San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2017

Question Type Recognition Using Natural Language Input

Aishwarya Soni
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

b Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Recommended Citation

Soni, Aishwarya, "Question Type Recognition Using Natural Language Input" (2017). Master's Projects.
542.

DOI: https://doi.org/10.31979/etd.8xd4-79bk

https://scholarworks.sjsu.edu/etd_projects/542

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.


https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/542?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

SAN JOSE STATE
UNIVERSITY

Question Type Recognition Using Natural
Language Input

A Writing Project Report
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Aishwarya Soni

May 2017



© 2017
Aishwarya Soni

ALL RIGHTS RESERVED



The designated Project Committee Approves the Project Titled

Question Type Recognition Using Natural Language Input

By

Aishwarya Soni

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2017

Dr. Thanh D. Tran (Department of Computer Science)
Dr. Robert Chun (Department of Computer Science)

Prof. James Casaletto (Department of Computer Science)



ABSTRACT

Recently, numerous specialists are concentrating on the utilization of Natural Language
Processing (NLP) systems in various domains, for example, data extraction and content
mining. One of the difficulties with these innovations is building up a precise Question
and Answering (QA) System. Question type recognition is the most significant task in a
QA system, for example, chat bots. Organization such as National Institute of Standards
(NIST) hosts a conference series called as Text REtrieval Conference (TREC) series
which keeps a competition every year to encourage and improve the technique of
information retrieval from a large corpus of text. When a user asks a question, he/she
expects a correct form of answer in reply. The undertaking of classifying a question type
is to anticipate the sort of a question which is composed in common dialect. The question
is then classified to one of the predefined question types. The objective of this project is
to build a question type recognition system using big data and machine learning
techniques. The system will comprise of a supervised learning model that will receive a
question in a natural language input and it can recognize and classify a given question
based upon its question type. Extracting important textual features and building a model
using those features is the most important task of this project. The training and testing
data has been obtained from the TREC website. Training data comprises of a corpus of
unique questions and the labels associated with it. The model is tested and evaluated
using the testing data. This project also achieves the goal of making a scalable system

using big data technologies.



ACKNOWLEDGEMENTS

| would like to thank my advisor Dr. Thanh Tran, for his continuous guidance, patience,
motivation and enthusiasm throughout this project. His guidance helped me throughout
this project, starting from topic selection and until writing my Masters project. He was
always ready to help whenever | had a question and the discussion with him gave me the
direction to how to approach the problem. The experience of working with him was very

valuable and I really learnt a lot throughout this project.

| would like to thank my committee members Dr. Robert Chun and Prof. James Casaletto
for their continuous support and valuable time to review my work and also guide me by

providing valuable feedback whenever needed.

Finally, 1 would like to thank my parents, family members and my friends for their
immense support and encouragement throughout my Masters program. This would not

have been possible without them.



Table of Contents

IO 11 oo o1 1 T o ST 8
B = T ol (o | (011 o USSR 10
KT T = (=0 1Y SR 11
3.1 Drawhacks OF the SYSTEIM: .....ccuiiiieiieeeri e 11

O e (o] o T EsTTo ST ] 111 oo IS SR 13
ST B - W OO U OO T RO STTRTPRPTPP 14
B. ATCIITECTUIE ...ttt b b sb bt e et e b e bttt b b e 15
6.1 RUlES fOr ClasSifiCatioN.........cccovveiiiiii ettt nee e 16
6.2 Challenges while developing the MOdel ..o 16
7. Implementation USING SCIKIT LEAMNM ........c.coviiiiiiiiecee e 17
7.1 Why SVM for text classifiCation?..........cc.covviiiiiiicic s 17
7.2 Data PrePrOCESSING. ... uvevttertetertetesteie ettt sttt sttt sttt b e b bt e e st bbbt nnen e 18
7.3 FEALUIE EXITACHION .....ecviiiiiiiiiiite ittt ettt st ettt sttt nee e 19
7.4 PrediCtive IMOGEIING ......cviiieiieieeieee et 25
7.5 ApPlIcation USING SIACK ........ccviiiiiiiiiie et s re et ae e e 29
7.5.1 Implementation Of the DOT...........coeiiiiiii s 29

7.6 Multiprocessing Using CherryPy WSGI SEIVEN .........covcviiiiierccie et 35
7.7 Load Testing the appliCation...........ccciiieiiiiiic i 36

8. Implementation UsiNg APACNE SPATK ..........ccoiiiiiiiiiiieicieee e 39
8.1 Overview of SPark ArChItECIUIE ......c.cov i e 39
8.2 Data PrePIOCESSING. ... . evttiteteitetesieie ettt sttt bbbttt eb e bbb e ettt st st nn e 41
8.3 FRALUIE EXIrACHION ......cuiieieiiieiiie ettt ettt sre st teneene e 41
8.4 PrediCtive IMOTEIING......c.viiiiiiieieeee et 46

9. SPArK SIrEAMING ... .cviiteeie ettt et e st e s te et esbeets e besae e b e sbeeabesbeeteesbesaeeneeseeans 47
9.1 AMAZON KINESIS SIFBAIMS .....ecuviiieeiiiitiiieiesie e siesee e ste et e e sreeae e seesteetaestesteesaentesneessensens 48
9.1.1 Amazon Kinesis Streams ArChiteCUIE ...........covviieiiie e 49

0. 1.2 PrEIEOUISITES ...ttt sttt sttt bttt b bbb n e 50
9.1.3 Create a KiNeSIS PrOUUCET .........oii ittt nne s 51

9.2 Create a Spark Streaming CONSUMEN .........cuiiiiriirieieieine ettt 53
9.2.1 Implementing Spark Consumer Using scikit-learn Classifier...........cc.cccoovoeiiniiiennnnnn. 53
9.2.2 Implementing Spark Consumer Using Spark Classifier ............ccoocevoviiiiriiniienriee 55
10. Performance IMPIrOVEMENTS .......ciiiteriiieieieiese sttt sttt 58
10.1 EC2 Performance ODSEIVALIONS ..........cc.iiiiiiiiiiee sttt ens 63
10.1.1 Performance Evaluation for Scikit lite Spark Streaming Application ........................ 63
10.1.2 Performance Evaluation for Spark Classifier Streaming Application ............cc.ccc.c.... 65



11. ConClUuSION @Nd FULUIE WOTK ....eeiiiriiee ittt ettt sttt e s sttt e s s et e e s sarreeesserreeessarreeeeins

12. References



1. Introduction

Currently, there is huge amount of information that is available on the web and the web
crawlers are required to be more insightful. Much of the time the client just needs a
particular snippet of data rather than a rundown of reports. Instead of making the client to
peruse the whole report, it is regularly wanted to give the client a brief and short answer.
The QA systems are designed to provide an accurate answer to a particular question. An

ideal QA system is the one which can answer any question in a human readable format.

The study to create an accurate QA systems began in the year 1960 where the first QA
system, BASEBALL was designed [1]. It was capable of answering domain specific
questions, which in this case was the data of baseball games played in American league
over one season. But the QA system was incapable of answering out of domain questions
and that was the limitation that needed to be improved. As the years passed by, the data
became huge on the web and there was a need for a system to retrieve the required
information out of such a huge database. Thus, the need to develop a better QA system
came into focus again. In 1999, TREC began the competition to create a better QA
system. Participants in the TREC competition needed to build a model that can retrieve

the precise answer, from a 10 GB of text corpus which comprises of English sentences.

Designing a precise question answering system has been always a challenging task. It is
different from a document retrieval system where the documents are retrieved based upon

some keywords or text matching.



The most challenging task in designing a QA system is to precisely find the intent behind
a particular question. Natural language processing techniques were exploited to build a
system which can process text in any human readable language. In order to correctly
classify a question, the system needs to understand what is the intent behind the question
asked, what are the constraints associated with it and what can be the possible answers to
that question. For example, given a question, " What two states is Washington D.C.

between?" the system needs to identify that the intent is related to some location.

This project is build on the similar concept. It comprises of using advance natural
language processing methods along with machine learning technique. Different
classification algorithms can be used to build a model which can process the textual

features extracted using natural language tool Kit.

Model is build using a supervised learning approach. In supervised learning we have the
training data along with the labels and we build a model using this data. We later on
evaluate the model using the testing data to check the accuracy on unknown sentences.
The model is then scaled using Apache Spark to handle a large stream of requests from
multiple users simultaneously. Project is build using several steps which includes data
preprocessing, feature extraction, model training, prediction and testing and evaluating

the performance which are all explained in the later sections.



2. Background

Multiple techniques were implemented since 1960, when the first question answering
system was developed. But the drawback for those systems was that they were binded to
a particular domain. During the era of 1970s and 1980s, the interest to use natural
language processing techniques got a boost and the systems were proposed based on NLP
methodologies. UC Berkley came up with a project, The Berkeley Unix Consultant
project (UC) [2]. They build the project on the domain of Unix operating system and
came up with a system that utilized the techniques such as natural language processing,
knowledge representation system and reasoning. Based upon a question, the system
generated a knowledge representation and the answer was tailored based upon the
knowledge the system generated. But due to lack of support for real-world scenarios, the
system was not considered to be used for practical purpose. Rule based systems were
proposed build on the concept of knowledge representation systems, but due to increasing
amount of data, the number of rules increased and it became very difficult to manage the

system with too many rules.

