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ABSTRACT 

 

Recently, numerous specialists are concentrating on the utilization of Natural Language 

Processing (NLP) systems in various domains, for example, data extraction and content 

mining. One of the difficulties with these innovations is building up a precise Question 

and Answering (QA) System. Question type recognition is the most significant task in a 

QA system, for example, chat bots. Organization such as National Institute of Standards 

(NIST) hosts a conference series called as Text REtrieval Conference (TREC) series 

which keeps a competition every year to encourage and improve the technique of 

information retrieval from a large corpus of text. When a user asks a question, he/she 

expects a correct form of answer in reply. The undertaking of classifying a question type 

is to anticipate the sort of a question which is composed in common dialect. The question 

is then classified to one of the predefined question types. The objective of this project is 

to build a question type recognition system using big data and machine learning 

techniques. The system will comprise of a supervised learning model that will receive a 

question in a natural language input and it can recognize and classify a given question 

based upon its question type. Extracting important textual features and building a model 

using those features is the most important task of this project. The training and testing 

data has been obtained from the TREC website. Training data comprises of a corpus of 

unique questions and the labels associated with it. The model is tested and evaluated 

using the testing data. This project also achieves the goal of making a scalable system 

using big data technologies.  
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1. Introduction 
 

Currently, there is huge amount of information that is available on the web and the web 

crawlers are required to be more insightful. Much of the time the client just needs a 

particular snippet of data rather than a rundown of reports. Instead of making the client to 

peruse the whole report, it is regularly wanted to give the client a brief and short answer. 

The QA systems are designed to provide an accurate answer to a particular question. An 

ideal QA system is the one which can answer any question in a human readable format. 

 

The study to create an accurate QA systems began in the year 1960 where the first QA 

system, BASEBALL was designed [1]. It was capable of answering domain specific 

questions, which in this case was the data of baseball games played in American league 

over one season. But the QA system was incapable of answering out of domain questions 

and that was the limitation that needed to be improved. As the years passed by, the data 

became huge on the web and there was a need for a system to retrieve the required 

information out of such a huge database. Thus, the need to develop a better QA system 

came into focus again.  In 1999, TREC began the competition to create a better QA 

system. Participants in the TREC competition needed to build a model that can retrieve 

the precise answer, from a 10 GB of text corpus which comprises of English sentences. 

 

Designing a precise question answering system has been always a challenging task. It is 

different from a document retrieval system where the documents are retrieved based upon 

some keywords or text matching.  
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The most challenging task in designing a QA system is to precisely find the intent behind 

a particular question. Natural language processing techniques were exploited to build a 

system which can process text in any human readable language. In order to correctly 

classify a question, the system needs to understand what is the intent behind the question 

asked, what are the constraints associated with it and what can be the possible answers to 

that question. For example, given a question, " What two states is Washington D.C. 

between?" the system needs to identify that the intent is related to some location.  

 

This project is build on the similar concept. It comprises of using advance natural 

language processing methods along with machine learning technique. Different 

classification algorithms can be used to build a model which can process the textual 

features extracted using natural language tool kit. 

 

Model is build using a supervised learning approach. In supervised learning we have the 

training data along with the labels and we build a model using this data. We later on 

evaluate the model using the testing data to check the accuracy on unknown sentences. 

The model is then scaled using Apache Spark to handle a large stream of requests from  

multiple users simultaneously. Project is build using several steps which includes data 

preprocessing, feature extraction, model training, prediction and testing and evaluating 

the performance which are all explained in the later sections. 
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2. Background 
 

Multiple techniques were implemented since 1960, when the first question answering 

system was developed. But the drawback for those systems was that they were binded to 

a particular domain. During the era of 1970s and 1980s, the interest to use natural 

language processing techniques got a boost and the systems were proposed based on NLP 

methodologies. UC Berkley came up with a project, The Berkeley Unix Consultant 

project (UC) [2]. They build the project on the domain of Unix operating system and 

came up with a system that utilized the techniques such as natural language processing, 

knowledge representation system and reasoning. Based upon a question, the system 

generated a knowledge representation and the answer was tailored based upon the 

knowledge the system generated. But due to lack of support for real-world scenarios, the 

system was not considered to be used for practical purpose. Rule based systems were 

proposed build on the concept of knowledge representation systems, but due to increasing 

amount of data, the number of rules increased and it became very difficult to manage the 

system with too many rules. 

 

Since the start of the QA track by TREC in 1999, the focus changed from domain 

specific systems to Information Retrieval (IR) systems. The most simple QA system was 

based on answering factoid questions, for example, "Who was the first person to land on 

the Moon?" This is a factual question which has the precise answer. The advent of IR 

systems gave birth to open-domain question answering system [2]. This is the current 

state of the art on which multiple automated question answering systems are build. 
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3. Related Work 
 

Even though there are multiple papers and works that are proposed, I am extending the 

work done by Xin Li and Dan Roth [3] while building the solution. They came up with a 

system which was based upon the concept of open-domain answering system. The model 

that they proposed was build using machine learning and natural language processing 

techniques. The model was trained using the train_5500 dataset and evaluated using 

TREC_10 dataset. The features such as words, pos_tags, head_chunks,  named entities 

were extracted and a model was fitted with those features. They achieved the accuracy of 

85% with the proposed model.  

