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Abstract 

Software defined networking allows the separation of the control plane and data plane in 

networking. It provides scalability, programmability, and centralized control. It will use these 

traits to reach ubiquitous connectivity. Like all concepts software defined networking does not 

offer these advantages without a cost. By utilizing a centralized controller, a single point of 

failure is created. To address this issue, this paper proposes a distributed controller failover. This 

failover will provide a mechanism for recovery when controllers are not located in the same 

location. This failover mechanism is based on number of hops from orphan nodes to the 

controller in addition to the link connection. This mechanism was simulated in Long Term 

Evolution telecommunications architecture. 
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1 Introduction 

Software Defined Networking (SDN) is an enabling technology to overcome growing 

data traffic in dense heterogeneous networks. SDN provides an agile and flexible network. It 

decouples the control plane from the data plane to create a programmable and centralized 

software. It allows for scalability and management of a network. 

SDN can assume two different architectures. The first assumes a centralized controller 

over a network. Controllers can be responsible for nodes or other controllers. The second 

architecture assumes a distributed system of controllers. In either case SDN still maintains the 

same weakness, a single point of failure. At any time controller failure can transpire. Failure can 

occur from various events including power outages or lack of connectivity. Once failure 

transpires, nodes become orphans. They will be unable to transfer data to new connections 

without a controller. This paper will address the detection of failure and recovery in the 

distributed architecture. 

Failure analysis is an important concept in understanding how and why failure is 

occurring. Analysis helps to determine the methods for failover. By understanding failure, one 

can prevent of false positives and determine if failover is truly necessary. Failure analysis is 

broken into failure types and failure detection. 

In order to recover from controller failure, a mechanism must be created to enable orphan 

nodes to be connected to other controllers. Failover must react instantaneously to maintain 

network connectivity in a quick efficient manner. Recovery strategies have been researched and 

are broken into redundant controllers and non-redundant controllers. 

This paper proposes a Hop and Link Failover (HLF) mechanism for recovery due to a 

controller failure. This mechanism was simulated in a Long Term Evolution (LTE) environment 

to prove efficient failover. The LTE environment was chosen as it is predicted to use SDN in 5G 

technology. 5G LTE is the next generation of telecommunications that will enable more devices 

on the network. This is necessary because there is expected to be 50 billion Internet-of-Things 

devices by 2020 [1].  

The remainder of this document is organized as follows: Section 2 presents background 

concepts of the SDN paradigm, the SDN architecture in a distributed manner, analysis of failure 

types and detection of controllers, and various strategies for failover. Section 3 presents related 

works in failover and recovery. Section 4 introduces the HLF mechanism. Section 5 discusses 

the setup and performance of HLF simulation. Finally the paper is concluded in Section 6.  
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2 Background 

The following sections describe the concepts of SDN and how it incorporates into a 

distributed architecture. This description is followed by the analysis of failure types and 

detection of controllers. Lastly various strategies for failover are discussed. 

2.1 Software Defined Networking  

Software Defined Networking is a new technology for managing networks. Originally it 

was thought of as centralized control with an OpenFlow protocol for communications between 

the control plane and the data plane. Its definition has now changed and can be defined by three 

features. It is abstracted from the hardware thus having no dependency on physical hardware 

restrictions. It maintains centralized control to manage forwarding tables and policy 

delegation. It is programmable to dynamically configure networks based on policy and demand 

[2]. 

The SDN architecture consists of three planes and two interfaces for communication 

between the planes. The components include the application plane, the control plane, and the 

data plane. The two interfaces include the northbound and southbound interfaces [3]. The SDN 

architecture is shown in Figure 1.  

The data layer is the bottom most layer of the SDN architecture. It consists of network 

devices that forwards data based on control tables. Although the data layer contains control 

tables it does not create the table. The table comes from the controller. 

The southbound interface is used for communication between the data layer and the 

control layer. This interface is used to transmit the type and amount of traffic from the data layer 

to the control layer. It is also used to transmit the flow tables from the controller to the data layer. 

The controller layer is in charge of enforcing policies from the business applications. It 

creates forwarding tables and prioritizes quality of service based on business policies. The 

control layer sends forwarding tables to the data layer. 

The northbound interface is used for communication between the controller layer and the 

application layer. It provides abstract network views and enables network requirements. This 

interface can be implemented through an application protocol interface. 

The application layer is the top most layer of the SDN architecture. It consists of business 

applications. These applications programmatically communicate business policies to the 

network. They determine quality of service and network behavior through service level 

agreements.  
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Figure 1: Traditional Network vs. SDN [4] 

SDN can improve network communication. It brings new features to networking such as 

performance, virtualization, orchestration, programmability, visibility, and dynamic scaling. 

SDN improves performance by managing bandwidth and adjusting the traffic loads. It can be 

optimized for network capacity and adjust for node failure. It has the ability to orchestrate traffic 

for a plethora of devices with a few commands. SDN creates visibility in software to monitor 

resources. SDN is virtualized. It uses network resources regardless of physical location and can 

dynamically scale according to its need. 