Since the start of the QA track by TREC in 1999, the focus changed from domain
specific systems to Information Retrieval (IR) systems. The most simple QA system was
based on answering factoid questions, for example, "Who was the first person to land on
the Moon?" This is a factual question which has the precise answer. The advent of IR
systems gave birth to open-domain question answering system [2]. This is the current

state of the art on which multiple automated question answering systems are build.

10



3. Related Work

Even though there are multiple papers and works that are proposed, | am extending the
work done by Xin Li and Dan Roth [3] while building the solution. They came up with a
system which was based upon the concept of open-domain answering system. The model
that they proposed was build using machine learning and natural language processing
techniques. The model was trained using the train_5500 dataset and evaluated using
TREC 10 dataset. The features such as words, pos_tags, head_chunks, named entities
were extracted and a model was fitted with those features. They achieved the accuracy of

85% with the proposed model.

3.1 Drawbacks of the system:

e Advanced Information Retrieval technique such as term frequency- inverse
document frequency (tf-idf) was not used. TF-IDF helps in recognizing the
importance of a particular word in the entire corpus of text. In this technique, the
word is assigned a weighted frequency depending upon the number of times it
appears in the entire corpus. It is the advanced text mining technique which is
important to consider as some words appear more number of times as compared
to others. According to Wikipedia, around 83% of the text based recommendation

systems uses tf-idf.

e Understanding the semantics is also one of the important feature that the current
guestion answering systems are build on. It is important to consider the semantics

of a sentence as a single word can be represented in multiple ways. For example,

11



the word "destination™ in a sentence can be replaced by the word "last stop”. The
meaning of the sentence would still remain the same. It is important to

understand the semantic nature of the sentence

Ngram helps in understanding the semantics of a sentence. Ngram takes into
consideration the sequence of words that occur continuously in a given sentence.
The value of n defines the model. For example, if n = 2, it is called a bigram
model and if n = 3, it is called as trigram. For the values of n > 3, it is generally
alluded to four grams, five grams etc. For example, if we take n = 2, the bigram
for the sentence, "What is the currency of the USA?" will be,

o Whatis

o isthe

o the currency

o currency of

o ofthe

o the USA
Ngrams are used as a feature in the text processing model. This is an important
feature to consider as the sequence of words can identify which words are more
frequently used to denote a person, or organization or location or any other entity.
This improves the learning of the model which may help in improving the

performance of classification.

12



e As there are lot many users to use a system, it was necessary to make a scalable

system. Scalability was missing in the system that was implemented.

4. Proposed Solution

The solution proposed tends to build a more accurate question recognition system. It will
incorporate the advance natural language processing techniques to create a better model.
The proposed system will address the drawbacks of the previously build system. The
system will provide a better accuracy and it will be tuned to support multiprocessing and

scalability.

The system will receive a question in an input. It will process the text by extracting

important features and finally the output will be a question type. The system will be fast,

scalable, efficient and will be capable enough to handle bulk of request.

13



5. Data

The dataset has been obtained from the TREC website [4]. The training data train_5500
consists of 5500 labeled questions. The system is evaluated using TREC 10 dataset
which consists of 500 new questions. The dataset consists of six broad categories of
questions and fifty fine categories of questions. The output will be in the format,
BROADCATEGORY:fineCategory. For example, the output of the question "Who is

Zebulon Pike?" will be ""HUM:desc'". Each question is uniquely classified to a particular

category.

The following figure gives a distribution of different question categories. The numbers in

the # column indicate the total number of questions available in the TREC 10 dataset in

that particular category.

Class = Class &
ABBREND S description < 4
abb 1 manner 2
=p S reason [}
ENTITY S1 HUMAN 65
animal 16 sroup [S
body 2 mdriadual 55
coloxr 10 atle 1
creatve o descniption 3
crency [ ITLOCATION S1
diz.med 2 cIty 18
event 2 countyv 3
food 4 mountain 3
mstrurnent 1 other S0
langs 2 =tate 7
letter 0 NUAERIC 113
othey 12 code 0
plant S count 9
product = date a7
rehizion o distance 16
sport 1 monev 3
substance 15 order 2]
symbol 0 other 12
techrzque 1 pennod 8
tern 7 percent =3
we=hicle 4 speed s
word (] temp S5
DESCRIPTIION 138 S1ze 5
defimton 123 weizht 3

Figure 1. Distribution of question categories

14




6. Architecture

The following diagram depicts the process flow for the proposed solution,

Question Feature Extraction

Y

Preprocess

Y

Corpus

h 4

Question Type B Prediction < Evaluation Model

A

Figure 2. Architecture of Proposed Solution

The entire architecture can be explained as follows,

1. Question corpus is the training data, train_5500 obtained from the TREC.

2. The corpus is preprocessed by removing some unwanted characters and the processed
corpus is then used to extract the features

3. Features such as Term Frequency- Inverse Document Frequency (TF-IDF), Named
Entity Recognition (NER), Parts Of Speech (POS) tags, Related word vectorizer (for
semantic analysis) are extracted and is given to the machine learning algorithm SVM to
build the model.

4. SVM takes all the features, fits the training data.

5. The model is evaluated using TREC_10 testing dataset

6. The model is supplied with new sentence to make a prediction of a question type

7. The output of the model is a question type from the entire question type hierarchy as

shown in Figure 1.

15



6.1 Rules for Classification

Following are the rules for labeling the data,
e If a query starts with Who or Whom: type Person.
e |f a query starts with Where: type Location.
e If a query contains Which or What, the head noun phrase determines the class, as

for What X questions.

6.2 Challenges while developing the model
e Precisely predict the k semantic classes.
e Using advanced NLP techniques to understand the semantics of a given question
rather than just extracting a key term
e Make a scalable model

e Ability to handle load

16



7. Implementation Using Scikit Learn

Scikit-learn is a machine learning library in Python which is used for data analysis and
data mining. It consists of various machine learning libraries which can be used for
classification, regression or clustering. Question type recognition is a classification
problem and so we are using a classification library which is Support Vector Machine

(SVM).

7.1 Why SVM for text classification?

During the course of the years, researchers have tried using different algorithms
combination for text classification. But Support Vector Machine (SVM) performs better
than most of the algorithms. Thorsten Joachims have mentioned a few reasons why SVM
outperforms the other algorithms [5],

e SVM can handle large feature space. There are lot many features to handle while
making a model for text classification, so there may be a chance of overfitting the
data so as to cover all the features as close as possible. Since SVM can prevent
overfitting with an appropriate regularization parameter (C), it does not have to
rely on the quantity of features, they can possibly deal with large number feature
spaces.

e There is no need of feature selection in text classification as most of the textual
features are important. So unlike other types of classification where algorithms
are used to perform feature selection, SVM does not need to do this in text

classification.

17



Text classification problem is linearly separable. SVM is the best classification
algorithm if a problem is linear separable.
Apart from C, we don't need to optimize any algorithm parameter, unlike other
algorithms. We usually perform grid search to find the best set of parameters to
use. This can be avoided in case of SVM.

Training time for SVM is faster than other classification algorithms.

7.2 Data Preprocessing

The dataset obtained from TREC had certain junk characters in the form of Greek

symbols such as A or 1. So we removed the characters other than a-Z and A-Z. Removal

of stop words was done during the training of the model itself. A stop words list was

passed as a parameter during the training step.

After removal of the junk characters, the dataset looks like as shown in Figure 3,

the Monkey ?

' scper mystem '

desc Nha

NRiidate When did

live ?

Figure 3. Sample training dataset train_5500.txt

18



7.3 Feature Extraction

Feature extraction is the most important step in any predictive modeling. The processed

dataset is imported and we use the advance natural processing techniques to extract the

features for the model. We are using Python's Natural Language Toolkit (NLTK) library

to extract most of the features. For text classification, following are features that we are

interested in,

tf-idf Vectorizer- tf-idf vectorizer helps in identifying the importance of a
particular word in a text in the entire corpus. The importance of the word is
decided by the frequency of appearance of the word in the corpus. This is done
while calculating the term frequency. But we don't want to put more importance
on the words such as "a", "the", "and", etc. After calculating the frequency of the
words, in order to precisely assign the weight, we calculate the inverse document
frequency to identify the most relevant words. The word that appears less is

assigned more importance or weight. This feature makes the classifier understand

what words to focus on while learning.

While performing tf-idf, n-grams are also taken into consideration. N-grams helps
in identifying which words are more frequently used to denote a person, or
organization or location or any other entity. So it helps in identifying the
importance of certain stop words while denoting an entity. The tf-idf score

changes accordingly and it helps in better modeling of the predictive algorithm. In

19



this project, we are using a standard tf-idf() function which is available in Python
NLTK library.