 

3.1 Drawbacks of the system: 

 Advanced Information Retrieval technique such as term frequency- inverse 

document frequency (tf-idf) was not used. TF-IDF helps in recognizing the 

importance of a particular word in the entire corpus of text. In this technique, the 

word is assigned a weighted frequency depending upon the number of times it 

appears in the entire corpus. It is the advanced text mining technique which is 

important to consider as some words appear more number of times as compared 

to others. According to Wikipedia, around 83% of the text based recommendation 

systems uses tf-idf. 

 

 Understanding the semantics is also one of the important feature that the current 

question answering systems are build on. It is important to consider the semantics 

of a sentence as a single word can be represented in multiple ways. For example, 
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the word "destination" in a sentence can be replaced by the word "last stop".  The 

meaning of the sentence would still remain the same.  It is important to 

understand the semantic nature of the sentence 

 

 Ngram helps in understanding the semantics of a sentence. Ngram takes into 

consideration the sequence of words that occur continuously in a given sentence. 

The value of n defines the model. For example, if n = 2, it is called a bigram 

model and if n = 3, it is called as trigram. For the values of n > 3, it is generally 

alluded to four grams, five grams etc. For example, if we take n = 2, the bigram 

for the sentence, "What is the currency of the USA?" will be, 

o What is 

o is the 

o the currency 

o currency of 

o of the 

o the USA 

Ngrams are used as a feature in the text processing model. This is an important 

feature to consider as the sequence of words can identify which words are more 

frequently used to denote a person, or organization or location or any other entity. 

This improves the learning of the model which may help in improving the 

performance of classification. 
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 As there are lot many users to use a system, it was necessary to make a scalable 

system. Scalability was missing in the system that was implemented. 

4. Proposed Solution 
 

The solution proposed tends to build a more accurate question recognition system. It will 

incorporate the advance natural language processing techniques to create a better model. 

The proposed system will address the drawbacks of the previously build system. The 

system will provide a better accuracy and it will be tuned to support multiprocessing and 

scalability. 

 

The system will receive a question in an input. It will process the text by extracting 

important features and finally the output will be a question type. The system will be fast, 

scalable, efficient and will be capable enough to handle bulk of request. 
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5. Data 
 

The dataset has been obtained from the TREC website [4]. The training data train_5500 

consists of 5500 labeled questions. The system is evaluated using TREC_10 dataset 

which consists of 500 new questions. The dataset consists of six broad categories of 

questions and fifty fine categories of questions. The output will be in the format, 

BROADCATEGORY:fineCategory. For example, the output of the question "Who is 

Zebulon Pike?" will be "HUM:desc". Each question is uniquely classified to a particular 

category. 

 

The following figure gives a distribution of different question categories. The numbers in 

the # column indicate the total number of questions available in the TREC_10 dataset in 

that particular category. 

 

 
Figure 1. Distribution of question categories 
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6. Architecture 
 

The following diagram depicts the process flow for the proposed solution, 
 

 

 

 

Figure 2. Architecture of Proposed Solution 

 

 

The entire architecture can be explained as follows, 

1. Question corpus is the training data, train_5500 obtained from the TREC.  

2. The corpus is preprocessed by removing some unwanted characters and the processed 

corpus is then used to extract the features 

3. Features such as Term Frequency- Inverse Document Frequency (TF-IDF), Named 

Entity Recognition (NER), Parts Of Speech (POS) tags, Related word vectorizer (for 

semantic analysis) are extracted and is given to the machine learning algorithm SVM to 

build the model. 

4. SVM takes all the features, fits the training data. 

5. The model is evaluated using TREC_10 testing dataset 

6. The model is supplied with new sentence to make a prediction of a question type 

7. The output of the model is a question type from the entire question type hierarchy as 

shown in Figure 1. 
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6.1 Rules for Classification 
 

Following are the rules for labeling the data, 

 If a query starts with Who or Whom: type Person. 

 If a query starts with Where: type Location. 

 If a query contains Which or What, the head noun phrase determines the class, as 

for What X questions.  

 

6.2 Challenges while developing the model 
 

 Precisely predict the k semantic classes. 

 Using advanced NLP techniques to understand the semantics of a given question 

rather than just extracting a key term 

 Make a scalable model 

 Ability to handle load 
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7. Implementation Using Scikit Learn 
 

Scikit-learn is a machine learning library in Python which is used for data analysis and 

data mining. It consists of various machine learning libraries which can be used for 

classification, regression or clustering. Question type recognition is a classification 

problem and so we are using a classification library which is Support Vector Machine 

(SVM). 

 

7.1 Why SVM for text classification? 
 

During the course of the years, researchers have tried using different algorithms 

combination for text classification. But Support Vector Machine (SVM) performs better 

than most of the algorithms. Thorsten Joachims have mentioned a few reasons why SVM 

outperforms the other algorithms [5], 

 SVM can handle large feature space. There are lot many features to handle while 

making a model for text classification, so there may be a chance of overfitting the 

data so as to cover all the features as close as possible. Since SVM can prevent 

overfitting with an appropriate regularization parameter (C), it does not have to 

rely on the quantity of features, they can possibly deal with large number feature 

spaces. 

 There is no need of feature selection in text classification as most of the textual 

features are important. So unlike other types of classification where algorithms 

are used to perform feature selection, SVM does not need to do this in text 

classification. 
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 Text classification problem is linearly separable. SVM is the best classification 

algorithm if a problem is linear separable. 

 Apart from C, we don't need to optimize any algorithm parameter, unlike other 

algorithms. We usually perform grid search to find the best set of parameters to 

use. This can be avoided in case of SVM. 