2.2 Distributed SDN Architecture 

SDN can be incorporated in a distributed fashion. This architecture consists of multiple 

SDN controllers. Each SDN controller is responsible for one sub-network of nodes. These nodes 

are network devices such as switches or eNodeBs that deliver packets from devices to other 

devices. The controllers can communicate with one another in a distributed fashion. An example 

architecture is shown in figure 2. 
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Figure 2: Distributed SDN Controllers 

The advantage of a distributed SDN architecture is that it enables reliability in the network by 

eliminating a single point of failure. It allows other controllers to adopt orphan nodes during 

controller failure. The distributed architecture allows each network to be dynamically 

configured. 

2.3 Long Term Evolution Architecture 

Long Term Evolution is a communications standard for telecommunications. It is located 

in the access portion of the Evolved Packet System to transmit data. LTE uses an architecture 

where the user equipment communicates with the Evolved Universal Mobile Telecommunication 

System Terrestrial Radio Access (E-UTRA) [5]. The E-UTRA then transmits data to the Evolved 

Packet Core (EPC) in order to communicate with the Internet. Figure 3 shows the architecture.  

 

Figure 3: Telecommunications Architecture [6] 

User equipment includes items such as computers, mobile phone, tablets, and Internet-of-

Things devices. It consists of devices that start the initial transmittal of data. User equipment 
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transmits data through radio waves to towers. These towers are known as eNodeBs. The 

ENodeBs communicate with one another as well as the EPC. 

The EPC is the core network for LTE communications. It is a framework that provides 

data on an IP network. The EPC consists of five major components: mobility management entity, 

serving gateway, packet data network gateway, the home subscriber server, and the policy 

control and charging rules function. These components hold user information, policy, and 

charging rules. It also allows user equipment to access the Internet. 

2.4 SDN in LTE 

SDN is intended to be included for 5G LTE. According to IMT-2020 [7], testing for SDN 

in 5G has begun during 2016. The telecommunications industry has already begun incorporating 

and testing 5G LTE [8].  

SDN can be integrated into the LTE architecture by replacing the serving gateway and 

packet data network gateway with a controller. An example is shown in figure 4. Through this 

architecture two types of data planes are created. The first data plane is incorporated in switches. 

These switches connect the EPC components. The second data plane is incorporated in the 

eNodeBs. The controller would handle the flow from user equipment to other user equipment or 

to the Internet. It would accomplish this feat by orchestrating the data between eNodeBs and 

switches.  

 

Figure 4: SDN in LTE Architecture 

2.5 Failure Types 

Controller failure can occur from software, network, or hardware failures [9]. During 

controller failure each node will maintain its current status but not be able to adjust flow control, 

management of services, or take on new connections until a new controller is adopted. 

Software failure can transpire through maintenance issues, bugs, or attacks. Maintenance 

issues typically occur while software is either being updated or restarted. Software will freeze 

and be unable to complete tasks. Software bugs can be introduced to a system while testing or 
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going live. Since controllers manage nodes, they are a target for hackers. Malicious software can 

be installed to take down or control the SDN controllers. 

Network failure transpires through lack of connectivity. This issue occurs when the 

controller and the node cannot communicate properly with one another. Connectivity can be a 

physical issue or software issue. 

Hardware failures happen from lack of maintenance or power. Hardware devices need to 

be monitored for dust and insects. Insects can cause shorting of integrated circuits. High levels of 

dust will insulate hardware components and can overheat components. Power failure happens 

when there are issues powering the hardware. 

2.6 Failure Detection 

Failure detection is important in determining controller failure. Often controllers do not 

fail. Instead they provide false positives that a failure has occurred. Often failure detection has a 

high mistake rate [10]. Detection of failure can be discovered in a plethora of ways including 

heartbeat messages and failure messages. 

Failure messages are a graceful way for controllers to fail. If a controller is shutdown due 

to maintenance, it can send failure messages to nearby neighbors informing them of its status. 

Heartbeat messages are a way for neighboring controllers to determine if a controller is 

alive. Each controller periodically sends messages to nearby neighbors announcing their 

existence. Reverse heartbeat messages are another way of failure detection. With reverse 

heartbeat messages, nodes message controllers periodically to determine if the controller is alive. 

In either case if messages are not received within a certain time frame controllers are assumed to 

have failed. 

With heartbeat messages the issue of false positives occurs. False positives emerge when 

heartbeat messages happen but are missed by neighboring controllers. Neighboring controllers 

then try to adopt nodes still associated with the connected controller.  
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3 Related Work 

Failover for distributed controllers is an important issue that must be addressed in order 

for SDN to provide ubiquitous connectivity. Distributed SDN controller failure can occur for a 

plethora of industries. These industries include: Wide Area Networks, telecommunications, data 

centers, and big data. Each area has its own constraints thus will require its own set of failover 

mechanisms. 

