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ABSTRACT
Black Box Analysis of Android Malware Detectors

by Guruswamy Nellaivadivelu

Code obfuscation can make it challenging to detect malware in Android devices.
Malware writers obfuscate the code of their programs by employing various techniques
that attempt to hide the true purpose of the program. Malware detectors can use
a number of features to classify a program as a malware. If the malware detector
uses a feature that is obfuscated, then the malware detector will likely fail to classify
the malware as malicious software. In this research, we obfuscate selected features of
known malware and determine whether the malware can still be detected by a given
detector. Using this approach, we show that we can effectively perform black box

analysis of various malware detectors.
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CHAPTER 1
Introduction

The volume of Android malware is increasing exponentially. Indeed, in the second
quarter of 2016, 3.5 million samples of Android malware were detected [1|. This rapid
increase in Android malware has placed the focus on Android security and made
it imperative to develop more efficient defensive tools for combating such malware.
One of the challenges faced in this area is the use of code obfuscation techniques.
Code obfuscation is a method of altering code to hide its actual purpose, without
significantly altering its performance. There are many ways of obfuscating source
code in an Android environment. Several software applications that are available
off the shelf can be used to achieve different levels of code obfuscation [2]. In order
to address the problem of strengthening malware detector’s strength, there are two
fundamental questions that need to be addressed, as highlighted by Christodorescu
et al. [3]. The first question is to gauge the resilience of a malware detector against
code obfuscation. This will also help us in understanding the strength of the malware
detetctor in detecting variants of known malware families. The other question is
the possibility of identifying the detection algorithm used by a malware detector.
By studying the behavior of malware detectors and how they respond to different
obfuscation techniques, a malware writer can uncover ways to beat the antivirus
program. Ultimately, we want to gauge how well a malware detector will perform
against obfuscated code.

Code obfuscation is the process by which source code is manipulated to hide its
true intentions. Code obfuscation is increasingly becoming a common tool to avoid
detection by traditional malware detectors. There are many different types of code
obfuscation. The most basic type of code obfuscation involves the encryption of all

the strings that are used in the code. This overrides the detection mechanism of



most of the traditional malware detectors. Some advanced malware detectors account
for this encryption and are able to identify malware files. There are a host of other
obfuscation techniques that can be employed by malware writers. Some of these

include the obfuscation of function calls, permission hiding, and insertion of dead code.

The challenges associated with code obfuscation primarily deal with the problem
of maintaining the core functionality of the code, while making it difficult for malware
detectors to detect their true purpose. This challenge becomes easier for malware
writers when dealing with Android malware. The reason for this is associated with
the permission levels of applications running on Android platform. Unlike anti-
virus programs that run on computers, the Android system provides the same set
of permission levels to the anti-virus application and the application that is being
scanned. This is a major limitation for malware detector writers. With the advent of
sophisticated encryption techniques, it has become very difficult to different between
benign and malicious applications of obfuscation techniques. The primary objective of
this project is to make malware detectors more responsive to the code obfuscation
techniques employed by malware writers. By doing so, we can attempt to identify the
malware features that are used by a malware detector in its classification algorithm.
We can also try and modify an existing malware detector to see if we can overcome
the limitations. In order to achieve this, we propose a theoretical approach. In this
approach, we attempt to isolate the features that contribute to malware detection.
Once, we have this information, we can attempt to modify an existing malware detector
to overcome these limitations. The malware detector should employ ‘‘de-obfuscation”
techniques before analyzing any malware. An intelligent malware detector should be
able to sense the type of encryption or obfuscation technique being employed and use

the corresponding ‘‘de-obfuscator’ to nullify the effects of the obfuscator.The first



step in this implementation will be the identification of the factors in a malware that
are taken into consideration by a malware detector. To achieve this, we will begin
by encrypting various parameters of a malware and running it through a malware
detector [4]. By following this approach, we can identify the exact scenario when a
malware is no longer classified as a malware by our malware detector. Once we identify
the features that are required by a malware detector, we will use this information to
make the malware detectors process the obfuscated part of the code as well. This will

make our malware detector more robust and improve their performance.

In Chapter 2, we look at the previous work that is done with regards to malware
detection in Android. We explore the various detection mechanisms and approaches
that has been discussed so far. After looking at the background work, we delve into
code obfuscation in Chapter 3 and understand the basic terminologies associated with
code obfuscation. We also look at the impact of obfuscation in general, and then
more specifically, their impact on malware detectors. After understanding the basics
of code obfuscation and malware detectors, we move on to the current threats and
defenses in the Android operating system in Chapter 4. In Chapter 4, we glance at
the growing dominance of the Android operating system in the mobile phone space
and the importance of this particular operating system in our lives. The motivation
behind selecting the Android OS for this project is understandable from Chapter 4.
The obfuscators to be used in this project, and their functionalities are explained in
Chapter 5. Chapter 6 clearly lists the software requirements for this project and also
talks about the necessary technologies for setting up the experiment. The results
of the experiment are summarized in Chapter 7. The factors that contribute to the
conclusion being drawn from this experiment are detailed in Chapter 6. We finally

consolidate the results and discuss the future course of the project work in Chapter 8.