 Training time for SVM is faster than other classification algorithms. 

7.2 Data Preprocessing 
 

The dataset obtained from TREC had certain junk characters in the form of Greek 

symbols such as  or ¶. So we removed the characters other than a-Z and A-Z. Removal 

of stop words was done during the training of the model itself. A stop words list was 

passed as a parameter during the training step.  

After removal of the junk characters, the dataset looks like as shown in Figure 3,  

 

Figure 3. Sample training dataset train_5500.txt 
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7.3 Feature Extraction 
 

Feature extraction is the most important step in any predictive modeling. The processed 

dataset is imported and we use the advance natural processing techniques to extract the 

features for the model. We are using Python's Natural Language Toolkit (NLTK) library 

to extract most of the features. For text classification, following are features that we are 

interested in, 

 

 tf-idf Vectorizer- tf-idf vectorizer helps in identifying the importance of a 

particular word in a text in the entire corpus. The importance of the word is 

decided by the frequency of appearance of the word in the corpus. This is done 

while calculating the term frequency. But we don't want to put more importance 

on the words such as "a", "the", "and", etc. After calculating the frequency of the 

words, in order to precisely assign the weight, we calculate the inverse document 

frequency to identify the most relevant words. The word that appears less is 

assigned more importance or weight. This feature makes the classifier understand 

what words to focus on while learning. 

 

While performing tf-idf, n-grams are also taken into consideration. N-grams helps 

in identifying which words are more frequently used to denote a person, or 

organization or location or any other entity. So it helps in identifying the 

importance of certain stop words while denoting an entity. The tf-idf score 

changes accordingly and it helps in better modeling of the predictive algorithm. In 
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this project, we are using a standard tf-idf() function which is available in Python 

NLTK library. 

 Parts Of Speech (POS) tagging - A POS tagger is software in which each word 

is assigned a parts of speech depending upon the neighboring word. As we also 

consider the adjacent word while tagging a particular word, n-grams are also 

considered while tagging a word. POS tagging helps in predicting what can be the 

next word in a series of concurrent words. It also helps as a basis of syntactic 

parsing and then meaning extraction. In the project, we are using a standard POS 

tagging function pos_tag() which is available in Python NLTK library. The parts 

of speech can be any of the following or a combination of it as shown in the 

diagram, 

 

Figure 4. Different type of Parts of Speech 
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Figure 5. POS Tagger class 

 

 

Figure 6. Extracting POS tags 
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 Named Entity Recognition (NER)- Named entity corresponds to classifying a 

word in any of the categories such as Persons, Products, Organizations, Locations 

etc. A NER tagger helps in classifying a word into any of the named entities. 

Extracting NER tags from a text helps in identifying whether a question is related 

to person, organization, or location or any of the six broad question type 

categories. For this project, we are using Stanford NER tagger which internally 

has functionality to extract the required named entity 

 

 

Figure 7. NER Tagger class 

 

 

Figure 8. Tokenizing and extracting NER tags 
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 Semantically Related Words- Performing semantic analysis is one of the 

important steps in text classification. A single sentence can be modified and 

represented in multiple ways. It is important to analyze the meaning of the 

sentence no matter how it is represented. In this project, we are providing a 

word list which consists a directory of most commonly used words and its 

different representations. Sample directory structure is shown below, 

 

Figure 9. Directory structure of related word list 

 

First we create a dictionary of all the related words with key as the file_name and 

value as a list all the words inside that file. This process can be shown using the 

following implementation, 
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Figure 9. Building a word list from the related words directory 

 

Then for each tokenized word of the text, we compare the word with this dictionary to 

check in which category (which is the key of the dictionary) does the tokenized word fall. 

Once we find the all the keywords, we create a string that resembles all the category and 

pass it as a feature. So no matter how differently a sentence is constructed, the semantics 

will always be the same. This reduces the learning efforts of the classifier as it does not 

have to learn and recognize each sentence in a different manner. By doing semantic 

analysis, a classifier can recognize any semantically related sentence to what it learned 

during training phase.  This process is shown in the following implementation, 

 

Figure 10. Related Word Vectorizer Class 
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Figure 11. Building string for related words 

 

7.4 Predictive Modeling 
 

After extracting all the features, we create a model using a machine learning 

classification algorithm Support Vector Machine (SVM). The model is created using a 

function called as pipeline(). In the pipeline() function, we give a list of transformers and 

a estimator. Estimator can be any machine learning algorithm, in this case it is SVM. 

Pipeline helps in reducing the necessity to call the transform() method after every 

transformation. All the transformations are done when we call the fit() method. Finally 

the estimator, which has the fit() method gets the final set of features that is needed to 

train the model.  
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Following is the code snippet for the pipeline implementation, 

 

 

Figure 12. Pipeline implementation 

 

FeatureUnion() estimator function helps in concatenating the output of all the 

transformations. The transformations are applied in parallel for each input data and then it 

concatenates the results in the end. This final feature set is given to the estimator, which 

can be any machine learning algorithm. 

 

After all the pre-processing and the feature extraction phases, the data point includes  

 Named entity for each tokenized words,  

 The tf-idf vectors, 

 POS tags for each word and, 

 The set of related words from the bag of words for each tokenized word 
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Additionally, the n-gram parameter has been set to take values between 1 to 4 while 

creating the model pipeline. This enhances the learning process for the model. 

