the predefined entities

and intents and gives the output accordingly. Initially a user create a list of entities and

intents to train the wit model. For training, the user enters inputs from Slack console, and

the question comes to the message folder of the wit.ai. The user validates the message by

mapping it to an appropriate intent. Then after sufficient amount of training, the model

starts predicting the intents for unknown inputs. For example, for a "food" intent, users

30

may say "Can someone order the food?" If we don't find an existing intent, or if there is

no suggested intent we can create our own intent.

For demo purpose, we created two entities, "Greeting" and "Question". We took two

questions from the CS FAQ section to determine the intent and retrieve the answers to it.

The questions focused on determining the rules for disqualifications and how to schedule

appointments with the advisor. The following images show sample screenshots of the

entities the keywords and the expressions used to train the model. The keywords help to

identify the intent and map it to the appropriate entity.

Figure 16. Creating sample entities on wit console

31

Figure 17. Keywords for "Greeting" entity

Figure 18. Expressions for "Greeting" entity

Figure 19. Keywords for "Question" entity

32

Figure 20. Expressions for "Question" entity

The next step was to integrate wit with the botkit framework. We used a middleware

service that connects both wit and the botkit. Now, every message that was received to

our bot was sent to wit.ai for processing. After the processing, the output from wit comes

in the form of JSON. The middleware parses through the JSON output and finds the key

"message.entities" to get the intent behind the question.

33

7.5.1.2 Implementation using the Classifier

The aim was to build a real life application using the classifier. To integrate the classifier

with Slack, we wrote a custom middleware. So instead of going to wit.ai, the request now

goes to the classifier application. For this, it was important to create a REST based

application of our implementation. We used Flask to create a REST service. It is a

framework which is available in Python and it helps in creating web services. Figure

given below shows the implementation of our application using Flask.

Figure 21. Implementation using Flask

It looks for 'q' in the arguments of the URL which holds the question. The question is

then forwarded to the implementation where we have the classifier and after the

classification process, the output is send back to the Slack bot.

34

Figure 22. Sample run of the Slack bot

We can also check the console of our REST application to see the output of our question.

For example, the figure below shows how the REST service behaves when it receives any

question from the Slack bot,

Figure 23. Output of the REST application

To interact with the REST service, we wrote a custom middleware service. This

middleware helps in managing the request from Slack and response from our REST

application. In the middleware implementation, we specified the URL where the request

from Slack should go to. This URL is the IP address and the port number where our

REST application runs. We also specify what query parameter to look for in the request,

here it is "q". The following images show the code snippets for the custom middleware

implementation,

35

Figure 24. Code for the middleware implementation

7.6 Multiprocessing Using CherryPy WSGI server

The application created using Flask was a sequential application. In order to enable

multiprocessing, we used a web framework for Python called as CherryPy. It is Web

Server Gateway Interface (WSGI) framework which provides a multi-threaded web

server where we can deploy any application. The main advantage of using CherryPy is

that it is a very easy to use framework with only few customization needed to run any

application. When the REST application is deployed to CherryPy, the application runs in

a thread. It helps in utilizing all the cores of the CPU's and thereby handling multiple

requests. The following code snippet shows the implementation using CherryPy WSGI

server. As shown, the "app" in the import statement is the name of the Flask application

that we need to deploy on CherryPy.

36

Figure 25. CherryPy implementation

7.7 Load Testing the application

To test how much our application can take the load, we used locust.io. It is a tool to load

test any python application. Following is the implementation snippet for our application,

37

Figure 26. Locust file for load testing

The name of our locust file is server.py. To run the file we use the following command,

" locust -f testing/server.py --host=127.0.0.1:5000 "

The host is the URL where the locust server is running. In the code, we have set the

waiting time for a request to come as 0.

To perform load testing, we simulate the requests from 100 users. The number of users

per second (hatch rate) keep on increasing from 1 till it reaches 100. Figure shown below

shows the initial console of locust.io where can enter our values for users and the hatch

rate,

38

Figure Sample run of load test

After swarming the requests, we check how the application behaves. As shown in the

figure below, the application dies after taking 26 simultaneous requests. It doesn't process

any request further than 26.

Figure Load testing results

As we can see, the performance was still a concern. It was necessary to build an

application that can handle huge load and achieves the goal of scalability. To solve the

problem of scalability and performance we moved our focus to Apache Spark.

