
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2017

NAMED ENTITY RECOGNITION AND CLASSIFICATION FOR NAMED ENTITY RECOGNITION AND CLASSIFICATION FOR

NATURAL LANGUAGE INPUTS AT SCALE NATURAL LANGUAGE INPUTS AT SCALE

Shreeraj Dabholkar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Recommended Citation Recommended Citation
Dabholkar, Shreeraj, "NAMED ENTITY RECOGNITION AND CLASSIFICATION FOR NATURAL LANGUAGE
INPUTS AT SCALE" (2017). Master's Projects. 551.
DOI: https://doi.org/10.31979/etd.jgps-5q68
https://scholarworks.sjsu.edu/etd_projects/551

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/551?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

i	

		

NAMED	ENTITY	RECOGNITION	AND	CLASSIFICATION																											
FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

	
A	Writing	Project	

	

Presented	to	

The	Faculty	of	the	Department	of	Computer	Science	

San	Jose	State	University	

	

In	Partial	Fulfilment	

Of	the	Requirements	for	the	Degree	

Master	of	Science	in	Computer	Science	

	

By	

Shreeraj	Dabholkar	

May	2017	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

ii	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

©	2017	

Shreeraj	Dabholkar	

ALL	RIGHTS	RESERVED	 	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

iii	

	

	

The	designated	Project	Committee	Approves	the	Project	Titled	

Named	Entity	Recognition	and	Classification	for	Natural	Language	Inputs	at	Scale	

	

By	

Shreeraj	Dabholkar	

APPROVED	FOR	THE	DEPARTMENT	OF	COMPUTER	SCIENCE	

SAN	JOSE	STATE	UNIVERSITY	

May	2017	

	

	

Dr.	Thanh	D.	Tran	(Department	of	Computer	Science)	

Dr.	Thomas	Austin	(Department	of	Computer	Science)	

Mr.	Hemang	Nadkarni	(Principal	Engineer,	McAfee	LLC.)	

	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

iv	

	

	

ABSTRACT	

Natural	language	processing	(NLP)	is	a	technique	by	which	computers	can	analyze,	

understand,	and	derive	meaning	from	human	language.	Phrases	in	a	body	of	natural	text	

that	represent	names,	such	as	those	of	persons,	organizations	or	locations	are	referred	to	

as	named	entities.	Identifying	and	categorizing	these	named	entities	is	still	a	challenging	

task,	research	on	which,	has	been	carried	out	for	many	years.	In	this	project,	we	build	a	

supervised	learning	based	classifier	which	can	perform	named	entity	recognition	and	

classification	(NERC)	on	input	text	and	implement	it	as	part	of	a	chatbot	application.	The	

implementation	is	then	scaled	out	to	handle	very	high-velocity	concurrent	inputs	and	

deployed	on	two	clusters	of	different	sizes.	We	evaluate	performance	for	various	input	

loads	and	configurations	and	compare	observations	to	determine	an	optimal	environment.	

	

	

	

	

	

	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

v	

		

	

TABLE OF CONTENTS

I.										INTRODUCTION	...	1	

II.									BACKGROUND	&	LITERATURE	REVIEW	..	3	

					A.				Named	Entity	Types	...	4	

B.				Knowledge	based	systems	...	4	

C.					Learning	based	systems	...	6	

III.	 PROBLEM	DEFINITION	...	9	

IV.		 PROPOSED	SOLUTION	...	10	

V.	 			IMPLEMENTATION	DETAILS	..	11	

A.	 The	MaxEnt	Classifier	...	11	

B.	 ChatBot	Middleware	...	18	

C.	 Distributed	Application	...	22	

VI.	 EXPERIMENTS	...	31	

VII.	 RESULTS	...	33	

VIII.	 CONCLUSION	..	40	

IX.	 			REFERENCES	..	42	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

1	

	

	

	

	

I. INTRODUCTION	

Languages	such	as	English	used	by	humans	for	communication	are	widely	different	from	

artificial	languages	like	programming	languages	that	are	used	to	give	instructions	to	

machines.	Natural	language	processing	(NLP)	is	the	process	modelling	the	characteristics	

of	natural	language	using	statistical	techniques	[1].	It	provides	a	way	for	computers	to	

analyze,	understand,	and	derive	meaning	from	human	language.	Although	it	may	be	

relatively	easy	for	a	human	to	recognize	and	classify	names	of	places	or	people	in	each	text,	

it	is	not	straightforward	for	a	machine	to	recognize	such	phrases	[2].	Named	entity	

recognition	and	classification	(NERC)	is	the	task	of	processing	text	to	identify	and	classify	

names,	enabling	the	extraction	of	useful	information	from	documents.		