 

After we train the model , the model is evaluated using the TREC_10 dataset. The model 

gave an accuracy of 93%.  

 

 

Figure 13. Evaluation results 

 

The model is now ready for making prediction. Following code snippet shows a sample 

run of the prediction, 
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Figure 14. Sample run for making prediction 

 

 

After creating the model we save the model so that we can use it for later purpose.  

 

Figure 15. Saving the model 

 

As a part of the real life application, the trained classifier was integrated with Slack. So 

instead of making prediction by taking user inputs from the console, we created a bot 

application on Slack.  

  



29 

  

7.5 Application using Slack 
 

Slack is an online messaging platform. It helps the teams to collaborate and communicate 

at the same time. The idea behind creating a Slack bot was to create an application where 

we can use our classifier. So we decided to create a bot using the botkit framework [6]. 

Botkit is a library that is used to create conversation bots by easing the process of 

creation. Botkit has compatibility with different platforms such as Slack, Twilio, 

Microsoft bot framework and Facebook. 

 

7.5.1 Implementation of the bot 
 

 

The bot was developed in the two phases, 

1.  Using wit.ai 

2. Using the classifier by writing a custom middleware 

 

7.5.1.1 Implementation using Wit.ai 
 

Initially, before the classifier was developed, a simple bot was created using wit.ai. Wit 

provides an online console and API's to create a smarter conversation bot. It uses NLP 

techniques to make an intelligent bot. It maps the user inputs with the predefined entities 

and intents and gives the output accordingly. Initially a user create a list of entities and 

intents to train the wit model. For training, the user enters inputs from Slack console, and 

the question comes to the message folder of the wit.ai. The user validates the message by 

mapping it to an appropriate intent. Then after sufficient amount of training, the model 

starts predicting the intents for unknown inputs. For example, for a "food" intent, users 
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may say "Can someone order the food?" If we don't find an existing intent, or if there is 

no suggested intent  we can create our own intent.  

 

For demo purpose, we created two entities, "Greeting" and "Question". We took two 

questions from the CS FAQ section to determine the intent and retrieve the answers to it. 

The questions focused on determining the rules for disqualifications and how to schedule 

appointments with the advisor. The following images show sample screenshots of the 

entities the keywords and the expressions used to train the model. The keywords help to 

identify the intent and map it to the appropriate entity. 

 

 

Figure 16. Creating sample entities on wit console  
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Figure 17. Keywords for "Greeting" entity 

 

 

 

Figure 18. Expressions for "Greeting" entity 

 

 

Figure 19. Keywords for "Question" entity 
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Figure 20. Expressions for "Question" entity 

 

 

The next step was to integrate wit with the botkit framework. We used a middleware 

service that connects both wit and the botkit. Now, every message that was received to 

our bot was sent to wit.ai for processing. After the processing, the output from wit comes 

in the form of JSON. The middleware parses through the JSON output and finds the key 

"message.entities" to get the intent behind the question. 
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7.5.1.2 Implementation using the Classifier 
 

The aim was to build a real life application using the classifier. To integrate the classifier 

with Slack, we wrote a custom middleware. So instead of going to wit.ai, the request now 

goes to the classifier application. For this, it was important to create a REST based 

application of our implementation. We used Flask to create a REST service. It is a 

framework which is available in Python and it helps in creating web services. Figure 

given below shows the implementation of our application using Flask.  

 

 

Figure 21. Implementation using Flask 

 

It looks for 'q' in the arguments of the URL which holds the question. The question is 

then forwarded to the implementation where we have the classifier and after the 

classification process, the output is send back to the Slack bot.  
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Figure 22. Sample run of the Slack bot 

 

We can also check the console of our REST application to see the output of our question. 

For example, the figure below shows how the REST service behaves when it receives any 

question from the Slack bot, 

 

 

Figure 23. Output of the REST application 

 

To interact with the REST service, we wrote a custom middleware service. This 

middleware helps in managing the request from Slack and response from our REST 

application. In the middleware implementation, we specified the URL where the request 

from Slack should go to. This URL is the IP address and the port number where our 

REST application runs. We also specify what query parameter to look for in the request, 

here it is "q". The following images show the code snippets for the custom middleware 

implementation, 
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Figure 24. Code for the middleware implementation 

 

7.6 Multiprocessing Using CherryPy WSGI server 
 

The application created using Flask was a sequential application. In order to enable 

multiprocessing, we used a web framework for Python called as CherryPy. It is Web 

Server Gateway Interface (WSGI) framework which provides a multi-threaded web 

server where we can deploy any application. The main advantage of using CherryPy is 

that it is a very easy to use framework with only few customization needed to run any 

application. When the REST application is deployed to CherryPy, the application runs in 

a thread. It helps in utilizing all the cores of the CPU's and thereby handling multiple 

requests. The following code snippet shows the implementation using CherryPy WSGI 

server. As shown, the "app" in the import statement is the name of the Flask application 

that we need to deploy on CherryPy. 
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Figure 25. CherryPy implementation 

 

7.7 Load Testing the application 
 

To test how much our application can take the load, we used locust.io. It is a tool to load 

test any python application. Following is the implementation snippet for our application, 
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Figure 26. Locust file for load testing 

 

The name of our locust file is server.py. To run the file we use the following command,  

" locust -f testing/server.py --host=127.0.0.1:5000 " 

The host is the URL where the locust server is running. In the code, we have set the 

waiting time for a request to come as 0.  