CHAPTER 2
Previous Work

In this chapter, we present the results of a literature survey that was performed
to identify the current state of obfuscation mechanisms and their impact to the field
of code obfuscation. We find that code obfuscation has been an area of interest in
the field of cryptography and traditionally, obfuscation techniques have been used
to achieve reverse engineering protection. On the other hand, a lot of malware have
obfuscated code to avoid detection by anti-virus programs.
2.0.1 Code Obfuscation and Malware Detectors

The efficiency of malware detectors against code obfuscation has been a point of
discussion amongst malware researchers for a very long time. A lot of research has been
done on the robustness of malware detectors against high levels of obfuscation. The
issue of malware detector’s strengths against obfuscated malware had been discussed
as early as 1996, as can be seen in the quote by S. Gordon and R. Ford [4]:
“The evaluation of anti-virus software is not adequately covered by any existing
criteria based on formal methods. The process, therefore, has been carried out by
various personnel using a variety of tools and methods.”
2.0.2 Program Obfuscation

There has been a lot of theoretical research on the different aspects of obfuscation
and on ways to improve it. Most of this research has been successful in arriving at a
conclusion on the efficiency of the cryptographic problems of encryption, authentication
and protocol [5]. But the problem of program obfuscation has remained an area within
cryptography in which theoretical research has been inadequate. In their seminal paper
on program obfuscation, Barak et al. [5] propose to represent program obfuscation
as below: An obfuscator O is said to be an efficient compiler if it takes as input a

program P and produces a program O(P) and satisfies the following two conditions:



1. Functionality: O(P) computes the same function as P

2. ‘Virtual Black Box’property: Anything that can be efficiently computed from

O(P) can also be computed by P.

The paper by Christodorescu et al. [3] lists various ways to test and achieve
program obfuscation in general. A detailed analysis of the various obfuscation methods
is also discussed in the paper. One interesting angle explored by the paper deals
with assigning mathematical equations to measure the effectiveness of the individual
obfuscators. This lets us quantify the different obfuscators and rank them against each
other. One of the evasion methods employed in malware obfuscation is polymorphism.
It is a method by which a program evades various detection tools by mutating into
different forms. In the paper by Rastogi et al. [6], the authors develop and propose
a framework called ‘DroidChameleon’ that provides a way to transform Android
applications into different forms with minimal user involvement. As shown in Figure 1,
the authors apply various transformations on a malware sample dataset. The output
of all these transformations are processed by a malware detector (referred here as

Anti-malware). The input to the anti-malware is processed sequentially. After each
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Figure 1: Evaluating anti-malware
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transformation, the anti-malware‘s output is evaluated and if the malware detection
fails, the next level of transformation is applied. This helps rank the various malware
detectors against each other for accurate analysis.
2.1 Obfuscation in Android Malware

A report by Google stated that a majority of malware detectors work as a binary
classifier [7]. They classify an application as a malware or a benign file. In order to
effectively eliminate malicious applications, it is important that malware detectors
do more than just identify malware. They should be able to isolate the core parts of
the application that perform the malicious acts and work at fixing the loopholes that
let the program act in a malicious way. More recent malware applications employ a
variety of tricks, in addition to traditional code obfuscation mechanisms. For instance,
a variant of Android malware, known as Android/BadAccent, is a known banking
Trojan, that steals credentials used in banking applications [8]. A variant of this
malware used a mechanism known as ‘Tapjacking’ to extract the credentials from the
users. In this form of attack, a screen is displayed to the user, while a second screen
is hidden behind the actual visible display [9]. When a user clicks a button on the
screen, assuming it to be the one that is displayed, the underlying screen gathers the
input and processes the command. This is a common method of gathering details
from unsuspecting users.
2.1.1 Statistical Anaylsis Techniques and Android Malware

One widely used approach for analyzing malware samples is the usage of statistical
methods. In such methods, the Android executable file (with the extension apk), is
decompiled to get the original source code. Due to the Android operating system
being written in Java, it is easy to reverse engineer an apk file to retrieve the source

code. This opens up many opportunities for performing statistical analysis on the



obtained raw data. This also lets a researcher perform various operations on the
source code, and then repackage it back into an apk. In the approach known as
AndroSimilar, Faruki et al. [10] propose a new algorithm known as AndroSimilar, that
takes into consideration various features that are known to be present in malware
alone. The AndroSimiar approach [10], as shown in Figure 2, decompiles an apk file
and repackages it after feature extraction. To extract the features, the algorithm
incorporates apps from the Google Playstore and other third party applications. These
features are normalized and fed into a signature generation engine, that provides a
unique signature for each malware. This is used as reference for detecting future

malware applications.

Malware App

Signatures DB Repackiged AR

from Known Famiby

lele Play Apps

Third Part
Market m..::; Android PacKage Mallclous App f
» (APK] Extract Statistically Maormalize Signature generation Alert iﬂ:::‘; "D :‘::i:
Manifest.xml — Improbable | Features in Bloom e with Statistically K NowWn f-:l uh Al
Classes_dex Features Filter Improbable Featunes . npp:r::lu -
Obfuscated Resounces Faiily
Malware Apps

Figure 2: AndroSimilar

2.2 Conclusion

Malware in mobile devices is no longer a problem confined to labs and research
areas. The rapid increase in access to computers has helped malware writers create
specific, targeted programs that perform with high efficiency and exploit vulnerabilities
in different operating systems. The amount of research being done in malware analysis

and, more specifically, in Android malware, is in the right direction. In the fight



against sophisticated metamorphic malware, it is imperative that the malware detector
is better than the malware creator. In this paper, we have explored various work, that
dealt with the different aspects of malware obfuscation and ways to overcome the
shortcomings in today’s version of malware detectors. The future of malware looks
very bright and it is hoped that the malware detectors of the future will be up to the

task at hand.



