
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Spring 2017 

Masquerade Detection on Mobile Devices Masquerade Detection on Mobile Devices 

Swathi Nambiar Kadala Manikoth 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons 

Recommended Citation Recommended Citation 
Manikoth, Swathi Nambiar Kadala, "Masquerade Detection on Mobile Devices" (2017). Master's Projects. 
550. 
DOI: https://doi.org/10.31979/etd.wmtr-yw5y 
https://scholarworks.sjsu.edu/etd_projects/550 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 





1 and other users as class 0. We can build a Bayes decision boundary to show the

classification. When building a classification tree, at every node a question is asked

and eventually we get to a terminal node that gives the label i.e 0 or 1. The algorithm

decides which variables to ask questions of and build a fairly good decision boundary

that is good enough for classification. Our dataset is significantly huge and has various

types of variables but also includes missing values. Trees are good at handling big

datasets, they can handle continuous and categorical variables equally well and ignores

redundant variables. Trees can handle missing data elegantly.

3.2.3 Decision Tree

It is a supervised learning technique used for classification where a binary tree is

created based on decisions and decisions are made based on Gini coefficients in this

case. Decision tree predicts a class for an input vector thus in our case, decision trees

could be used to classify users based on their behavior data.

Figure 5: Image of a simple decision tree for App usage feature

We looked at the types of decision trees figure 6 and figured that a simple decision

tree would suit our data. Response variable is nothing but the label given to each row.

14



Figure 6: A high level view of the types of decision trees available

In our case, we have 2 categories in our response variable which are 0 and 1. Thus,

we used a simple decision tree.

3.2.4 Extreme Gradient Boosting

Extreme Gradient Boosting(EGB) is generalized way of implementing ADAboost

and it can be used for basic classification. It implements the gradient boosting decision

tree algorithm. Boosting and Random Forests are ways of model averaging. The

primary idea of Boosting is to fit many large or small trees to re weighted versions of

the training data so it averages the tree by learning from errors in the previous trees.

It does the classification based on weighted majority vote. We take a random sample

15



of training data each time and build the tree, then we average the trees to bring the

variance down. It means that each tree will at any terminal node give an estimate of

the probability of being in a class. Finally, we average out the probabilities. So, the

final classifier is the weighted average of classifiers [25].

3.2.5 Random Forest

Random forests(RF) or Random Decision Forests are an ensemble learning method

for classification and regression like tasks. These algorithms typically function by

building a plenitude of decision trees during the training phase and then in case of

classification, they output mode of classes as compared to the mean prediction of

individual trees in case of regression. Random forest is a sort of boosting. If Random

forests should get the benefit of variance reduction by averaging then the trees

constructed should be completely correlated because correlation reduces the amount

by which we can reduce the variance. So de-correlating the trees by introducing

randomness while growing the tree is the solution. Each time we make a split, we take

a look at all the variables. Out of say 𝑃 variables, we are limited to 𝑛 variables to

search for the split point. Randomness in splitting de-correlates the trees and results

in a better reduction in variance by doing the averaging [25].

3.2.6 Regularized Greedy Forest

The training objective of Regularized Greedy Forest(RGF) is to minimize loss.

Mathematically, each node of the forest is associated with a decision rule which serves

as a basis function or atom for the additive model. Since exact optimum solution is

difficult to find we greedily select the basis function and optimize weights.

At a high level, the algorithmic framework for RGF consists of the following

components: Fix the weights, and change the structure of the forest (which changes

basis functions) in such a way that we achieve the least cost [26].

16



CHAPTER 4

Approach

In this section, we consider a framework for masquerade detection. Say we want

to do masquerade detection for user A, then the framework should build a model

based on user A’s phone usage logs and when tested with user B or user C or any

other user should return low probability of being user A and when tested with user

A’s data should return a high probability of being user A.

Problem Statement: To detect legitimacy of the user of a mobile device based

on anomalies in usage behavior.

4.1 A potential application architecture

Confidentiality can be achieved using something you have, something you know

or something you are [10]. If an illegitimate user can break through this authentication

then there should be a system that can detect unauthorized usage based on behavior.

A deamon process or to be specific a service that collects logs could be running in

the phone. User can choose a time period over which the check should be performed.