Failover for SDN has been researched topic. Mathis Obadia et al. [9] explored a greedy 

mechanism for failover. They implemented failover for distributed SDN controllers. Their 

simulation involved Mininet with Floodlight controllers. They developed a proactive approach to 

the greedy mechanism to enhance the speed of recovery. 

Li et al [11] proposed a proactive recovery mechanism based on controller load and 

switch-controller delay. In their mechanism they use scores to reassign switch paths during 

failover.  

A fast and load-aware controller failover mechanism was analyzed by Fang, Wang, and 

Wang [12]. They proposed an enhanced algorithm to Li et al [11] where controllers pre-compute 

a recovery plan for failure of other controllers. Their algorithm derives a recovery plan based on 

switch-controller delay from their mapping in addition to the standard deviation of the controller 

load. 

Failover with redundant controllers has been researched by Pashkov et al [13]. They 

developed a failover mechanism that incorporates various standby strategies for the redundant 

controllers. These methods include hot, warm, and cold standby. They proved their hot and warm 

mechanisms to be effective for failover with relatively low overhead. 

Borokhovich and S. Schmid [14] explored failover on OpenFlow switches. They 

analyzed local fast failover due to link failures. They presented a randomized deterministic 

algorithm for forwarding sets to show that local fast failover is efficient under randomized link 

failures. 

A method to solve control plane link failures for a single controller was proposed by 

Beheshti and Y. Zhang [15]. They proposed an algorithm to determine the optimal placement of 

the controller to maximize resiliency. This allows the network to react to switch and link failures 

in the data plane by re-routing control traffic.  

3.1 Redundant Controller Strategies  

Recovery mechanisms can be incorporated through redundant controllers. The redundant 

controller architecture incorporates two or more controllers per controller domain. The first 

controller will actively control the domain while the other controller(s) remain in a standby 

mode. In case of failure, the standby controller will replace the active controller. Standby 

controllers duplicate active controllers in all functionality. Redundant controller strategies 

provide a fast failover technique. Redundant controllers can be used when extra hardware and 

software is available and recovery time is crucial. Big data for real-time analytics is a prime 
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candidate for redundant controllers. Three strategies for controller redundancy include cold 

standby, warm standby, and hot standby [13].  

3.1.1 Cold Standby 

In the cold standby strategy, the standby controller is stateless. During failure of the 

active controller, the standby controller will become active and take over the failed controller’s 

domain without any knowledge of the network configuration. It will initialize its default 

configuration of services and applications before starting its topology discovery. In this strategy 

the standby controller remains unloaded until active. This strategy is ideal for stateless services 

and applications. 

3.1.2 Hot Standby 

In the hot standby strategy, the active controller is duplicated by the standby controller 

for all changes that occurs. This duplication runs a full state synchronization. When the active 

controller fails, the standby controller can replace its position in the current state. This minimizes 

the recovery time, yet it will require implementing software and hardware redundancy in 

addition to high communication overhead.  

3.1.3 Warm Standby 

In the warm standby strategy, the standby controller periodically runs a full state 

synchronization of the active controller to retain its state. During failure of the active controller, 

the standby controller will operate based on the last state synchronization. With this strategy 

some states will be lost and some services will be interrupted. This cost will reduce the overhead 

in communication. It will also eliminate full initialization. 

3.2 Non-Redundant Controller Strategies 

In most cases redundant controllers are unnecessary. They create overhead by requiring 

software and hardware redundancies as well as additional communication. In non-redundant 

controller strategies, there is only one controller per controller domain. During failure, 

controllers can increase their domain and adopt orphan nodes in their network. This reduces the 

overhead of the network. Non-redundant controller strategies can be effective in data centers or 

telecommunications. Two current strategies for non-redundant controllers include least loaded 

failover and greedy failover. A new failover proposed by this paper includes HLF. 

3.2.1 Greedy Failover 

In the greedy failover, controllers try to adopt orphan nodes at the edge of their domain. 

Greedy failover can be implemented reactively. First, detection of controller failure is conducted 

by the nodes. They transmit reverse heartbeat messages to their controllers to determine the 
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status of their controller. If the controller fails to respond to a number of messages, failure is 

detected and the nodes become orphan nodes. 

Orphan nodes must then search for a new controller. They send out discovery messages 

to their connected nodes. The nodes in close proximity forward the discovery message to their 

controllers. If the nodes in close proximity do not have a controller they will drop the message. 

The first controller to connect with the orphan node will adopt it. Flow tables contained in the 

orphan node will remain unchanged until the controller has ample time to discover the topology 

of its new domain. Once a controller adopts one orphan node it must update its database with 

information from the node. This must be completed before discovering more orphan nodes. The 

algorithm for the reactive greedy method is shown in Algorithm1. 