	

A	lot	of	modern	use	cases	for	NLP	and	NERC,	deal	with	high-volume,	high-velocity	data.	A	

lot	of	this	data,	like	that	coming	from	social	media,	is	also	unstructured.	Single	machine	

systems	cannot	handle	data	at	this	scale.	A	way	to	handle	this	problem	is	to	implement	a	

distributed	multi-node	solution.	Such	a	system	needs	to	scale	to	varying	loads	depending	

on	the	use	case.	Thus,	it	is	challenging	to	build	a	named	entity	classifier	with	a	high	

accuracy	and	which	can	scale	to	high	volume,	high	velocity,	simultaneous	inputs.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

2	

	

	

	

In	this	project,	we	design	a	machine	learning	based	classifier	that	can	disambiguate	named	

entities	from	natural	language	text	and	implement	it	as	part	of	an	NLP	pipeline.	Classifier	

performance	is	evaluated	using	metrics	such	as	accuracy,	precision,	recall.	We	then	focus	

on	pipeline	scalability	for	high-velocity	inputs.		The	number	of	simultaneous	requests	a	

web	application	can	serve	is	limited	by	its	hardware	resources.	We	use	a	distributed	

computing	framework	to	process	high-velocity,	simultaneous	inputs.	We	test	our	solution	

at	different	loads	and	configurations	and	observe	performance	for	each.		

	

In	this	paper,	we	start	by	covering	an	overview	of	the	landscape	of	NER	research	conducted	

in	recent	times	and	the	different	categories	of	approaches	to	NER.	We	then	put	forth	the	

problem	definition	and	our	proposed	solution	for	the	problems.	The	architecture	overview	

covers	implementation	design	and	information	about	the	various	components	of	our	

technology	stack.	The	implementation	details	section	covers	the	process	of	building	the	

classifier,	the	middleware	module,	and	the	distributed	application	in	depth.	We	then	

describe	load	testing	experiments	performed	on	the	distributed	implementation	and	

discuss	results	and	conclusions	based	on	our	observations.	The	last	section	of	this	paper	

discusses	future	directions	to	improve	the	application	and	how	the	application	could	be	

used	as	a	component	in	a	larger,	more	complex	data	pipeline.	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

3	

	

	

	

	

II. BACKGROUND	&	LITERATURE	REVIEW	

Early	systems	made	use	of	hand-crafted	rules	and	pattern	matching	based	on	these	

annotations	and	formation	patterns.	These	are	referred	to	as	knowledge-based	systems.	

Developing	hand-crafted	rules	is	laborious	and	time-consuming.	The	domain	plays	an	

important	part	in	creating	rules.	As	demonstrated	in	[3],	The	rules	that	are	created	for	a	

domain	are	difficult	to	generalize	to	other	domains.	The	other	paradigm	for	NERC	systems	

is	based	on	machine	learning.	Recent	learning	based	systems	use	models	which	can	be	

classified	under	supervised,	semi-supervised	or	unsupervised	learning.	

	

Fig.	1.	Categorical	Overview	of	NERC	Approaches.	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

4	

	

	

	

A. Named	Entity	Types	

The	definition	of	“Named	Entities”	was	specified	for	the	Sixth	Message	Understanding	

Conference	(MUC-6)	[6].	In	order	to	extracting	structured	information	from	unstructured	

natural	language	sources,	it	is	vital	to	recognize	elements	of	data	such	as	words	signifying	

names	of	people,	organizations,	places,	and,	numbers	like	dates	and	monetary	

denominations	[5].	Initial	research	was	conducted	on	identifying	proper	nouns	in	a	body	of	

text	as	it	constituted	distinction	of	named	entities	from	non-named	entities.	Systems	such	

as	the	FUNES	[7]	recognize	proper	names	from	natural	language	sources	in	English.	The	

most	commonly	used	categories	for	classification	of	named	entities	are	“Person,”	

“Location”	and	“Organization”	as	defined	in	the	CoNLL-2003	shared	task	[4].	These	three	

classes	are	collectively	referred	to	as	“ENAMEX”	[6].	The	“Miscellaneous”	type	is	used	to	

classify	named	entities,	not	under	“ENAMEX.”	These	categories	apply	to	multiple	domains.	

However,	a	more	domain	specific	hierarchy	can	yield	better	results	[8]	than	a	generalized	

one.	

	

B. Knowledge	based	systems	

Knowledge-based	systems	recognize	and	classify	named	entities	from	text	based	by	making	

use	of	dictionaries	known	as	gazetteers	along	with	handcrafted	heuristics	using	pattern	

matching	techniques.	As	they	function	on	a	set	of	predefined	rules,	the	classifications	are	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

5	

	

	

	

transparent	and	can	be	expanded	when	new,	previously	unseen	inputs	are	encountered.	

With	these	systems,	there	is	a	better	visibility	into	the	internal	state	of	the	system	which	

results	in	easier	error	analysis.	The	process	of	creating	gazetteers	and	building	rule	sets	

involves	considerable	manual	effort	like	in	[9]	where	multiple	dictionaries,	including	one	

containing	common	nouns	with	about	50,000	instances	was	created	to	classify	named	

entities	encountered	into	200	fine-grained	categories.	Entities	that	cannot	be	tagged	by	the	

dictionary	are	tagged	based	on	specific	rules	[9].		

	

There	are	two	pitfalls	associated	with	dictionary	based	NERC	systems.	First,	there	are	

usually	many	misclassifications	due	to	short	names	which	cause	the	precision	score	to	fall.	