 

To perform load testing, we simulate the requests from 100 users. The number of users 

per second (hatch rate) keep on increasing from 1 till it reaches 100. Figure shown below 

shows the initial console of locust.io where can enter our values for users and the hatch 

rate, 
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Figure Sample run of load test 

 

After swarming the requests, we check how the application behaves. As shown in the 

figure below, the application dies after taking 26 simultaneous requests. It doesn't process 

any request further than 26.  

 

Figure Load testing results 

 

As we can see, the performance was still a concern. It was necessary to build an 

application that  can handle huge load and achieves the goal of scalability. To solve the 

problem of scalability and performance we moved our focus to Apache Spark. 
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8. Implementation Using Apache Spark 
 

Spark is a framework which is used to process huge amount of data in a fast and very 

efficient manner. It was developed at Berkley in 2009 and it soon became a top-level 

project at Apache. Following are some of the advantages of using Apache Spark, 

 Fast and reliable in memory processing (100x faster than traditional MapReduce) 

 Fault tolerant capability as Spark uses an immutable data structure called as RDD 

 It provides MLlib as one of the libraries using which we can perform any machine 

learning techniques 

 It provides the ability to perform real-time streaming using Spark Streaming 

 

8.1 Overview of Spark Architecture 

The following figure shows the architecture of Apache Spark [7], 

 

 

Figure Spark Architecture 

 



40 

  

Driver is the master node that controls the execution and distribution of tasks across all 

worker nodes. SparkContext is used to create an instance of Spark application. Using that 

instance we perform any functions, like creating RDDs, using broadcast variables, 

creating jobs and accessing spark services until the instance is stopped. Cluster manager 

can be Mesos, Yarn or Hadoop itself. We can also run Spark in a standalone mode. When 

the task is ready for execution, driver distributes the task to all the worker nodes. Each 

worker has an executor which executes the assigned task. After the completion of the 

task, the result is sent back to the driver daemon. The figure below shows the stack that 

spark supports on its architecture [8], 

 

Figure Spark Stack 

 

 

  



41 

  

8.2 Data Preprocessing 
 

We are using the same pre-processed data obtained from the scikit-learn classification. 

 

Figure 3. Sample training dataset train_5500.txt 

 

8.3 Feature Extraction 
 

Spark doesn't have direct support for nltk libraries. As Spark uses RDD, every feature 

extraction process is an output of a transformation. So we created a custom transformer 

for one of the feature extraction process which is POS tagging. Figure given below shows 

the workflow for the feature extraction process, 

 

  



42 

  

 

Figure Feature Extraction process for Spark Classifier 

 

To initiate a Spark job, we first create its instance using SparkContext. We read the 

processed file which is stored in our local system. After reading the file, we get an RDD 

which holds the entire text file. To optimize the training time, we convert the RDD to a 

Spark dataframe using toDF() method. Databricks has done some benchmark testing to 

compare the performance of RDD and a dataframe [9]. The results clearly show that 

Dataframe is better in performance as compared to RDD. The following figure shows the 

performance results of the same, 

 

Figure Databricks performance results for RDD v/s Dataframe 

 

The graph compares the aggregation results of 10M integer pairs on a single node during 

runtime. The difference between performance of Python and Scala dataframe operation is 

quite less as both generate JVM bytecode after execution and so nothing much to 

compare of. In case of RDD operations, the dataframe performance results beat both the 
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language variants, the python implementation of RDD by a factor of 5 and Scala 

implementation of RDD by 2 [9]. 

 

1. Tokenization:  

After reading the file into RDD, we convert it into a dataframe. Then we tokenize the 

data and pass it to the next step, POS tagging. The output of the tokenizer is saved in 

column "words". 

 

 

Figure Tokenization and POS tagging 

 

2. POS tagging: 

Output of tokenizer, "words" is given as input column to the custom transformer. As 

Spark doesn't support the nltk libraries directly, we wrote a custom transformer.  
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Figure Custom transformer POSWordTagger 

 

 

Figure Transform function implementation 

 

The transform method uses the pos_tags() method from the nltk library to extract the  

POS tag for each token. The output is saved in the column "pos " 

 

 

Figure Calling POSWordTagger 
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3. Tf-idf vectorizer: 

Output of pos tagger, "pos" is given as input column to the custom transformer.  

The output of POS tagger transformer is used to extract the tf-idf vectors. The output of  

tf-idf vectorizer is saved in the column "raw_features". 

 

 

Figure Extracting tf-idf vectors 

 

4. Indexing: 

Spark doesn't takes string values as labels. So we convert each label to a numeric value 

by using the StringIndexer() method. The output of the indexer consist of numeric values 

for each label. The transformed indexer is saved for future use as we need to retrieve the 

original label back. The output of the indexer is saved in the column "idxlabel" 

 

 

Figure Extracting tf-idf vectors 
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8.4 Predictive Modeling 

After we extract all the features, we build our model using decision tree classifier. The 

input to the classifier is the final set of features obtained after tf-idf transformation and 

the label column has been given the output of the indexer 

 

Figure Extracting tf-idf vectors 

 

After building the model, when we evaluate the model using the test dataset, we get an 

accuracy of 83%.  

 

Figure Spark Model Evaluation 

 

The model is saved to disk to use it for later purpose (Spark Streaming). 
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9. Spark Streaming 

The aim was to create a scalable application with notable performance gain. So in order 

to simulate a real-world scenario, we created a Spark streaming application. We used the 

Spark Streaming API that is available in the Spark stack to create a streaming application. 

