San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2017

Black Box Analysis of Android Malware Detectors

Guruswamy Nellaivadivelu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Information Security Commons

Recommended Citation

Nellaivadivelu, Guruswamy, "Black Box Analysis of Android Malware Detectors" (2017). Master's Projects.
545.

DOI: https://doi.org/10.31979/etd.uzt8-w8gh

https://scholarworks.sjsu.edu/etd_projects/545

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/545?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Black Box Analysis of Android Malware Detectors

A Project
Presented to
The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Guruswamy Nellaivadivelu

May 2017

© 2017
Guruswamy Nellaivadivelu

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Black Box Analysis of Android Malware Detectors

by

Guruswamy Nellaivadivelu

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2017

Dr. Mark Stamp Department of Computer Science
Dr. Robert Chun Department of Computer Science

Dr. Thomas Austin Department of Computer Science

ABSTRACT
Black Box Analysis of Android Malware Detectors

by Guruswamy Nellaivadivelu

Code obfuscation can make it challenging to detect malware in Android devices.
Malware writers obfuscate the code of their programs by employing various techniques
that attempt to hide the true purpose of the program. Malware detectors can use
a number of features to classify a program as a malware. If the malware detector
uses a feature that is obfuscated, then the malware detector will likely fail to classify
the malware as malicious software. In this research, we obfuscate selected features of
known malware and determine whether the malware can still be detected by a given
detector. Using this approach, we show that we can effectively perform black box

analysis of various malware detectors.

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Dr. Stamp for his valuable guidance
and supervision throughout the project work. I am also extremely thankful to him for
teaching me interesting new concepts and techniques in the field of security during the
entire course of my graduate program. I am also grateful to my committee members

for reviewing my work and providing constructive feedback.

TABLE OF CONTENTS

CHAPTER
1 Introduction

2 Previous Work
2.0.1 Code Obfuscation and Malware Detectors

2.0.2 Program Obfuscation

2.1 Obfuscation in Android Malware
2.1.1 Statistical Anaylsis Techniques and Android Malware . . .

2.2 Conclusion

3 Code Obfuscation
3.1 Growth of Obfuscation in Software Development
3.2 Malware Detectors oL

3.2.1 Signature Based Detection
3.2.2 Heuristics Based Detection
3.2.3 Rootkit Detection o0

3.2.4 On-Access Scanning

4 Threats and Defenses in the Android Operating System
4.1 Android Malware Detectors
4.1.1 Privilege Escalation

4.1.2 Remote Control

4.1.3 Monetary Loss o

4.1.4 Information Collection

vi

11

11

11

12

13

4.2 Android Malware Detection Limitations 15

4.2.1 Static Analysis 16
4.2.2 Dynamic Analysis L. 17

5 Android Obfuscators, 19
5.1 Experiment 19
5.1.1 Uses of the obfuscator 21
5.1.2 Alignment 22
5.1.3 Rebuild 22
5.1.4 Fields 22
5.1.50 Debug 22
5.1.6 Indirections 23

5.1.7 Renaming oo 23

5.1.8 Reordering 23

5.1.9 Goto 23
5.1.10 Arithmetic Branch 24
5111 Nop . . . o o 24
51.12 Lib o 24
5.1.13 Manifest 24
5.1.14 Reflection 24

6 Experiment 25
6.1 Environment Setup oL 25
6.2 Dataset and Malware Detectors 25
6.3 Dataset 27

vil

6.3.1 Malware Files Selection 27

6.3.2 Other Datasets 27

6.4 Malware Detectors against Code Obfuscation 27

7 Results of Experiments 0L 28

7.1 Observations 28

7.2 Steps for Analyzing Malware Detectors 28

7.2.1 Metricsusedo 29

7.3 Obfuscation of Malware Samples 29

7.3.1 Individual Obfuscators 29

7.3.2 Individual Malware Detectors 33

8 Conclusion and Future Work 36

8.1 Conclusion 36

8.2 Future Work 38

LIST OF REFERENCES 40
APPENDIX

A Appendix 1o 42

A.1 Abbreviations and Terminologies Used 42

B Appendix 2 43

B.1 Malware File to Symbol Mapping 43

C Appendix C 52

C.1 Single Obfuscator Results 52

viil

1

LIST OF TABLES

Android Obfuscators

List of software required and their versions.

1X

10
11
12
13
14
15
16
C.17

C.18

C.19

LIST OF FIGURES

Evaluating anti-malware
AndroSimilar o
Market Share of mobile operating systems
Top 20 permissions in Android in 2012
Experiment flow
Sampling Results 0oL
Single Obfuscator Usage - Renaming. Average: 0.46
Single Obfuscator Usage - Manifest. Average: 0.3867
Detection Ratios with four obfuscators applied. Average:0.403457
Pre- and Post-Obfuscation Results. Average: 0.219044
Average Detection Ratio for Different Obfuscators
Detection Ratio for AVG Antivirus
Detection Ratio for the BitDefender Antivirus
Detection Ratio for the TrendMicro Antivirus
Part of an obfuscated Manifest file
Part of a normal Manifest file,
Detection Rates before obfuscation. Average: 0.7138

Average Detection Ratio after using All Obfuscators. Average:
0.219044

Detection Rates after applying the Obfuscator Debug. Average:
0.478202 L

C.20

C.21

C.22

C.23

C.24

C.25

C.26

Detection Rates after applying the Obfuscator Renaming. Average:

0.478202 L

Detection Rates after applying the Obfuscator Resigned. Average:

0.507732

Detection Rates after applying the Obfuscator Indirection.
Average: 0.504374o

Detection Rates after applying the Obfuscator Lib. Average:
0584618

Detection Rates after applying the Obfuscator Manifest. Average:
0.386791

Detection Rates after applying the Obfuscator Renaming,
Reordering, Goto, and Arithmetic Branch. Average: 0.403457 . .

Detection Rates after applying the Obfuscator Alignment. Average:

0.572892 L

x1

o4

25

25

26

56

57

CHAPTER 1
Introduction

The volume of Android malware is increasing exponentially. Indeed, in the second
quarter of 2016, 3.5 million samples of Android malware were detected [1|. This rapid
increase in Android malware has placed the focus on Android security and made
it imperative to develop more efficient defensive tools for combating such malware.
One of the challenges faced in this area is the use of code obfuscation techniques.
Code obfuscation is a method of altering code to hide its actual purpose, without
significantly altering its performance. There are many ways of obfuscating source
code in an Android environment. Several software applications that are available
off the shelf can be used to achieve different levels of code obfuscation [2]. In order
to address the problem of strengthening malware detector’s strength, there are two
fundamental questions that need to be addressed, as highlighted by Christodorescu
et al. [3]. The first question is to gauge the resilience of a malware detector against
code obfuscation. This will also help us in understanding the strength of the malware
detetctor in detecting variants of known malware families. The other question is
the possibility of identifying the detection algorithm used by a malware detector.
By studying the behavior of malware detectors and how they respond to different
obfuscation techniques, a malware writer can uncover ways to beat the antivirus
program. Ultimately, we want to gauge how well a malware detector will perform
against obfuscated code.

Code obfuscation is the process by which source code is manipulated to hide its
true intentions. Code obfuscation is increasingly becoming a common tool to avoid
detection by traditional malware detectors. There are many different types of code
obfuscation. The most basic type of code obfuscation involves the encryption of all

the strings that are used in the code. This overrides the detection mechanism of

most of the traditional malware detectors. Some advanced malware detectors account
for this encryption and are able to identify malware files. There are a host of other
obfuscation techniques that can be employed by malware writers. Some of these

include the obfuscation of function calls, permission hiding, and insertion of dead code.

The challenges associated with code obfuscation primarily deal with the problem
of maintaining the core functionality of the code, while making it difficult for malware
detectors to detect their true purpose. This challenge becomes easier for malware
writers when dealing with Android malware. The reason for this is associated with
the permission levels of applications running on Android platform. Unlike anti-
virus programs that run on computers, the Android system provides the same set
of permission levels to the anti-virus application and the application that is being
scanned. This is a major limitation for malware detector writers. With the advent of
sophisticated encryption techniques, it has become very difficult to different between
benign and malicious applications of obfuscation techniques. The primary objective of
this project is to make malware detectors more responsive to the code obfuscation
techniques employed by malware writers. By doing so, we can attempt to identify the
malware features that are used by a malware detector in its classification algorithm.
We can also try and modify an existing malware detector to see if we can overcome
the limitations. In order to achieve this, we propose a theoretical approach. In this
approach, we attempt to isolate the features that contribute to malware detection.
Once, we have this information, we can attempt to modify an existing malware detector
to overcome these limitations. The malware detector should employ ‘‘de-obfuscation”
techniques before analyzing any malware. An intelligent malware detector should be
able to sense the type of encryption or obfuscation technique being employed and use

the corresponding ‘‘de-obfuscator’ to nullify the effects of the obfuscator.The first

step in this implementation will be the identification of the factors in a malware that
are taken into consideration by a malware detector. To achieve this, we will begin
by encrypting various parameters of a malware and running it through a malware
detector [4]. By following this approach, we can identify the exact scenario when a
malware is no longer classified as a malware by our malware detector. Once we identify
the features that are required by a malware detector, we will use this information to
make the malware detectors process the obfuscated part of the code as well. This will

make our malware detector more robust and improve their performance.

In Chapter 2, we look at the previous work that is done with regards to malware
detection in Android. We explore the various detection mechanisms and approaches
that has been discussed so far. After looking at the background work, we delve into
code obfuscation in Chapter 3 and understand the basic terminologies associated with
code obfuscation. We also look at the impact of obfuscation in general, and then
more specifically, their impact on malware detectors. After understanding the basics
of code obfuscation and malware detectors, we move on to the current threats and
defenses in the Android operating system in Chapter 4. In Chapter 4, we glance at
the growing dominance of the Android operating system in the mobile phone space
and the importance of this particular operating system in our lives. The motivation
behind selecting the Android OS for this project is understandable from Chapter 4.
The obfuscators to be used in this project, and their functionalities are explained in
Chapter 5. Chapter 6 clearly lists the software requirements for this project and also
talks about the necessary technologies for setting up the experiment. The results
of the experiment are summarized in Chapter 7. The factors that contribute to the
conclusion being drawn from this experiment are detailed in Chapter 6. We finally

consolidate the results and discuss the future course of the project work in Chapter 8.