Algorithm1: Reactive Greedy 

1. listenForMessages 

2. if receiveMessage then 

3.   if hasController = false then 

4.     linkCapacity = getLink 

5.     hops = getHops 

6.     adoptController 

7.     hasController = true 

8.   end if 

9. end if 
 

Greedy failover can also be implemented in a proactive approach. In this approach, 

controllers take turns exchanging their network information with the nodes. This occurs when the 

nodes are powered up. The nodes use the greedy algorithm during their initialization setup to 

pre-determine which controllers to connect to in case of failure. The nodes then insert this 

information into their database. The algorithm for this has been developed by Mathis Obadia et 

al [9] and completed using the algorithm2. 
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Algorithm2: Proactive Greedy [9] 

1. while setOfNodes   0 do 

2.   for neighborDomain   setOfDomains do 

3.     if ∃ node   setOfNodes then 

4.       Add node to setOfNeighborDomainBackupNodes 

5.       Remove node from setOfNodes 

6.     end if 

7.   end for 

8.   if   neighborDomain   setOfDomains node   setOfNodes then 

9.      Add first node   setOfNodes to first setOfNeighborDomainBackupNodes 

10.      Remove node from setOfNodes 

11.   end if 

12. end while 
 

Detection of controller failure is established the same way as the reactive method above. 

Once failure is determined, orphan nodes contact controllers in their database. The controllers 

then establish connections to all orphan nodes simultaneously. Then the controllers updated its 

database with information from the newly adopted nodes simultaneously. 

3.2.2 Least Loaded Failover 

Least loaded failover [12] is a simple recovery mechanism that is efficient in data centers 

where controllers are often physically located next to each other. During controller failover, the 

least loaded controllers increase their controller domain by adopting the orphan nodes.  

Detection of controller failure is conducted by heartbeat messages. Controllers interact 

with each other to determine their nodes. Afterwards they monitor each other through heartbeat 

messages. When messages fail between controllers, failure is detected. The controllers then 

determine the least loaded controller. This controller will then adopt all the orphan nodes 

simultaneously. Flow tables contained in the newly adopted nodes will remain unchanged until 

the controller can discover the new topology. 

Least loaded failover can be combined with greedy failover. This mechanism has been 

proposed by Li et al. [11]. In this mechanism, scores are created based on controller loading and 

switch-controller delay. The scores determine how the nodes should be reassigned to controllers 

during failover. 

3.2.3 Proposed Hop and Link Failover 

HLF is a mechanism proposed by this paper. It takes a different approach to failover for 

distributed controllers. It incorporates the adoption of orphan nodes based on the physical 

number of hops from controllers as well as the link capacity from the controller to the nodes.  

The previous failover methods are intended for SDN in data centers. They assume 

controllers and nodes are in close proximity to one another. HLF is intended to provide efficient 
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and quick response for distributed controllers when controllers are not the physical located near 

each other. HLF would guarantee nodes to be within the least amount of hops to their controllers 

with the greatest amount of link capacity. HLF can be incorporated either reactively or 

proactively. This recovery mechanism can be implemented for a telecommunications network. 
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4 Proposed Hop and Link Failover Algorithm 

HLF is proposed to combat controller failure when controllers are not physically located 

to each other. The approach of HLF takes into account the heterogeneity of network connections. 

Controllers adopt orphan nodes based on the number of hops from the nodes to the controller as 

well as the link capacity between the nodes. HLF organizes controller domains initially based on 

the number of hops leading to the controller. If the number of hops is equivalent to another 

controller, the link connection between the controllers is compared. 

HLF is implemented using three algorithms. The first algorithm is for failure detection of 

the node, the second and third algorithms are for controller adoption. Failure detection is 

implemented through reverse heartbeat messages. Each node is responsible for sending messages 

to confirm the controller status. Failure is determined when messages are not received. Failure 

detection is implemented for each node in the following steps and algorithm3: 

Step 1. A node sends a heartbeat message to its controller every five seconds.  

Step 2. The node listens for a reply message from the controller. The timestamp from the last 

reply message is stored by the node. 

Step 3. If the node does not receive a reply message from their controller within thirty 

seconds it deems the controller failed [16].  

Step 4. The node becomes an orphan and broadcasts discovery messages to its neighbor 

nodes. 

Algorithm3: Failure Detection (Node) 

1. while hasController = true 

2.   listenForMessages 

3.   if currentTime – lastSentMessage >= 5 seconds then 

4.     sendHeartBeat 

5.   end if 

6.   if currentTime – lastReceivedMessage >= 30 seconds then 

7.     hasController = false 

8.   end if 

9. end while 

10. broadcastOrphan(neighborNodes) 
 

Controller adoption occurs when a controller receives a discovery message and tries to 

connect to the orphan node. The first controller to interact with the orphan node adopts the node. 

After the adoption, other controllers can also message the newly adopted node. The node will 

determine if it requires fewer hops than other controllers or is equal distance with more link 

capacity. If a controller exemplifies these metrics, it will replace the existing controller. Once a 

controller adopts a node it will then update its database with information from the node. 
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Controller adoption is implemented in the following steps and algorithms. Algorithm4 is from 

the controller’s perspective while algorithm5 is from the node’s perspective. 