The figure given below shows the architecture of Spark Streaming [10], 

 

 

Figure Spark Streaming architecture 

 

Input sources can be any streaming service (producer), which will generate the data and 

submit it to the Spark streaming application which will act as a consumer. After the data 

has been ingested and the required operation has been performed on the data, the output 

can be written or saved to any storage services. We can also create a dashboard which 

can show the impact and behavior of all the processing in the form of graphs. 

 

For our application, we are using Amazon Kinesis as the producer. So now, instead of 

providing some sample questions for prediction, we give a stream of questions to the 

classifier.  
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9.1 Amazon Kinesis Streams 

 

Amazon Kinesis streams is one of the many services that is provided by Amazon Web 

Services (AWS). It is used to create streaming data. As the data is generated continuously 

from multiple sources, the size of data to be processed per hour has reached upto TBs. 

Amazon Kinesis helps to collect such huge data and provide ways to process and store it 

at very low cost.  

 

Advantages of using Amazon Kinesis are, 

1. Real-time streaming- We can collect the data as and when it is generated and we can 

perform any analysis or computation in real time. 

2. Parallel processing- We can process the same Kinesis stream by running multiple 

Kinesis applications concurrently. 

3. Scalability- Kinesis streams can scale to handle Megabytes or even Terabytes of data 

per hour. We can adjust the throughput required for our application dynamically. 

4. Low processing cost- It is cheap to use Amazon Kinesis streams with the rates being 

$0.015 per hour. 

5. Reliability- It replicates the data across three Amazon Region facilities and it can store 

the data for seven days, thereby avoiding any information loss due to failure. 
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9.1.1 Amazon Kinesis Streams Architecture 

 

The following figure shows the architecture of Kinesis Streams [11], 

Ama

 

Figure High level architecture of Kinesis Streams 

 

1. Producers- Any source that can generate data 

2. Kinesis Application- EC2 running application that acts as a consumer for the streams 

of data. Output of the consumer can be an input to another Kinesis application running on 

EC2 instance or we can store the output on any storage services. 

3. Shards- It distinctly identifies data records in a stream. A stream consists of atleast one 

shard. We can dynamically increase or decrease the number of shards with an increase or 

decrease in data rate.  

4. Partition- Data records are segregated into shards using a partition key. When data is 

regrouped, this key helps in identifying that the particular record belongs to which shard. 

5. Amazon Kinesis Client Library (KCL)- Applications are build using KCL and are used 

to process the data fetched from the streams. 
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9.1.2 Prerequisites 
 

In order to use AWS services, we need to do following steps, 

1. Create a login account.  

2. Install the AWS CLI tool. We can use the following command to install the CLI, 

$ pip install awscli 

$ sudo pip install --upgrade awscli 

3. Set up our AWS credentials in our environment. It includes two variables to set,  

aws_access_key_id = YOUR_KEY 

aws_secret_access_key = YOUR_SECRET 

We use to following command to setup the environment,  

$ aws configure 

The credentials are saved in a "credentials" file which is located in the directory where 

we have installed the AWS. Now our environment is ready to communicate with any 

AWS services.  

4. Install boto3- It is the AWS SDK build for Python.  It provides a set of libraries that 

we can use to communicate with AWS services. Here we will use boto3 to create a 

Kinesis Client. We use the following command to install boto3,  

$ pip install boto3 

5. Choose a region - The region name is default which is us-west-2. We can change the 

region name by changing the value of the region field in the aws config file. 

 

The next step is to create a Kinesis Producer which will create a Kinesis stream on AWS. 

The stream will comprise of different questions which are read from a text file. 
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9.1.3 Create a Kinesis Producer 

We create a Kinesis client to create and submit out streams on AWS. As a data source, 

we are using a dataset which comprises of 200 unique questions. We create a stream with 

the name as "questions" and the partition key as "qtypes".  The stream need an input in 

the JSON format and so we use the json.dumps() method while putting the records using 

kinesis.put_record(). Default shard count is 1.  

 

As shown in the figure below, the Kinesis stream client will continuously submit the 

questions to the stream using an infinite loop, 

 

 

Figure Kinesis Producer 

 

In the first figure given below we can see the "questions" stream that is created on AWS. 

In the second figure, we can monitor the behavior of the system when we start putting the 

records on the stream. These graphs are generated by the CloudWatch monitoring system 

that is built-in in AWS. 
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Figure Stream generated on AWS 

 

 

 

 
Figure Monitoring system on AWS Kinesis Stream 
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9.2 Create a Spark Streaming Consumer 

In order to fetch the data produced by Kinesis, we wrote a Spark streaming consumer 

application. We wanted to observe how the two classifiers behave in real-time streaming. 

So we built two streaming applications in which we used the scikit-learn classifier and 

the spark classifier.  

 

We use the PySpark library to implement any Spark job in Python. To initiate a Spark 

job, we use the SparkContext() object which is imported from the PySpark library. It is 

the starting point for any Spark application. To initiate spark streaming, we create a 

StreamingContext() object which is imported from the spark streaming library.  

9.2.1 Implementing Spark Consumer Using scikit-learn Classifier 

We use the concept of broadcast variables in both the application. We load the stored 

classifier from the disk and give it to the broadcast variable. When we do sc.broadcast(), 

we broadcast the classifier to all the worker nodes. So when the stream of questions 

comes, we have the classifier available on all the workers.  