CHAPTER 2
Previous Work

In this chapter, we present the results of a literature survey that was performed
to identify the current state of obfuscation mechanisms and their impact to the field
of code obfuscation. We find that code obfuscation has been an area of interest in
the field of cryptography and traditionally, obfuscation techniques have been used
to achieve reverse engineering protection. On the other hand, a lot of malware have
obfuscated code to avoid detection by anti-virus programs.
2.0.1 Code Obfuscation and Malware Detectors

The efficiency of malware detectors against code obfuscation has been a point of
discussion amongst malware researchers for a very long time. A lot of research has been
done on the robustness of malware detectors against high levels of obfuscation. The
issue of malware detector’s strengths against obfuscated malware had been discussed
as early as 1996, as can be seen in the quote by S. Gordon and R. Ford [4]:
“The evaluation of anti-virus software is not adequately covered by any existing
criteria based on formal methods. The process, therefore, has been carried out by
various personnel using a variety of tools and methods.”
2.0.2 Program Obfuscation

There has been a lot of theoretical research on the different aspects of obfuscation
and on ways to improve it. Most of this research has been successful in arriving at a
conclusion on the efficiency of the cryptographic problems of encryption, authentication
and protocol [5]. But the problem of program obfuscation has remained an area within
cryptography in which theoretical research has been inadequate. In their seminal paper
on program obfuscation, Barak et al. [5] propose to represent program obfuscation
as below: An obfuscator O is said to be an efficient compiler if it takes as input a

program P and produces a program O(P) and satisfies the following two conditions:

1. Functionality: O(P) computes the same function as P

2. ‘Virtual Black Box’property: Anything that can be efficiently computed from

O(P) can also be computed by P.

The paper by Christodorescu et al. [3] lists various ways to test and achieve
program obfuscation in general. A detailed analysis of the various obfuscation methods
is also discussed in the paper. One interesting angle explored by the paper deals
with assigning mathematical equations to measure the effectiveness of the individual
obfuscators. This lets us quantify the different obfuscators and rank them against each
other. One of the evasion methods employed in malware obfuscation is polymorphism.
It is a method by which a program evades various detection tools by mutating into
different forms. In the paper by Rastogi et al. [6], the authors develop and propose
a framework called ‘DroidChameleon’ that provides a way to transform Android
applications into different forms with minimal user involvement. As shown in Figure 1,
the authors apply various transformations on a malware sample dataset. The output
of all these transformations are processed by a malware detector (referred here as

Anti-malware). The input to the anti-malware is processed sequentially. After each

Malware
sample
A

I f o Y
Trivia ' | % Mo
transformations N E,‘tup

Yes| I all transformations done

ey i go to B else continue an 4

DSA | /JB \ Detected —>-io, Stop after gtting
transformations I| Nt | i all results on B

Yes If 2ll transfarmations dons

go to € else continue on 8
| e | O |
Tes
Fail

Figure 1: Evaluating anti-malware

Antimnalware

transformation, the anti-malware‘s output is evaluated and if the malware detection
fails, the next level of transformation is applied. This helps rank the various malware
detectors against each other for accurate analysis.
2.1 Obfuscation in Android Malware

A report by Google stated that a majority of malware detectors work as a binary
classifier [7]. They classify an application as a malware or a benign file. In order to
effectively eliminate malicious applications, it is important that malware detectors
do more than just identify malware. They should be able to isolate the core parts of
the application that perform the malicious acts and work at fixing the loopholes that
let the program act in a malicious way. More recent malware applications employ a
variety of tricks, in addition to traditional code obfuscation mechanisms. For instance,
a variant of Android malware, known as Android/BadAccent, is a known banking
Trojan, that steals credentials used in banking applications [8]. A variant of this
malware used a mechanism known as ‘Tapjacking’ to extract the credentials from the
users. In this form of attack, a screen is displayed to the user, while a second screen
is hidden behind the actual visible display [9]. When a user clicks a button on the
screen, assuming it to be the one that is displayed, the underlying screen gathers the
input and processes the command. This is a common method of gathering details
from unsuspecting users.
2.1.1 Statistical Anaylsis Techniques and Android Malware

One widely used approach for analyzing malware samples is the usage of statistical
methods. In such methods, the Android executable file (with the extension apk), is
decompiled to get the original source code. Due to the Android operating system
being written in Java, it is easy to reverse engineer an apk file to retrieve the source

code. This opens up many opportunities for performing statistical analysis on the

obtained raw data. This also lets a researcher perform various operations on the
source code, and then repackage it back into an apk. In the approach known as
AndroSimilar, Faruki et al. [10] propose a new algorithm known as AndroSimilar, that
takes into consideration various features that are known to be present in malware
alone. The AndroSimiar approach [10], as shown in Figure 2, decompiles an apk file
and repackages it after feature extraction. To extract the features, the algorithm
incorporates apps from the Google Playstore and other third party applications. These
features are normalized and fed into a signature generation engine, that provides a
unique signature for each malware. This is used as reference for detecting future

malware applications.

Malware App

Signatures DB Repackiged AR

from Known Famiby

lele Play Apps

Third Part
Market m..::; Android PacKage Mallclous App f
» (APK] Extract Statistically Maormalize Signature generation Alert iﬂ:::‘; "D :‘::i:
Manifest.xml — Improbable | Features in Bloom e with Statistically K NowWn f-:l uh Al
Classes_dex Features Filter Improbable Featunes . npp:r::lu -
Obfuscated Resounces Faiily
Malware Apps

Figure 2: AndroSimilar

2.2 Conclusion

Malware in mobile devices is no longer a problem confined to labs and research
areas. The rapid increase in access to computers has helped malware writers create
specific, targeted programs that perform with high efficiency and exploit vulnerabilities
in different operating systems. The amount of research being done in malware analysis

and, more specifically, in Android malware, is in the right direction. In the fight

against sophisticated metamorphic malware, it is imperative that the malware detector
is better than the malware creator. In this paper, we have explored various work, that
dealt with the different aspects of malware obfuscation and ways to overcome the
shortcomings in today’s version of malware detectors. The future of malware looks
very bright and it is hoped that the malware detectors of the future will be up to the

task at hand.

CHAPTER 3
Code Obfuscation

Code Obfuscation is a technique by which programmers have deliberately sought
to make the functionality of their code less obvious. This technique has been used
by programmers to achieve various additional objectives. Code obfuscation can
be used to achieve a myraid of objectives. These include prevention of reverse
engineering, protection of intellectual property, and reducing the size of an executable.
In some benign scenarios, an executable is obfuscated to protect the various licensing
mechanisms used in them. Obfuscators are also a good way to restrict unauthorized
access to files by people who might try to use dubious tools to incorporate malicious
code into files.

We will look at the history of code obfuscation to appreciate the relevance of
code obfuscation in today’s software development perspective. With growing interest
in various obfuscation techniques, and the ease of availability of obfuscators dedicated
to different operating systems, this would help us in understanding the rapid growth
in this area and appreciate the urgent need for various countermeasures against this
approach.

3.1 Growth of Obfuscation in Software Development

Code obfuscation has been historically associated with malware development,
than with benign software development. Some of the earliest examples of attempts
at obfuscation in malware can be found in the “Brain Virus” . In this variant of
the malware, the malicious program would display unaffected disk partitions to users
attempting to access partitions that the virus had corrupted. Although the code in
itself was not encrypted, the behavior of the virus shows attempts at hiding its true
usage.

In the same year, the Cascade virus was released to the world. This was an early

variant of malware to use encryption to hide its true purpose. The earliest strains
of obfuscated malware used a simple encryption-decryption routine to perform the
decryption tasks. As the malware detectors of the time were not sophisticated enough
to detect the encrypted part of the code, this simple obfuscation technique enabled a
lot of malware programs to slip away undetected. This is a serious disadvantage in
the design and implementation of malware detectors. We would be exploring more
such flaws with the implementation of malware detectors in this project.

With the advent of advanced malware detectors and improvement in statistical
analysis techniques, the level of obfuscation in malware increased. Polymorphic
malware uses a very high level of encryption technique to obfuscate its contents. A
polymorphic malware changes the encryption in itself and provides very few traces
of a signature. If a malware is truly polymorphic, then there will be no consistency
between any two iterations of the same program and it would be virtually impossible
to detect them using traditional signature matching techniques.

3.2 Malware Detectors

Malware detectors came into existence with the advent of different malicious
programs. Before the rapid growth of the internet, malware detectors were only
capable of performing scans based on signatures of known virus programs. This static
analysis technique meant that new virus would be out in the wild for some time before
the malware definitions of the individual anti virus programs could be updated. With
the introduction of the world wide web, the antivirus industry expanded into dynamic
analysis and cloud based malware detectors. Firewalls, online scanning, and virtual
machines started being increasingly used to identify malware. One major shortfall of
anti virus programs is their inability to detect polymorphic virus. In general, many

antivirus programs employ signature detection for identifying malware. In addition to

10

this most common approach, heuristics based detection and rootkit based detection
are also employed to detect virus programs. Along with these approaches, active
scanning approaches like on-access scanning is also used to detect programs that
might attempt unauthorized operations. We discuss these methods and detection
mechanisms in detail in this chapter.
3.2.1 Signature Based Detection

This is one of the most basic methods of malware detection that is still in use
today. When a new strain of malware is detected in the "wild", antivirus firms
analyze it and extract a "signature" from it. This signature extraction can either
be done manually or by using automated signature detection techniques [11]. Once
a signature is detected, it is updated into various malware definitions of antivirus
software. Although this method is effective against generic malware, it is highly
ineffective against oligomorphic, polymorphic and metamorphic malware. These
are variants of malware that encrypt itself with each iteration. In this project, we
attempt to identify the various factors that contribute to malware detection and their
importance in overcoming the signature detection method.
3.2.2 Heuristics Based Detection

In Heuristics based detection techniques, a single signature or pattern is used
to detect multiple malware belonging to the same family. Such techniques rely on
the fact that multiple malware are created from a single malware. Thus, successfully
creating a signature for a base family will result in the detection of all malware related
to that particular family.
3.2.3 Rootkit Detection

A rootkit is a type of software that attempts to gain administrator privileges

in a system without the knowledge of the user running it. In many cases, the

11

rootkits contain software within them that becomes undetectable to antivirus programs.
Rootkits usually have full administrative access and also have the ability to hide
themselves from the list of running processes. Modern antivirus software scans for
rootkits in specific, to detect them. It is very difficult to remove a rootkit when
compared to other generic malware programs.
3.2.4 On-Access Scanning

In this method, the antivirus program looks out for any threats that might happen
on a real-time basis. The antivirus monitors the system in which it is installed and
looks for suspicious activity whenever the computer’s memory is loaded with fresh
data from the storage disks. This might happen when a USB drive is inserted, an
email attachment is opened or a even when an already existing file is opened by a
user or a program. This type of scanning is more effective as it does not rely solely on

malware definitions to detect viruses.