Controller: 

Step 1. A controller receives a discovery message.  

Step 2. The controller creates an adoption message with the hops and link capacity to the 

orphan node. 

Step 3. The controller sends the message to the node. 

Algorithm4: Controller Adoption (Controller) 

1. listenForMessages 

2. if receiveMessage then 

3.   linkCapacity = getLink 

4.   hops = getHops 

5.   sendAdoptionMessage(linkCapacity, hops) 

6. end if 
 

Node: 

Step 1. The node receives an adoption message from controller1. 

Step 2. The node accepts the adoption. 

Step 3. The node receives an adoption message from controller2. 

Step 4. The node evaluates the connection to controller1 versus the connection to controller2. 

It takes the connection with the least amount of hops and bandwidth. 

Algorithm5: Controller Adoption (Node) 

1. listenForMessages 

2. if receiveMessage then 

3.   if hasController = false then 

4.     linkCapacity = getLink 

5.     hops = getHops 

6.     adoptController 

7.     hasController = true 

8.   else if hasController = true then 

9.     newLinkCapacity = getLink 

10.     newHops = getHops 

11.     if hops   newHops or (hops   newHops and linkCapacity < newLinkCapacity) then 

12.       dropCurrentController 

13.       linkCapacity = newLinkCapacity 

14.       hops = newHops 

15.       adoptController 

16.     end if 
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17.    end if 

18. end if 
 

An example of HLF is shown in a reactive approach through figures 5 through 8. Figure 

5 shows the architecture of three domains. Each domain consists of one controller and three 

nodes. The connection between each node varies. 

 

 

Figure 5: HLF Example Architecture 

Reverse heartbeat messages are sent from the nodes to the controller. If controller1 fails 

the nodes in its domain will announce their orphan status through discovery messages to 

neighboring nodes. Node3 will send messages to node2, node4, and node5 as shown in figure 6. 

Since node2 is the only node connected to a controller it will forward the message from node3 to 

its controller through node1.  

 

Figure 6: Node3 Orphan Broadcast 
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 Controller0 will reply to the orphan message to adopt node3. It will send an adoption 

message through node1 and node2. When the message reaches node3, node3 will accept the 

adoption from controller0 (Figure 7) with three hops and a link connection of 50 megabits per 

second (Mbps). Node3 will then send data to controller0 for it to update its database. 

 

Figure 7: Node3 Adoption 

 Node5 will concurrently go through the same process as node3 and be adopted by 

controller2. Controller2 will notify node5 that it is three hops away with a link connection of 70 

Mbps. Node4 broadcasts messages to node3 and node5. They forward their messages to their 

controllers. Node4 can be adopted by controller2 due to the latency of the messages. Controller2 

will inform node4 that is it is four hops away with a link connection of 30 Mbps. Node4 will then 

receive an adoption message from controller0 with four hops and link connection of 40 Mbps. 

Node4 will then upgrade to controller0. The final architecture for failover is shown in figure 8. 

 

Figure 8: Final Architecture 

HLF can be implemented proactively. In the proactive approach, each node pre-

determines their backup controller. This process is completed prior to controller failure. During 
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backup controller selection, the first controller to contact the node is initially the backup 

controller. Other controllers can replace the backup controller’s position if it requires less hops 

or equal with a higher link capacity.  
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5 Performance Evaluation 

HLF can be implemented in any distributed SDN architecture however it is most 

effective when controller locations are not be physically located nearby. To simulate this, HLF 

was integrated in a 5G LTE architecture. In this architecture a set number of eNodeBs were used 

to show temporary failover. The LTE architecture was simulated with the assumption that 

controllers will reside relatively near their controller domain but may not reside in the same data 

center as each other. 

5.1 Implementation and Setup 

To evaluate HLF, four failover mechanisms were simulated. The four simulations include 

HLF as a reactive mechanism, HLF as a proactive mechanism, greedy failover as a reactive 

mechanism, and greedy failover as a proactive mechanism. These simulations were developed 

for 5G telecommunications thus all controllers were positioned in different locations. The 

simulations consisted of two different architectures. 

The first failover architecture consists of three controllers and sixteen eNodeBs as shown 

in figure 9. In this simulation controller1 fails. Controller0 and controller2 must adopt orphan 

eNodeB5 through eNodeB10. 

 

Figure 9: Failover Architecture1 

The second failover architecture consists of three controllers and nine eNodeBs as shown 

in figure 10. In this simulation controller1 fails. Controller0 and controller2 must adopt orphan 

eNodeB3, eNodeB4, and eNodeB5.  



- 18 - 

 

 

Figure 10: Failover Architecture2 

Each simulation began with the initialization of the architecture. Next, controller1 would 

fail and failover procedures would begin. The orphan eNodeBs would broadcast orphan 

messages to nearby neighbors. To include latency of network delay with the messages, a variable 

sleep time was randomly created for both the controllers and eNodeBs. The network delay was 

determined after analysis of queuing delay, processing delay, propagation delay, and 

transmission delay. 