Second,	spelling	variations	can	cause	the	recall	score	to	be	relatively	low.	These	potential	

pitfalls	can	effectively	lower	the	F-score,	a	combination	of	precision	and	recall,	resulting	in	

a	system	that	evaluates	poorly.	Another	challenging	problem	with	rule-based	NERC	is	

domain	customization.	Generalizing	such	a	system	designed	for	one	domain	over	for	other	

domains	requires	a	significant	manual	effort.	Authors	of	[10]	define	“a	high-level	rule	

language”	for	developing	classifiers	used	for	NERC	and	leverage	it	to	build	a	complex	rule	

based	annotator	CoreNER,	which	can	be	customized	to	different	domains.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

6	

	

	

	

C. Learning	based	systems	

Many	modern	NERC	systems	leverage	Machine	Learning	(ML).	These	involve	providing	sets	

of	positive	and	negative	training	sets	to	a	statistical	model,	which	then	“learns”	patterns	

from	the	input.	A	portion	of	the	data	is	usually	held	back	from	training	and	used	to	evaluate	

the	trained	model.	Modern	ML	based	classifiers	fall	under	one	of	three	discrete	types,	

supervised	learning,	semi-supervised	learning,	and	unsupervised	learning.	

1) Supervised	Learning:	

Supervised	learning	methods	make	use	of	training	datasets	which	include	classification	

labels	for	each	data	point.	A	model	is	trained	by	feeding	it	numerous	positive	and	

negative	classification	instances.	It	then	establishes	learned	rules	and	leverages	them	to	

make	predictions	on	new	data.	These	techniques	require	the	use	of	a	large	annotated	

corpus	as	a	source	of	training	and	testing	data.	Creation	of	such	corpora	requires	

extensive	manual	effort,	and	as	such,	they	are	not	easily	available	for	free.	This	often	

creates	the	need	for	the	manual	creation	of	an	annotated	corpora,	an	intricate	and	

tedious	task.	Various	supervised	learning	algorithms	have	been	implemented	for	NERC	

such	has	Hidden	Markov	Models,	Support	Vector	Machines,	Conditional	Random	Fields,	

Maximum	Entropy	performing	the	best	amongst	others	[5].	Domain	customization	for	a	

supervised	learning	system	involves	acquiring	labeled	data	for	the	new	domain	and	

learning	a	new	model	from	scratch.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

7	

	

	

	

2) Semi-supervised	Learning:	

Semi-supervised	learning	techniques	are	relatively	recent	and	are	essentially	a	hybrid	

of	supervised	and	unsupervised	approaches.	They	usually	involve	a	small	set	of	

example	names	referred	to	as	“seeds”	being	provided	to	the	system.	Sentences	

containing	these	names	are	then	searched,	and	the	system	identifies	contextual	clues	

that	may	be	common	to	these	names.	The	system	then	searches	for	other	names	that	

appear	in	similar	contexts.	Once	a	few	such	names	are	found,	the	learning	process	is	

reapplied	to	the	new	extended	set	of	names	and	with	each	iteration,	more	names	are	

identified.	Riloff	and	Jones	[11]	introduce	the	concept	of	“mutual	bootstrapping,”	a	

technique	that	uses	the	seed	words	to	learn	extraction	patterns	and	then	exploits	the	

learned	extraction	patterns	to	identify	more	words	that	belong	to	that	semantic	

category	[20].	

	

3) Unsupervised	Learning:	

Unsupervised	learning	techniques	deal	with	the	NERC	problem	by	resolving	it	into	a	

clustering	one.	They	do	not	require	initial	training	data	to	be	fed	to	them	which	makes	

them	a	popular	approach	for	resource-starved	languages	and	domains	[12].	Clustering	

is	carried	out	by	aggregating	named	entities	into	contextual	groups.	There	are	no	labels	

provided	at	the	beginning	of	an	unsupervised	algorithm.	When	the	algorithm	finishes,	it	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

8	

	

	

	

outputs	groups	of	entities	that	share	similar	features.	One	approach	to	labeling	

obtained	clusters	of	named	entities	is	to	attribute	a	label	to	a	subject	for	each	group	

[13].	This	property	is	useful	in	cases	such	as	the	simultaneous	appearance	of	named	

entities	in	multiple	news	articles	[14].	

	

	

	

	

	

	

	

	

	

	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

9	

	

	

	

	

III. PROBLEM	DEFINITION	

This	project	has	two	primary	goals.	The	first	goal	is	to	design	a	supervised	learning	based	

classifier	for	named	entity	disambiguation.	Classifier	performance	should	be	evaluated	and	

optimized.	We	also	want	to	implement	the	classifier	in	an	example	application	to	

demonstrate	a	real-world	use	case	and	load	test	the	classifier’s	ability	to	handle	a	high	

number	of	incoming	requests.		

	

The	second	goal	is	to	implement	the	core	named	entity	classifier	as	a	part	of	a	scalable,	

distributed	computing	application	which	can	handle	simultaneous,	high-velocity	inputs.	

The	performance	of	the	application	should	be	observed	at	varying	input	rates	and	different	

configurations	so	that	inferences	may	be	drawn	by	comparing	them.	