12

CHAPTER 4

Threats and Defenses in the Android Operating System

Before we dwell deep into code obfuscation in Android, we look at the various
malware detectors for the Android operating system. We also look at the rapid
proliferation of the Android OS and the reason for selecting Android as the focus of
study in this experiment.

4.1 Android Malware Detectors

With the rise of the Android Operating systems, the amount of malware associated
with it has also risen significantly. From a market share of 2.8 % in 2009 [12] , Android
captured about 75% of the market in 2012 [12]. As shown in figure 3 , we can see that
the growth and adoption of Android has been very steep. This rapid proliferation of

Android resulted in an equally rapid rise of Android malware.

Global market share held by the leading smartphone operating
systems in sales to end users from 1st quarter 2009 to 4th quarter
2016

100%

75%

to end users

50%

= % W
gt T ————._

0%

lobal sales

g

Share of

-25%

0Q1Q2Q3Q1Q2Q3Q40Q1Q20Q030Q4Q1Q20Q3040Q010Q2Q3Q401Q203Q40Q1Q2Q3Q4Q1Q2Q3Q4
'09'09'09'10°10°'10'10°11'11'11°11'12°12'12'12°13'13'13°'13'14'14'14°'14°15'15'15'15'16'16°'16'16

== Android =@= i0OS Microsoft =s= RIM Bada* Symbian =#= Other

Source: Additional Information:

Gartner Worldwide; Gartner
Statista 2017

Figure 3: Market Share of mobile operating systems

13

Q 200 400 600 800 1000 1200
1232

INTERNET
READ_PHONE_STAT
ACCESS NETWORK_STATE
WRITE_EXTERNAL_STORAGE

17
1023

ACCESS_WIFI_STATE
READ_SM5
RECEIVE_BOOT_COMPLETED

MACCESS_COARSE_LOCATION
READ_CONTACTS
ACCESS_FINE_LOCATION
WAKE_LOCK|

CALL_PHONE
CHANGE_WIFI_STATE
WRITE_CONTACTS
WRITE_APN_SETTINGS,

RESTART_PACKAGE

(a) Top 20 Permissions Requested By 1260 Malware Samples

0 200 400 600 800 1000 1200
122

INTERNET
ACCESS_NETWORK_STATE 513
WRITE_EXTERNAL_STORAGE

READ_PHONE_STATE
VIBRATE
ACCESS_FINE_LOCATION
ACCESS COARSE_LOCATION|

WAKE_LOCK
RECEWE_BOOT_COMPLETED

ACCESS WIFI_STATE

READ COMTACTS|
GET_TASKS
GET_ACCOUNTS
SET_WALLPAPER
SEND_SMS
WRITE_SETTINGS

CHANGE_WIFI_STATE|

RESTART PACKAGE!

(b) Top 20 Permissions Requested by 1260 Top Free (Benign) Apps on
the Offical Android Market

Figure 4: Top 20 permissions in Android in 2012

With the increase in the number of Android malware being released to the wild,

their level of sophistication also increased. Android malware detectors used the number

of permissions requested by an app to determine its legitimacy. In the schematic

represented in Figure 4, Zhou et al. [13] support the fact that both, benign and

malicious applications, have very similar permission requests. Due to this, using access

requests as a measure for classifying Android applications became ineffective. All

the malware programs plaguing the Android operating system can be classified into

four categories based on the basis of their primary activity [13]. Privilege Escalation,

Remote Control, Monetary Loss, and Information Collection are the various sub

categories under which any Android malware can be classified.

4.1.1 Privilege Escalation

In this type of attack, the malicious app that is installed on a device, attempts

to grant itself additional privileges than the one it requires. This is achieved by using

known exploits in the Android operating system.

14

4.1.2 Remote Control

A very high percentage of malware attempts to use the compromised device as a
remote bot. In some malware families, the remote URL that is being used to control
the device is encrypted. Such encryption makes it very difficult to detect these types
of malware and this will be a primary area of focus in this thesis.
4.1.3 Monetary Loss

A very direct way of monetizing malware is to make unsuspecting users subscribe
to services that cost a lot of money. Such services are run by the malware perpetrators
and will enable them to charge the infected devices’ owners money for services that
they are not aware of. To achieve this, some malware use the remote control to push
down numbers of services to the devices and then enroll them.
4.1.4 Information Collection

Many malware programs attempt to collect the personal information of users.
Such personally identifiable information makes it easy for scamsters to dupe people
using various other schemes. Malware belonging to this family tries to steal personal
information of the compromised device’s owner, as well as the details of people in
their contact lists. This information is then sold through different means to interested
parties.
4.2 Android Malware Detection Limitations

One of the major limitation of malware detection in Android is the limited
processing power of the devices running Android. Due to processing and memory
constraints, generic malware detection has to be restricted to static analysis techniques.
In general, all the existing Android security solutions can be classified into Static

Analysis and Dynamic Analysis [14].

15

4.2.1 Static Analysis

Static Analysis is a technique in which the an application is evaluated for its
trustworthiness by disassembling and checking its source code. The application is
not executed for this analysis. Once an application is marked for scanning, various
statistical analyzing approaches are used to classify the file. Some of the most
commonly used static detection methods are discussed in the next few subsections.
4.2.1.1 Signature Based Detection

Signature based detection is a type of static analysis technique. In this method,
a virus is examined by extracting its signature and then comparing it with signatures
from known malware. The limitation of this technique is that it is incapable of
detecting unknown malware types. The signatures of known malware are stored in
a signature database. In addition to this, the signature database also requires that
it is updated constantly. Without an up-to-date signature database, most of the
prevalent malware could slip through undetected. This is difficult in the case of
Android Malware detectors as the device possess limited memory and it would be
infeasible to store all virus definitions on the device. If the virus definitions were to
be moved to a remote server, it would use up considerable amount of data traffic for
performing the validation. These are some serious limitations that hinder traditional
signature matching techniques.
4.2.1.2 Permission Based Detection

This is a straightforward approach to detecting malware in Android systems. In
this method, the number of permissions an application requires is used to determine
its classification as a malicious or a benign file. Some research has been done in this
area wherein the Android Manifest file is analyzed for extracting information [15]

about the permissions requested by the application. This information is used to assign

16

a score of relevancy to the permissions requested. This score is then compared against
a threshold for determining the malicious intent of an app. There are variations to
this technique and some methods yield better results than the others. This method is
a very quick way of determining the malicious nature of applications. But a serious
limitation of this method is that it does not analyze the source code or the working of
the app. Only the Manifest file is analyzed. A lot of malware apps use permissions
similar to the benign apps. Hence, permissions based detection should be used in
conjuction with a second confirmation method to validate an app.
4.2.2 Dynamic Analysis

In this method, the application is executed and it is analyzed during the runtime.
It becomes very easy to identify sections of code or execution blocks that were missed
during the static analysis of an application. Dynamic analysis methods are also
effective against obfuscation and encryption techniques.
4.2.2.1 Anomaly Based Detection

An application is executed and the system calls generated by it are recorded in a
log. This log is then sent for analysis to a remote server, where the various behavior
of malware are recorded. Using that as a basis, the log files are analyzed, and the
results are aggregated. This result, in collaboration with other techniques are used to
classify the file as malicious or not.
4.2.2.2 Emulation Technique

Yan et al. [16] propose a technique in which a virtual machine is used to analyze
an application. In common virtual machine based detection techniques, the anti-
malware program and the malware execute in the same environment. This makes
them detectable to each other. In the platform presented by Yan et al. [16], the

antimalware, DroidScope, stays out of the execution environment and monitors the

17

execution as a whole. This enables it to detect the malware without being detected

by the malware.

18

CHAPTER 5

Android Obfuscators

In this chapter, we use different obfuscators to modify parts of an android malware.
By systematically obfuscating different parts of the code, we can gain insight into
the parts which contribute most to the detection of malware. Once we have this
information, we can then determine efficient ways to make the malware detectors
more robust and be less resilient to code obfuscators.
5.1 Experiment

For this project, we use a tool called AAMO (Another Android Malware Obfus-
cator) [17]. This tool gives us various obfuscators for use with our experimentations.
The obfuscators can be used independently or in combination with other obfuscators
to increase their effectiveness. Using this tool, we decompile a android file, perform
obfuscation operations on them, and recompile the file again. In this experiment, we
use the source code provided by the developers of AAMO [17] and available at [18].
This tool forms the basis of the work presented in this thesis. The steps involved in

this are detailed below:

1. Obtain an APK file.

2. Decompile the APK file into Smali.

3. Get the list of obfuscators passed into the program.

4. Apply the obfuscators one after the other on the decompiled apk file.
5. Repackage the decompiled file into an APK.

6. Sign the APK file to maintain its integrity.

19

Decompile the APK
(using Apktool)

Get list of
obfuscators from the
user

Apply a obfuscator

All the selected
obfuscators
applied?