CHAPTER 3
Code Obfuscation

Code Obfuscation is a technique by which programmers have deliberately sought
to make the functionality of their code less obvious. This technique has been used
by programmers to achieve various additional objectives. Code obfuscation can
be used to achieve a myraid of objectives. These include prevention of reverse
engineering, protection of intellectual property, and reducing the size of an executable.
In some benign scenarios, an executable is obfuscated to protect the various licensing
mechanisms used in them. Obfuscators are also a good way to restrict unauthorized
access to files by people who might try to use dubious tools to incorporate malicious
code into files.

We will look at the history of code obfuscation to appreciate the relevance of
code obfuscation in today’s software development perspective. With growing interest
in various obfuscation techniques, and the ease of availability of obfuscators dedicated
to different operating systems, this would help us in understanding the rapid growth
in this area and appreciate the urgent need for various countermeasures against this
approach.

3.1 Growth of Obfuscation in Software Development

Code obfuscation has been historically associated with malware development,
than with benign software development. Some of the earliest examples of attempts
at obfuscation in malware can be found in the “Brain Virus” . In this variant of
the malware, the malicious program would display unaffected disk partitions to users
attempting to access partitions that the virus had corrupted. Although the code in
itself was not encrypted, the behavior of the virus shows attempts at hiding its true
usage.

In the same year, the Cascade virus was released to the world. This was an early



variant of malware to use encryption to hide its true purpose. The earliest strains
of obfuscated malware used a simple encryption-decryption routine to perform the
decryption tasks. As the malware detectors of the time were not sophisticated enough
to detect the encrypted part of the code, this simple obfuscation technique enabled a
lot of malware programs to slip away undetected. This is a serious disadvantage in
the design and implementation of malware detectors. We would be exploring more
such flaws with the implementation of malware detectors in this project.

With the advent of advanced malware detectors and improvement in statistical
analysis techniques, the level of obfuscation in malware increased. Polymorphic
malware uses a very high level of encryption technique to obfuscate its contents. A
polymorphic malware changes the encryption in itself and provides very few traces
of a signature. If a malware is truly polymorphic, then there will be no consistency
between any two iterations of the same program and it would be virtually impossible
to detect them using traditional signature matching techniques.

3.2 Malware Detectors

Malware detectors came into existence with the advent of different malicious
programs. Before the rapid growth of the internet, malware detectors were only
capable of performing scans based on signatures of known virus programs. This static
analysis technique meant that new virus would be out in the wild for some time before
the malware definitions of the individual anti virus programs could be updated. With
the introduction of the world wide web, the antivirus industry expanded into dynamic
analysis and cloud based malware detectors. Firewalls, online scanning, and virtual
machines started being increasingly used to identify malware. One major shortfall of
anti virus programs is their inability to detect polymorphic virus. In general, many

antivirus programs employ signature detection for identifying malware. In addition to

10



this most common approach, heuristics based detection and rootkit based detection
are also employed to detect virus programs. Along with these approaches, active
scanning approaches like on-access scanning is also used to detect programs that
might attempt unauthorized operations. We discuss these methods and detection
mechanisms in detail in this chapter.
3.2.1 Signature Based Detection

This is one of the most basic methods of malware detection that is still in use
today. When a new strain of malware is detected in the "wild", antivirus firms
analyze it and extract a "signature" from it. This signature extraction can either
be done manually or by using automated signature detection techniques [11]. Once
a signature is detected, it is updated into various malware definitions of antivirus
software. Although this method is effective against generic malware, it is highly
ineffective against oligomorphic, polymorphic and metamorphic malware. These
are variants of malware that encrypt itself with each iteration. In this project, we
attempt to identify the various factors that contribute to malware detection and their
importance in overcoming the signature detection method.
3.2.2 Heuristics Based Detection

In Heuristics based detection techniques, a single signature or pattern is used
to detect multiple malware belonging to the same family. Such techniques rely on
the fact that multiple malware are created from a single malware. Thus, successfully
creating a signature for a base family will result in the detection of all malware related
to that particular family.
3.2.3 Rootkit Detection

A rootkit is a type of software that attempts to gain administrator privileges

in a system without the knowledge of the user running it. In many cases, the

11



rootkits contain software within them that becomes undetectable to antivirus programs.
Rootkits usually have full administrative access and also have the ability to hide
themselves from the list of running processes. Modern antivirus software scans for
rootkits in specific, to detect them. It is very difficult to remove a rootkit when
compared to other generic malware programs.
3.2.4 On-Access Scanning

In this method, the antivirus program looks out for any threats that might happen
on a real-time basis. The antivirus monitors the system in which it is installed and
looks for suspicious activity whenever the computer’s memory is loaded with fresh
data from the storage disks. This might happen when a USB drive is inserted, an
email attachment is opened or a even when an already existing file is opened by a
user or a program. This type of scanning is more effective as it does not rely solely on

malware definitions to detect viruses.
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CHAPTER 4

Threats and Defenses in the Android Operating System

Before we dwell deep into code obfuscation in Android, we look at the various
malware detectors for the Android operating system. We also look at the rapid
proliferation of the Android OS and the reason for selecting Android as the focus of
study in this experiment.

4.1 Android Malware Detectors

With the rise of the Android Operating systems, the amount of malware associated
with it has also risen significantly. From a market share of 2.8 % in 2009 [12] , Android
captured about 75% of the market in 2012 [12]. As shown in figure 3 , we can see that
the growth and adoption of Android has been very steep. This rapid proliferation of

Android resulted in an equally rapid rise of Android malware.