	

	

	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

10	

	

	

	

	

IV. PROPOSED	SOLUTION	

A	Supervised	learning	based	NER	system	will	be	implemented	using	the	Maximum	Entropy	

model.	The	domain	for	training	and	test	data	will	be	established.	Once	the	model	is	trained	

on	the	training	set,	it	will	be	used	to	make	predictions	on	the	testing	set	and	performance	

will	be	assessed	against	the	baseline	using	accuracy,	precision,	recall	and	f-measure	as	

metrics.	Then,	the	performance	of	the	model	with	respect	to	scoring	metrics,	as	well	as	

time	taken	for	training	and	predicting,	will	be	optimized.	The	classifier	will	be	wrapped	

into	a	REST	based	API	and	plugged	in	as	a	middleware	module	into	an	example	Chat	Bot	

application	to	demonstrate	a	real-world	use	case.	The	middleware	module	will	process	

conversational	text	between	a	user	and	the	Chat	Bot,	internally	using	our	classifier.	

	

We	will	implement	a	multi-node,	in-memory	cluster	computing	framework	which	will	

distribute	both	data	and	compute	over	multiple	nodes	to	handle	high-velocity,	concurrent	

requests.	Incoming	requests	will	be	channeled	into	a	data	stream	and	plugged	into	our	

distributed	classifier	application	as	a	continuous	input.	The	application	will	output	named	

entity	classifications	for	each	request.	This	solution	will	be	deployed	on	a	cloud-based	

infrastructure	to	ensure	and	manage	scalability.	We	will	evaluate	effects	of	various	loads	

and	optimizations	on	performance.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

11	

	

	

	

	

V. IMPLEMENTATION	DETAILS	

A. The	MaxEnt	Classifier	

We	use	two	datasets	to	serve	as	training	and	test	sets.	75%	of	each	set	is	used	to	train	the	

models,	and	25%	is	used	to	verify	predictions.		

Wiki	Gold	dataset:	Contains	around	35,000	words	from	Reuters	news	articles.	Each	word	

is	manually	annotated	with	the	named	entity	class	for	that	word.	The	dataset	is	of	high	

quality	and	freely	available.		

FAQ	Sample	dataset:	Contains	around	800	words	from	the	SJSU	CS	department	FAQ	

section.	The	dataset	was	created	by	manually	annotating	each	word	in	the	data	sample.	

A	supervised	learning	based	classifier	allows	us	to	train	it	on	a	domain	that	best	fits	the	use	

case.	Multiple	models	can	be	trained	and	ensembled	to	produce	higher	order	classifiers.	

For	example,	we	train	the	classifier	on	FAQ	data	for	our	middleware	application	and	train	it	

on	the	Wiki	Gold	dataset	for	a	more	general	domain.	For	example,	if	we	wanted	to	classify	

natural	language	text	occurring	in	medical	documents;	we	would	train	on	a	corpus	of	

manually	annotated	medical	text.	The	performance	of	a	classifier	depends	on	the	quality,	

quantity,	and	domain	of	training	data	as	well	as	the	algorithm	used	for	the	model.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

12	

	

	

	

Before	creating	our	classifier,	we	investigate	the	Named	Entity	Chunker	(NEC)	from	the	

Natural	Language	Toolkit	(NLTK)	Python	library.	NEC	is	based	on	a	model	which	

implements	a	supervised	machine	learning	algorithm	called	Maximum	Entropy	(ME).	

Maximum	entropy	is	a	very	flexible	method	of	statistical	modeling	which	turns	on	the	

notion	of	"futures,"	"histories,"	and	"features."	Futures	are	defined	as	the	possible	outputs	

of	the	model.	A	"history"	in	maximum	entropy	is	all	the	conditioning	data	which	enables	

you	to	assign	probabilities	to	the	space	of	futures	[15].	NEC	comes	pre-trained	on	the	ACE	

corpus	which	is	not	freely	available.	As	the	classifier	is	serialized	in	the	form	a	Python	

pickle	file,	it	cannot	be	trained	on	a	different	training	set.	This	makes	NEC	inflexible	

regarding	being	able	to	re-train	the	model	on	different	domains	depending	on	the	use	case.	

It	is	possible	to	inspect	a	model	trained	by	the	NEC	and	observe	the	most	important	

features	and	their	relative	weights.	We	can	also	obtain	the	feature	weights	for	all	potential	

classifications	and	compare	them	to	know	why	a	classification	was	picked	by	the	classifier.	

We	create	two	functions	that	allow	us	to	print	this	information	in	a	readable	form.	Figure	2	

shows	why	the	word	“California”	was	classified	as	a	location	(GPE)	in	the	sentence,	“STAR	

Act,	is	a	California	law	designed	to	improve	the	interface	between	community	college	

programs	and	CSU	degree	programs.”	The	output	only	displays	the	top	4	candidate	classes.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

13	

	

	

	

	

Fig,	2.	Top	Four	Potential	Labels.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

14	

	

	

	

We	test	NEC	using	the	Wiki	Gold	and	FAQ	datasets	with	accuracy	as	the	primary	scoring	

metric.	This	constitutes	our	baseline.	The	idea	is	to	create	a	versatile	classifier	that	uses	a	

similar	feature	set	as	NLTK	NEC	but	which	can	be	trained	on	a	large	amount	of	training	

data	from	any	domain.	Logistic	regression	is	a	probabilistic	model	for	binomial	cases.	It	has	

been	proven	that	maximum	entropy	generalizes	the	same	principle	for	multinomial	cases	

[16].	In	both	models,	we	want	a	conditional	probability:	p(y|x)	where	y	is	the	class	and	x	is	

the	vector	of	features.	Logistic	regression	follows	a	binomial	distribution	whereas	MaxEnt	

model	uses	the	same	principle	but	following	a	multinomial	distribution.		The	sigmoid	

function	is	assumed	in	the	derivation	for	logistic	regression	whereas,	maximum	entropy	is	

assumed	in	the	derivation	of	MaxEnt,	and	the	sigmoid	function	is	derived	[17].	Our	MaxEnt	

Classifier	uses	the	following	features	for	each	word:	

1. Shape:	The	shape	of	the	word	(e.g.,	does	it	contain	numbers?	does	it	begin	with	a	

capital	letter?).		