Recompile the apk
and sign it.

Figure 5: Experiment flow

Performing the above steps ensures that the apk file is not corrupted and its
usage is not affected. We perform this to make it difficult for a malware detector to
detect the apk file as a malicious one. The entire flow of the experiment is depicted

in Figure 5.

20

As shown in Figure 5, the final encryption would let the malicious file be signed
with a valid signature and thus eliminating any traces of the apk file having been
compromised.

5.1.1 Uses of the obfuscator

Using the obfuscator in this step has various advantages for our experiment. One
of the primary uses is to make the job of the malware detector more difficult. Since
most of the malware detectors do not take into account polymorphic and oligomorphic
malware, using obfuscators will let us know which parts of a malware factor into
the detection score computed by individual detectors. In this experiment, we use 14
obfuscators to test out the resilience of the malware detectors as listed in Table 1.

Table 1: Android Obfuscators

‘ Count ‘ Obfuscator Name ‘

Resigned
Alignment
Rebuild
Fields
Debug
Indirections
Renaming
Reordering
Goto
Arithmetic Branch
Nop

Lib
Manifest
Reflection

—| =
Z| S| oo | o utf k| w| po| =

—_
N}

—
w

—_
S

These obfuscators enable us to test the various aspects of a apk file and help us
determine the ones that are really useful to a malware detector. When a particular

obfuscator is run, it runs a function that is specific to that particular obfuscator and

21

applies that function to all the parameters that match the criteria for that specific
obfuscator. Each of the obfuscator is discussed here in detail.
5.1.1.1 Resigned

This obfuscator decompiles an apk and just resigns the apk file after compilation.
Not much change is done to the application file in itself. The purpose of this obfuscator
is to attempt defeating malware detectors that try to use signatures of certain known
malware sources to classify a malicious file.
5.1.2 Alignment

This obfuscator makes use of the zipalign utility of android. Zipalign is a tool
that is used to provide optimization techniques to APK files. The tool causes all
uncompressed data within the APK to start with a particular alignment relative to the
file’s beginning. The Alignment obfuscator changes this alignment before recompiling
the apk file.
5.1.3 Rebuild

This obfuscator rebuilds the application file without performing any changes. The
unpacking and repackaging of the apk file affects the timestamp, signature of the apk
and other factors that help in identifying the origin of the file. Some smart malware
detectors are able to detect these changes and do not let the file pass through it.
5.1.4 Fields

This is a relatively simple obfuscator that just renames the fields that are used
in the application. This is done after the decompilation of the apk file. The smali is
analyzed for locating the fields that are used in the source code and these are renamed.
5.1.5 Debug

The debug obfuscator removes all information related to debug from the files.

This is performed not only on the smali file, but throughout the source code as well.

22

Without the debug information, the APK file becomes slightly different from the
original file. Removal of the debug information also alters the size of the file and
makes it different.
5.1.6 Indirections

Call indirections is an advanced obfuscation method in which various function
calls are directed through different values. The obfuscator performs operations such
as changing the register count, changing a method call and also redirecting all calls to
the methods. This obfuscation completely changes the control flow of an application
and makes it difficult to detect using a comparison model in dynamic analysis as well.
5.1.7 Renaming

All the variables in the sourcecode are renamed to different values. This is exactly
like using substitutions to hide the original values. Renaming is also advantageous
when certain signature and pattern matches are based on the names of the variables
and functions.
5.1.8 Reordering

Using reordering will let us change the order of the code in the application. The
obfuscator changes the location of certain parts of the code and adjusts the calls to it
accordingly. This makes it possible to evade signature based detection methods if the
signature is based on the order of instructions or if it is based on the DEX opcodes.
5.1.9 Goto

In order to modify the control-flow structure of the application, forward and
backward jumps are inserted into the code. These unconditional jump statements will
be executed irrespective of how the program is run. This widely alters the flow and

will make it very difficult to detect using conventional methods.

23

5.1.10 Arithmetic Branch

A constant value, known to the obfuscator, is used to achieve this obfuscation.
This constant value is not known to the compiler. Using this constant value, the
obfuscator is able to control the flow of execution of the program. The compiler
assumes that either of the branches could be possible as the value for deciding the flow
of control is not known. This is applied to methods with more than 2 parameters.
5.1.11 Nop

This is a classical and an easy way to obfuscate a program. In this, a "no-operation
instruction” (known as a "NOP") is inserted into the source code. The number of
such instructions inserted is randomized. These are inserted into methods to make
them bloated and delay the execution time.
5.1.12 Lib

MD5 hashing is used to rename the file and path names. A proxy method is
created and used to handle the decryption of the values, when it is required by the
system.
5.1.13 Manifest

The AndroidManifest.xml file is modified by this obfuscator. The manifest file
contains important information related to the application’s usage and permissions.
This obfuscator opens up the file and encrypts the values for the resources and also
replaces the characters in user defined identifiers.
5.1.14 Reflection

This obfuscator acts similar to the code reodering obfuscator. The reflection
obfuscator takes advantage of the Android dynamic code loading API. All the static
method calls are converted into reflection calls and the the reflect method is invoked

on a string that contains the target method’s name.

24

CHAPTER 6

Experiment
6.1 Environment Setup

Due to the various different types of software used in the experiment, it is
important to have the correct version of each software installed. As shown in Figure 5,
each APK will have to be decompiled into its source code, before going through the
obfuscation process. To achieve this, we use a program called apktool[19]. A list of
various software and their versions are listed in Table 2.

Table 2: List of software required and their versions.

Number | Software Version
1 Java 1.8.0_45
2 Python 2.7.11
3 Apktool 2.2.1

The given applications are interdependent on each other for this experiment. The
AAMO framework is written in Python and uses various Python libraries to execute.
The decompilation of the APK files is achieved using the Apktool. Apktool requires
a java virtual machine to execute. It is imperative that this version of Apktool be
maintained for repeating the experiments presented in this work as the source code of
AAMO has been modified to fit this version of the tool.

6.2 Dataset and Malware Detectors

In order to successfully evaluate and analyze the malware detectors various
experiments were performed using known Android malware. Once the android malware
were finalized, the obfuscators were chosen to increase the difficulty of malware
detection. A sampling was performed with a handful of malware. Using this sampling,

the obfuscators to be applied were selected and then applied to a wider dataset. The

25

Detection Ratio for Angry Birds APK

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 I
0
& & & & & &
G\;&% o Q‘@&- \{\t_sé* Q_-E:‘ Q.“i‘@& Q‘ é&{\‘:\ @,bo chp '@‘L@
Q;\'?.- :';\

Figure 6: Sampling Results

results of this sampling are shown in Figure 6. In Figure 6, a sample file, **Angry Birds”’,
was used to test the effect of the various obfuscators. This file, a malicious version of
the popular game, is a Trojan variant that steals the contact information, and has
the ability to send text messages without the user’s permission. Before applying any
obfuscator, the file had a detection ratio of 0.819. When we apply the obfuscators,
the detection ratio drops steadily. In Figure 6, the z-axis represents the different
obfuscators that were used. We can see that the detection ratio almost remains
constant for all the obfuscators, except for the manifest and reorder obfuscators. The
functioning of these obfuscators are defined in chapter 5. This hints at the fact that
many malware detectors just perform an analysis on the AndroidManifest.xml file to
classify the file as a malware. Due to this, when the manifest obfuscator is applied,
the detection ratio drops. When we apply all the obfuscators on the file, the detection
ratio drops significantly. This is shown in the Figure 6’s ‘allObfuscation’ bar.

It can be seen from the results that only some obfuscators contribute effectively

to hindering the detection ratio of malware obfuscators.

26

6.3 Dataset

The Contagio dataset was used to perform the various experiments in this
project [20]. All the samples used for experimentation are malicious files. The files
were classified as malicious by various means and the contagio data dump also certifies
the files as being malware.
6.3.1 Malware Files Selection

Known malicious files were used for performing the experiments in this project.
The reason for using malware for the experiments was to understand how each
obfuscator would help the malware in evading detection by malware detector. All the
test samples were caught by at least one of the malware detectors and many of the
samples were incorrectly classified as benign files, once the obfuscation was complete.
6.3.2 Other Datasets

Previously, experiments have been performed on malicious files belonging to other
datasets. Before we delve into the results of the experiment performed in this work,
we look at how obfuscators affect the detection ratio of various malware detectors.
6.4 Malware Detectors against Code Obfuscation

A single malware detector is unlikely to give us a substantial result. This is
because various malware detectors use different techniques for analyzing malware. If
a single malware detector were to be used as a benchmark, then we would either get
excellent detection scores or the malware detector would fail in a very poor way. To
overcome this shortcoming, a single obfuscated file is scanned by several malware
detectors simultaneously. Instead of manually uploading the files to different malware

detectors, we make use of VirusTotal [21] and other similar virus scanning providers.

27

CHAPTER 7
Results of Experiments
The various obfuscators defined earlier were iteratively applied to malware
samples from the Contagio dataset. Based on the results obtained from VirusTotal,
the obfuscators were selected for further application.
7.1 Observations
The VirusTotal website uploads a malware file to its database and then performs
a scan using the various malware detectors associated with the website. Each uploaded
file is hashed and stored in the database to reduce duplicate efforts and minimize scan
times. Due to this behavior, each time a file is loaded into the website to be scanned,
the website will prompt if a similar file was scanned earlier. It was observed that as
the number of obfuscators employed increased, the similarity between the obfuscated
and un-obfuscated applications decreased. If more than 2 certain obfuscators were
applied, the VirusTotal website would not recognize the file as a previously recognized
file. This observation was consistent throughout the different experiments conducted.
7.2 Steps for Analyzing Malware Detectors
The experiment was performed with certain operations being repeated in an
iterative manner. The obfuscated malware files were prepared in advance. The steps
are as follows:
e Scan a malicious file using VirusTotal.
e Record the detection ratio.
e Apply obfuscator(s) on the selected malware file.
e Scan the obfuscated file using VirusTotal again.
e Record the new detection ratio.
Repeating the above steps helped us detect how robust and efficient malware

detectors are. Ideally, the malware detector should not be affected by the obfuscators.