39

8. Implementation Using Apache Spark

Spark is a framework which is used to process huge amount of data in a fast and very

efficient manner. It was developed at Berkley in 2009 and it soon became a top-level

project at Apache. Following are some of the advantages of using Apache Spark,

 Fast and reliable in memory processing (100x faster than traditional MapReduce)

 Fault tolerant capability as Spark uses an immutable data structure called as RDD

 It provides MLlib as one of the libraries using which we can perform any machine

learning techniques

 It provides the ability to perform real-time streaming using Spark Streaming

8.1 Overview of Spark Architecture

The following figure shows the architecture of Apache Spark [7],

Figure Spark Architecture

40

Driver is the master node that controls the execution and distribution of tasks across all

worker nodes. SparkContext is used to create an instance of Spark application. Using that

instance we perform any functions, like creating RDDs, using broadcast variables,

creating jobs and accessing spark services until the instance is stopped. Cluster manager

can be Mesos, Yarn or Hadoop itself. We can also run Spark in a standalone mode. When

the task is ready for execution, driver distributes the task to all the worker nodes. Each

worker has an executor which executes the assigned task. After the completion of the

task, the result is sent back to the driver daemon. The figure below shows the stack that

spark supports on its architecture [8],

Figure Spark Stack

41

8.2 Data Preprocessing

We are using the same pre-processed data obtained from the scikit-learn classification.

Figure 3. Sample training dataset train_5500.txt

8.3 Feature Extraction

Spark doesn't have direct support for nltk libraries. As Spark uses RDD, every feature

extraction process is an output of a transformation. So we created a custom transformer

for one of the feature extraction process which is POS tagging. Figure given below shows

the workflow for the feature extraction process,

42

Figure Feature Extraction process for Spark Classifier

To initiate a Spark job, we first create its instance using SparkContext. We read the

processed file which is stored in our local system. After reading the file, we get an RDD

which holds the entire text file. To optimize the training time, we convert the RDD to a

Spark dataframe using toDF() method. Databricks has done some benchmark testing to

compare the performance of RDD and a dataframe [9]. The results clearly show that

Dataframe is better in performance as compared to RDD. The following figure shows the

performance results of the same,

Figure Databricks performance results for RDD v/s Dataframe

The graph compares the aggregation results of 10M integer pairs on a single node during

runtime. The difference between performance of Python and Scala dataframe operation is

quite less as both generate JVM bytecode after execution and so nothing much to

compare of. In case of RDD operations, the dataframe performance results beat both the

43

language variants, the python implementation of RDD by a factor of 5 and Scala

implementation of RDD by 2 [9].

1. Tokenization:

After reading the file into RDD, we convert it into a dataframe. Then we tokenize the

data and pass it to the next step, POS tagging. The output of the tokenizer is saved in

column "words".

Figure Tokenization and POS tagging

2. POS tagging:

Output of tokenizer, "words" is given as input column to the custom transformer. As

Spark doesn't support the nltk libraries directly, we wrote a custom transformer.

44

Figure Custom transformer POSWordTagger

Figure Transform function implementation

The transform method uses the pos_tags() method from the nltk library to extract the

POS tag for each token. The output is saved in the column "pos "

Figure Calling POSWordTagger

45

3. Tf-idf vectorizer:

Output of pos tagger, "pos" is given as input column to the custom transformer.

The output of POS tagger transformer is used to extract the tf-idf vectors. The output of

tf-idf vectorizer is saved in the column "raw_features".

Figure Extracting tf-idf vectors

4. Indexing:

Spark doesn't takes string values as labels. So we convert each label to a numeric value

by using the StringIndexer() method. The output of the indexer consist of numeric values

for each label. The transformed indexer is saved for future use as we need to retrieve the

original label back. The output of the indexer is saved in the column "idxlabel"

Figure Extracting tf-idf vectors

46

8.4 Predictive Modeling

After we extract all the features, we build our model using decision tree classifier. The

input to the classifier is the final set of features obtained after tf-idf transformation and

the label column has been given the output of the indexer

Figure Extracting tf-idf vectors

After building the model, when we evaluate the model using the test dataset, we get an

accuracy of 83%.