Parts Of Speech (POS) tagging - A POS tagger is software in which each word
is assigned a parts of speech depending upon the neighboring word. As we also
consider the adjacent word while tagging a particular word, n-grams are also
considered while tagging a word. POS tagging helps in predicting what can be the
next word in a series of concurrent words. It also helps as a basis of syntactic
parsing and then meaning extraction. In the project, we are using a standard POS
tagging function pos_tag() which is available in Python NLTK library. The parts
of speech can be any of the following or a combination of it as shown in the

diagram,

Noun

Figure 4. Different type of Parts of Speech

20



class TagVectorizer(Tfidfvectorizer):
def __init__(self, tags_only=False, input='content’, encoding='utf-8",
decode_error='strict’, strip_accents=None, lowercase=True,
preprocessor=None, tokenizer=None, analyzer='word',
stop_words=None, token_pattern=r"{?u)\bhwhw+ib"”,
ngram_range=(1, 1), max_df=1.9, min_df=1,
max_features=None, wvocabulary=None, binary=False,
dtype=np.int64, norm="12", use_idf=True, smooth_idf=True,
sublinear_tf=False):
super(TagVectorizer, self).__init__(

input=input, encoding=encoding, decode_error=decode_error,

strip_accents=strip_accents, lowercase=lowercase,

preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer,

stop_words=stop_words, token_pattern=token_pattern,

ngram_range=ngram_range, max_df=max_df, min_df=min_df,

max_features=max_features, vocabulary=vocabulary, binary=Fal=ze,

dtype=dtype, norm=norm, use_idf=use_idf, smooth_idf=smooth_idf,

sublinear_tf=sublinear_tf)

self.tags_only = tags_only

Figure 5. POS Tagger class

def build_analyzer(self):

preprocess = self.build_preprocessor()

stop_words = self.get_stop_words()

tokenizer = self.build_tokenizer()

tokenize = lambda doc: tokenizer(preprocess(self.decode(doc)))
get_tags = lambda doc: [t[1] for t in pos_tag(tokenize(doc))]
return lambda doc: self._word_ngrams(get_tags(doc), stop_words)

Figure 6. Extracting POS tags

21



e Named Entity Recognition (NER)- Named entity corresponds to classifying a
word in any of the categories such as Persons, Products, Organizations, Locations
etc. A NER tagger helps in classifying a word into any of the named entities.
Extracting NER tags from a text helps in identifying whether a question is related
to person, organization, or location or any of the six broad question type

categories. For this project, we are using Stanford NER tagger which internally

has functionality to extract the required named entity

class NERVectorizer(TfidfVectorizer):
def __init__(self, tags_only=True, input='content’, encoding="utf-8°,
decode_error='strict’, strip_accents=None, lowercase=True,
preprocessor=None, tokenizer=None, analyzer='word',
stop_words=None, token_pattern=r"(?u)\b\wh\w+\b",
ngram_range=(1, 1), max_df=1.9, min_df=1,
max_features=None, vocabulary=None, binary=False,
dtype=np.int64, norm="12", use_idf=True, smooth_idf=True,
sublinear_tf=False):
super(NERVectorizer, self).__init__(
input=input, encoding=encoding, decode_error=decode_error,
strip_accents=strip_accents, lowercase=lowercase,
preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer,
stop_words=stop_words, token_pattern=token_pattern,
ngram_range=ngram_range, max_df=max_df, min_df=min_df,
max_features=max_features, vocabulary=vocabulary, binary=fFalse,
dtype=dtype, norm=norm, use_idf=use_idf, smooth_idf=smooth_idf,
sublinear_tf=sublinear_tf)
self.tags_only=tags_only

self.tagger = StanfordNERTagger(config.NER_MODEL_PATH, config.NER_JAR, encoding=self.encoding)

Figure 7. NER Tagger class

def build_analyzer(self):
"e¥Return a callable that handles preprocessing and tokenization
preprocess = self.build_preprocessor()
tokenizer = self.build_tokenizer()}
tokenize lambda doc: tokenizer(preprocess(self.decode(doc)))

o

get_tags = lambda doc: [t[1] for t in self.tagger.tag(tokenize(doc))]

return lambda doc: self._word_ngrams{get_tags(doc))

Figure 8. Tokenizing and extracting NER tags

22



e Semantically Related Words- Performing semantic analysis is one of the

important steps in text classification. A single sentence can be modified and

represented in multiple ways. It is important to analyze the meaning of the

sentence no matter how it is represented. In this project, we are providing a

word list which consists a directory of most commonly used words and its

different representations. Sample directory structure is shown below,

#% | prof

% | quot

#% | religion
#% | singleBe
#% | speak

#% | speed
@&  sport

# | stand

% | state

#% | substance
#% | symbol
% | tech

%  temp

% | term
&  time

% | title

#% | unit

@ | univ

Figure 9. Directory structure of related word list

N

N

N NN ro o ro o N o N o e (o)

ra o N ro

8/2017 9:55 PM

'8/2017 8:55 PM
/2017 9:55 PM

8/2017 9:55 PM

2017 9:55 PM

/2017 9:55 PM
2017 9:55 PM

8/2017 9:55 PM
8/2017 9:55 PM

/872017 9:55 PM
/2017 8:55 PM
/2017 9:55 PM

8/2017 9:55 PM

2017 9:55 PM
/2017 9:55 PM
2017 9:55 PM

/2017 9:55 PM

8/2017 9:55 PM

File
File
File
File
File
File
File
File
File
File
File
File
File
File
File
File
File

File

4 KB
1 KB
1KB

1 KB
1 KB
1KB

1 KB
1KB
1 KB
1 KB

1 KD

1KB

1 KB

First we create a dictionary of all the related words with key as the file_name and

value as a list all the words inside that file. This process can be shown using the

following implementation,

23



def build_word_lists():
word_lists = {}
a = 'data/rel_words’
listing = listdir(a)
for wlf in listing:
f=open(path. join(a,wlf),'r")
word_lists[wlf] = [word.strip().lower() for word in f.readlines()]
return word_lists

Figure 9. Building a word list from the related words directory

Then for each tokenized word of the text, we compare the word with this dictionary to
check in which category (which is the key of the dictionary) does the tokenized word fall.
Once we find the all the keywords, we create a string that resembles all the category and
pass it as a feature. So no matter how differently a sentence is constructed, the semantics
will always be the same. This reduces the learning efforts of the classifier as it does not
have to learn and recognize each sentence in a different manner. By doing semantic
analysis, a classifier can recognize any semantically related sentence to what it learned

during training phase. This process is shown in the following implementation,

class RelatedWordVectorizer(TfidfVectorizer):
def __init__(=self, tags_only=False, input="content’', encoding="utf-8',
decode_error="strict’, strip_accents=None, lowercase=True,
preprocessor=None, tokenizer=None, analyzer='word’,
stop_words=None, token_pattern=r"”{7u)\b\whw+ib",
ngram_range=(1, 1), max_df=1.0, min_df=1,
max_features=None, wocabulary=None, binary=False,
dtype=np.int64, norm="12", use_idf=True, smooth_idf=True,
sublinear_tf=False):
super({RelatedWordVectorizer, self).__init__(
input=input, encoding=encoding, decode_error=decode_error,
strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor,
ltokenizer=tokenizer, analyzer=analyzer,
stop_words=stop_words, token_pattern=token_pattern,
ngram_range=ngram_range, max_df=max_df, min_df=min_df,
max_features=max_features, vocabulary=vocabulary, binary=False,
dtype=dtype, norm=norm, use_idf=use_idf, smooth_idf=smooth_idf,
sublinear_tf=sublinear_tf)
self.word_lists = build_word_lists()

Figure 10. Related Word Vectorizer Class

24



def build_analyzer(self):
""rReturn a callable that handles preprocessing and tokenization™""
preprocess = self.build_preprocessor()
tokenize = =elf.build_tokenizer()
return lambda doc: self._word_ngrams(self.build_rel_word_string(
tokenize(preprocess(self.decode(doc))})))

def get_rel_word(=zelf, word):
for rel, words in self.word_lists.iteritems():
if word in words:
return rel

nn

return

def build_rel word_string(self, doc):
related_words = ""
for word in doc:
rel_word = self.get_rel_word{word)
if rel_word:
related_words += rel_word +
return related_words.strip()

n n

Figure 11. Building string for related words

7.4 Predictive Modeling

After extracting all the features, we create a model using a machine learning
classification algorithm Support Vector Machine (SVM). The model is created using a
function called as pipeline(). In the pipeline() function, we give a list of transformers and
a estimator. Estimator can be any machine learning algorithm, in this case it is SVM.
Pipeline helps in reducing the necessity to call the transform() method after every
transformation. All the transformations are done when we call the fit() method. Finally
the estimator, which has the fit() method gets the final set of features that is needed to

train the model.

25



Following is the code snippet for the pipeline implementation,

def build model(self):

model = Pipeline ([
('union', FeatureUnion ([

("words', TfidfVectorizer(max df=0.25, ngram range=(1l, 2),
sublinear tf=True, max_ features=3000)),
("relword®,feature_extractor.features.RelatedWordVectorizer(max df=0.75, ngram range=(1l, %),

sublinear tf=True)),

('pos', feature_ extractor.features.TagVectorizer (max df=0.75, ngram range=(1, <),
sukzlinear tf=True)),
{"ner', feat,'.:lre_ext,ract,or.feat.'.:lres.NER\’ect,orizer trr.in_df= C-.E-,ngralrr._range=t'_, 4},

sublinear tf=True)),

{("clf', LinearSVC(}),

return model

Figure 12. Pipeline implementation

FeatureUnion() estimator function helps in concatenating the output of all the
transformations. The transformations are applied in parallel for each input data and then it
concatenates the results in the end. This final feature set is given to the estimator, which

can be any machine learning algorithm.