 

The figure given below gives the implementation snippet for the spark consumer 

application using scikit learn classifier. As shown in the figure, we use the Kinesis Utils 

library to consume the Kinesis streams. The parameter InitialPositionStream.LATEST 

indicates that we are interested in the latest streams. Shard count is set to 1 as we are 

using only 1 shard. We deploy our classifier when we do broadcastVar.value and then we 

call the predict() method of the classifier for each question.  
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Figure Spark consumer application using scikit-learn classifier 

 

We use following command to run the spark job.  

"spark-submit --driver-memory 5g Question_Type_Classification/spark-stream.py" 

 

As we are running spark on a local machine, we give the driver memory a value (here 5g) 

to indicate what amount of RAM is to be given to the executors on each worker node. We 

cannot set the executor memory when we run spark on a local machine. The reason being 

that, when we run spark on a local machine, the worker resides insides the JVM process 

of the driver. The default memory is set to 512MB. So we have to reset it to a higher 

value depending upon available system configuration. When we run Spark in a cluster 

mode, then we can set the executor memory to some value as we would have a different 

master (other than the driver daemon) which can be Mesos or Yarn or Hadoop itself. 
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The output of the spark streaming is given below, 

 

Figure Spark streaming output 

 

9.2.2 Implementing Spark Consumer Using Spark Classifier 

 

In this, we broadcast the two models from the driver program. First is the indexer that we 

saved in the previous spark program while training the classifier as we have to retrieve 

the original labels from the indexed one and second is the classifier itself. For each 

stream of questions, we extract the features and give it to the classifier for prediction.  

 

The following snippets show the implementation of the spark consumer using the spark 

classifier, 
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Figure Spark driver program  

 

 

 

Figure stream_rdd() function implementation 
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Figure Feature extraction and prediction 

 

 

Figure Output of the spark consumer 
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10. Performance Improvements 
 

Due to resource crunch on a local machine, there is not much we can do to improve the 

performance. The real power of spark can only be achieved if we have the computation 

power. So to improve the performance of the application, we deployed our application on 

AWS EC2 instances. EC2 provides us instances with the computing resources which we 

can choose according to our needs.  

 

The advantages of using EC2 are,  

1. Easy scalability- We can increase or decrease computing resources at will and in few 

minutes. We can run thousands of instances without worrying about how to manage all 

the instance as AWS does it for us. Application can scale up or down at runtime 

depending upon the need. 

2. User Control- Users have a full control on each instance. A user can start, stop or 

restart any instance when required. User has the access to API's or console to manage the 

instances. 

3. Reliable- According to AWS, its cloud is 99.95% reliable. So even if any instance gets 

failed or crashed due to some reason, another instance is brought up automatically 

without the customer to realize it and facing any downtime. 

4. Secure- AWS allows us to create Virtual Private Cloud (VPC) so that we can have a 

personalized access to our instances. 

5. Inexpensive- The cost of an instance is quite cheap. It works on the principle of pay 

per use.  
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AWS provides different types of instances which can be chosen as per the use case. For 

our use case, we are using instances of the M3 family. It provides us with good 

computation resources that is perfect for most of the applications. We are using a 3 node 

cluster and each node is an m3.xlarge instance. Each instance has 4 vCPU, 15 GB of 

RAM and 2x40 GB of SSD storage. 

 

When we run the scikit learn classifier on a local machine, the performance was not 

great. The reason being that, it has to fetch the NER jar for each token for each stream of 

question , tag each word and bring back the results. This degraded the performance of the 

application. So we thought to create a new classifier with all the features except NER 

tagging. We call this classifier as "scikit lite" classifier. So we had tf-idf vectors, POS 

tagging and semantic analysis as the features for this new classifier. The net result was 

increase in performance but the accuracy of the scikit lite classifier was only 68%. When 

we run both the applications individually on the spark framework we can notably see the 

performance change.  

 

To evaluate the performance, we compare the throughput of both the classifiers at 

different window size. The window size will signify how much seconds the spark 

application will wait to take the next batch of input records. The window size can be set 

to any value, but to test the performance on the local machine we took two window sizes, 

1 and 15. We compared the results of 8 batches of each classifier application for each 

window size.  
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Figure Sample output of each completed batches 

 

The following graphs show us the performance results for the fully loaded classifier (old 

classifier with all the features) and the scikit lite classifier, 

 

Figure Old classifier stream performance with window size 1: 

 

 

 

Figure New classifier stream performance with window size 1: 
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As observed from the above graphs, the time taken to process the records is less as 

compared to the old classifier. Total number of records processed is also high in the new 

classifier. When we compare the throughput of 8 batches of each classifier application, 

the processing performance for the old classifier is 0.53 records/second and for the new 

classifier we get 7.48 records/second.  