Figure Spark Model Evaluation

The model is saved to disk to use it for later purpose (Spark Streaming).

47

9. Spark Streaming

The aim was to create a scalable application with notable performance gain. So in order

to simulate a real-world scenario, we created a Spark streaming application. We used the

Spark Streaming API that is available in the Spark stack to create a streaming application.

The figure given below shows the architecture of Spark Streaming [10],

Figure Spark Streaming architecture

Input sources can be any streaming service (producer), which will generate the data and

submit it to the Spark streaming application which will act as a consumer. After the data

has been ingested and the required operation has been performed on the data, the output

can be written or saved to any storage services. We can also create a dashboard which

can show the impact and behavior of all the processing in the form of graphs.

For our application, we are using Amazon Kinesis as the producer. So now, instead of

providing some sample questions for prediction, we give a stream of questions to the

classifier.

48

9.1 Amazon Kinesis Streams

Amazon Kinesis streams is one of the many services that is provided by Amazon Web

Services (AWS). It is used to create streaming data. As the data is generated continuously

from multiple sources, the size of data to be processed per hour has reached upto TBs.

Amazon Kinesis helps to collect such huge data and provide ways to process and store it

at very low cost.

Advantages of using Amazon Kinesis are,

1. Real-time streaming- We can collect the data as and when it is generated and we can

perform any analysis or computation in real time.

2. Parallel processing- We can process the same Kinesis stream by running multiple

Kinesis applications concurrently.

3. Scalability- Kinesis streams can scale to handle Megabytes or even Terabytes of data

per hour. We can adjust the throughput required for our application dynamically.

4. Low processing cost- It is cheap to use Amazon Kinesis streams with the rates being

$0.015 per hour.

5. Reliability- It replicates the data across three Amazon Region facilities and it can store

the data for seven days, thereby avoiding any information loss due to failure.

49

9.1.1 Amazon Kinesis Streams Architecture

The following figure shows the architecture of Kinesis Streams [11],

Ama

Figure High level architecture of Kinesis Streams

1. Producers- Any source that can generate data

2. Kinesis Application- EC2 running application that acts as a consumer for the streams

of data. Output of the consumer can be an input to another Kinesis application running on

EC2 instance or we can store the output on any storage services.

3. Shards- It distinctly identifies data records in a stream. A stream consists of atleast one

shard. We can dynamically increase or decrease the number of shards with an increase or

decrease in data rate.

4. Partition- Data records are segregated into shards using a partition key. When data is

regrouped, this key helps in identifying that the particular record belongs to which shard.

5. Amazon Kinesis Client Library (KCL)- Applications are build using KCL and are used

to process the data fetched from the streams.

50

9.1.2 Prerequisites

In order to use AWS services, we need to do following steps,

1. Create a login account.

2. Install the AWS CLI tool. We can use the following command to install the CLI,

$ pip install awscli

$ sudo pip install --upgrade awscli

3. Set up our AWS credentials in our environment. It includes two variables to set,

aws_access_key_id = YOUR_KEY

aws_secret_access_key = YOUR_SECRET

We use to following command to setup the environment,

$ aws configure

The credentials are saved in a "credentials" file which is located in the directory where

we have installed the AWS. Now our environment is ready to communicate with any

AWS services.

4. Install boto3- It is the AWS SDK build for Python. It provides a set of libraries that

we can use to communicate with AWS services. Here we will use boto3 to create a

Kinesis Client. We use the following command to install boto3,

$ pip install boto3

5. Choose a region - The region name is default which is us-west-2. We can change the

region name by changing the value of the region field in the aws config file.

The next step is to create a Kinesis Producer which will create a Kinesis stream on AWS.

The stream will comprise of different questions which are read from a text file.

51

9.1.3 Create a Kinesis Producer

We create a Kinesis client to create and submit out streams on AWS. As a data source,

we are using a dataset which comprises of 200 unique questions. We create a stream with

the name as "questions" and the partition key as "qtypes". The stream need an input in

the JSON format and so we use the json.dumps() method while putting the records using

kinesis.put_record(). Default shard count is 1.

As shown in the figure below, the Kinesis stream client will continuously submit the

questions to the stream using an infinite loop,

Figure Kinesis Producer

In the first figure given below we can see the "questions" stream that is created on AWS.