After all the pre-processing and the feature extraction phases, the data point includes
e Named entity for each tokenized words,
e The tf-idf vectors,
e POS tags for each word and,

e The set of related words from the bag of words for each tokenized word

26



Additionally, the n-gram parameter has been set to take values between 1 to 4 while

creating the model pipeline. This enhances the learning process for the model.

After we train the model , the model is evaluated using the TREC_10 dataset. The model

gave an accuracy of 93%.

? "
Uoesmay ) e ebestsy O
"1 "
1 X » self_data.dats # Jist of questicos
13 Errint 'K iz
14
112 y * seif data.target = list of Jabels 3
1¢ forint 'r fa )
7
14 avg_score = 1
s -
10 if losve_one_out:
121 Zoring leave_orw Suteirie
122 cv = Lesvednedut(len(y))
133 priat “c $
124 Speint s fs', len
128 Zorint “evin i2 'ovn -
12¢ eloe:
m Fariat "leave o put=ralse
128 cv = Stratified¥reld(y)
12% E3rint “tv ix 7 -
1% a an ¢ that the perce ach cla " e ra data
133 | close to) aith dusl fo
132
133
134 y dtaratis o Jaded a3ll pe Jaft eut, starting from @ Jocation %
138 Env tentn. tast _An. i
Pd <« Qtt t L ey %
‘What 1s & Flie starring Jude Law 7' "
‘What Hollywood dog died §n the arms of Jaan Marlow In 1832 7'
'What actresas hes recefved the most Ostar neednaticns 77
‘What are equity securitiss 1° “what [& pywophebis 1°
'MW ray years oo Fosslls 1ake to Form T°3 ['ENTY;other' "ENTY other' “NMiMicoont' “Wisiied' 'DESC:resdon’ “DESC:dad”
'ESCi0ef" "MMidate’ "LOCioountry” 'WUMsing' ‘DESC:0280" "MUM: Ing'
"WUNrIng' CLOCistate’ DESCigasc’ “LOCiother” "ENTY:salmsl' 'LOCiother’
'DESCidef' 'LOCiothes' "DESCimaraer” “DESCimannr® 'DESC:desc”
'DESCimannes' "HM:Ing" "MUMigr® 'MUM:data' "ENTY:creest” 'OESCidef’
'ENTY: ceapnt’ 'ENTVanteal’ “W(Miied' 'DESCigef” "OESCidaf’ 'MMicownt']
Average score; @, 538851034187
In Seving wae:  Lrain okl
<raln_ Classifier Lnstasce 31 xIQOMOMOLREE2ED
In rel bufld ssalyfzes
'lingrase are
v

1 & <\pythos WorkspaonQype Osssfication Question Yype Chsificaonimodedmadaloy

Figure 13. Evaluation results

The model is now ready for making prediction. Following code snippet shows a sample

run of the prediction,

27



268 ciassify_question_type(”What are the application deadlines 7")
269
270

Python

In [7]: %run "C:\Users\Vaibhav\Question_Type_Classification\modelimodel.py"”
['DESC:def']

In [81:

Figure 14. Sample run for making prediction

After creating the model we save the model so that we can use it for later purpose.

data = load_data("./data/train_5500.txt",coarse=False)
clf = Classifier({data)

clf.train_model ()|
clf.save_model("TrainCoarsefFalse.pkl"”)

Figure 15. Saving the model

As a part of the real life application, the trained classifier was integrated with Slack. So
instead of making prediction by taking user inputs from the console, we created a bot

application on Slack.

28



7.5 Application using Slack

Slack is an online messaging platform. It helps the teams to collaborate and communicate
at the same time. The idea behind creating a Slack bot was to create an application where
we can use our classifier. So we decided to create a bot using the botkit framework [6].
Botkit is a library that is used to create conversation bots by easing the process of
creation. Botkit has compatibility with different platforms such as Slack, Twilio,

Microsoft bot framework and Facebook.

7.5.1 Implementation of the bot

The bot was developed in the two phases,
1. Using wit.ai

2. Using the classifier by writing a custom middleware

7.5.1.1 Implementation using Wit.ai

Initially, before the classifier was developed, a simple bot was created using wit.ai. Wit
provides an online console and API's to create a smarter conversation bot. It uses NLP
techniques to make an intelligent bot. It maps the user inputs with the predefined entities
and intents and gives the output accordingly. Initially a user create a list of entities and
intents to train the wit model. For training, the user enters inputs from Slack console, and
the gquestion comes to the message folder of the wit.ai. The user validates the message by
mapping it to an appropriate intent. Then after sufficient amount of training, the model

starts predicting the intents for unknown inputs. For example, for a "food" intent, users

29



may say "Can someone order the food?" If we don't find an existing intent, or if there is

no suggested intent we can create our own intent.

For demo purpose, we created two entities, "Greeting" and "Question". We took two
questions from the CS FAQ section to determine the intent and retrieve the answers to it.
The questions focused on determining the rules for disqualifications and how to schedule
appointments with the advisor. The following images show sample screenshots of the
entities the keywords and the expressions used to train the model. The keywords help to

identify the intent and map it to the appropriate entity.

wit.ai

Heflo, aishwaryasoni1991!

- mer gy @
O CO

[ Sta e |

Figure 16. Creating sample entities on wit console

30



Greeting

User-defined entity

Search srategy @ tran keywords

m

Keywords
Keyword © Synonyms @
hefo Bro.  Dromer  Halo  Meip bhay B howdy wakep
[«
uye Geodtye han you Thames
[« B
Figure 17. Keywords for "Greeting" entity
wit.ai + des Das Eqhe oy G4
Wyt My FasiAgn . QBwn Wowwesy Hoewm baew Buew  Otern
-
-
-
-
-
-
-
-
-
" s ()2 e v me et (03
-
Figure 18. Expressions for "Greeting" entity
Question 3

User-detneg entily

Keywords
Keywors © Synonyms @
drsgual iy g disgin disqua daguaifed Ssquaiicaton
dszualthed dsgulkn notcualfed nctqualty
o
L TP o Y
seradun Ippinament apeo ApPAMIMEE ook caoung

wheawms Hheddirg
o

Figure 19. Keywords for "Question" entity

31



Expressions Filterby:

17
Text
19 what is the rule for student disqualification
14 schedule an appeintment
19 want to schedule an appeintment

1 scheudle

14 disqulfcn rules

19 scheduke

1 disglfcn

1 disqulfd

14 how to schedule an appeointment

19 disgulfcn

Figure 20. Expressions for "Question" entity

The next step was to integrate wit with the botkit framework. We used a middleware
service that connects both wit and the botkit. Now, every message that was received to
our bot was sent to wit.ai for processing. After the processing, the output from wit comes
in the form of JSON. The middleware parses through the JSON output and finds the key

"message.entities’ to get the intent behind the question.

32



7.5.1.2 Implementation using the Classifier

The aim was to build a real life application using the classifier. To integrate the classifier
with Slack, we wrote a custom middleware. So instead of going to wit.ai, the request now
goes to the classifier application. For this, it was important to create a REST based
application of our implementation. We used Flask to create a REST service. It is a
framework which is available in Python and it helps in creating web services. Figure

given below shows the implementation of our application using Flask.

from logging import DEBUG
from flask import Flask, render template, reguesat, Jsonify

from nodel i1mport model

from valtyess lmport serve

app = Flask( nane )

app. run (debug=Troe,threaded = Yroe)

Figure 21. Implementation using Flask

It looks for 'q" in the arguments of the URL which holds the question. The question is
then forwarded to the implementation where we have the classifier and after the

classification process, the output is send back to the Slack bot.

33



aishwaryasoni
What is the full form of DESC ?

/@)y biggiebot

PR A1 Question type ABB detected.

Figure 22. Sample run of the Slack bot
We can also check the console of our REST application to see the output of our question.

For example, the figure below shows how the REST service behaves when it receives any

question from the Slack bot,

v
e |
=
i
S
T

Figure 23. Output of the REST application

To interact with the REST service, we wrote a custom middleware service. This
middleware helps in managing the request from Slack and response from our REST
application. In the middleware implementation, we specified the URL where the request
from Slack should go to. This URL is the IP address and the port number where our
REST application runs. We also specify what query parameter to look for in the request,
here it is "g". The following images show the code snippets for the custom middleware

implementation,

34



var [captureTextIntent
(!callback) {
callback op
options jef

query_params ": tewt,'text':tewt}, options);

- request_opt
url: 'h

error "Tnwvalid r e recelved from server: " response.statusCode
3
J
callback({error, body);

Figure 24. Code for the middleware implementation

7.6 Multiprocessing Using CherryPy WSGI server

The application created using Flask was a sequential application. In order to enable
multiprocessing, we used a web framework for Python called as CherryPy. It is Web
Server Gateway Interface (WSGI) framework which provides a multi-threaded web
server where we can deploy any application. The main advantage of using CherryPy is
that it is a very easy to use framework with only few customization needed to run any
application. When the REST application is deployed to CherryPy, the application runs in
a thread. It helps in utilizing all the cores of the CPU's and thereby handling multiple
requests. The following code snippet shows the implementation using CherryPy WSGI
server. As shown, the "app" in the import statement is the name of the Flask application

that we need to deploy on CherryPy.