28

The detection ratio should not be very different irrespective of whether the malware
was obfsucated or not.

But the results indicated that almost all the malware files had a very high
probability of being classified as a benign file, if they had sufficient obfuscation
techniques applied to them.

7.2.1 Metrics used

We use the detection ratio provided by VirusTotal to determine the effectiveness
of the Malware Obfuscators. As expected, the malware detectors are not resilient
enough to detect variants of malware that have been slightly obfuscated.

7.3 Obfuscation of Malware Samples

The results for applying each obfuscator were collected and only the significant
results are shown here. In addition to gathering the results for an individual obfuscator,
we also get the results for the individual malware detectors. A comparison of their
behavior is also presented here.

7.3.1 Individual Obfuscators

Application of individual obfuscators did not alter the detection ratio by a huge
margin. A sample detection ratio for applying the "Renaming" obfuscator is shown
in Figure 7. As part of this experiment, 289 files were obfuscated and run through
the malware detectors. In Figure 7, the malware samples are represented on the
x-azis as alphabetic symbols. The mapping for the malware file to symbols is shown
in Appendix B. The graph shows that the average detection ratio for the renaming
obfuscator is 0.46. The average detection ratio is represented by a red line in the
graph. While there are some occasional spikes in the detection rate, that seems to be
the exception with a very few files being consistently classified as a malware.

The results for the obfuscator "Manifest" are shown in Figure 8.The detection

29

Renaming Detection Ratio

Zo2 &) Py = == 0o
mmméug [ala] A A [

08
07
06

0.5
|

0
=~K=~t

=1
I

=]
w

=]
ra

=]
[

CEE e W

O’
a}

Figure 7: Single Obfuscator Usage - Renaming. Average: 0.46

HC
HO
M
5
Y
E
K
a
W

ratio for this obfuscator is also lesser than for a normal malware. But with applying
this obfuscator, the detection ratio is further reduced. The average detection ratio in
this case is 0.3867. This shows that the manifest obfuscator contributes more to the
detection rate. We repeat this experiment for different obfuscators to get record their
detection scores. These are included in appendix C.
7.3.1.1 Multiple Obfuscators

While individual obfuscators didn’t provide much insight into the malware
detection scores, it was observed that combining multiple obfsucators quickly decreased
the detection ratio.

In Figure 9, the obfuscators Renaming, Reordering, Goto, and Arithmetic Branch-
ing were applied to the files.

This certainly increased the obscurity of the malware files. The detection ratio
for the obfuscated files in Figure 9 is much lesser than in Figure 7. This could be

attributed to the fact that a combination of weak obfuscators is still a strong enough

30

Manifest Detecton Ratio

Figure 8: Single Obfuscator Usage - Manifest. Average: 0.3867

0.8
07
06
05

04 ‘

03

02
) ‘ ‘ ‘ ‘
o

wow o ~Now E =0z []
= PMNYL25 %83 EEEYE5ES

oL

L oMo oo o ow W

ol
DB
DG
L)\."
A
F
K
P
u
z
E
]
FO
FT
FY
GD
Gl
Gn
G5

Four Obfuscators

@

Figure 9: Detection Ratios with four obfuscators applied. Average:0.403457

09
08
07
0.6

05

0.4
0 ‘

< L o= o2
= 38532388z 0

=]
w

=3
M

=
[

w2 5
a @

challenge for malware detectors. We also note that, with a average of 0.4034, this is
only marginally better than the performance of a single manifest obfuscator as shown
in Figure 8. This further reiterates the significance of selecting the right obfuscator
rather than a combination of different obfuscators.
7.3.1.2 All Obfsucators

To make the results of the experiment certain, all the obfuscators in question

were applied to a set of files. Keeping up with the consistency observed so far, the

31

Detection Ratio for All Obfuscators

0.3
ﬂ\\\‘ ‘ ‘ I

e Griae IR o i = v
ez 9385823830 :\3%‘%4“93‘}; “Ngg zoz=cze dz °=ﬂ°z

———————

Figure 10: Pre- and Post-Obfuscation Results. Average: 0.219044

detection ratio dropped by a huge margin. This can be observed in Figure 10. The
results show a average detection rate of 0.21. This is extremely low when compared
to the results obtained before any obfuscation was applied as seen in Figure 6.

This clearly shows that by increasing the number of obfuscators being applied to
a malware, we can bring down the detection ratio of that particular file to a very low
value.
7.3.1.3 Average Ratio and Summarization

To conclude the experiments, the average detection ratio was calculated for each
obfuscator and the combination of obfuscators. The results of this calculation are
shown in Figure 11.

We observe a decline in the detection ratio for the different obfuscators. The
average detection rate drops steeply when all obfuscators are combined. This is
consistent with the results obtained so far in the experiment. The presence of the
manifest obfuscator after the result of the combined four obfuscators in Figure 11
shows the importance of selecting the right obfuscator for defeating the malware

detectors.

32

Average Detection Ratio

0.484140249

0.469489208

0.401335718

e
=
m
o
S o
o
2
Z 04 0.504373623 T
u

a

@

g0

m

o

a .

> U

<

Obfuscator Used

Figure 11: Average Detection Ratio for Different Obfuscators

7.3.2 Individual Malware Detectors

We now analyze behavior of the individual malware detectors and look at their
performance against code obfuscation. To achieve this, we perform the same experi-
ments as before and gather the detection statistics for each malware detector. This
analysis will let us understand the workings of a particular malware detector and help
us identify the best detector for Android. Once we have that information, we will

know the best way to defeat obfuscation in malicious programs.

The detection rates for the AVG Antivirus are shown in Figure 12. From the
figure, we can see that this Antivirus behaves in a manner that is consistent with
the observations so far. The detection rates for AVG Antivirus are in line with the
collective detection rates obtained for all the malware detectors. AVG performs very
poorly only against the manifest obfuscator. In addition to this, the only other instance
when this malware detector fares poorly is when all the obfuscators are combined.

Similar to the detection rates observed for the AVG antivirus, we look at the
detection rates for the BitDefender, and the TrendMicro antivirus as well. The

performance of the BitDefender Antivirus is showing in Figure 13.

33

AVG

12

Detection Ratio
=] o= o o
=] a S o =]
% I

O
& 8 o

& o
K 8 s {\ef?' [s)
é\% q.:? ¢ & é@(\
o :

Obfuscator

5

DETECTION RATIO

[s) &
W “\\ A o
& - & @

Figure 12: Detection Ratio for AVG Antivirus
BIT DEFENDER
?"{’ = al A N s
N & ! 5 \é‘ * o ?C"

= g 5 5 5 o i .
=} = = = o P= = =
@ .] & Q "]] N] o
e = o < 0\\; f}é qu
% =
Q‘H
~
¥ &

OBFUSCATOR
Figure 13: Detection Ratio for the BitDefender Antivirus
The BitDefender Antivirus program behaves in a manner that is consistent with
the results obtained for all the malware detectors in general. The difference observed

with AVG antivirus is not seen with BitDefender. However, it can be seen that the

BitDefender antivirus still fails against the combination of all the obfuscators.

34

Trend Micro

Detection Ratio

A& 52} ¥
& & # & & d
L @ &
o o

0.1
: I AR
& S0 s

Obfuscator

Figure 14: Detection Ratio for the TrendMicro Antivirus

The TrendMicro Antivirus performs well only against unobfuscated malware samples,
as seen in Figure 14. The performance of this antivirus is consistently poor across all
the obfuscators. We can surmise that the algorithm being employed by the TrendMicro
antivirus is not very effective against obfuscated Android malware.

It is safe to conclude that the detection algorithms of AVG and BitDefender
are much more efficient against obfuscated malware, than the algorithm used by the

TrendMicro program.

35

CHAPTER 8

Conclusion and Future Work

From the results obtained in this experiment it is evident that the malware detectors
of today are incapable of handling code obfuscation in android malware. This problem
presents a huge gap in the domain of Android Anit-Virus products. The first step in
building a robust malware detector for the Android operating system is to identify the
flaws in the current implementation of the malware detectors. To be able to identify
truly polymorphic malware, the anti virus programs need to be able to defeat the
different types of obfuscators and their combinations. From this experiment, it is
evident that the current malware detectors can be easily defeated and the only true
defense against mobile malware is at the point of installation.

8.1 Conclusion

Due to the limited processing capacity of the mobile devices, it is imperative that
stand alone malware detectors are able to sufficiently defend against known threats
and variants of known malware that are detectable by signature scanning. In this
experiment, we used different obfuscators to test the resilience of malware detectors
against obfuscated malware. Unsurprisingly, the malware detectors fared very poorly

against such obfuscation techniques.

We also observed that by applying all the obfuscators, it is becomes a trivial task
to defeat a very large number of obfuscators. While certain obfuscators, such as
the Lib obfuscator (explained in chapter 5 and results included in appendix C), do
not contribute much to the detection mechanism, some other obfuscators contribute
heavily to the detection algorithm. From the experiments, it is evident that the
manifest obfuscator, as shown in Figure 8, contributes the most to the malware

classification algorithm in most of the malware detectors. The importance of this

36

sionCode="1" ns@:

on. SEND_

com.elite">

MM A A A A A A A A A A

Figure 16: Part of a normal Manifest file

obfuscator can be gauged from the fact that this obfuscator gave better results than
the combination of four other combined obfuscators 9. A part of an obfuscated sample
manifest file is shown in Figure 15. A normal, unobfuscated sample of the same
manifest file is shown in Figure 16. As can be observed, a simple switching of the
values in the manifest file is enough to defeat the malware detectors. This leads to
the conclusion that the selection of the obfuscators to use could greatly determine the

detection chances for a malicious file.