Queuing delay was determined for the maximum network traffic load of 25%, 50%, 75%, 

and 95%. These loads were evaluated with a maximum queue of 512 packets [20] per node or 

controller. With a message size of 750 bytes and rate of transmission of 175 Mbps, one packet 

was calculated to take 0.034 ms. At a maximum traffic load of 25%, the maximum queuing delay 

was 4 ms. At 50%, the delay was 9 ms. For 75% the delay was 13 ms and 95% load was 17 ms. 

Processing delay was assumed to be the same for every component thus neglected from 

the simulations. 

Propagation delay was calculated by the distance between two eNodeBs divided by the 

speed of light. The maximum distance for an eNodeB is 32 kilometers [17]. With this distance, 

the maximum propagation delay is 0.1 milliseconds (ms). Since this number is insignificant, 

propagation delay was assumed to be negligible. 

Transmission delay was calculated by the number of bits in a message divided by the rate 

of transmission. The message size was determined based on the size of a packet used in 

videotelephony [19]. This packet was 750 bytes. Rate of transmission was deducted based on the 

link capacity of a macrocell. A macrocell has a link capacity of approximately 175 megabits per 

second [18], however path loss will reduce the link connection. The minimum rate of 

transmission used was 50 megabits per second. Using these assumptions, the transmission delay 

calculates to 0.1 ms and is considered negligible. 
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For all failover mechanisms four simulation load variations were created. The simulations 

incorporated delay between 0 to 4 ms for 25% load, 0 to 9 ms for 50% load, 0 to 13 ms for 75% 

load, and 0 to 17 ms for 95% load. 

For all simulations, each controller was initialized to each eNodeB prior to starting the 

simulation. For the proactive mechanisms, the eNodeBs begin contacting controllers to 

determine their backup controller during initialization. 

5.2 Results and Analysis 

Each simulation varied due to the queuing delay time that was randomly generated for 

each eNodeB and controller. To combat any potential bias in these simulations, each failover 

mechanism ran twenty five simulations. For each failover mechanism there were five 

evaluations. These evaluations included eNodeB hops, link capacity, controller load, network 

recovery time, and controller traffic on the network. Each evaluation was completed for 25%, 

50%, 75%, and 95% uniform data traffic as well as non-uniform data traffic. 

5.2.1 First Failover Architecture 

The first architecture (figure 11a) was simulated in both the greedy and HLF 

mechanisms. This architecture reflects a general design for a telecommunications network. 

During these simulations the HLF mechanisms maintained the same architecture in every 

simulation regardless of the data traffic (figure 11b). The greedy mechanisms provided a 

variation of architectures. The least advantageous architecture was created by the greedy 

mechanisms. It occurred during the non-uniform data traffic. During this simulation the 

controller0 adopted all orphan eNodeBs (figure 11c).  

 

Figure 11a: Starting Architecture1 
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Figure 11b: HLF Resulting Architecture1 

 

Figure 11c: Greedy Resulting Architecture1 

 

5.2.1.1 eNodeB Hops 

In order to increase the speed of transmission, the reduction of hops to a destination is 

necessary. Reducing the amount of hops reduces the amount of queues the message must sit in as 

well as the reduction in the processing delay per eNodeB. This metric was evaluated by 

analyzing the resulting architecture for each simulation.  

Figure 12a shows the analysis of the simulation for architecture1. It shows the average 

number of hops from the eNodeBs to the controllers including the maximum and minimum 

number of hops in uniform data traffic. Figure 12b displays the average number of hops from the 

eNodeBs to the controllers including the maximum and minimum number of hops for 50% and 

95% uniform data traffic. The results show that HLF always maintained two hops from the 

controller to all the orphan eNodeBs. 
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The greedy failover exhibited a variety of architectures except for the reactive greedy 

mechanism with 25% uniform data traffic. The variation in the architecture was due to the 

incorporation of delay. Delay was a factor in the response time for both eNodeBs and controllers 

in the greedy mechanism. It allowed controllers to adopt eNodeBs that were closer to other 

controllers. The reactive greedy mechanism with 25% load is believed to have remained constant 

due to the low amount of delay. The results show the greedy failover mechanisms adopting 

orphan eNodeBs with an average between 2 and 2.12 hops.  

 

Figure 12a: Average Number of eNodeB Hops to Controller for Architecture1 for all Uniform Data 

Traffic 

 

Figure 12b: Average Number of eNodeB Hops to Controller for Architecture1 for 50% and 95% Uniform 

Data Traffic 
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The first architecture was additionally simulated with non-uniform data traffic to increase 

the visibility of the issue of the greedy algorithm with regards to hops. The data traffic was non-

uniform thus that the controller domain under controller2 maintained a 95% load while the rest 

of the system maintained a 25% load. Figure 13 shows the results of an instance that had 

occurred. During this instance controller0 adopted all the orphan eNodeBs in the greedy 

mechanism. It increased the amount of hops to the controller for eNodeB7 to eNodeB10. In the 

HLF mechanism, 2 hops were maintained for all orphan eNodeBs. 