35



from localhost import app

2

= import cherrvpy

5 EHif name _ main

- — S _ S

7 # Mount  the application

8 cherrypy.tree.graft(app, "/ ")

10 # Unsubscribe the default server
11 cherrypy.server.unsubscribe ()

12

13 # Instantiate a new server object
14 server = cherrypy¥._ cpsServer.Server()
16 # Configure the server object

17 server.socket_host = "127.0.0.1"
18 server.socket_port = 2070

15 server.thread pool = 100

For  S55L  Support

server.ssl module 'pyopensslt

'ssl/certificate.crt’
"gsl/private.key"’

"ssl/bundle.crt’

server.ssl certificate

server.ssl_private_ key
server.ssl_ certificate_ chain

Mo L R
M Ak A e Ak
|

#  Subscribe this server

server.subscribe ()

(ST

# Start the server engine (Option 1 *and* - 2)

cherrypy.engine.start ()
cherrypy.engine.block()

G L L L G L RS ORS ORS RS RS RS ORI RS RS ORI

o L R

Figure 25. CherryPy implementation

7.7 Load Testing the application

To test how much our application can take the load, we used locust.io. It is a tool to load

test any python application. Following is the implementation snippet for our application,

36



from locust import HttplLocust, TaskSet

def gtype classify(l):

l.client.get{"/gtyvpe?g=How do the MNazis justify the killings of jews i

def index(1l):
l.client.gec{"/™}

class UserBehavior (TaskSet):
tasks = {qtype_classify: 1}

# def on start(self):

# index (self)

class WebsiteUser (HtotplLocust) @
task set = UserBehavior
min wait
max_wait

(==

Figure 26. Locust file for load testing

The name of our locust file is server.py. To run the file we use the following command,

" locust -f testing/server.py --host=127.0.0.1:5000 "

The host is the URL where the locust server is running. In the code, we have set the

waiting time for a request to come as 0.

To perform load testing, we simulate the requests from 100 users. The number of users
per second (hatch rate) keep on increasing from 1 till it reaches 100. Figure shown below

shows the initial console of locust.io where can enter our values for users and the hatch

rate,

37



Start new Locust swarm

Number of users to simulate
100

Hatch rate

100

Start swarming

Figure Sample run of load test

After swarming the requests, we check how the application behaves. As shown in the
figure below, the application dies after taking 26 simultaneous requests. It doesn't process

any request further than 26.

&) LOCUST wees 205 o [E)

Ogtype?
rHOWR2000 % 20N 20NEZS %20stTy 520t he SN NgS 200 0Eens %2005 0Ne N2 0rvioca st

GET 48 56X 85 4000

Figure Load testing results

As we can see, the performance was still a concern. It was necessary to build an
application that can handle huge load and achieves the goal of scalability. To solve the

problem of scalability and performance we moved our focus to Apache Spark.

38



8. Implementation Using Apache Spark
Spark is a framework which is used to process huge amount of data in a fast and very
efficient manner. It was developed at Berkley in 2009 and it soon became a top-level
project at Apache. Following are some of the advantages of using Apache Spark,
e Fast and reliable in memory processing (100x faster than traditional MapReduce)
e Fault tolerant capability as Spark uses an immutable data structure called as RDD
e It provides MLIib as one of the libraries using which we can perform any machine
learning techniques

e |t provides the ability to perform real-time streaming using Spark Streaming

8.1 Overview of Spark Architecture

The following figure shows the architecture of Apache Spark [7],

Worker

[ Executor ]

/ Worker i
[ Executor ]

Worker

fremmm—

\. J

Driver

Cluster Manager

SparkContext

Figure Spark Architecture

39



Driver is the master node that controls the execution and distribution of tasks across all
worker nodes. SparkContext is used to create an instance of Spark application. Using that
instance we perform any functions, like creating RDDs, using broadcast variables,
creating jobs and accessing spark services until the instance is stopped. Cluster manager
can be Mesos, Yarn or Hadoop itself. We can also run Spark in a standalone mode. When
the task is ready for execution, driver distributes the task to all the worker nodes. Each
worker has an executor which executes the assigned task. After the completion of the
task, the result is sent back to the driver daemon. The figure below shows the stack that

spark supports on its architecture [8],

DB Alpha/Pre-Alpha
Approximate
- SQL
Spark Spark MLib
SQL Streaming

Spark Core Engine

Figure Spark Stack

40



8.2 Data Preprocessing

We are using the same pre-processed data obtained from the scikit-learn classification.

iHtran_550084 13 |
i DESCimanner NMow did serfdom develcp in and then lesve Ruasis 7
ENTYicremat What films feazured the character Fopeye Doyle ?
DESCimanner Howm can I find a l1ist of celebrities ' real nawmes 2

INTIY:animal Whac fowl grabs the spoclight after the Chinese Yeaxy of the Monkey ?
ASBRtexp What is the full form of .con ¥

HIM:1ad4 What contesgeible scoundrel stale the cork frem my lusieh D

HiM:gr What Teanm cid bassball *» 3¢, louis Srowuns beccss 7

HOM:=titlie Nhat 1w the © st profession 7

e def What are liver enzymes 7

HOM:1nd Name the scar-faced bounty bunter of The Tld West .

HiM:date When was Czzy Osbourne born 7=

DESCrreason RWhy do hReavier agbjects travel downkill faster ?

HOM:1n4 Wno was The Fride of the Yankees ?

nd Who killed Oandhns 7

st What ix considered the contlisst disaster Ths Anpurancs iasustsy has ever faced )
tate Nhat apraviing U.S. state Doasts the =0st alrposts 7

LESC:desc Nhat did the only tepealed smendoent to the U.3, Constitution deal with =
NTM:count Mov many Jews were executed in conoentretion canmps during WNII 2

DEJCidef What 12 '' Nine Inch Rails '* 2
DESCidef What 1s an annotated bibliography ?

NUMidace What 12 the date of Boxing Day ?

ENTY:other What arcticlea of clothing are tokena in Morapely ?
HOM:ind Nams 1) famous martyss .

dase Nhat 's the Olympic nates ?

> < desc Nhat Ls the origin of the naze ' Scarlett '

f ENTY:letter Mhat 's the second-mcst-used vowel In English 7
HUM:ind Who was the inventor of silly putty 7
LOC:other What i1s the highest wa £all in the United States 7
ENTYi1other ¥axe 2 gelf course in Myrcle Beach .
LOC:state Which Twe states enclose Ch
ASBR!exp What does cthe abbreviacion X
ENTY:ccher What does & sperasloger c2ll
NN :count Bov nany points make up & pesfect fivepin bowling ascote 7
HOM:gr Which cospany that msnufeactuses video-game Nasdwasze sells the '' supes system '* 3
NUM:count Mow many Commanity Chest cazds are there in Monopoly 7
DESCidesc Nhat do Mormoos believe 7
NR{igate When did the neanderthal man live 7

apeake Bay 7
card fox ?
?

Figure 3. Sample training dataset train_5500.txt

8.3 Feature Extraction

Spark doesn't have direct support for nltk libraries. As Spark uses RDD, every feature
extraction process is an output of a transformation. So we created a custom transformer
for one of the feature extraction process which is POS tagging. Figure given below shows

the workflow for the feature extraction process,

41



Figure Feature Extraction process for Spark Classifier

To initiate a Spark job, we first create its instance using SparkContext. We read the
processed file which is stored in our local system. After reading the file, we get an RDD
which holds the entire text file. To optimize the training time, we convert the RDD to a
Spark dataframe using toDF() method. Databricks has done some benchmark testing to
compare the performance of RDD and a dataframe [9]. The results clearly show that
Dataframe is better in performance as compared to RDD. The following figure shows the

performance results of the same,

Spark Python DF
Spark Scala DF
ROD Python I
RDD Scala _

0 2 4 6 8 10

Performance of aggregating 10 million int pairs (secs)

Figure Databricks performance results for RDD v/s Dataframe

The graph compares the aggregation results of 10M integer pairs on a single node during
runtime. The difference between performance of Python and Scala dataframe operation is
quite less as both generate JVM bytecode after execution and so nothing much to

compare of. In case of RDD operations, the dataframe performance results beat both the

42



language variants, the python implementation of RDD by a factor of 5 and Scala

implementation of RDD by 2 [9].

1. Tokenization:
After reading the file into RDD, we convert it into a dataframe. Then we tokenize the
data and pass it to the next step, POS tagging. The output of the tokenizer is saved in

column "words".

if __name__ == "__main__":
conf = SparkConf()
conf.setAppName( ' spark-nltk')
sc = SparkContext(conf=conf}
sqlContext = SQLContext({sc)
m=sc.textFile("Question_Type_Classification_testing purpose/data/train_550@.txt" )\
.map({lambda s: s.split(” ",1))
df= m.toDF()
df.show()
df.select{'_1").show()
tokenizer = Tokenizer(inputCol="_2", outputCol="words")
tok= tokenizer.transform(df)

pos = POSWordTagger(inputCol="words", outputCol="pos")

after_pos=pos.transform{tok)

Figure Tokenization and POS tagging

2. POS tagging:
Output of tokenizer, "words" is given as input column to the custom transformer. As

Spark doesn't support the nltk libraries directly, we wrote a custom transformer.