In the second figure, we can monitor the behavior of the system when we start putting the

records on the stream. These graphs are generated by the CloudWatch monitoring system

that is built-in in AWS.

52

Figure Stream generated on AWS

Figure Monitoring system on AWS Kinesis Stream

53

9.2 Create a Spark Streaming Consumer

In order to fetch the data produced by Kinesis, we wrote a Spark streaming consumer

application. We wanted to observe how the two classifiers behave in real-time streaming.

So we built two streaming applications in which we used the scikit-learn classifier and

the spark classifier.

We use the PySpark library to implement any Spark job in Python. To initiate a Spark

job, we use the SparkContext() object which is imported from the PySpark library. It is

the starting point for any Spark application. To initiate spark streaming, we create a

StreamingContext() object which is imported from the spark streaming library.

9.2.1 Implementing Spark Consumer Using scikit-learn Classifier

We use the concept of broadcast variables in both the application. We load the stored

classifier from the disk and give it to the broadcast variable. When we do sc.broadcast(),

we broadcast the classifier to all the worker nodes. So when the stream of questions

comes, we have the classifier available on all the workers.

The figure given below gives the implementation snippet for the spark consumer

application using scikit learn classifier. As shown in the figure, we use the Kinesis Utils

library to consume the Kinesis streams. The parameter InitialPositionStream.LATEST

indicates that we are interested in the latest streams. Shard count is set to 1 as we are

using only 1 shard. We deploy our classifier when we do broadcastVar.value and then we

call the predict() method of the classifier for each question.

54

Figure Spark consumer application using scikit-learn classifier

We use following command to run the spark job.

"spark-submit --driver-memory 5g Question_Type_Classification/spark-stream.py"

As we are running spark on a local machine, we give the driver memory a value (here 5g)

to indicate what amount of RAM is to be given to the executors on each worker node. We

cannot set the executor memory when we run spark on a local machine. The reason being

that, when we run spark on a local machine, the worker resides insides the JVM process

of the driver. The default memory is set to 512MB. So we have to reset it to a higher

value depending upon available system configuration. When we run Spark in a cluster

mode, then we can set the executor memory to some value as we would have a different

master (other than the driver daemon) which can be Mesos or Yarn or Hadoop itself.

55

The output of the spark streaming is given below,

Figure Spark streaming output

9.2.2 Implementing Spark Consumer Using Spark Classifier

In this, we broadcast the two models from the driver program. First is the indexer that we

saved in the previous spark program while training the classifier as we have to retrieve

the original labels from the indexed one and second is the classifier itself. For each

stream of questions, we extract the features and give it to the classifier for prediction.

The following snippets show the implementation of the spark consumer using the spark

classifier,

56

Figure Spark driver program

Figure stream_rdd() function implementation

57

Figure Feature extraction and prediction

Figure Output of the spark consumer

58

10. Performance Improvements

Due to resource crunch on a local machine, there is not much we can do to improve the

performance. The real power of spark can only be achieved if we have the computation

power. So to improve the performance of the application, we deployed our application on

AWS EC2 instances. EC2 provides us instances with the computing resources which we

can choose according to our needs.

The advantages of using EC2 are,

1. Easy scalability- We can increase or decrease computing resources at will and in few

minutes. We can run thousands of instances without worrying about how to manage all

the instance as AWS does it for us. Application can scale up or down at runtime

depending upon the need.

2. User Control- Users have a full control on each instance. A user can start, stop or

restart any instance when required. User has the access to API's or console to manage the

instances.

3. Reliable- According to AWS, its cloud is 99.95% reliable. So even if any instance gets

failed or crashed due to some reason, another instance is brought up automatically

without the customer to realize it and facing any downtime.

4. Secure- AWS allows us to create Virtual Private Cloud (VPC) so that we can have a

personalized access to our instances.

5. Inexpensive- The cost of an instance is quite cheap. It works on the principle of pay

per use.

59

AWS provides different types of instances which can be chosen as per the use case. For

our use case, we are using instances of the M3 family. It provides us with good

computation resources that is perfect for most of the applications. We are using a 3 node

cluster and each node is an m3.xlarge instance. Each instance has 4 vCPU, 15 GB of

RAM and 2x40 GB of SSD storage.