The logs are sent to the remote server every night. During the time of check, the

server can pass the logs to the model and build user behavior. One advantage of this

method could be that the user behavior can change over time. For example the apps

used on the phone might not remain the same throughout the year. So, collecting

logs and building model for every check would work towards updating the model with

new usage characteristics. Thus saving false negatives. Moreover having logs sent

to a server that is located on the cloud will decentralize the computation from the

phone and keep the whole process independent of problems associated with memory

constraints. Once the model is built with data over a substantial period of time say 3

weeks, logs obtained could be used as test data against the built model. We can set a

threshold and whenever the result of testing the model i.e probability of user being

17



Figure 7: Architecture for a practical application

the authorized user is below the threshold value, server could notify the user over

email that is protected by code. Also, a history of usage results could be maintained

and provided to the user if required. If the user is notified, he or she could change

the password or find better ways to protect the device from being misused by an

unauthorized user.Also, as a security measure an authentication challenge could be

given to the user. Figure 7 shows an overview of the above discussed architecture.

Considering all features to build a model would only mean that the model

represents authorized users (not one particular user) but consider for example that

one of features was call/sms/call duration/apps used. If the model happens to classify

a particular user as being unauthorized because the app usage/ call pattern is different

from what the model was built with then it would conclude that user B is unauthorized

because he does not use the same apps/make the same calls like any other users whose

18



Figure 8: Diagram depicting the Pipeline

data was used to build the phone. Since all the data we have is valid user data, we

decided to go with the authentication problem. The pipeline mentioned on the cloud

in 7 can be found in 8.

4.2 Training model, Validating and testing the model

Usually,in order to perform supervised learning one will need two types of data

sets - one for training and one for testing. While performing machine learning we

train a model, validate the model and test the model. Figure 9 is a flowchart of the

process mentioned below.

1. In one dataset we have the input data with the expected output which is

either prepared manually or in an automated way, not necessarily completely

automated though. It is necessary to have the expected output for every data

row here. We train the model using this dataset.

2. The data we are going to test our model with. This is the data whose output

we are interested in. It could be the real world data or testing data.

3. It is always good to verify how well the model has been trained. This can be

done using data validation technique. 5-fold cross validation is a technique in

19



which we partition the data into 5 equal sized parts. Then we train the model

using 4 partitions except the first part and test it against the first partition.

We repeat this by holding out each of the partitions one by one against the

remaining data [10].

4. Once we are done with validation, we look at the models and select the best

performing approach. Then we estimate the accuracy of the selected approach

using the test data. This the the testing phase. Now, the model is ready to be

deployed and used by applying real-world data to the model.

20



Figure 9: Flowchart for the process

21



CHAPTER 5

Results

We considered user data for 94 users, performed masquerade detection for 10

random users with 200 values among all features of each user for all the 94 users in

the training data and in the test data. We also considered features and trained model

for each feature.

We used Regularized Greedy Forest, k-nearest Neighbor, Extreme Gradient

Boosting, Extra Trees to build models for the user dataset and used SVM with linear

kernel, Logistic Regression and Decision Trees for feature dataset.

The results given are the values of Balanced Accuracy and Area Under Curve.

Since our dataset is imbalanced which means that our training and test dataset

have more data labeled with 0 than 1, we chose calculating balanced accuracy over

accuracy. Balanced accuracy is determined when there is unequal distribution in

dependent variable which causes a bias towards the majority class. Most of the

machine learning algorithms assume balanced data [27]. The formula used to calculate

balanced accuracy is

Balanced Accuracy =
1

2
×
(︂

True Positive
Positive

+
True Negative

Negative

)︂
(3)

where True Positive stands for number of samples that have been correctly identified.

True negative stands for all the samples that have been correctly rejected [28].

5.1 Training user based data

We allocated 8 CPUs and 15 GB RAM computational power over the cloud. All

the models have been trained using 5 fold cross validation. The Table 5 describes

information on parameters used for various algorithms during training.

Algorithm Regularized Greedy Forest
Number of Trees/Iterations 50
Area Under Curve 0.999985

22



Algorithm Random Forest
Trees/Iterations 5
criterion entropy
Area Under Curve 1
Algorithm k-Nearest Neighbor
neighbors 2
weights uniform
Area Under Curve: 0.96283
Algorithm Logistic Regression
penalty l2
Area Under Curve 0.813436
Algorithm Extreme Gradient Boosting
Trees/Iterations 50
max_depth 3
Area Under Curve 0.976349
Algorithm Decision Trees
Trees/Iterations 5
criterion gini
Area Under Curve 1

Table 5: Values of algorithm parameters while training

Figure 10 shows the AUC values changing over various stages of training using

cross-validation.