43



class POSWordTagger(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable):

@keyword_only

def __init__(self, inputCol=None, outputCol=None, stopwords=None):
super(POSWordTagger, self).__init__()
self.stopwords = Param(self, "stopwords"”, "")
self._setDefault(stopwords=set(})
kwargs = self.__init__._input_kwargs
self.setParams(#+kwargs)

@keyword_only

def setParams(self, inputCol=None, outputCol=None, stopwords=None):
kwargs = self.setParams._input_kwargs
return self._set(##kwargs)

def setStopwords(self, value):
self._paramMap[self.stopwords] = value
return self

Figure Custom transformer POSWordTagger

def getStopwords(self):
return self.getOrDefault{self.stopwords)

def _transform{=self, dataset):
def f(s):
pos_tags = nltk.pos_tag(s)
return reduce(lambda x,y:x+y,pos_tags)
t = ArrayType(StringType()})
out_col = self.getOutputCol()

in_col = dataset[self.getInputCol(}]
return dataset.withColumn{out_col, udf{f, t)(in_col})

Figure Transform function implementation

The transform method uses the pos_tags() method from the nltk library to extract the

POS tag for each token. The output is saved in the column "pos "

pos = POSWordTagger(inputCol="words", outputCol="pos")
after_pos=pos. transform(tok)

Figure Calling POSWordTagger

44



3. Tf-idf vectorizer:
Output of pos tagger, "pos" is given as input column to the custom transformer.
The output of POS tagger transformer is used to extract the tf-idf vectors. The output of

tf-idf vectorizer is saved in the column "raw_features".

hashingTF = HashingTF(inputCol="pos", outputCol="raw_features")
htf=hashingTF.transform{after_pos)

idf = IDF(inputCol="raw_features", outputCol="features")
idfModel = idf.fit(htf)
rescaledData = idfModel. transform(htf)

Figure Extracting tf-idf vectors

4. Indexing:

Spark doesn't takes string values as labels. So we convert each label to a numeric value
by using the StringIndexer() method. The output of the indexer consist of numeric values
for each label. The transformed indexer is saved for future use as we need to retrieve the

original label back. The output of the indexer is saved in the column "idxlabel"

indexer = StringIndexer(inputCol='_1", outputCol="idxlabel").fit(df)
indexer.save("saved_model/indexes")

idx=indexer.transform(htf)

Figure Extracting tf-idf vectors

45



8.4 Predictive Modeling

After we extract all the features, we build our model using decision tree classifier. The

input to the classifier is the final set of features obtained after tf-idf transformation and

the label column has been given the output of the indexer

Ir = DecisionTreeClassifier(labelCol="idxlabel" ,maxDepth=7).setFeaturesCol("features”)

model=1r. fit(idx)

model. save("saved_model/dt-model”)

Figure Extracting tf-idf vectors

After building the model, when we evaluate the model using the test dataset, we get an

accuracy of 83%.

122 evaluator = MulticlassClassificationEvaluator(
123 labelCol="idx1label”, predictionCol="prediction”, metricName="accuracy")
124 accuracy = evaluator.evaluate(prediction)
125 print "accuracy is : \n\n", accuracy
126
127
Python C:\Spark_2. 1\bin\Question_Tyy

In [71: %run "C:/Spark_2.1/bin/Question_Type_Classification_testing_purpose/spark_clf_test.py"”
accuracy is :

.83

In [8]:

Figure Spark Model Evaluation

The model is saved to disk to use it for later purpose (Spark Streaming).

46



9. Spark Streaming

The aim was to create a scalable application with notable performance gain. So in order
to simulate a real-world scenario, we created a Spark streaming application. We used the
Spark Streaming API that is available in the Spark stack to create a streaming application.

The figure given below shows the architecture of Spark Streaming [10],

Kafka E
Flume Qﬁz ' HDES
HDFS/S3 Spark _Databases _
Kinesis Streaming - —
Twitter S

Figure Spark Streaming architecture

Input sources can be any streaming service (producer), which will generate the data and
submit it to the Spark streaming application which will act as a consumer. After the data
has been ingested and the required operation has been performed on the data, the output
can be written or saved to any storage services. We can also create a dashboard which

can show the impact and behavior of all the processing in the form of graphs.

For our application, we are using Amazon Kinesis as the producer. So now, instead of

providing some sample questions for prediction, we give a stream of questions to the

classifier.

47



9.1 Amazon Kinesis Streams

Amazon Kinesis streams is one of the many services that is provided by Amazon Web
Services (AWS). It is used to create streaming data. As the data is generated continuously
from multiple sources, the size of data to be processed per hour has reached upto TBs.
Amazon Kinesis helps to collect such huge data and provide ways to process and store it

at very low cost.

Advantages of using Amazon Kinesis are,

1. Real-time streaming- We can collect the data as and when it is generated and we can
perform any analysis or computation in real time.

2. Parallel processing- We can process the same Kinesis stream by running multiple
Kinesis applications concurrently.

3. Scalability- Kinesis streams can scale to handle Megabytes or even Terabytes of data
per hour. We can adjust the throughput required for our application dynamically.

4. Low processing cost- It is cheap to use Amazon Kinesis streams with the rates being
$0.015 per hour.

5. Reliability- It replicates the data across three Amazon Region facilities and it can store

the data for seven days, thereby avoiding any information loss due to failure.

48



9.1.1 Amazon Kinesis Streams Architecture

The following figure shows the architecture of Kinesis Streams [11],

Tragmaonal

‘ du
=

AWS 10T

Producers Amazon Kinesis Stream

Ama

EC2 Instance

EC2 Ingtonce

EC2 instance

Consumers

Figure High level architecture of Kinesis Streams

1. Producers- Any source that can generate data

EC2 instance

M\

)

Amezon 53
m-

aAmazon Elastic
MapRecuce

DynamaDB

Amazon Redshift

2. Kinesis Application- EC2 running application that acts as a consumer for the streams

of data. Output of the consumer can be an input to another Kinesis application running on

EC2 instance or we can store the output on any storage services.

3. Shards- It distinctly identifies data records in a stream. A stream consists of atleast one

shard. We can dynamically increase or decrease the number of shards with an increase or

decrease in data rate.

4. Partition- Data records are segregated into shards using a partition key. When data is

regrouped, this key helps in identifying that the particular record belongs to which shard.

5. Amazon Kinesis Client Library (KCL)- Applications are build using KCL and are used

to process the data fetched from the streams.

49



9.1.2 Prerequisites

In order to use AWS services, we need to do following steps,

1. Create a login account.

2. Install the AWS CLI tool. We can use the following command to install the CLI,

$ pip install awscli

$ sudo pip install --upgrade awscli

3. Set up our AWS credentials in our environment. It includes two variables to set,
aws_access_key id = YOUR_KEY

aws_secret_access_key = YOUR_SECRET

We use to following command to setup the environment,

$ aws configure

The credentials are saved in a "credentials” file which is located in the directory where
we have installed the AWS. Now our environment is ready to communicate with any
AWS services.

4. Install boto3- It is the AWS SDK build for Python. It provides a set of libraries that
we can use to communicate with AWS services. Here we will use boto3 to create a
Kinesis Client. We use the following command to install boto3,

$ pip install boto3

5. Choose a region - The region name is default which is us-west-2. We can change the

region name by changing the value of the region field in the aws config file.

The next step is to create a Kinesis Producer which will create a Kinesis stream on AWS.

The stream will comprise of different questions which are read from a text file.

50



9.1.3 Create a Kinesis Producer

We create a Kinesis client to create and submit out streams on AWS. As a data source,
we are using a dataset which comprises of 200 unique questions. We create a stream with
the name as "questions™ and the partition key as "qtypes"”. The stream need an input in
the JSON format and so we use the json.dumps() method while putting the records using

kinesis.put_record(). Default shard count is 1.

As shown in the figure below, the Kinesis stream client will continuously submit the

questions to the stream using an infinite loop,

import boto3 as b

import json

cli=b.client( 'kinesis’)

st=cll1.create_stream(
StreamName='guestions’,
ShardCount=1)

with open("data/test.txt”, "r+") as f:
gfile= f.readlines()

kinesis=b.client({"kinesis")
while 1==1:
for item in gfile:
kinesis.put_record{StreamName="guestions", Data=json.dumps(item), PartitionKey="gqtypes")

Figure Kinesis Producer

In the first figure given below we can see the "questions” stream that is created on AWS.
In the second figure, we can monitor the behavior of the system when we start putting the
records on the stream. These graphs are generated by the CloudWatch monitoring system

that is built-in in AWS.

51



Resource Groups ~

1] Services

Amazon Kinesis + Streams

| Svearma AD TASEN M TR o 180 bgerrce of Al fecey 38 Aas

Tonsl shasds i use | Tolsl shasds mnanng 4 0

Y

AnetyLs

Sowan narm *  Nurbe

rof Shards

~
)

€ Vowrg !t of t heeny »
« s -

Q@ Freosacx

Q@ Eagun

Figure Stream generated on AWS

Inceming Diata (record count)

T
23:45

W

T T T
0 23:30

T
23:45

Figure Monitoring system on AWS Kinesis Stream

52

Put Record (bytes)

55.1-

Put Record (success count)

(]
[=]
1

=
&n
I

0.0
00—

[
3]
(5]
&

T
22:45 23.00 2315



9.2 Create a Spark Streaming Consumer

In order to fetch the data produced by Kinesis, we wrote a Spark streaming consumer
application. We wanted to observe how the two classifiers behave in real-time streaming.
So we built two streaming applications in which we used the scikit-learn classifier and

the spark classifier.