Global market share held by the leading smartphone operating
systems in sales to end users from 1st quarter 2009 to 4th quarter
2016
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With the increase in the number of Android malware being released to the wild,

their level of sophistication also increased. Android malware detectors used the number

of permissions requested by an app to determine its legitimacy. In the schematic

represented in Figure 4, Zhou et al. [13] support the fact that both, benign and

malicious applications, have very similar permission requests. Due to this, using access

requests as a measure for classifying Android applications became ineffective. All

the malware programs plaguing the Android operating system can be classified into

four categories based on the basis of their primary activity [13]. Privilege Escalation,

Remote Control, Monetary Loss, and Information Collection are the various sub

categories under which any Android malware can be classified.

4.1.1 Privilege Escalation

In this type of attack, the malicious app that is installed on a device, attempts

to grant itself additional privileges than the one it requires. This is achieved by using

known exploits in the Android operating system.
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4.1.2 Remote Control

A very high percentage of malware attempts to use the compromised device as a
remote bot. In some malware families, the remote URL that is being used to control
the device is encrypted. Such encryption makes it very difficult to detect these types
of malware and this will be a primary area of focus in this thesis.
4.1.3 Monetary Loss

A very direct way of monetizing malware is to make unsuspecting users subscribe
to services that cost a lot of money. Such services are run by the malware perpetrators
and will enable them to charge the infected devices’ owners money for services that
they are not aware of. To achieve this, some malware use the remote control to push
down numbers of services to the devices and then enroll them.
4.1.4 Information Collection

Many malware programs attempt to collect the personal information of users.
Such personally identifiable information makes it easy for scamsters to dupe people
using various other schemes. Malware belonging to this family tries to steal personal
information of the compromised device’s owner, as well as the details of people in
their contact lists. This information is then sold through different means to interested
parties.
4.2 Android Malware Detection Limitations

One of the major limitation of malware detection in Android is the limited
processing power of the devices running Android. Due to processing and memory
constraints, generic malware detection has to be restricted to static analysis techniques.
In general, all the existing Android security solutions can be classified into Static

Analysis and Dynamic Analysis [14].
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4.2.1 Static Analysis

Static Analysis is a technique in which the an application is evaluated for its
trustworthiness by disassembling and checking its source code. The application is
not executed for this analysis. Once an application is marked for scanning, various
statistical analyzing approaches are used to classify the file. Some of the most
commonly used static detection methods are discussed in the next few subsections.
4.2.1.1 Signature Based Detection

Signature based detection is a type of static analysis technique. In this method,
a virus is examined by extracting its signature and then comparing it with signatures
from known malware. The limitation of this technique is that it is incapable of
detecting unknown malware types. The signatures of known malware are stored in
a signature database. In addition to this, the signature database also requires that
it is updated constantly. Without an up-to-date signature database, most of the
prevalent malware could slip through undetected. This is difficult in the case of
Android Malware detectors as the device possess limited memory and it would be
infeasible to store all virus definitions on the device. If the virus definitions were to
be moved to a remote server, it would use up considerable amount of data traffic for
performing the validation. These are some serious limitations that hinder traditional
signature matching techniques.
4.2.1.2 Permission Based Detection

This is a straightforward approach to detecting malware in Android systems. In
this method, the number of permissions an application requires is used to determine
its classification as a malicious or a benign file. Some research has been done in this
area wherein the Android Manifest file is analyzed for extracting information [15]

about the permissions requested by the application. This information is used to assign
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a score of relevancy to the permissions requested. This score is then compared against
a threshold for determining the malicious intent of an app. There are variations to
this technique and some methods yield better results than the others. This method is
a very quick way of determining the malicious nature of applications. But a serious
limitation of this method is that it does not analyze the source code or the working of
the app. Only the Manifest file is analyzed. A lot of malware apps use permissions
similar to the benign apps. Hence, permissions based detection should be used in
conjuction with a second confirmation method to validate an app.
4.2.2 Dynamic Analysis

In this method, the application is executed and it is analyzed during the runtime.
It becomes very easy to identify sections of code or execution blocks that were missed
during the static analysis of an application. Dynamic analysis methods are also
effective against obfuscation and encryption techniques.
4.2.2.1 Anomaly Based Detection

An application is executed and the system calls generated by it are recorded in a
log. This log is then sent for analysis to a remote server, where the various behavior
of malware are recorded. Using that as a basis, the log files are analyzed, and the
results are aggregated. This result, in collaboration with other techniques are used to
classify the file as malicious or not.
4.2.2.2 Emulation Technique

Yan et al. [16] propose a technique in which a virtual machine is used to analyze
an application. In common virtual machine based detection techniques, the anti-
malware program and the malware execute in the same environment. This makes
them detectable to each other. In the platform presented by Yan et al. [16], the

antimalware, DroidScope, stays out of the execution environment and monitors the
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execution as a whole. This enables it to detect the malware without being detected

by the malware.
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CHAPTER 5

Android Obfuscators

In this chapter, we use different obfuscators to modify parts of an android malware.
By systematically obfuscating different parts of the code, we can gain insight into
the parts which contribute most to the detection of malware. Once we have this
information, we can then determine efficient ways to make the malware detectors
more robust and be less resilient to code obfuscators.
5.1 Experiment

For this project, we use a tool called AAMO (Another Android Malware Obfus-
cator) [17]. This tool gives us various obfuscators for use with our experimentations.
The obfuscators can be used independently or in combination with other obfuscators
to increase their effectiveness. Using this tool, we decompile a android file, perform
obfuscation operations on them, and recompile the file again. In this experiment, we
use the source code provided by the developers of AAMO [17] and available at [18].
This tool forms the basis of the work presented in this thesis. The steps involved in

this are detailed below:

1. Obtain an APK file.

2. Decompile the APK file into Smali.

3. Get the list of obfuscators passed into the program.

4. Apply the obfuscators one after the other on the decompiled apk file.
5. Repackage the decompiled file into an APK.

6. Sign the APK file to maintain its integrity.
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Decompile the APK
(using Apktool)

Get list of
obfuscators from the
user

Apply a obfuscator

All the selected
obfuscators
applied?