Irrespective of the contribution of an individual obfuscator, combining the maximum
number of obfuscators leads to significantly lower detection rates. Therefore, the
higher the number of obfuscations employed, the lower the chance for a malware
getting detected. The current generation of malware detectors are incapable of
handling encryption in the body of malware. This experiment reiterates this fact and

supports the conclusions drawn by Preda et al. in [17]. The conclusions drawn by

37

them indicating a huge gap in the requirement and the availability of sophisticated
anti-virus products is still very much prevalent.
8.2 Future Work

Similar to the obfuscators employed in this experiment, it should be possible to
create ‘‘de-obfuscators’ for Android files. It would be interesting to see the effect of
each de-obfuscator against the corresponding obfuscator that has been used here. If
employing such a de-obfuscator helps in thwarting the obfuscation, then it could form
the basis for developing more generic de-obfuscation algorithms for incorporation into
malware detectors. As was evident from the experiment, the selection of the right
obfuscator could greatly influence the detection rate. This proves that the majority
of the malware detectors place too much of significance on one aspect of a file, for
classifying it. This shortcoming with the malware detectors for Android should be

taken care of.

The detection mechanism employed in this experiment was employed various
statistical methods. The experiment could be repeated with different datasets and
with different dynamic detection methods. If dynamic detection mechanisms are able
to defeat the obfuscators, they could be used to accumulate data over a large set of
samples to create a library of known malware. This library could then be utilized
by malware detectors that have very less processing power for performing dynamic
analysis. The ease of decompiling and compiling APK files makes it an easy target
for malware writers. If access to the source code of antivirus products are provided,
defense mechanisms against such obfuscation techniques can be built in. With our
increasing dependence on mobile phones and their proliferation into our lives, it is of
utmost importance that sophisticated malware detectors are able to handle obfuscated

malware.

38

With these conclusions, we hope to make future malware detectors more resilient
against polymorphic virus with the expectation that the creators of the anti virus

software incorporate the necessary changes to their programs.

39

LIST OF REFERENCES

[1] D.Emm, R.Unuchek, M.Garnaeva, A.Ivanov, D.Makrushin, and F.Sinitsyn, ‘It
threat evolution in g2 2016,” 2016, accessed 2016-10-10.

[2] A.Apvrille and R.Nigam, “Obfuscation in android malware, and how to fight
back,” Virus Bulletin, pp. 1--10, 2014.

[3] M.Christodorescu and S.Jha, “Testing malware detectors,” in ACM SIGSOFT
international symposium on Software testing and analysis, New York, NY, USA,
2004, pp. 34--44.

[4] S. Gordon and R. Ford, ‘“Real world anti-virus product reviews and evaluations--
the current state of affairs,”” in Proceedings of the 1996 National Information
Systems Security Conference, 1996.

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang, “On the (im) possibility of obfuscating programs,” in Annual Interna-
tional Cryptology Conference. Springer, 2001, pp. 1--18.

[6] V. Rastogi, Y. Chen, and X. Jiang, ‘“‘Droidchameleon: evaluating android anti-
malware against transformation attacks,” in Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security. ACM, 2013,
pp. 329--334.

[7] Google, ‘“Android security 2014 year in review,” https://source.android.com/
security /reports/Google Android Security 2014 Report Final.pdf, accessed
2016-12-01.

[8] S. Rasthofer, I. Asrar, S. Huber, and E. Bodden, “An investigation of the
android /badaccents malware which exploits a new android tapjacking attack,”
Technical report, TU Darmstadt, Fraunhofer SIT and McAfee Mobile Research,
Tech. Rep., 2015.

[9] Q. A. Chen, Z. Qian, and Z. M. Mao, ‘‘Pecking into your app without actually
seeing it: Ui state inference and novel android attacks,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 1037--1052.

[10] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, ‘“Androsimilar:
robust statistical feature signature for android malware detection,” in Proceedings

of the 6th International Conference on Security of Information and Networks.
ACM, 2013, pp. 152--159.

[11] K. Ask, ‘“‘Automatic malware signature generation,” Ph.D. dissertation, 2006.

40

https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21]

Statista, ““Global mobile os market share in sales to end users from 1st quarter
2009 to 1st quarter 2016,” https://www.statista.com /statistics/266136/global-
market-share-held-by-smartphone-operating-systems/, accessed 2016-12-01.

Y. Zhou and X. Jiang, ‘“‘Dissecting android malware: Characterization and
evolution,” in 2012 IEEE Symposium on Security and Privacy, May 2012, pp.
95--109.

S. Arshad, M. A. Shah, A. Khan, and M. Ahmed, ‘‘Android malware detection &
protection: a survey,” Int. J. Adv. Comput. Sci. Appl, vol. 7, no. 2, pp. 463--475,
2016.

R. Sato, D. Chiba, and S. Goto, ‘“‘Detecting android malware by analyzing
manifest files,” Proceedings of the Asia-Pacific Advanced Network, vol. 36, no.
23-31, p. 17, 2013.

L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis.” in USENIX security
symposium, 2012, pp. 569--584.

M. D. Preda and F. Maggi, ‘“Testing android malware detectors against code
obfuscation: a systematization of knowledge and unified methodology,” Journal
of Computer Virology and Hacking Techniques, pp. 1--24, 2016. [Online|.
Available: http://dx.doi.org/10.1007/s11416-016-0282-2

F. Pellegatta, F. Maggi, and M. D. Preda, ‘““Aamo: Another android malware
obfuscator,” https://github.com/necst/aamo, accessed 2017-02-17.

R. Wisniewski and C. Tumbleson, ‘“Apktool,” https://ibotpeaches.github.io/
Apktool/, accessed 2016-10-26.

“Contagio mobile malware mini dump,”” http://contagiominidump.blogspot.com/,
accessed 2016-12-15.

“Virus total,” https://www.virustotal.com, accessed 2017-04-15.

41

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://dx.doi.org/10.1007/s11416-016-0282-2
https://github.com/necst/aamo
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
http:// contagiominidump.blogspot.com/
https://www.virustotal.com

Al

APPENDIX A

Appendix 1
Abbreviations and Terminologies Used

APK - A file format used for installing applications on the Android operating
system.
AAMO - Short for Another Android Malware Obfuscator - A program for
applying obfuscators to android files.
Obfuscator - A small program that scrambles the source code of a program to
make its functions less obvious.
Apktool - A program that is used to decompile and compile APK files.
Smali -

1. An assembler/disassemble for the dex format used by Android’s virtual
operating system.

2. An intermediate file type between compiled dex code and java source

code.

42

APPENDIX B

Appendix 2

B.1 Malware File to Symbol Mapping

-
&

o
e

Filename

00d430877eed07d10cle730926dcca9df82{282af

00e74c118fa3902e5c85fdRe37{3d084

08061663E638B5ACID7S80CAACBEIFADS 1074178 370436 GlamorousS

moke

Ocbcetbebfb33fde66c¢282fec0248b0d99a829¢eab

0cc2¢8461¢78394b186a599¢2d5baad364fb41c7

0D28FA54F9C0D41801ES8FB5ATB0433DD

0e8236ddb163e7£3816ctef38H92c6e064887h3f

0ef158¢897f91a58aa2a13d25c¢d3019bc19b9954

11A7767BFE4926458 C84385214B82C9

1485F498084F963801ED76013749C9F A

153¢94a6d464497b07flea3511b87206a3621efd

156790b2ef37080cdc301324fa3f5a28d4¢c310d3

1F68ADDF38F63FES821B237TBC7TBAABB3D [Banking Chase

232e08bda4856b56e06a45ac5c27350fb30ddtHe

2C3B92FFE8123611AE9DIBEDO00CI99F7T 1074807 371216 3dtimeclockt

icks

2D66D7942148DE2D9F08EAB403921C89

314d66e71040b36bat3ad5a376647dd63ect3adc

3E076979644672A0EF750A4C3226F553 assassins _creed

4021A1E00B3ABEET730994F1EE17219B4

4084939A0864B645F6C6A915586FB1AB com.gmded.pic 1345165918398

40F3F16742CDS8AC8598BF859A23AC290

S<|CHR=O|T O | ZZEAETIEQEED aQ |m e

4A300481411AB1992467959491DF412C

4D13D1BC63026B9C26C7CD4946B1BAE(O _com.bntsxdn.pic

X 4d3al1a769255402be23ae5e6b3445d79b7h4b702

Y 4e80480daf4ab573121d839¢2¢74ccR45945be38

7Z 4FD1194F8127439609319CDBE244C0A7 1074349 370686 BlueArt
AA 55d716895ea0934c4a91ele2cfbd682dec30ch2f

AB 55e2a4d0d&89bc70e84159385ed9f078¢5d7d9947

AC 561b37c04e92eladaadbc51138c787863408a014

AD 564431a34d65836481741ed83d6cb21c9a9bb7ba

AE 56b70b6d31dc3315cdd3b44841612¢2704alab25

AF 574e59a377b696c4bdfb83d4bef5478891c000e0

43

AG

57e8901381a4e9de94b26£458499c49051b19af2

AH 57f21111f6da9fh9al8af88dff688e59e8e24156
A 58ET73A03025BA95337C952223F18F479 1074703 371102 lordssacredheav