We use the PySpark library to implement any Spark job in Python. To initiate a Spark
job, we use the SparkContext() object which is imported from the PySpark library. It is
the starting point for any Spark application. To initiate spark streaming, we create a

StreamingContext() object which is imported from the spark streaming library.

9.2.1 Implementing Spark Consumer Using scikit-learn Classifier

We use the concept of broadcast variables in both the application. We load the stored
classifier from the disk and give it to the broadcast variable. When we do sc.broadcast(),
we broadcast the classifier to all the worker nodes. So when the stream of questions

comes, we have the classifier available on all the workers.

The figure given below gives the implementation snippet for the spark consumer
application using scikit learn classifier. As shown in the figure, we use the Kinesis Utils
library to consume the Kinesis streams. The parameter InitialPositionStream.LATEST
indicates that we are interested in the latest streams. Shard count is set to 1 as we are
using only 1 shard. We deploy our classifier when we do broadcastVar.value and then we

call the predict() method of the classifier for each question.

53



def stream_rdd(rdd):
if not rdd.isEmpty():
return rdd.foreach(classify)

def classifyiele):
if ele!="":
print "Current guestion is\n”
print ele
gtype=broadcastVar. value predict([elel)
print gtype
return gtype

broadcastVar = "

if __name__ == "__main__":

sc = SparkContext (appHame="FythonStreamingTest™)

ssc = StreamingContext(sc, 1)

dstream = Kinesisitils createStream(
ssc, "PythenStreamingTest”™, “guestiens™, “https://kinesis. us-west-2_ amazonaws.com™
InitialPositionInStream. LATEST, 1)

classifier = joblib. load(path.join(configuration MODEL_DIR,"TrainCoarsefalse. pkl”

broadcastVar = sc broadcast(classifier)

dstream.foreachRDD({stream_rdd)

ssc_start()

gzc_awaitTermination()

‘us-west-27 %

E]

Figure Spark consumer application using scikit-learn classifier

We use following command to run the spark job.

"spark-submit --driver-memory 5g Question_Type_Classification/spark-stream.py"

As we are running spark on a local machine, we give the driver memory a value (here 5g)
to indicate what amount of RAM is to be given to the executors on each worker node. We
cannot set the executor memory when we run spark on a local machine. The reason being
that, when we run spark on a local machine, the worker resides insides the JVM process
of the driver. The default memory is set to 512MB. So we have to reset it to a higher
value depending upon available system configuration. When we run Spark in a cluster
mode, then we can set the executor memory to some value as we would have a different

master (other than the driver daemon) which can be Mesos or Yarn or Hadoop itself.

54



The output of the spark streaming is given below,

Current guestion is

"In what city is the famed 5t. Mark ‘s Square ?-n"

gquestion type is
[*HUH:di=t" 1]
Current guestion is

"During which seaszon do most thunderstorms occur 75N

gquestion type is
[*HUM:di=t" ]

Current guestion is

"hat county is Modesto . California in #~n'"

gquestion type is

['LOC:city’ ]

Figure Spark streaming output

9.2.2 Implementing Spark Consumer Using Spark Classifier

In this, we broadcast the two models from the driver program. First is the indexer that we
saved in the previous spark program while training the classifier as we have to retrieve
the original labels from the indexed one and second is the classifier itself. For each

stream of questions, we extract the features and give it to the classifier for prediction.

The following snippets show the implementation of the spark consumer using the spark

classifier,

55



——n

if __name__ __main__":
sc = SparkContext(appName="PythonStreamingTest")
ssc = StreamingContext(sc, 28)
sqlContext = SQLContext(sc)
indexer_var= sc.broadcast{StringIndexerModel.load("saved_model/indexes"))
clf_var=sc.broadcast(dt. load({"saved_model/dt-model”)})

appName, streamMame, endpointUrl, regionMame = sys.argv[1:]

dstream = KinesisUtils.createStream(
ssc, “PythonStreamingTest”, “questions", "https://kinesis.us-west-2.amazonaws.com”,\
"us-west-2", InitialPositionInStream.LATEST, 1)

dstream. foreachRDD(stream_rdd)
gsc.start()
ssc.awaltTermination()

Figure Spark driver program

def stream_rdd{rdd):

if mot rdd.isEmpty():
row = Row("_2")
df= rdd.map(row). toDF{)
primt "Current question is%m”
primt df.to5tring()
tokens=tokenize(df)
pos=pos_tagger(tokens)
tf=term_freq(pos)
features=label_indexing(tf)
label=predict(features)
pred_label=predicted_label=s{label}
primt “question type is‘\n"”, pred_label
return pred_label

Figure stream_rdd() function implementation

56



def tokenize(df):
tokenizer = Tokenizer(inputCol="_2", outputCol="wordsz")
return tokenizer.transform(df)

def pos_taggzer(tok_transform):
pos = POSWordTagger(inputCol="words", outputCol="pos")
return pos.transform{tok_transform)

def term_freq{pos_transform) 5
hashingTF = HashingTF({inputCol="pos", outputCol="raw_features”)
return hashingTF. transform{pos_transform)

def label_indexing(tf_transform):
indexer=indexer_var.value
return indexer.transform(tf_transform)

def predict(features):
model = clf_war.value
return model. transform{features)

def predicted_labels(prediction):
indexer= indexer_var.value
labelConverter = IndexToString(inputCol="prediction”, outputCol="predicted_label”,
labels=indexer.labels)
return labelConverter.transform(prediction)

Figure Feature extraction and prediction

Current guestion is

"Where can I buy a hat like the kind Jay Kay from Jamiroguai wears 7wn"

question type is
[’NUM:dist’]
Current guestion is

"During which szeaszon do most thunderstorms occur Twn''

lquestion type is
[*HUM:desc’ ]
Current guestion

"Winnie the Pooh is what kind of animal ?-n"

question type is
[’NUM:date’ ]
Current guestion is

“"Where iz the volcano Olympusz Mons located ?wn''

gquestion type is
['LOG:other” ]
Current guestion is

"How long does a dog sleep ?~n"

question type is

[*ENIY:animal’ 1

Figure Output of the spark consumer

57



10. Performance Improvements

Due to resource crunch on a local machine, there is not much we can do to improve the
performance. The real power of spark can only be achieved if we have the computation
power. So to improve the performance of the application, we deployed our application on
AWS EC2 instances. EC2 provides us instances with the computing resources which we

can choose according to our needs.

The advantages of using EC2 are,

1. Easy scalability- We can increase or decrease computing resources at will and in few
minutes. We can run thousands of instances without worrying about how to manage all
the instance as AWS does it for us. Application can scale up or down at runtime
depending upon the need.

2. User Control- Users have a full control on each instance. A user can start, stop or
restart any instance when required. User has the access to API's or console to manage the
instances.

3. Reliable- According to AWS, its cloud is 99.95% reliable. So even if any instance gets
failed or crashed due to some reason, another instance is brought up automatically
without the customer to realize it and facing any downtime.

4. Secure- AWS allows us to create Virtual Private Cloud (VPC) so that we can have a
personalized access to our instances.

5. Inexpensive- The cost of an instance is quite cheap. It works on the principle of pay

per use.

58



AWS provides different types of instances which can be chosen as per the use case. For
our use case, we are using instances of the M3 family. It provides us with good
computation resources that is perfect for most of the applications. We are using a 3 node
cluster and each node is an m3.xlarge instance. Each instance has 4 vCPU, 15 GB of

RAM and 2x40 GB of SSD storage.

When we run the scikit learn classifier on a local machine, the performance was not
great. The reason being that, it has to fetch the NER jar for each token for each stream of
question , tag each word and bring back the results. This degraded the performance of the
application. So we thought to create a new classifier with all the features except NER
tagging. We call this classifier as "scikit lite" classifier. So we had tf-idf vectors, POS
tagging and semantic analysis as the features for this new classifier. The net result was
increase in performance but the accuracy of the scikit lite classifier was only 68%. When
we run both the applications individually on the spark framework we can notably see the

performance change.

To evaluate the performance, we compare the throughput of both the classifiers at
different window size. The window size will signify how much seconds the spark
application will wait to take the next batch of input records. The window size can be set
to any value, but to test the performance on the local machine we took two window sizes,
1 and 15. We compared the results of 8 batches of each classifier application for each

window size.