Importance of features is obtained from learnt models. Since cross-validation is

used, importance is averaged over all models. The displayed importance is normalized

in such a way that importances obtained with one algorithm from all features sum up

to 100.

23



Figure 10: Values of AUC at various stages of training using RF

Figure 11: Graph depicting importance of features

5.2 Testing user based data

The user based data has classes 0 and 1 as labels where 0 indicated other user

and 1 indicated user to be authorized. Testing results for 10 random users using

Regularized Greedy Forest(RGF), Random Forest(RF), K-Nearest Neighbor(KNN),

Extreme Gradient Boosting(EGB) and Decision Trees(DT) have been given in Table 6

24



and the respective ROC curves for user1 are shown in Figures 12, 13, 14, 15, 16. The

mean of Balanced Accuracy and AUC values for 94 users is depicted in the form of a

graph in 17. All the other ROC curves are included in the appendix section A. We

also thought it will be useful to experiment with different time frames. So, we tested

data collected over 1 week, 1 month and 3 months against the trained models. The

results of these experiments can be seen in 18.

Figure 12: AUC for Regularized
Greedy Forest with User1 data

Figure 13: AUC for Random Forest
with User1 data

Figure 14: AUC for K-Nearest Neigh-
bor with User1 data

Figure 15: AUC for Extreme Gradient
Boosting with User1 data

User Methods Balanced Accuracy AUC
User1 RGF 99.97% 0.91

RF 79.54% 1
KNN 79.65% 0.86
EGB 99.98% 0.98
DT 100.00% 1

User10 RGF 49.45% 0.50
RF 99.21% 0.99
KNN 96.22% 0.75

25



EGB 51.90% 0.52
DT 99.98% 0.99

User11 RGF 49.45% 0.50
RF 99.91% 0.99
KNN 63.75% 0.5
EGB 99.48% 0.52
DT 49.98% 0.53

User79 RGF 70.16% 0.65
RF 80.22% 0.71
KNN 48.25% 0.50
EGB 96.96% 0.98
DT 48.45% 0.50

User55 RGF 52.55% 0.73
RF 99.74% 0.97
KNN 89.25% 0.75
EGB 49.96% 0.52
DT 89.20% 0.63

User48 RGF 94.63% 0.35
RF 99.45% 0.99
KNN 48.45% 0.50
EGB 48.96% 0.52
DT 48.45% 0.50

User22 RGF 24.91% 0.87
RF 45.25% 0.46
KNN 89.35% 0.75
EGB 48.13% 0.49
DT 48.45% 0.50

User92 RGF 48.91% 0.50
RF 99.90% 0.99
KNN 94.40% 0.72
EGB 48.91% 0.50
DT 49.04% 0.56

User81 RGF 60.72% 0.69
RF 60.65% 0.59
KNN 49.88% 0.51
EGB 90.01% 0.74
DT 48.91% 0.50

User36 RGF 37.60% 0.81
RF 99.45% 0.99
KNN 98.82% 0.92
EGB 48.89% 0.50
DT 48.91% 0.50

26



Table 6: Test Results for user data

5.3 Training feature based

Figure 19 refers to one of the features model has been trained on. This figure

only depicts the variance of values in the feature dataset. During training, for all the

features Decision tree has been used with split criteria as Gini’s diversity index and

SVM using Linear Kernel. Gini’s index is "the probability that two entities taken at

random from the dataset of interest (with replacement) represent the same type" [29].

Feature Methods Validation Accuracy
Phone Active status LR 89.13%

DT 94.90%
SVM 99%

Apps LR 74.50%
DT 97.90%
SVM 98.90%

cell and area ID LR 71.30%
DT 98.90%
SVM 98.90%

phone charge status LR 86.20%
DT 97.20%
SVM 97.20%

location ID of the person LR 89.20%
DT 97.80%
SVM 97.80%

Description LR 94.30%
DT 98.90%
SVM 98.90%

direction of call LR 85.40%
DT 98.90%
SVM 98.90%

mac of device LR 74.30%
DT 98.90%
SVM 98.90%

Table 7: Test Results for feature data

27