I

enlycross

Al 598df80d1d5279e3204ef023dd4dbbe08be6bbd9
AK 5a37e9dd95ffaaac0c29197d2b45fd2atdf77f05
AL 5af738a737ce7ab4005505ab9ca43b08d4e3b503
AM 5¢325¢70250cbd294faedcb321b3d8d39f1cled3
AN 5¢53¢9e54294250c0318¢35086523449fa917f5¢
AO 5c¢d906b76alc15373bc7aled0d24ef69f84b2c28
AP 5cddd66585b0dff93celecc6d8680e83c61e5b3
AQ 5d42e63a02548c¢15801c2dabb16¢chctb33c4230b
AR 5e9adelbb7fb4c94bceefdcd2afb4bddaflflc34
AS 5f0b8bb59061451a5e45241858¢3f8ac62569371
AT 5f0ba094e83ee321b331a3acd7252ae92b4d5734
AU 5fdebh3d86a949d73ddbf721640733917dc300d41
AV 60761527bdec07e7ctbic35c8aaccf4de7617649
AW 60b1c98fc6ca2b86fbd7¢772dc08a73e
AX 60b4ef7037cabaddleeTe3c35c8e27d7
AY 6107f126bcd78b628{80e4531998c4b9444ca77
AZ 613398fef32a47a195ae493c8e635ceabbidfchd
BA 6214285ed81d3209d4947efe3a2291034877d417
BB 6260c6bad4308c0c4610468784b055ad69fa1095
BC 62bf7ab29610d47737ce01b9bechf4t56651e367
BD 62{6d3b57f0bceabb9edebff7d67b4alfb7ece7d
BE 634283bceabd075b157b76a5{88d23cee733fch7
BF 63616bbed2253761c3e9aad7bclbbal743ac9abt
BG 637d93c7c4d63bbc5d292¢24a4a3ddff0f89cb99
BH 6386ea80441002cbfd69fd8ab74b7921d4378abb
BI 63e46¢5c180d9b83a5866e770df00cadcc746e6a
BJ 63£c9581928251540df5a811eb20b9024065fcc9
BK 6414962b8bdc09247d92c¢1317a3elaa31a973de2
BL 64a8beb53cd05c¢4ac08738di819f231fc16b4dbbe
BM 65324abd9¢ceb8166487d756f474c04ab618b5¢30
BN 654d374dal4a9edb95{85651be60e1888f237h98
BO 6594767af663113e6c46d2a3edebd87ecld034ee
BP 6599cffb03d95b07dafe8e1be726b160d7541c¢33
BQ 65d40b7b0e9edabd5a209f3d34ed93357289dafe
BR 65{66e7b862db8¢23074dalc2fe697d594calcde

44

BS

661ccl12£341af0120fbe74b33a8bc4863cae37b9

BT 667a3d0763101b1494c981fbdb9f6f18a41ecabe
BU 669141369d3bfab6439e7fb6ef01a4a36e08729¢
BV 6726709al6a54d457a8d4da73ccd5be5295d 7168
BW 676d73270dfd198a8d7867e1df243dbb9b0el02e
BX 69B9691A8274A17CDC22E9681B3E1CT74

BY 69bed97da755a8259af5cdedadac0c9de67a81e2
BZ 6a6176fc043b821b1ceb48425f2bce9c1f3abehs
CA 6b26dd8548bad85e2b4bbf2650dc3¢c5879abc029
CB 6BAE149BC65576831AC635A23938BE36 smartphoneb-1
CcC 6bb6b3143790f0870f39e80cd3d6bd78fb3a9a57
CD 6¢0b900al7faf11d9efc68951b2d04fdb180bfe8
CE 6¢13a35958619¢cab20f2bcIb4fd8294e61e6e852
CF 6¢c93ef2106647eb9e9322de5d106ae9df6146277
CG 6d02439¢416349545211e382bc0f27b2383123f1
CH 6d43b3bc85770fafeb598eb5297be341

CI 6d6b779ea0b3d31c¢9453db8268b1e85463fed 725
CJ 6db96e8a52382fa6{2d3220b592d7ae92f1d78f2
CK 6dba2c4cc420d3¢43067cd0f8a86e1718f9639¢ch
CL 6dbef6bf711¢74227550daba033a0aedcdclcleb
CM 727a33c¢78e4329%e5e1586a13ee867132790e436
CN 737395cf1becbe23531fb109b4a8eele8cce26b4
CO 73ft558ea62c0835761eced6b292cc930728¢f43
CP 74333980aebbafch25a9031fb46275435cdbba2e
CQ 7491f6£09b3b6de044ddadf447860b7{d63d8672
CR 74d9dcbha2c95e9¢eaal80ec11a32d9b109794474b
CS 75459a5009bf08067alelbeede2992¢23e00433¢
CT 75£31fe1a07986080b6a6f4cd2d9347cc72201b4
CU 761c6c36d81cledd9e0645447a4e638d7d88356¢
CV 766a65fe6d1e4bed4551d7d30a1b4539119991e0e
CwW 7613739¢16fb978cafdedebfacl105dc8a94731ab
CX 780b5f7c07ab98de7d8d07eed781973a415ebebHd
CY 780d5124b448249d948a60b43775a424634024ac
CZ 7828066¢4804b6364a6f55b6aff3b6578992a9d99
DA 792BBB3DDC46E3D0E640D32977434ACA
DB 7c0e0blca01e97c¢2f0d043eb0aabe61cac621617
DC 857ee29d88796e1f1b7b440dc9eadc77

DD 88870ad3c7bd42cfeld728b4adcccl104

DE 8D52070201F2A81FB1298E133D74057C

DF 8d574d94ba9445979723cfc810637fd84d4c06el

45

DG 8F7A41A921FC15F4FD47A33E476D7B3B 1074179 370437 SkullLighter
DH 9CIAFD6B77TD8D3A66A2DB2D2CF0B94B3
DI 9d1625aa79b55a79064dac7alecc2{91
DJ A31245022C60FC50B81F7TFFC4F4967B2 com.hxmv696.pic
DK A4D6033F66DA3BES3CBF80724CA013D1
DL Activator
DM alfasafe
DN Alsalah
DO Android.Beita__com.beita.contact 10953B741D166D9E22937FEO0FBF1038
DP Android.Core.Defender
DQ android.dds.com-STiNiTER
DR Android.Hehe 1CAA31272DAABB43180E07T9BCA5E23C1
DS Angry BirdTransformers 1.1.0
DT apk
DU atticlab.bodyscanner
BOE22A785041229A644F015472E738BA 1074810 371221 ghostiderfirefla
DV
messremixFAMOUS3DAPPS
DW B2B7D5999DCE0559D13AB06D30C2C6EC
DX B6CACCOCF7TBAD179D6BDE6GSF5CO13EGE xqxmn18
DY B8B434AB21D394DAA0A9AT8A515BD517
DZ b9622e587ae28cfft8fc5645221e422
EA BlackList Pro v2.8
EB btm
EC c1f9283b7ad8457160d3¢189430f2¢75
ED c2dfe44d9f130033ecd89ba33f8a2e0a
EE C424F9AD311F3B55F8DB5DABF6985856 Accutrack
EF C71740EE94467AE7T0A71265116D54186 com.zqbb1221.pic
EG ¢85d37585dbe2ad77572d9a27165ed63¢9c8685e
EH caa04deff90081fd4b0b441b9bf16edeb05{52ee
EI CAFFFDEE7479A8816F4551AC8C3A0178
EJ carddeemamaAndroid
EK CCCO01FD6D875BI95E2AF5F270AAF8ER42.576BIB86
EL cceladbbbfee30883eadddca8312109691116¢cba
CETB9B2242A71BBEAC0B2839B1063013 1074139 370393 NoiseDetecto
EM
rNonG
EN cenix.android.vbr
EO CFB7E66B2FB605CC94DEBD01238B4995
EP ch.smalltech.ledflashlight.free

46

EQ

com.adobe.air

ER com.adobe.flashplayer

ES com.adobe.reader

ET com.advancedprocessmanager

EU com.alioth.imdevil jp.DevilsCreed.full 1.8 installer
EV com.android.googledalvik

EW com.android.googlekernel

EX com.android.installer.full

EY com.android.locker

EZ com.android.Materialflow

FA com.anglefish.livewallpaper.hotchick1
FB com.antivirus

FC com software.compass

FD com.app.lotte.auth-1

FE com.appspot.swisscodemonkeys.jokes
FF com.appspot.swisscodemonkeys.paintfx
FG com.atools.cuttherope-LeNa.b

FH com.bb.iphone

FI com.biggu.shopsavvy

FJ com.c101421042723

FK com.cootek.smartinputvd

FL com.devuni.flashlight

FM com.droidmojo.awesomejokes

FN com.dropbox.android

FO com.ebay.mobile

FP com.estrongs.android.pop

FQ com.evernote.skitch

FR com.facebook.katana

FS com.facebook.orca

FT com.fdhgkjhrtjkjbx.model

FU com.fede.launcher

FV com.gau.go.launcherex

FW com.gau.go.launcherex.gowidget.taskmanager
FX com.gau.go.launcherex.theme.iphoneazooz
FY com.google.android.apps.maps

F7Z com.google.android.apps.plus

GA com.google.android.apps.translate

GB com.google.android.stardroid

GC com.google.android.street

GD com.google.android.voicesearch

47

GE

com.google.android.youtube

GF com.google.earth

GG com.google.zxing.client.android

GH com.hm

GI com.icq.mobile.client

GJ com.incredibleapp.wallpapershd
GK com.intsig.camscanner

GL com.jb.gosms

GM com.jiubang.goscreenlock

GN com.lovekamasutra.ikamasutralite
GO com.metago.astro

GP com.movieshow.down

GQ com.mxtech.videoplayer.ad

GR com.netbiscuits.kicker

GS com.nnew.GTAHDBackground

GT com.opera.browser

GU com.opera.mini.android

GV com.outfit7.talkingben

GW com.outfit7.talkinggina

GX com.outfit7.talkingsantafree

GY com.outfit7.talkingtom

GZ com.parental.control.v4

HA com.piviandco.fatbooth

HB com.qq.assistant

HC com.rechild.advancedtaskkiller

HD com.saavn.android

HE com.sancronringtones.funnysmssb
HF com.security.patch

HG com.skype.raider

HH com.splunchy.android.alarmclock
HI com.starfinanz.smob.android.sfinanzstatus
HJ com.stephbriggsb.batteryimprove-2
HK com.stylem.wallpapers

HL com.teamviewer.teamviewer.market.mobile
HM _com.tebs3.cuttherope 6 1.1.5
HN com.viber.voip