59



Completed Batches {last 42 out of 42)

Batch Time put Size Scheduling Delay " Processing Time Totat Detay " Owtpit Ops: SucceedediTotal
DOTTOACH 200528 S vens 21 me 153 21 e 1 S —
POTO00 200035 14 events tame 23 20 [R— -~ Pi—)
XTI 12 events Ab i s TS e [, | P —
L 14 oventy 7 e M3 £ 1 st 40—
" 16 eventy 7 me L 17 mn —— | ———.
170408 20002 17 events 5 mn w3 17 mn [— | S—

Figure Sample output of each completed batches

The following graphs show us the performance results for the fully loaded classifier (old

classifier with all the features) and the scikit lite classifier,

Streaming Statistics
[unmng hatcres of 1 secand Mor 23 minutes 14 seconds unce 20170404 20:35:64 (33 compieied baiches 5§01 recorcs) |
Timelines (Last 1350 batches, 1357 active, 33 completad) Histogeams
i | dhatcty
W
Teperye gt -t -— [———- .}
* Input Rate 0=
Receavers 1/ actiee TR O P W0 400 &Y 80T 1O 1.200 snant
Ang. 1613 evenisvec 4 L i i
mepppepe et ——r— pe————

2009 01 205509

Figure Old classifier stream performance with window size 1:

Streaming Statistics

|Runrmg hatrnes of 4 second or 2 minutes 7 saconds snce 201704/1% 15:28:08 (51 compieted batches. 838 recands)

Timefines (Last 127 batches, 76 active, §1 completed) Histograms
eventsat D 20 & 0 8 100 120 othatches
&[0 100+
v[npuﬂ,“g 300 I
Recewvers 111 pctve 200 00
Avg 1038 eventsset 1 00
10 I
152608 8|

Figure New classifier stream performance with window size 1:

60



As observed from the above graphs, the time taken to process the records is less as
compared to the old classifier. Total number of records processed is also high in the new
classifier. When we compare the throughput of 8 batches of each classifier application,
the processing performance for the old classifier is 0.53 records/second and for the new

classifier we get 7.48 records/second.

When we change the window size to 15, we get the following graphs,

Streaming Statistics

N0 D3l et OF 15 aaconds T 1 howt 2 minites 3T seconds soce 20170410 00:00:08 |8 compinad Datrhes 1608 1200105 |

Timelines (L35t 251 basches, 281 2ctive, 3 compieted) Hiztopnams

]
. \a | v A
W W -n;,.'_-‘.‘ i T WO y ¥ o S b
] |

Figure Old classifier stream performance with window size 15:

Streaming Statistics

0f 15 secands 00 £ mnctes 4 seconds wrca 201TRANE 1514841 (12 completed 2aknes 2645 recor

Timetnes (Last 28 batchas. 13 active, 12 completed) Hissogramsy

I8

Figure New classifier stream performance with window size 15:

61



As observed from the above graphs, the time taken to process the records is less as
compared to the old classifier. Total number of records processed is also high in the new
classifier. When we compare the throughput for 8 batches of each classifier application,
the processing performance for the old classifier is 0.42 records/second and for the new
classifier we get 7.95 records/second. So, for window size 15, the performance for old
classifier degraded but there was a slight improvement in performance for the new

classifier. We summarize the observations in the following table,

Observations Old classifier application | New classifier application
Accuracy (%) 93 68

Best Performance 0.53 7.95

Overall Performance Bad Good

Best window size 1 15

Table 1. Observation table for old v/s new classifier application

From the above table, it is clear that the new classifier performs better than the old
classifier. As the goal of the use case was to increase the performance of the application,
we chose the new classifier, i.e. the scikit lite classifier to deploy on the AWS EC2
instances. So we deploy our new classifier and the classifier written using spark MLIib on

the 3 node cluster to observe and compare the performance results on different loads.

62



10.1 EC2 Performance Observations

We deployed the two applications on the AWS EC2 cluster to evaluate the performance
and scalability. In order to execute our application, we setup the worker nodes with all
the dependencies that was needed to run the application as per the guidelines on AWS

[12].

To evaluate the performance we tested our application by giving low, medium and high
load. We also changed the window size which varies to 1, 5, 10, 15 to find the optimum
performance. After testing the application on various parameters, we drew the
performance graphs using Tableau. The graph has been divided into two sections, first
one is average number of records processed per sec and second section is the average
input size at different window size. Records processed per sec for each window is
obtained by taking the average number of records obtained in 10 batches and average

processing time for each batch.

10.1.1 Performance Evaluation for Scikit lite Spark Streaming Application
To begin with, we first evaluated how our scikit lite spark streaming application
performed on EC2 cluster and what are the notable observations. The following graph

shows the performance results on EC2 cluster,

63



CErD CTED

Window

Figure EC2 performance results for scikit lite spark application

As observed from above graph, for low and high load the application performs better
as the load increases. For medium load, at window 10, we get the maximum records
processed as compared to other load setting and window size. After that point, the
record processing decreases. Also, that is the best point where we get maximum
record processing. The conclusion derived from above observations was in order to
achieve the best performance, we need to set window size to 10 and load should be

medium.

64



10.1.2 Performance Evaluation for Spark Classifier Streaming Application
We evaluated or spark classifier streaming application on similar parameters on the EC2

cluster. The following graph shows the performance results on EC2 cluster,

Window Windaw

Figure EC2 performance results for spark classifier streaming application

For the above spark application we observed that it behaves better as the load increases.
There is no definite good point to set to achieve optimum performance. The window size
and load can be set according to the requirement of the use case. The trade off criteria can
given as,

window size « delay in response.

More the window size to get the performance, more is the response time for the request.
For the current scenario, low load and window size 15 seems to be a sweet spot as we get

more throughput then any point at the graph.

65



The optimum points obtained from the performance analysis of both the applications can

be summarized in the following,

Observations

Scikit lite classifier application

Spark classifier application

Accuracy (%) 68 83
Best Performance 309.3 402.6
Window size 10 15
Load Medium Low

Table 2. Observation table for scikit lite v/s spark classifier application

66




11. Conclusion and Future Work

In this project, we created an application that would classify any question to its question
type. During the project, we created three applications which includes the full loaded
classifier, scikit lite classifier and the spark classifier. We performed some performance
testing on local machine which didn't helped much. So we deployed the lite classifier
application and the spark classifier application on AWS EC2 cluster. We tested our

application on different parameters and came up with a set of observations.

In conclusion of the observations we can say that,

1. Spark classifier application performs better than the scikit lite classifier
application.

2. We get less latency (delay in response) in the scikit lite classifier application as
the window size is less than the spark classifier application.

3. If the focus is to get more input records to process in short period of time and
accuracy is not an issue, then we can go ahead with the scikit lite classifier
application. But this case is very unlikely as many applications will chose the first
option as they are getting good accuracy and better throughput. Latency can be

compromised for better results.

Finally while doing the project, we also observed that by enhancing the model with the
semantic features improves the classification accuracy. Also, "What" type of questions
are very difficult to classify, for example, consider this question “What is the PH
Scale?”. This question can be classified as a numeric value or a definition. So proper

modeling is required to classify "What" type of questions.

67



In accuracy, scikit learn beats spark as scikit learn is more tuned to perform classification
and is more matured then spark. In Performance testing, the spark classifier performs
better on every level (apart from latency) as compared to scikit learn classifier. Selecting
the performance v/s accuracy tradeoff depends totally upon the requirement of the

application.

In future work, we can say that the current work can be extended in multiple ways. We
can apply some deep semantic techniques for semantic analysis. Stanford is currently
working on how can we apply deep learning in natural language processing [13]. We can
use some artificial intelligence techniques that enables learning for new questions and
question types while performing classification. We can assign multiple labels to a single
question to diversify the classification categories. In this project, we have the dataset that
assumes unique label for each question. This may lead to some misclassification of
certain types of questions, especially in "What" type of questions. By having multiple
possible labels for a question, we can improve the accuracy of the model. We can also
have a dedicated classifier to classify "What" type of questions. This will help in defining
a more accurate model with better training and features set which will only classify
"What" type of questions. Lastly, we can have dynamic selection of classifier for certain
type of questions. So depending upon the keywords such as "Who, What, When, Where,
Why, How", we can select the appropriate classifier during runtime. This will help to
provide more accurate results as the classifier is only trained to predict the question type

for that particular type of keyword.

68



12. References

[1] Loni B (2011) A survey of state-of-the-art methods on question classification. Delft
University of Technology, Delft, pp 1-40

[2] Molla, Diego, and José Luis Vicedo. "Question answering in restricted domains: An

overview." Computational Linguistics 33.1 (2007): 41-61.

[3] Li, D. Roth. 2002. "Learning Question Classifiers". In Proceedings of ACL 2002.

[4] "TREC website", http://trec.nist.gov/data.html

[5] T. Joachims. "Text categorization with support vector machines: Learning with many
relevant features". In Claire N edellec and C’eline Rouveirol, editors, Proceedings of the
European Conference on Machine Learning, pages 137-142, Berlin, 1998. Springer.

[6] "Botkit framework™, https://github.com/howdyai/botkit

[7] "Spark architecture",

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-
architecture.html

[8] "Spark stack",
https://mapr.com/ebooks/spark/03-apache-spark-architecture-overview.htmi

[9] "Benchmarking results by Databricks",
https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-

data-science.html

[10] "Spark streaming”, http://spark.apache.org/docs/latest/streaming-programming-

guide.html

69



[11] "Amazon Kinesis streams concepts”,

http://docs.aws.amazon.com/streams/latest/dev/key-concepts.html

[12] "Amazon EC2 setup guide™
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

[13] "Deep learning in Natural Language Processing by Stanford",
https://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml

70



	Question Type Recognition Using Natural Language Input
	Recommended Citation

	tmp.1498277195.pdf.Ursc5