When we run the scikit learn classifier on a local machine, the performance was not

great. The reason being that, it has to fetch the NER jar for each token for each stream of

question , tag each word and bring back the results. This degraded the performance of the

application. So we thought to create a new classifier with all the features except NER

tagging. We call this classifier as "scikit lite" classifier. So we had tf-idf vectors, POS

tagging and semantic analysis as the features for this new classifier. The net result was

increase in performance but the accuracy of the scikit lite classifier was only 68%. When

we run both the applications individually on the spark framework we can notably see the

performance change.

To evaluate the performance, we compare the throughput of both the classifiers at

different window size. The window size will signify how much seconds the spark

application will wait to take the next batch of input records. The window size can be set

to any value, but to test the performance on the local machine we took two window sizes,

1 and 15. We compared the results of 8 batches of each classifier application for each

window size.

60

Figure Sample output of each completed batches

The following graphs show us the performance results for the fully loaded classifier (old

classifier with all the features) and the scikit lite classifier,

Figure Old classifier stream performance with window size 1:

Figure New classifier stream performance with window size 1:

61

As observed from the above graphs, the time taken to process the records is less as

compared to the old classifier. Total number of records processed is also high in the new

classifier. When we compare the throughput of 8 batches of each classifier application,

the processing performance for the old classifier is 0.53 records/second and for the new

classifier we get 7.48 records/second.

When we change the window size to 15, we get the following graphs,

Figure Old classifier stream performance with window size 15:

Figure New classifier stream performance with window size 15:

62

As observed from the above graphs, the time taken to process the records is less as

compared to the old classifier. Total number of records processed is also high in the new

classifier. When we compare the throughput for 8 batches of each classifier application,

the processing performance for the old classifier is 0.42 records/second and for the new

classifier we get 7.95 records/second. So, for window size 15, the performance for old

classifier degraded but there was a slight improvement in performance for the new

classifier. We summarize the observations in the following table,

Observations Old classifier application New classifier application

Accuracy (%) 93 68

Best Performance 0.53 7.95

Overall Performance Bad Good

Best window size 1 15

Table 1. Observation table for old v/s new classifier application

From the above table, it is clear that the new classifier performs better than the old

classifier. As the goal of the use case was to increase the performance of the application,

we chose the new classifier, i.e. the scikit lite classifier to deploy on the AWS EC2

instances. So we deploy our new classifier and the classifier written using spark MLlib on

the 3 node cluster to observe and compare the performance results on different loads.

63

10.1 EC2 Performance Observations

We deployed the two applications on the AWS EC2 cluster to evaluate the performance

and scalability. In order to execute our application, we setup the worker nodes with all

the dependencies that was needed to run the application as per the guidelines on AWS

[12].

To evaluate the performance we tested our application by giving low, medium and high

load. We also changed the window size which varies to 1, 5, 10, 15 to find the optimum

performance. After testing the application on various parameters, we drew the

performance graphs using Tableau. The graph has been divided into two sections, first

one is average number of records processed per sec and second section is the average

input size at different window size. Records processed per sec for each window is

obtained by taking the average number of records obtained in 10 batches and average

processing time for each batch.

10.1.1 Performance Evaluation for Scikit lite Spark Streaming Application

To begin with, we first evaluated how our scikit lite spark streaming application

performed on EC2 cluster and what are the notable observations. The following graph

shows the performance results on EC2 cluster,

64

Figure EC2 performance results for scikit lite spark application

As observed from above graph, for low and high load the application performs better

as the load increases. For medium load, at window 10, we get the maximum records

processed as compared to other load setting and window size. After that point, the

record processing decreases. Also, that is the best point where we get maximum

record processing. The conclusion derived from above observations was in order to

achieve the best performance, we need to set window size to 10 and load should be

medium.

65

10.1.2 Performance Evaluation for Spark Classifier Streaming Application

We evaluated or spark classifier streaming application on similar parameters on the EC2

cluster. The following graph shows the performance results on EC2 cluster,

Figure EC2 performance results for spark classifier streaming application

For the above spark application we observed that it behaves better as the load increases.

There is no definite good point to set to achieve optimum performance. The window size

and load can be set according to the requirement of the use case. The trade off criteria can

given as,

window size ∝ delay in response.

More the window size to get the performance, more is the response time for the request.