2. Wordlen:	The	length	of	the	word.	

3. Prefix3:	The	first	three	letters	of	the	word.	

4. Suffix3:	The	last	three	letters	of	the	word.	

5. Pos:	The	POS	tag	of	the	word.	

6. Word:	The	word	itself.	

7. En-Wordlist:	Does	the	word	exist	in	an	English	dictionary?		

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

15	

	

	

	

8. Prevpos:	The	POS	tag	of	the	preceding	word.	

9. Nextpos:	The	POS	tag	of	the	following	word.	

10. Prevword:	The	word	that	precedes	this	word.	

11. Nextword:	The	word	that	follows	this	word.	

12. Word+nextpos:	The	word	combined	with	the	POS	tag	of	the	following	word.	

13. Word+prevpos:	The	POS	tag	of	the	word	coupled	with	the	tag	of	the	preceding	

word.	

14. Prevshape:	The	shape	of	the	previous	word.	

	

To	train	the	model,	we	need	to	extract	values	for	these	14	features	as	well	as	the	labels	

representing	the	named	entity	class	for	each	word.	Our	feature	extractor	expects	words	

with	parts	of	speech	tags	and	outputs	a	dictionary	with	the	names	of	the	14	features	as	

keys	with	corresponding	values,	for	every	word.	We	already	know	the	labels	for	words	in	

our	training	set.	The	feature	dictionary	for	each	word	is	combined	with	the	label	for	that	

word	in	the	form	of	a	tuple	and	input	to	the	classifier	for	training.	At	its	core,	the	MaxEnt	

classifier	uses	the	LogisticRegression	class	from	the	Python	SciKit	Learn	library	with	a	

multinomial	distribution.	Figure	3	shows	how	we	divide	the	data	from	the	Wiki	Gold	

dataset	into	training	and	test	sets,	instantiate	the	classifier,	train	it,	and	evaluate	the	model	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

16	

	

	

	

based	on	its	accuracy	in	predicting	labels	in	the	test	data.	This	process	is	repeated	for	the	

FAQ	dataset.	The	entire	source	code	for	classifier	construction	is	available	at	[18].	

	

Fig.	3.	Classifier	Training	

	

The	accuracy_model	function	uses	the	trained	model	to	predict	labels	for	the	test	set	and	

compares	the	predictions	to	the	actual	classes.	We	thus	use	accuracy	as	our	primary	

scoring	metric.	Scores	for	precision,	recall,	and	f-measure	are	also	calculated,	as	seen	in	

figure	4.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

17	

	

	

	

	

Fig.	4.	Classifier	Evaluation	

	

The	data	flow	for	predicting	NE	labels	with	the	MaxEnt	Classifier	can	be	described	as:	

1. raw_input	<=	input	(natural	language	source)		

2. input_text	<=	normalize	(raw_input)	

3. input_tokens	<=	tokenize	(input_text)	

4. input_tags	<=	part_of_speech_tag	(input_tokens)	

5. feature_dictionaries	<=	extract_features(input_tags)	

6. labelled_named_entities	<=	make_predictions	(feature_dictionaries)	

As	seen	in	figure	5,	for	the	models	trained	on	the	Wiki	Gold	training	set,	MaxEnt	obtains	a	

better	accuracy	score	than	the	baseline.	For	the	models	trained	on	the	FAQ	Sample	training	

set,	MaxEnt	obtains	the	same	score	as	the	baseline.	It	is	possible	that	due	to	the	relatively	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

18	

	

	

	

small	size	of	the	FAQ	Sample	dataset,	both	classifiers	perform	similarly.	For	the	much	

larger	Wiki	Gold	dataset,	however,	the	MaxEnt	classifier	performs	significantly	better.	