Recompile the apk
and sign it.

Figure 5: Experiment flow

Performing the above steps ensures that the apk file is not corrupted and its
usage is not affected. We perform this to make it difficult for a malware detector to
detect the apk file as a malicious one. The entire flow of the experiment is depicted

in Figure 5.
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As shown in Figure 5, the final encryption would let the malicious file be signed
with a valid signature and thus eliminating any traces of the apk file having been
compromised.

5.1.1 Uses of the obfuscator

Using the obfuscator in this step has various advantages for our experiment. One
of the primary uses is to make the job of the malware detector more difficult. Since
most of the malware detectors do not take into account polymorphic and oligomorphic
malware, using obfuscators will let us know which parts of a malware factor into
the detection score computed by individual detectors. In this experiment, we use 14
obfuscators to test out the resilience of the malware detectors as listed in Table 1.

Table 1: Android Obfuscators

‘ Count ‘ Obfuscator Name ‘

Resigned
Alignment
Rebuild
Fields
Debug
Indirections
Renaming
Reordering
Goto
Arithmetic Branch
Nop

Lib
Manifest
Reflection
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These obfuscators enable us to test the various aspects of a apk file and help us
determine the ones that are really useful to a malware detector. When a particular

obfuscator is run, it runs a function that is specific to that particular obfuscator and
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applies that function to all the parameters that match the criteria for that specific
obfuscator. Each of the obfuscator is discussed here in detail.
5.1.1.1 Resigned

This obfuscator decompiles an apk and just resigns the apk file after compilation.
Not much change is done to the application file in itself. The purpose of this obfuscator
is to attempt defeating malware detectors that try to use signatures of certain known
malware sources to classify a malicious file.
5.1.2 Alignment

This obfuscator makes use of the zipalign utility of android. Zipalign is a tool
that is used to provide optimization techniques to APK files. The tool causes all
uncompressed data within the APK to start with a particular alignment relative to the
file’s beginning. The Alignment obfuscator changes this alignment before recompiling
the apk file.
5.1.3 Rebuild

This obfuscator rebuilds the application file without performing any changes. The
unpacking and repackaging of the apk file affects the timestamp, signature of the apk
and other factors that help in identifying the origin of the file. Some smart malware
detectors are able to detect these changes and do not let the file pass through it.
5.1.4 Fields

This is a relatively simple obfuscator that just renames the fields that are used
in the application. This is done after the decompilation of the apk file. The smali is
analyzed for locating the fields that are used in the source code and these are renamed.
5.1.5 Debug

The debug obfuscator removes all information related to debug from the files.

This is performed not only on the smali file, but throughout the source code as well.
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Without the debug information, the APK file becomes slightly different from the
original file. Removal of the debug information also alters the size of the file and
makes it different.
5.1.6 Indirections

Call indirections is an advanced obfuscation method in which various function
calls are directed through different values. The obfuscator performs operations such
as changing the register count, changing a method call and also redirecting all calls to
the methods. This obfuscation completely changes the control flow of an application
and makes it difficult to detect using a comparison model in dynamic analysis as well.
5.1.7 Renaming

All the variables in the sourcecode are renamed to different values. This is exactly
like using substitutions to hide the original values. Renaming is also advantageous
when certain signature and pattern matches are based on the names of the variables
and functions.
5.1.8 Reordering

Using reordering will let us change the order of the code in the application. The
obfuscator changes the location of certain parts of the code and adjusts the calls to it
accordingly. This makes it possible to evade signature based detection methods if the
signature is based on the order of instructions or if it is based on the DEX opcodes.
5.1.9 Goto

In order to modify the control-flow structure of the application, forward and
backward jumps are inserted into the code. These unconditional jump statements will
be executed irrespective of how the program is run. This widely alters the flow and

will make it very difficult to detect using conventional methods.
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5.1.10 Arithmetic Branch

A constant value, known to the obfuscator, is used to achieve this obfuscation.
This constant value is not known to the compiler. Using this constant value, the
obfuscator is able to control the flow of execution of the program. The compiler
assumes that either of the branches could be possible as the value for deciding the flow
of control is not known. This is applied to methods with more than 2 parameters.
5.1.11 Nop

This is a classical and an easy way to obfuscate a program. In this, a "no-operation
instruction” (known as a "NOP") is inserted into the source code. The number of
such instructions inserted is randomized. These are inserted into methods to make
them bloated and delay the execution time.
5.1.12 Lib

MD5 hashing is used to rename the file and path names. A proxy method is
created and used to handle the decryption of the values, when it is required by the
system.
5.1.13 Manifest

The AndroidManifest.xml file is modified by this obfuscator. The manifest file
contains important information related to the application’s usage and permissions.
This obfuscator opens up the file and encrypts the values for the resources and also
replaces the characters in user defined identifiers.
5.1.14 Reflection

This obfuscator acts similar to the code reodering obfuscator. The reflection
obfuscator takes advantage of the Android dynamic code loading API. All the static
method calls are converted into reflection calls and the the reflect method is invoked

on a string that contains the target method’s name.
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CHAPTER 6

Experiment
6.1 Environment Setup

Due to the various different types of software used in the experiment, it is
important to have the correct version of each software installed. As shown in Figure 5,
each APK will have to be decompiled into its source code, before going through the
obfuscation process. To achieve this, we use a program called apktool[19]. A list of
various software and their versions are listed in Table 2.

Table 2: List of software required and their versions.