For the current scenario, low load and window size 15 seems to be a sweet spot as we get

more throughput then any point at the graph.

66

The optimum points obtained from the performance analysis of both the applications can

be summarized in the following,

Observations Scikit lite classifier application Spark classifier application

Accuracy (%) 68 83

Best Performance 309.3 402.6

Window size 10 15

Load Medium Low

Table 2. Observation table for scikit lite v/s spark classifier application

67

11. Conclusion and Future Work

In this project, we created an application that would classify any question to its question

type. During the project, we created three applications which includes the full loaded

classifier, scikit lite classifier and the spark classifier. We performed some performance

testing on local machine which didn't helped much. So we deployed the lite classifier

application and the spark classifier application on AWS EC2 cluster. We tested our

application on different parameters and came up with a set of observations.

In conclusion of the observations we can say that,

1. Spark classifier application performs better than the scikit lite classifier

application.

2. We get less latency (delay in response) in the scikit lite classifier application as

the window size is less than the spark classifier application.

3. If the focus is to get more input records to process in short period of time and

accuracy is not an issue, then we can go ahead with the scikit lite classifier

application. But this case is very unlikely as many applications will chose the first

option as they are getting good accuracy and better throughput. Latency can be

compromised for better results.

Finally while doing the project, we also observed that by enhancing the model with the

semantic features improves the classification accuracy. Also, "What" type of questions

are very difficult to classify, for example, consider this question “What is the PH

Scale?”. This question can be classified as a numeric value or a definition. So proper

modeling is required to classify "What" type of questions.

68

In accuracy, scikit learn beats spark as scikit learn is more tuned to perform classification

and is more matured then spark. In Performance testing, the spark classifier performs

better on every level (apart from latency) as compared to scikit learn classifier. Selecting

the performance v/s accuracy tradeoff depends totally upon the requirement of the

application.

In future work, we can say that the current work can be extended in multiple ways. We

can apply some deep semantic techniques for semantic analysis. Stanford is currently

working on how can we apply deep learning in natural language processing [13]. We can

use some artificial intelligence techniques that enables learning for new questions and

question types while performing classification. We can assign multiple labels to a single

question to diversify the classification categories. In this project, we have the dataset that

assumes unique label for each question. This may lead to some misclassification of

certain types of questions, especially in "What" type of questions. By having multiple

possible labels for a question, we can improve the accuracy of the model. We can also

have a dedicated classifier to classify "What" type of questions. This will help in defining

a more accurate model with better training and features set which will only classify

"What" type of questions. Lastly, we can have dynamic selection of classifier for certain

type of questions. So depending upon the keywords such as "Who, What, When, Where,

Why, How", we can select the appropriate classifier during runtime. This will help to

provide more accurate results as the classifier is only trained to predict the question type

for that particular type of keyword.

69

12. References

[1] Loni B (2011) A survey of state-of-the-art methods on question classification. Delft

University of Technology, Delft, pp 1–40

[2] Mollá, Diego, and José Luis Vicedo. "Question answering in restricted domains: An

overview." Computational Linguistics 33.1 (2007): 41-61.

[3] Li, D. Roth. 2002. "Learning Question Classifiers". In Proceedings of ACL 2002.

[4] "TREC website", http://trec.nist.gov/data.html

[5] T. Joachims. "Text categorization with support vector machines: Learning with many

relevant features". In Claire N´edellec and C´eline Rouveirol, editors, Proceedings of the

European Conference on Machine Learning, pages 137–142, Berlin, 1998. Springer.

[6] "Botkit framework", https://github.com/howdyai/botkit

[7] "Spark architecture",

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-

architecture.html

[8] "Spark stack",

https://mapr.com/ebooks/spark/03-apache-spark-architecture-overview.html

[9] "Benchmarking results by Databricks",

https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-

data-science.html

[10] "Spark streaming", http://spark.apache.org/docs/latest/streaming-programming-

guide.html

70

[11] "Amazon Kinesis streams concepts",

http://docs.aws.amazon.com/streams/latest/dev/key-concepts.html

[12] "Amazon EC2 setup guide"

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

[13] "Deep learning in Natural Language Processing by Stanford",

https://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml

	Question Type Recognition Using Natural Language Input
	Recommended Citation

	tmp.1498277195.pdf.Ursc5