 

Figure 13: eNodeB Hops to Controller for Architecture1 in Non-Uniform Data Traffic 

Figure 11c shows the configuration that occurred when using the greedy mechanisms for 

the non-uniform data traffic. The figure shows a skewed architecture in which controller0 

adopted all orphan eNodeBs. ENodeB7 through eNodeB10 required less hops to controller2, 

however were not able to be adopted due to the latency of controller2. The latency of controller2 

could be temporary yet cause an inefficient ending architecture. 

The HLF mechanisms showed an evenly distributed ending architecture for failover 

(figure 11b). During failover it was possible for controller0 to initially adopt all orphan eNodeBs, 

however controller2 was able to re-adopt eNodeB7 through eNodeB10 to enable a more 

balanced architecture. This resulted with each orphan eNodeB having 2 hops to its new 

controller. 

With regards to the amount of hops between the orphan eNodeBs and the controllers, the 

greedy mechanisms make no guarantees. The possibility of an inefficient resulting architecture 

can occur. HLF displays a better ending architecture for failover. It enables eNodeBs to be 

adopted by the controller with the least amount of hops.  
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5.2.1.2 Link Capacity 

To avoid network latency, the connection from a controller to an eNodeB must be as 

efficient as possible. Therefore orphan eNodeBs should be adopted with the highest available 

link connection. Figure 14a shows the results of the average, maximum, and minimum link 

connection from the orphan eNodeBs to the controllers for all uniform data traffic. Figure 14b 

shows the results of the average, maximum, and minimum link connection from the orphan 

eNodeBs to the controllers for 50% and 95% uniform data traffic. The greedy mechanisms 

showed a variation in the link connection per eNodeBs with exception of the reactive greedy 

mechanism with 25% traffic load. The HLF mechanism maintained the maximum possible link 

connection during every simulation.  

 

Figure 14a: Average Link Connection for Architecture1 for all Uniform Data Traffic 
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Figure 14b: Average Link Connection for Architecture1 for 50% and 95% Uniform Data Traffic 

With non-uniform data traffic the results produced a lower link connection for the greedy 

algorithm while HLF maintained the maximum possible link connection with the least amount of 

hops (figure 11c, 15). The resulting architecture for the greedy mechanisms produced 100 Mbps 

link connection for all orphan eNodeBs. The resulting architecture for the HLF mechanisms 

produced 100 Mbps for eNodeB5 and eNodeB6 and 150 Mbps for eNodeB7 and eNodeB10. 

 

Figure 15: Link Connection for Architecture1 in Non-uniform Data traffic 
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The results for this architecture show that HLF always provides the ability for the highest 

link capacity from an eNodeB to its closest controller. The greedy algorithm does not ensure the 

maximum link connection for failover. 

5.2.1.3 Controller Load 

One measure of controller effectiveness can be correlated to the amount of load a 

controller has. The more eNodeBs communicating with a controller, the more traffic there is in 

that controller domain. A controller with higher traffic must have the capacity to handle it. 

Controller load for the architecture1 is shown on figure 16. These results display the average 

amount of eNodeBs per controller in addition to the maximum and minimum eNodeBs per 

controller with uniform data traffic. 

 

Figure 16: Average Controller Load for Architecture1 

On average all mechanisms performed in a similar manner, however the results show that 

the architecture for the greedy mechanisms varied in all cases except for the reactive greedy 

mechanism with 25% load. The HLF architecture did not vary. It maintained the same 

architecture every time. The results show controller0 adopted two eNodeBs in addition to its own 

eNodeBs and controller2 adopted four eNodeBs in addition to its own eNodeBs. While this 

architecture is not evenly distributed, it does not overload one controller. 

With uniform data traffic the greedy mechanisms showed variation in the amount of 

eNodeBs adopted per controller. Controller0 adopted between zero to four eNodeBs while 

controller2 adopted between two to six eNodeBs. This variation was dependent on the network 

delay. With less delay a controller was able to obtain more eNodeBs. This allowed controllers 
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of the controller1 and adopted all the orphan eNodeBs. With non-uniform data traffic, the reverse 

occurred where controller0 adopted all orphan eNodeBs. This additional load is unnecessary for 

one controller to solely bear when another controller has the available capacity. 

With a non-uniform traffic load, controller0 adopted all the orphan eNodeBs in the 

greedy algorithm (figure #). This result was due to the latency of controller2. With HLF it 

maintained the same architecture as above. 