Number | Software Version
1 Java 1.8.0_45
2 Python 2.7.11
3 Apktool 2.2.1

The given applications are interdependent on each other for this experiment. The
AAMO framework is written in Python and uses various Python libraries to execute.
The decompilation of the APK files is achieved using the Apktool. Apktool requires
a java virtual machine to execute. It is imperative that this version of Apktool be
maintained for repeating the experiments presented in this work as the source code of
AAMO has been modified to fit this version of the tool.

6.2 Dataset and Malware Detectors

In order to successfully evaluate and analyze the malware detectors various
experiments were performed using known Android malware. Once the android malware
were finalized, the obfuscators were chosen to increase the difficulty of malware
detection. A sampling was performed with a handful of malware. Using this sampling,

the obfuscators to be applied were selected and then applied to a wider dataset. The
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Figure 6: Sampling Results

results of this sampling are shown in Figure 6. In Figure 6, a sample file, **Angry Birds”’,
was used to test the effect of the various obfuscators. This file, a malicious version of
the popular game, is a Trojan variant that steals the contact information, and has
the ability to send text messages without the user’s permission. Before applying any
obfuscator, the file had a detection ratio of 0.819. When we apply the obfuscators,
the detection ratio drops steadily. In Figure 6, the z-axis represents the different
obfuscators that were used. We can see that the detection ratio almost remains
constant for all the obfuscators, except for the manifest and reorder obfuscators. The
functioning of these obfuscators are defined in chapter 5. This hints at the fact that
many malware detectors just perform an analysis on the AndroidManifest.xml file to
classify the file as a malware. Due to this, when the manifest obfuscator is applied,
the detection ratio drops. When we apply all the obfuscators on the file, the detection
ratio drops significantly. This is shown in the Figure 6’s ‘allObfuscation’ bar.

It can be seen from the results that only some obfuscators contribute effectively

to hindering the detection ratio of malware obfuscators.

26



6.3 Dataset

The Contagio dataset was used to perform the various experiments in this
project [20]. All the samples used for experimentation are malicious files. The files
were classified as malicious by various means and the contagio data dump also certifies
the files as being malware.
6.3.1 Malware Files Selection

Known malicious files were used for performing the experiments in this project.
The reason for using malware for the experiments was to understand how each
obfuscator would help the malware in evading detection by malware detector. All the
test samples were caught by at least one of the malware detectors and many of the
samples were incorrectly classified as benign files, once the obfuscation was complete.
6.3.2 Other Datasets

Previously, experiments have been performed on malicious files belonging to other
datasets. Before we delve into the results of the experiment performed in this work,
we look at how obfuscators affect the detection ratio of various malware detectors.
6.4 Malware Detectors against Code Obfuscation

A single malware detector is unlikely to give us a substantial result. This is
because various malware detectors use different techniques for analyzing malware. If
a single malware detector were to be used as a benchmark, then we would either get
excellent detection scores or the malware detector would fail in a very poor way. To
overcome this shortcoming, a single obfuscated file is scanned by several malware
detectors simultaneously. Instead of manually uploading the files to different malware

detectors, we make use of VirusTotal [21] and other similar virus scanning providers.
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CHAPTER 7
Results of Experiments
The various obfuscators defined earlier were iteratively applied to malware
samples from the Contagio dataset. Based on the results obtained from VirusTotal,
the obfuscators were selected for further application.
7.1 Observations
The VirusTotal website uploads a malware file to its database and then performs
a scan using the various malware detectors associated with the website. Each uploaded
file is hashed and stored in the database to reduce duplicate efforts and minimize scan
times. Due to this behavior, each time a file is loaded into the website to be scanned,
the website will prompt if a similar file was scanned earlier. It was observed that as
the number of obfuscators employed increased, the similarity between the obfuscated
and un-obfuscated applications decreased. If more than 2 certain obfuscators were
applied, the VirusTotal website would not recognize the file as a previously recognized
file. This observation was consistent throughout the different experiments conducted.
7.2 Steps for Analyzing Malware Detectors
The experiment was performed with certain operations being repeated in an
iterative manner. The obfuscated malware files were prepared in advance. The steps
are as follows:
e Scan a malicious file using VirusTotal.
e Record the detection ratio.
e Apply obfuscator(s) on the selected malware file.
e Scan the obfuscated file using VirusTotal again.
e Record the new detection ratio.
Repeating the above steps helped us detect how robust and efficient malware

detectors are. Ideally, the malware detector should not be affected by the obfuscators.
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The detection ratio should not be very different irrespective of whether the malware
was obfsucated or not.

But the results indicated that almost all the malware files had a very high
probability of being classified as a benign file, if they had sufficient obfuscation
techniques applied to them.

7.2.1 Metrics used

We use the detection ratio provided by VirusTotal to determine the effectiveness
of the Malware Obfuscators. As expected, the malware detectors are not resilient
enough to detect variants of malware that have been slightly obfuscated.

7.3 Obfuscation of Malware Samples

The results for applying each obfuscator were collected and only the significant
results are shown here. In addition to gathering the results for an individual obfuscator,
we also get the results for the individual malware detectors. A comparison of their
behavior is also presented here.

7.3.1 Individual Obfuscators

Application of individual obfuscators did not alter the detection ratio by a huge
margin. A sample detection ratio for applying the "Renaming" obfuscator is shown
in Figure 7. As part of this experiment, 289 files were obfuscated and run through
the malware detectors. In Figure 7, the malware samples are represented on the
x-azis as alphabetic symbols. The mapping for the malware file to symbols is shown
in Appendix B. The graph shows that the average detection ratio for the renaming
obfuscator is 0.46. The average detection ratio is represented by a red line in the
graph. While there are some occasional spikes in the detection rate, that seems to be
the exception with a very few files being consistently classified as a malware.