HO com.vlcdirect.vledirect

HP com.vlingo.client

HQ com.VoiceChange.VoiceChangell.-1.4
HR com.watchtv

48

HS

com.wetter.androidclient

HT com.whatsapp

HU com.whatsapp.wallpaper

HV copy9 23

HW ctm

Hx D67AO0TE3DES8C0130420588FD158B967 1074808 371217 eyeseeyouSA
MSUNG

HY d
DE5SBFA8715DAC2E29E206C19CA98F2F4 1074141 370394 JingleBellN

HZ
onG

IA de.blitzer

IB de.cellular.tagesschau

IC de.dasoertliche.android

ID de.frauentausch.andreas

IE de.hafas.android.db

IF de.is24.android

IG de.kaufda.android

IH de.mehrmannd.sdbooster-GAMEX

II de.spiegel.android.app.spon

1J de.tvspielfilm

IK de.web.mobile.android.mail

IL de.wutprobe211.de

IM dtm

IN E1B86054468D6AC1274183C0CH579CCAF iBanking

10 E8063DE12976D371441F15F2C5715627

IP e8237ah83fe7h2362b4addf01518600b

1Q Extension.2nd.stage

IR F05839EB7156B434A893BBEDDB68ADSS

IS FO6AF629D33F17938849F822930AE428 iBanking ing

IT F1AA24C1641471F5FBEFO0SAE56A53FB4

U F1BC8520754D2AC4A920B3EF5C732380 iBanking bot

v F836F5C6267F13BFIF6109A6B8D79175 fbi

Iw fakeAV 148B76C664F2854E2947TAF01160FFA99 LabelReader

IX fakeAV 1CA532F171A0B765A46AF995EBAAB1D2 LabelReader

IY fakeAV 1E178E501B41659FFACES5153615DEA7 LabelReader

17 fakeAV 36B177910C99872B33E90DEAT7T1B16617 LabelReader

JA fakeAV 6F237D25472D9D09FC44ECETDCICED92 LabelReader

JB fakeAV _75BSF9DBB1CD79B7TFC074F7F499150CF _LabelReader

49

JC fakeAV 77TBBTF86FBOAC66CI7B1AB3573ADFFC1 LabelReader
JD fakeAV 934527FS8EBB5C1088009CC9329DC3DE6 LabelReader
JE FAKEAV

JF fakeAV ED1E0689F93B0C57E403489BB5338F59 LabelReader
JG Fakemart .D002F0581A862373AA6C6C0070EC3156

JH FakeSMSInstaller Geared 1.0.2

JI FBOFEFFBIFEF13C4A5E42ACE20183912 1074813 371228 SaveTenDollar
JJ flashplayer.android.update

JK GoogleKernel

JL hippo_sample

JM HtcLoggers

JN hu.tonuzaba.android

JO il.co.egv-3

JP instagram

JQ install

JR jin_old 2.1

JS kim

JT krep.itmtd.ywtjexf-1 02E231F85558F37DA6802142440736F6

JU kr.sira.measure

JV kr.sira.sound

JW la.droid.qr

JX live.photo.savanna

JY Loozfon 04C9E05D0F626CC3F47DCOBCIB65A8CF

JZ miyowa.android.microsoft.wlm

KA mms475843

KB net.uloops.android

KC net.zedge.android

KD Newfpwap com _liveprintslivewallpaper

KE org.leo.android.dict

KF org.mozilla.firefox

KG PhoneLocator Pro 4.6

KH _plbyg.new 19 1.2.5

KI Ransomware-locker-67BDE6039310B4BB9CCDIFCF2A721A45 koler
KJ ru.blogspot.playsib.savageknife

KK SandroRat

KL santander

KM sb

KN sber

KO Scan-For-Viruses-Now

KP schgg

20

KQ smart.apps.droidcleaner-1

KR smart.apps.superclean-1

KS smtp CI9B7TBE2C1518933950B0284FC254C485 20130802 031615

KT sp_k_test

KU sp_mtm

KV sp_ntm

KW spyera

KX SuiConFo

KY SuperClean-11

KZ suspect

LB test97

LC test98

LD test99

LE testService

LF ThreatJapan 4C937667CB23E857D42B664334K1142A NewsAndroidcode03
LG ThreatJapan BA73E96CAA95999321C1CDD766BDF58B NewsAndroidcode(2
LH ThreatJapan CF45E1288B47D97326 ED279F2EE41E4D NewsAndroidcode01
LI ThreatJapan DO09A1FF8A96A6633B3B285F530E2D430 NewsAndroidnocode
LJ tunein.player

LK tvtotalnippeltrial.app

LL uk.co.exelentia.wikipedia

LM Update

LN vertu.jp

LO vertu.kr

LP vksafe

LQ waterfall3dLive.boa.liveWPcube

LR Whats app

LS XXshenqi

LT zitmo

o1

APPENDIX C

Appendix C
C.1 Single Obfuscator Results

02

Pre-Obfuscation Detection Ratio
09

0.8

o7

0

wwn o Cropzuxu = L ONYTOLIOBZBE omwo w
< PMNYYL X REERESEZS3RRA RS HEGERNY uuguguugiggifg—gzsﬂ

Detection Rate
o o = =
w IS n @

=]
M

=
=3

EK

Malware Files

Figure C.17: Detection Rates before obfuscation. Average: 0.7138

Detection Ratio for All Obfuscators
08

07
0e
05

0.4

o

.1

02

- e o e P G e e
ELE-] % g = a Zg2s o g gg,:ggsg:____ca ug

0

=
=35

Figure C.18: Average Detection Ratio after using All Obfuscators. Average: 0.219044

23

Detection Ratio for Debug Obfucator

| |
2
.1
(1]

e = " e e 7
<osn-¥%338E233330085d8 R 22 Y0 EEgRES ze=aing =

o o o]
E o = o

Detection Ratio
=

@
s

@

=]

Malware File

Figure C.19: Detection Rates after applying the Obfuscator Debug. Average: 0.478202

Renaming Detection Ratio

‘ |
U
o

TUENTEEd3EE23385008 UEQ2IPFeEYEgEYsgo2sosuruxgsy

08

07

06

0

in

o
s

o
w

o
a

o
i

o
]
]

DK
GE

Figure C.20: Detection Rates after applying the Obfuscator Renaming. Average:
0.478202

o4

Resigned Detection Ratio

wxaon cxzoEZZaxu grsuxoo MW
= SNERAQLEETEEEESEE5ES gassEsuese

08

=4
ES

Axis Title
e = o
(=] w £

e

0

GX

Malware Files

Figure C.21: Detection Rates after applying the Obfuscator Resigned. Average:
0.507732

Indirection Obfuscator Detection Ratio

o

a

3
2
1
0

wxao MW Exzopzuxy =zmog
* €2k E0TF8EEZZ528808

Detecton Rate

o =

=

> q LML OLNETOLEZOGZUEC =z=
BEILUEL AT REES0FHEREZEES
F

Malwre Files

Figure C.22: Detection Rates after applying the Obfuscator Indirection. Average:
0.504374

95

Detection Rate

08

07

0.6

(=)
n

=]
=

=
I

I
[~}

o
i

o

awxn SN Y3

[=]
£

=

z8

Lib Obfuscator Detection Ratio

e i
SsrsaBETo

o @ e
55538828

510

Malware Files

==
[l

a
[T

TE=wx
ERC RG]

HC

E
IzE

==

T

Figure C.23: Detection Rates after applying the Obfuscator Lib. Average: 0.584618

Figure C.24: Detection Rates after applying the Obfuscator Manifest.

0.386791

08

07

06

05

04

03

02

01

o

Manifest Detecton Ratio

I N

Tz

=B
o m

w
1]

B3
o

=)
!

G
o

=
L=}

5g8

26

B

= =
g8

.
i

w
w

s
w

o
w

o
o

E2

Average:

Four Obfuscators

= O Eowx oz neowx "
SQRsYrlTygEgEsesgTesazuxgzy

09
08

0.7

04 ‘
o ‘ ‘
<L

=
m

o
in

=3
w

=]
a

=3
i

L
g %

Figure C.25: Detection Rates after applying the Obfuscator Renaming, Reordering,
Goto, and Arithmetic Branch. Average: 0.403457

<osw>wxdg 259506485

Alignment Obfuscator Detection Ratio

|
gz

o e e
SE2288z05 3 ZEERRIPZeEsEgEEeEo2sY

09
0.8
0.7

0.6

o

< W s o

Detecction Ratio
[=] [=] [=]
w = iwn

o
a

o
i

woae
q:ﬁ(q:

Malware Files

Figure C.26: Detection Rates after applying the Obfuscator Alignment. Average:
0.572892

57

	Black Box Analysis of Android Malware Detectors
	Recommended Citation

	Introduction
	Previous Work
	Code Obfuscation and Malware Detectors
	Program Obfuscation

	Obfuscation in Android Malware
	Statistical Anaylsis Techniques and Android Malware

	Conclusion

	Code Obfuscation
	Growth of Obfuscation in Software Development
	Malware Detectors
	Signature Based Detection
	Heuristics Based Detection
	Rootkit Detection
	On-Access Scanning

	Threats and Defenses in the Android Operating System
	Android Malware Detectors
	Privilege Escalation
	Remote Control
	Monetary Loss
	Information Collection

	Android Malware Detection Limitations
	Static Analysis
	Dynamic Analysis

	Android Obfuscators
	Experiment
	Uses of the obfuscator
	Alignment
	Rebuild
	Fields
	Debug
	Indirections
	Renaming
	Reordering
	Goto
	Arithmetic Branch
	Nop
	Lib
	Manifest
	Reflection

	Experiment
	Environment Setup
	Dataset and Malware Detectors
	Dataset
	Malware Files Selection
	Other Datasets

	Malware Detectors against Code Obfuscation

	Results of Experiments
	Observations
	Steps for Analyzing Malware Detectors
	Metrics used

	Obfuscation of Malware Samples
	Individual Obfuscators
	Individual Malware Detectors

	Conclusion and Future Work
	Conclusion
	Future Work

	LIST OF REFERENCES
	Appendix 1
	Abbreviations and Terminologies Used

	Appendix 2
	Malware File to Symbol Mapping

	Appendix C
	Single Obfuscator Results