 

When we change the window size to 15, we get the following graphs,  

 

 

Figure Old classifier stream performance with window size 15: 

 

 

Figure New classifier stream performance with window size 15: 
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As observed from the above graphs, the time taken to process the records is less as 

compared to the old classifier. Total number of records processed is also high in the new 

classifier. When we compare the throughput for 8 batches of each classifier application, 

the processing performance for the old classifier is 0.42 records/second and for the new 

classifier we get 7.95 records/second. So, for window size 15, the performance for old 

classifier degraded but there was a slight improvement in performance for the new 

classifier. We summarize the observations in the following table, 

 

Observations Old classifier application New classifier application 

Accuracy (%) 93 68 

Best Performance 0.53 7.95 

Overall Performance Bad Good 

Best window size 1 15 

Table 1. Observation table for old v/s new classifier application 

 

From the above table, it is clear that the new classifier performs better than the old 

classifier. As the goal of the use case was to increase the performance of the application, 

we chose the new classifier, i.e. the scikit lite classifier to deploy on the AWS EC2 

instances. So we deploy our new classifier and the classifier written using spark MLlib on 

the 3 node cluster to observe and compare the performance results on different loads. 
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10.1 EC2 Performance Observations 

We deployed the two applications on the AWS EC2 cluster to evaluate the performance 

and scalability. In order to execute our application, we setup the worker nodes with all 

the dependencies that was needed to run the application as per the guidelines on AWS 

[12].  

 

To evaluate the performance we tested our application by giving low, medium and high 

load. We also changed the window size which varies to 1, 5, 10, 15 to find the optimum 

performance. After testing the application on various parameters, we drew the 

performance graphs using Tableau. The graph has been divided into two sections, first 

one is average number of records processed per sec and second section is the average 

input size at different window size. Records processed per sec for each window is 

obtained by taking the average number of records obtained in 10 batches and average 

processing time for each batch. 

 

10.1.1 Performance Evaluation for Scikit lite Spark Streaming Application 

To begin with, we first evaluated how our scikit lite spark streaming application 

performed on EC2 cluster and what are the notable observations. The following graph 

shows the performance results on EC2 cluster, 
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Figure EC2 performance results for scikit lite spark application 

 

As observed from above graph, for low and high load the application performs better 

as the load increases. For medium load, at window 10, we get the maximum records 

processed as compared to other load setting and window size. After that point, the 

record processing decreases. Also, that is the best point where we get maximum 

record processing. The conclusion derived from above observations was in order to 

achieve the best performance, we need to set window size to 10 and load should be 

medium.  
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10.1.2 Performance Evaluation for Spark Classifier Streaming Application 

We evaluated or spark classifier streaming application on similar parameters on the EC2 

cluster. The following graph shows the performance results on EC2 cluster, 

 

 

Figure EC2 performance results for spark classifier streaming application 

 

For the above spark application we observed that it behaves better as the load increases. 

There is no definite good point to set to achieve optimum performance. The window size 

and load can be set according to the requirement of the use case. The trade off criteria can 

given as,  

window size ∝ delay in response. 

More the window size to get the performance, more is the response time for the request. 

For the current scenario, low load and window size 15 seems to be a sweet spot as we get 

more throughput then any point at the graph. 
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The optimum points obtained from the performance analysis of both the applications can 

be summarized in the following, 

Observations Scikit lite classifier application Spark classifier application 

Accuracy (%) 68 83 

Best Performance 309.3 402.6 

Window size 10 15 

Load Medium Low 

Table 2. Observation table for scikit lite v/s spark classifier application 
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11. Conclusion and Future Work 
 

In this project, we created an application that would classify any question to its question 

type. During the project, we created three applications which includes the full loaded 

classifier, scikit lite classifier and the spark classifier. We performed some performance 

testing on local machine which didn't helped much. So we deployed the lite classifier 

application and the spark classifier application on AWS EC2 cluster. We tested our 

application on different parameters and came up with a set of observations.  

In conclusion of the observations we can say that, 

1. Spark classifier application performs better than the scikit lite classifier 

application. 

2. We get less latency (delay in response) in the scikit lite classifier application as 

the window size is less than the spark classifier application. 

3. If the focus is to get more input records to process in short period of time and 

accuracy is not an issue, then we can go ahead with the scikit lite classifier 

application. But this case is very unlikely as many applications will chose the first 

option as they are getting good accuracy and better throughput. Latency can be 

compromised for better results. 

 

Finally while doing the project, we also observed that by enhancing the model with the 

semantic features improves the classification accuracy. Also, "What" type of questions 

are very difficult to classify, for example, consider this question “What is the PH 

Scale?”. This question can be classified as a numeric value or a definition. So proper 

modeling is required to classify "What" type of questions.  
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In accuracy, scikit learn beats spark as scikit learn is more tuned to perform classification 

and is more matured then spark. In Performance testing, the spark classifier performs 

better on every level (apart from latency) as compared to scikit learn classifier. Selecting 

the performance v/s accuracy tradeoff  depends totally upon the requirement of the 

application. 

In future work, we can say that the current work can be extended in multiple ways. We 

can apply some deep semantic techniques for semantic analysis. Stanford is currently 

working on how can we apply deep learning in natural language processing [13]. We can 

use some artificial intelligence techniques that enables learning for new questions and 

question types while performing classification. We can assign multiple labels to a single 

question to diversify the classification categories. In this project, we have the dataset that 

assumes unique label for each question. This may lead to some misclassification of 

certain types of questions, especially in "What" type of questions. By having multiple 

possible labels for a question, we can improve the accuracy of the model. We can also 

have a dedicated classifier to classify "What" type of questions. This will help in defining 

a more accurate model with better training and features set which will only classify 

"What" type of questions. Lastly, we can have dynamic selection of classifier for certain 

type of questions. So depending upon the keywords such as "Who, What, When, Where, 

Why, How", we can select the appropriate classifier during runtime. This will help to 

provide more accurate results as the classifier is only trained to predict the question type 

for that particular type of keyword. 
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