The results for the obfuscator "Manifest" are shown in Figure 8.The detection
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Figure 7: Single Obfuscator Usage - Renaming. Average: 0.46

HC
HO
M
5
Y
E
K
a
W

ratio for this obfuscator is also lesser than for a normal malware. But with applying
this obfuscator, the detection ratio is further reduced. The average detection ratio in
this case is 0.3867. This shows that the manifest obfuscator contributes more to the
detection rate. We repeat this experiment for different obfuscators to get record their
detection scores. These are included in appendix C.
7.3.1.1 Multiple Obfuscators

While individual obfuscators didn’t provide much insight into the malware
detection scores, it was observed that combining multiple obfsucators quickly decreased
the detection ratio.

In Figure 9, the obfuscators Renaming, Reordering, Goto, and Arithmetic Branch-
ing were applied to the files.

This certainly increased the obscurity of the malware files. The detection ratio
for the obfuscated files in Figure 9 is much lesser than in Figure 7. This could be

attributed to the fact that a combination of weak obfuscators is still a strong enough
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Figure 8: Single Obfuscator Usage - Manifest. Average: 0.3867
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challenge for malware detectors. We also note that, with a average of 0.4034, this is
only marginally better than the performance of a single manifest obfuscator as shown
in Figure 8. This further reiterates the significance of selecting the right obfuscator
rather than a combination of different obfuscators.
7.3.1.2 All Obfsucators

To make the results of the experiment certain, all the obfuscators in question

were applied to a set of files. Keeping up with the consistency observed so far, the
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Figure 10: Pre- and Post-Obfuscation Results. Average: 0.219044

detection ratio dropped by a huge margin. This can be observed in Figure 10. The
results show a average detection rate of 0.21. This is extremely low when compared
to the results obtained before any obfuscation was applied as seen in Figure 6.

This clearly shows that by increasing the number of obfuscators being applied to
a malware, we can bring down the detection ratio of that particular file to a very low
value.
7.3.1.3 Average Ratio and Summarization

To conclude the experiments, the average detection ratio was calculated for each
obfuscator and the combination of obfuscators. The results of this calculation are
shown in Figure 11.

We observe a decline in the detection ratio for the different obfuscators. The
average detection rate drops steeply when all obfuscators are combined. This is
consistent with the results obtained so far in the experiment. The presence of the
manifest obfuscator after the result of the combined four obfuscators in Figure 11
shows the importance of selecting the right obfuscator for defeating the malware

detectors.
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Figure 11: Average Detection Ratio for Different Obfuscators

7.3.2 Individual Malware Detectors

We now analyze behavior of the individual malware detectors and look at their
performance against code obfuscation. To achieve this, we perform the same experi-
ments as before and gather the detection statistics for each malware detector. This
analysis will let us understand the workings of a particular malware detector and help
us identify the best detector for Android. Once we have that information, we will

know the best way to defeat obfuscation in malicious programs.

The detection rates for the AVG Antivirus are shown in Figure 12. From the
figure, we can see that this Antivirus behaves in a manner that is consistent with
the observations so far. The detection rates for AVG Antivirus are in line with the
collective detection rates obtained for all the malware detectors. AVG performs very
poorly only against the manifest obfuscator. In addition to this, the only other instance
when this malware detector fares poorly is when all the obfuscators are combined.

Similar to the detection rates observed for the AVG antivirus, we look at the
detection rates for the BitDefender, and the TrendMicro antivirus as well. The

performance of the BitDefender Antivirus is showing in Figure 13.
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Figure 13: Detection Ratio for the BitDefender Antivirus
The BitDefender Antivirus program behaves in a manner that is consistent with
the results obtained for all the malware detectors in general. The difference observed

with AVG antivirus is not seen with BitDefender. However, it can be seen that the

BitDefender antivirus still fails against the combination of all the obfuscators.
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Figure 14: Detection Ratio for the TrendMicro Antivirus

The TrendMicro Antivirus performs well only against unobfuscated malware samples,
as seen in Figure 14. The performance of this antivirus is consistently poor across all
the obfuscators. We can surmise that the algorithm being employed by the TrendMicro
antivirus is not very effective against obfuscated Android malware.

It is safe to conclude that the detection algorithms of AVG and BitDefender
are much more efficient against obfuscated malware, than the algorithm used by the

TrendMicro program.
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CHAPTER 8

Conclusion and Future Work

From the results obtained in this experiment it is evident that the malware detectors
of today are incapable of handling code obfuscation in android malware. This problem
presents a huge gap in the domain of Android Anit-Virus products. The first step in
building a robust malware detector for the Android operating system is to identify the
flaws in the current implementation of the malware detectors. To be able to identify
truly polymorphic malware, the anti virus programs need to be able to defeat the
different types of obfuscators and their combinations. From this experiment, it is
evident that the current malware detectors can be easily defeated and the only true
defense against mobile malware is at the point of installation.

8.1 Conclusion

Due to the limited processing capacity of the mobile devices, it is imperative that
stand alone malware detectors are able to sufficiently defend against known threats
and variants of known malware that are detectable by signature scanning. In this
experiment, we used different obfuscators to test the resilience of malware detectors
against obfuscated malware. Unsurprisingly, the malware detectors fared very poorly

against such obfuscation techniques.