	

Fig.	5.	MaxEnt	vs	NEC	(baseline)	

	

We	persist	the	trained	MaxEnt	classifier	in	the	form	of	a	serialized	Python	pickle	object	so	

that	we	can	use	it	in	our	implementations.	All	we	need	to	do	is	load	the	pickled	classifier	

and	use	it	to	make	predictions	on	incoming	data.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

19	

	

	

	

B. ChatBot	Middleware	

Before	moving	on	to	dealing	with	scalability,	we	implement	the	MaxEnt	classifier	in	an	

example	application.	We	build	a	chat	bot	application	for	the	Slack	messaging	platform	using	

BotKit,	a	JavaScript	framework.	Chat	bots	are	programs	that	can	communicate	with	human	

users	or	other	chat	bots,	via	various	interfaces.	For	our	use	case,	a	chat	bot	using	our	

classifier	can	identify	the	named	entities	present	in	a	question	asked	by	a	student.	The	

demonstration	currently	only	prints	the	named	entity	labels	for	each	word	in	a	sentence,	

but	this	can	be	fleshed	out	by	mapping	certain	actions	to	the	outputs.	The	bot	can	then	take	

actions	depending	on	what	type	of	named	entities	were	present	in	the	question.	As	

described	in	the	official	documentation,	BotKit	allows	developers	to	extend	its	functionality	

by	creating	middleware	plugins.	These	middleware	modules	can	processes	messages	to	

and	from	the	core	bot	at	several	useful	places.	We	wrap	our	classifier	implementation	into	

a	REST	API	using	Flask,	a	Python	micro-framework	and	expose	an	HTTP	endpoint	for	

incoming	requests	as	shown	in	figure	6.	Flask	is	lightweight	and	allows	us	to	specify	

multiple	API	endpoints	easily	using	Python	decorators.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

20	

	

	

	

	

Fig.	6.	REST	API	Implementation	

	

We	write	a	JavaScript	module	that	acts	as	the	middleware	entry	point	and	sends	incoming	

messages	to	the	exposed	“/classify”	REST	API	endpoint	with	a	parameter	“text,”	containing	

the	message.	The	classify_named_entities	function	processes	the	input	text,	internally	using	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

21	

	

	

	

our	classifier,	which	outputs	the	named	entity	classifications	for	each	word	in	the	sentence.	

As	seen	in	figure	7,	we	get	the	named	entities	from	the	input	text	with	their	classifications	

as	a	response	from	our	middleware.	

	

Fig.	7.	Response	from	ChatBot	Middleware	

	

To	assess	scalability,	we	test	running	the	middleware	application	for	continuous	

concurrent	requests.	The	performance	for	the	concurrent	scenario	is	compared	to	that	of	

serial	execution	where	there	is	only	one	request	made	every	second,	which	will	be	the	

baseline.	We	use	the	lightweight	Python	load	testing	framework,	Locust,	to	stress	test	the	

application.	Figure	8	shows	how	Locust	lets	us	define	user	behavior	using	python	code.	We	

simulate	a	user	hitting	our	REST	API	“/classify”	endpoint	with	the	parameter	text	

containing	the	sentence,	“Jim	Morrison	was	the	lead	singer	of	the	band	The	Doors	and	lived	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

22	

	

	

	

in	California.”	We	then	use	Locust	to	create	a	swarm	of	100	clones	with	the	help	of	the	

convenient	web	UI,	who	perform	the	same	action	every	second.	

	

Fig.	8.	User	Behavior	Defined	Using	Python	Code	

	

Tables	I	and	II	show	the	load	testing	results	for	the	simulated	scenarios	with	1	user	and	

100	users	respectively.	It	is	observed	that	the	average	response	time	is	much	higher	than	

for	the	later	than	the	former.	We	also	note	that	this	value	keeps	increasing	as	the	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

23	

	

	

	

application	keeps	receiving	new	requests.	This	is	as	expected	because	the	application	is	

single	threaded	at	this	point.	Every	new	request	is	queued	up	and	must	wait	for	the	current	

request	being	processed	to	complete.	

TABLE	I	

Observations	for	1	User	Scenario	

	

	

TABLE	II	

Observations	for	100	Users	Scenario	

	

	

We	could	solve	the	problem	of	concurrent	requests	using	multi-threaded	or	multi-

processing	server	frameworks	such	as	GUnicorn	or	CherryPy.	However,	the	number	of	

concurrent	requests	that	the	application	can	handle	are	still	limited	by	the	resources	of	a	

single	machine.	For	a	truly	scalable	solution,	we	must	leverage	a	distributed	computing	

framework.	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

24	

	

	

	

C. Distributed	Application	

Figure	9	shows	the	architecture	overview	for	our	distributed	implementation.	The	

complete	implementation	comprises	of	multiple	key	components	that	allow	us	to	deploy	it	

at	scale.	

	

Fig.	9.	Architecture	Overview	

1) API	Gateway:	

API	Gateway	makes	it	possible	to	create	a	RESTful	API	that	can	be	used	to	interact	

with	other	services	such	as	Kinesis,	by	exposing	specific	HTTPS	endpoints.	It	lets	us	

map	these	endpoints	to	commands	for	specific	AWS	resources.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

25	

	

	

	

2) Kinesis:	

AWS	Kinesis	is	a	managed	service	that	lets	us	read	and	write	large	amounts	of	data	

to	and	from	it.	Kinesis	Streams	supports	the	real-time	ingestion	of	a	significant	

amount	of	high-velocity	data.	A	data	record	is	the	unit	of	data	stored	by	the	Streams	

service.	A	stream	can	be	conceptualized	as	a	chronological	sequence	of	data	records		

[19].	We	refer	to	uniquely	identified	data	records	as	a	shard.	A	stream	can	have	

multiple	shards.	The	number	of	shards	in	a	stream	can	be	increased	or	decreased	as	

needed.	