 
Figure #: Controller Load Non-Uniform Traffic 

For controller loading, the greedy mechanism showed a potential to create the most 
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structure of the architecture as well as how the proactive mechanism works. The benefit of the 

proactive mechanism is that orphan eNodeBs can be adopted when all the surrounding eNodeBs 

are in its controller domain. With this first architecture the orphan eNodeBs always have an 

immediate eNodeB in another domain. The proactive mechanism requires more overhead to 

operate. It must maintain both a controller and backup controller. This additional overhead 

creates additional processing time. 

 

Figure 17: Average Network Recovery Time for Architecture1 

For this architecture, the reactive greedy mechanism proves to provide the fastest 

failover. All other mechanisms have additional overhead which relays to added latency.  
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Figure 18a: Starting Architecture2 

 

Figure 18b: HBF Resulting Architecture2 
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Figure 18c: Greedy Resulting Architecture2 

5.2.2.1 eNodeB Hops 

The results of the second architecture’s simulation for all uniform data traffic are shown 

in figure 19a. The results display an even amount of hops regardless of the algorithm. This is due 

to the architecture in which both controller0 and controller2 have an equal number of hops to 

each orphan node. Since the number of hops is equivalent, HLF does not provide any advantage 

to the greedy algorithm for this metric. Figure 19b displays the average hops for 50% and 95% 

data traffic per eNodeB. 

 

Figure 19a: Average Number of eNodeB Hops to Controller for Architecture2 for all Uniform Data 

Traffic 

 

Figure 19b: Average Number of eNodeB Hops to Controller for Architecture1 for 50% and 95% Uniform 

Data Traffic 
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This architecture was also simulated with non-uniform data traffic. In this simulation 

controller0’s domain operated with a 95% data traffic while the rest of the network operated at 

25% data traffic. In this simulation there was no difference in regards to the number of hops 

(figure 20). 

 

Figure 20: eNodeB Hops to Controller for Architecture2 in Non-Uniform Data Traffic 
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Figure 21a: Average Link Connection for Architecture2 for all Uniform Data Traffic 

 

Figure 21b: Average Link Connection for Architecture2 for 50% and 95% Uniform Data Traffic 
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Figure 22: Link Connection for Architecture2 in a Non-Uniform Data traffic 

The results for this architecture show that HLF provides the highest link capacity from all 
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Figure 23: Average Controller Load for Architecture2 

For non-uniform loads, the HLF mechanism resulted with controller0 adopting 3 

eNodeBs in addition to its own eNodeBs and controller2 did not adopting any. With the greedy 

mechanism, the opposite occurred where controller2 adopted 3 eNodeBs and controller0 did not 

adopt any. 
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5.2.2.4 Network Recovery Time 

Network recovery time for uniform data traffic is shown in figure 24. The proactive 

greedy mechanism shows the fastest average network recovery times. The slowest average 

recovery time is from the HLF reactive mechanism. The proactive mechanisms prove to be faster 

due to its nature. In the proactive mechanisms, the eNodeBs have a known backup location to 

another controller. They message the controller for adoption immediately after failure. This 

behavior allows a fairly linear recovery time regardless of the number of orphan eNodeBs [9]. 

With the reactive greedy mechanism, the recovery time correlates to number of orphan 

eNodeBs. This behavior is to be expected as the eNodeBs in the reactive mechanism can only 

message controllers once their neighbor has is in a different domain. The reactive HLF 

mechanism takes the longest average recovery time for the final failover architecture. As 

explained for the first architecture this is due to the fact that it runs the greedy mechanism then 

potentially upgrades. 

 

Figure 24: Average Network Recovery Time for Architecture2 
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did not vary by the greedy mechanism or HLF mechanism. Control traffic was affected varying 

on whether the mechanism was reactive or proactive.  

Failover mechanisms require heartbeat messages. These messages increase the control 

traffic on each component in the network. Increased messages correlate to an increase in network 

delay. In the simulations the reactive mechanisms increased the data traffic by sending reverse 

heartbeat messages from the eNodeBs to its prospective controller. The proactive mechanisms 

required additional messaging by sending reverse heartbeat messages to both its controller and 

backup controller. This doubled the amount of required messaging and increased the network 

delay. 
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6 Conclusion and Future Work 

As SDN is being commercialized for networking, it becomes apparent that failover 

strategies are needed to remove the issue of a single point of failure and maintain seamless 

connectivity for users. There are a plethora of failover strategies available. Each mechanism has 

its own advantages that should be analyzed prior to implementation. 

This paper has shown the capabilities of the HLF mechanism to handle failover when 

controllers are setup in a distributed architecture and controller locations not located in the same 

location. HLF is a non-redundant controller strategy that can be incorporated in a reactive or 

proactive mechanism. It proves to be an advantageous mechanism that provides failover for 

nodes with the least amount of hops and the highest link capacity. It addresses the randomness of 

the greedy algorithm for node adoption. 

Future work will include a weighted algorithm for dynamic adjustment for heterogeneous 

networks. This mechanism will consider network resources such as controller load, capacity, and 

bandwidth. This direction will be investigated to further tune failover procedures for distributed 

controllers.  
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