We also observed that by applying all the obfuscators, it is becomes a trivial task
to defeat a very large number of obfuscators. While certain obfuscators, such as
the Lib obfuscator (explained in chapter 5 and results included in appendix C), do
not contribute much to the detection mechanism, some other obfuscators contribute
heavily to the detection algorithm. From the experiments, it is evident that the
manifest obfuscator, as shown in Figure 8, contributes the most to the malware

classification algorithm in most of the malware detectors. The importance of this
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Figure 16: Part of a normal Manifest file

obfuscator can be gauged from the fact that this obfuscator gave better results than
the combination of four other combined obfuscators 9. A part of an obfuscated sample
manifest file is shown in Figure 15. A normal, unobfuscated sample of the same
manifest file is shown in Figure 16. As can be observed, a simple switching of the
values in the manifest file is enough to defeat the malware detectors. This leads to
the conclusion that the selection of the obfuscators to use could greatly determine the

detection chances for a malicious file.

Irrespective of the contribution of an individual obfuscator, combining the maximum
number of obfuscators leads to significantly lower detection rates. Therefore, the
higher the number of obfuscations employed, the lower the chance for a malware
getting detected. The current generation of malware detectors are incapable of
handling encryption in the body of malware. This experiment reiterates this fact and

supports the conclusions drawn by Preda et al. in [17]. The conclusions drawn by
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them indicating a huge gap in the requirement and the availability of sophisticated
anti-virus products is still very much prevalent.
8.2 Future Work

Similar to the obfuscators employed in this experiment, it should be possible to
create ‘‘de-obfuscators’ for Android files. It would be interesting to see the effect of
each de-obfuscator against the corresponding obfuscator that has been used here. If
employing such a de-obfuscator helps in thwarting the obfuscation, then it could form
the basis for developing more generic de-obfuscation algorithms for incorporation into
malware detectors. As was evident from the experiment, the selection of the right
obfuscator could greatly influence the detection rate. This proves that the majority
of the malware detectors place too much of significance on one aspect of a file, for
classifying it. This shortcoming with the malware detectors for Android should be

taken care of.

The detection mechanism employed in this experiment was employed various
statistical methods. The experiment could be repeated with different datasets and
with different dynamic detection methods. If dynamic detection mechanisms are able
to defeat the obfuscators, they could be used to accumulate data over a large set of
samples to create a library of known malware. This library could then be utilized
by malware detectors that have very less processing power for performing dynamic
analysis. The ease of decompiling and compiling APK files makes it an easy target
for malware writers. If access to the source code of antivirus products are provided,
defense mechanisms against such obfuscation techniques can be built in. With our
increasing dependence on mobile phones and their proliferation into our lives, it is of
utmost importance that sophisticated malware detectors are able to handle obfuscated

malware.
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With these conclusions, we hope to make future malware detectors more resilient
against polymorphic virus with the expectation that the creators of the anti virus

software incorporate the necessary changes to their programs.
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APPENDIX A

Appendix 1
Abbreviations and Terminologies Used

APK - A file format used for installing applications on the Android operating
system.
AAMO - Short for Another Android Malware Obfuscator - A program for
applying obfuscators to android files.
Obfuscator - A small program that scrambles the source code of a program to
make its functions less obvious.
Apktool - A program that is used to decompile and compile APK files.
Smali -

1. An assembler/disassemble for the dex format used by Android’s virtual
operating system.

2. An intermediate file type between compiled dex code and java source

code.
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APPENDIX B

Appendix 2

B.1 Malware File to Symbol Mapping
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LH ThreatJapan CF45E1288B47D97326 ED279F2EE41E4D  NewsAndroidcode01
LI ThreatJapan DO09A1FF8A96A6633B3B285F530E2D430 NewsAndroidnocode
LJ tunein.player

LK tvtotalnippeltrial.app

LL uk.co.exelentia.wikipedia

LM Update

LN vertu.jp

LO vertu.kr

LP vksafe

LQ waterfall3dLive.boa.liveWPcube

LR Whats app

LS XXshenqi

LT zitmo
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APPENDIX C

Appendix C
C.1 Single Obfuscator Results
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Figure C.17: Detection Rates before obfuscation. Average: 0.7138
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Figure C.18: Average Detection Ratio after using All Obfuscators. Average: 0.219044
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Detection Ratio for Debug Obfucator
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Figure C.19: Detection Rates after applying the Obfuscator Debug. Average: 0.478202
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Figure C.20: Detection Rates after applying the Obfuscator Renaming. Average:
0.478202
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Resigned Detection Ratio
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Figure C.21: Detection Rates after applying the Obfuscator Resigned. Average:
0.507732
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Figure C.22: Detection Rates after applying the Obfuscator Indirection. Average:
0.504374
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Figure C.23: Detection Rates after applying the Obfuscator Lib. Average: 0.584618

Figure C.24: Detection Rates after applying the Obfuscator Manifest.

0.386791

08

07

06

05

04

03

02

01

o

Manifest Detecton Ratio

I N

Tz

=B
o m

w
1]

B3
o

=)
!

G
o

=
L=}

5g8

26

B

= =
g8

.
i

w
w

s
w

o
w

o
o

E2

Average:



Four Obfuscators
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Figure C.25: Detection Rates after applying the Obfuscator Renaming, Reordering,
Goto, and Arithmetic Branch. Average: 0.403457

<osw>wxdg 259506485

Alignment Obfuscator Detection Ratio

|
gz

o e e
SE2288z05 3 ZEERRIPZeEsEgEEeEo2sY

09
0.8
0.7

0.6

o

< W s o

Detecction Ratio
[=] [=] [=]
w = iwn

o
a

o
i

woae
q:ﬁ(q:

Malware Files

Figure C.26: Detection Rates after applying the Obfuscator Alignment. Average:
0.572892
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