	

3) Apache	Spark:	

Apache	Spark	is	a	top	level	Apache	project	that	provides	a	parallel	processing	

framework	for	running	large-scale	data	analytics	applications	across	clustered	

computers.	A	Resilient	Distributed	Dataset	(RDD),	is	the	fundamental	abstraction	in	

Spark.	It	represents	an	immutable,	partitioned	collection	of	elements	that	can	be	

operated	on	in	parallel.	As	per	the	official	documentation	[20],	“Spark	Streaming	is	

an	extension	of	the	core	Spark	API	that	enables	scalable,	high-throughput,	fault-

tolerant	stream	processing	of	live	data	streams.”	Spark	Streaming	provides	a	high-

level	abstraction	called	discretized	stream	or	DStream,	which	represents	a	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

26	

	

	

	

continuous	stream	of	data.	A	DStream	can	be	conceptualized	as	a	continuous	

sequence	of	RDDs.	

	

4) EC2:	

Amazon	Elastic	Compute	Cloud	(EC2)	provides	scalable	computing	capacity	in	the	

AWS	cloud.	We	can	use	EC2	to	launch	as	many	or	as	few	virtual	servers	as	we	need,	

with	the	required	software	and	hardware	configurations.	Such	flexibility	enables	us	

to	scale	up	or	down	to	handle	changes	in	requirements	without	the	trouble	of	

managing	and	setting	up	expensive	hardware.	

	

We	direct	incoming	requests	into	an	AWS	Kinesis	stream	via	an	API	Gateway	HTTPS	

endpoint.	A	consumer	continuously	reads	from	the	stream	and	serves	the	data	as	a	text	

stream.	We	design	and	implement	a	Spark	Streaming	application	which	takes	this	text	

stream	as	input	and	outputs	the	named	entity	classifications	for	each	word	in	every	

sentence.	We	deploy	the	application	on	two	AWS	EC2	clusters,	one	with	3	worker	nodes	

and	the	other	with	9	workers.	Application	performance	is	observed	and	compared	across	

the	two	clusters.	As	described	in	the	Apache	documentation	[20],	“Spark	Streaming	

receives	live	input	data	streams	and	divides	the	data	into	batches,	which	are	then	

processed	by	the	Spark	engine	to	generate	the	final	stream	of	results	in	batches.”	Figure	10	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

27	

	

	

	

shows	the	process	of	Spark	divides	the	input	stream	into	ordered	micro-batches	and	

computes	each	batch	to	produce	output.	

	

Fig.	10.	Spark	Micro-batches	

	

We	vary	the	window	size	(in	seconds)	for	our	application	at	different	loads	and	observe	its	

effects	on	throughput	(records	processed	per	second).	A	point	to	note	is	that	making	the	

window	longer	increases	the	response	time	of	an	application.	Once	a	data	stream	is	

created,	Spark	lets	us	transform	it	by	applying	(using	operations	such	as	map)	operations	

on	each	element	in	the	stream.	Spark	evaluates	directed	acyclic	graphs	(DAG)	for	the	data	

transformations	lazily,	i.e.	it	does	not	execute	the	transformations	until	it	encounters	an	

action	such	as	count()	or	pprint().	

	

A	Kinesis	consumer	program	continuously	reads	the	data	from	our	Kinesis	stream	and	

serves	it	on	a	local	port.	The	Spark	driver	program	connects	to	the	consumer	via	the	local	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

28	

	

	

	

port	and	gets	the	input	request	text	data	in	the	form	of	a	data	stream.	Figure	11	shows	how	

we	create	the	text	data	stream	and	apply	(or	map)	multiple	data	transformations	on	it	to	

obtain	the	named	entity	labels.	The	second	argument	to	the	StreamingContext	constructor	

in	line	123	specifies	the	window	length	in	seconds.	

	

Fig.	11.	Spark	Driver	

	

A	map	operation	applies	a	function	specified	as	the	argument,	on	each	record	of	input.	

Spark	distributes	this	execution	amongst	the	worker	nodes	and	it	also	handles	the	

distribution	of	compute.	The	scheduling	of	jobs	and	the	collection	of	outputs	is	done	under	

the	hood	so	we	can	focus	on	writing	our	application	logic.	In	figure	11,	the	data	flow	

transformations	previously	discussed	are	applied	on	the	stream	as	seen	in	lines	125	to	129.	

Each	record	comprised	of	a	single	sentence	is	tokenized,	tagged	with	its	part	of	speech,	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

29	

	

	

	

passed	to	the	feature	extractor	to	create	a	list	of	feature	dictionaries	and	then	to	the	

classifier	to	predict	named	entity	classes	for	each	word	in	the	sentence.	If	we	want	to	map	

(apply)	a	function	onto	a	data	stream	(or	batch),	the	function	must	be	a	closure.	A	closure	is	

a	first-class	function	that	also	stores	its	environment.		As	seen	in	figure	12	for	example,	the	

tokenize	and	pos_tag	functions	we	use,	contain	the	imports	they	need	for	execution	inside	

the	function	definition.	The	function	is	shipped	to	the	worker	nodes	for	execution	and	any	

imports	outside	this	closure	will	not	be	valid.	An	implication	of	this	is	that	the	library	or	

module	the	function	imports,	must	be	available	on	the	worker	nodes.	Thus,	the	function	is	

executed	where	the	data	is	located	(worker	in-memory)	and	data	locality	is	leveraged.		

	

Fig.	12.	Closure	Example	

	

We	similarly	create	closures	for	our	feature	extractor	and	prediction	functions.	Figure	13	

shows	the	make_predictions	function.	It	loads	the	pickled	classifier	and	uses	it	to	make	label	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

30	

	

	

	

predictions	from	the	features	of	every	word.	The	function	returns	a	dictionary	containing	

each	word	in	a	sentence	and	its	corresponding	classification.	

	

Fig.	13.	Prediction	Function	

	

When	a	Spark	streaming	application	is	running,	various	information	and	statistics	related	

to	execution	are	available	on	the	Spark	web	UI.	By	default,	the	web	UI	can	be	found	on	port	

4040	of	the	node	running	the	driver	program.		We	can	view	graphs	such	as	those	for	input	

rate,	average	processing	time,	scheduling	delay	and	the	same	details	for	each	micro-batch	

execution.	We	collect	this	information	for	each	run	and	use	it	to	calculate	aggregates.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

31	

	

	

	

	

VI. EXPERIMENTS	

We	test	the	performance	of	the	distributed	application	by	simulating	three	different	load	

scenarios	for	two	clusters,	one	with	three	workers	and	the	other	with	nine	workers.	

i. Low:	With	approximately	10	requests	per	second	on	average.	

ii. Medium:	With	approximately	50	requests	per	second	on	average.	

iii. High:	With	approximately	500	records	per	second	on	average.	

	

We	also	run	the	application	with	an	input	rate	of	1	request	per	second	to	simulate	a	non-

concurrent	scenario,	which	serves	as	our	baseline.	We	use	a	Kinesis	producer	script	we	

wrote	using	Python,	to	continuously	put	randomly	generated	sentences	into	a	Kinesis	

stream,	simulating	incoming	requests.	We	run	the	producer	in	parallel,	using	multi-

processing	to	create	the	required	input	loads.	

	

Running	the	application	at	different	loads,	we	observe	the	effects	of	modifying	the	window	

length	for	each.	We	define	throughput	as	records	processed	per	second,	where	each	record	

corresponds	to	one	request,	and	use	it	as	our	scoring	metric.	The	values	for	parameters	

such	as	processing	time,	window	length,	micro-batch	size	and	total	delay	are	noted	for	each	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

32	

	

	

	

run.	The	experiment	is	performed	identically	on	the	two	clusters.	We	begin	by	fixing	the	

window	length	to	5	seconds	and	running	the	application	with	an	input	rate	of	1	request	per	

second	(our	baseline).	We	then	execute	the	application	with	an	input	rate	of	around	ten	

requests	every	second	and	compare	with	the	baseline.	This	step	allows	us	to	test	if	our	

implementation	was	successful	in	speeding	up	the	process	of	handling	concurrent	requests.	

We	then	run	the	application	for	medium	and	high	loads.	For	each	load,	we	observe	the	

scores	obtained	for	multiple	executions,	with	increasing	window	lengths	(seconds)	for	

every	run.		

	

We	aggregate	the	data	collected	for	every	batch	execution	for	a	given	run,	for	all	runs.	Thus,	

we	effectively	condense	observations	form	each	execution	into	a	row,	and	tabulate	it	into	a	

single	table	for	that	cluster.	We	use	the	two	final	tables	(one	for	each	cluster)	thus	obtained,	

to	study	the	observations	and	make	performance	comparisons.	

	

	

	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

33	

	

	

	

	

VII. RESULTS	

The	observations	from	the	various	runs	are	listed	in	Tables	III	and	IV.	Window	size	

represents	the	number	of	seconds	for	which	each	batch	is	filled	with	records.	Input	size	

indicates	the	average	number	of	records	in	each	batch.	Processing	time	is	the	average	time	

taken	to	process	each	batch.	Total	delay	is	the	average	duration	a	batch	had	to	wait	from	its	

creation	to	it	being	processed	and	includes	the	scheduling	delay	for	a	batch.	Throughput	

represents	the	average	number	of	records	processed	every	second	for	each	run.	We	load	

the	observations	data	into	Tableau	and	visualize	it	to	help	us	compare	and	interpret	the	

results	

	

	

	

	

	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

34	

	

	

	

TABLE	III	

Observations	for	Cluster	with	Three	Workers	

	

	

TABLE	IV	

Observations	for	Cluster	with	Nine	Workers	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

35	

	

	

	

Figure	14	shows	the	comparison	of	loads	of	one	request	per	second	and	10	(low	load)	

requests	per	second	respectively.	For	a	fixed	window	length	of	5	seconds,	we	observe	that	

it	takes	0.881	seconds	on	average	to	process	a	batch	of	roughly	5	requests.	Thus,	the	

throughput	is	5.56	recs	per	second	for	our	baseline.	On	the	other	hand,	it	takes	6.778	

seconds	on	average	to	process	a	batch	of	roughly	60	requests.	Thus,	the	throughput	is	9.01	

recs	per	second,	an	improvement	over	our	baseline.	

	

Fig.	14.	Baseline	vs.	Low	Load	Performance	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

36	

	

	

	

From	this,	we	infer	that	our	implementation	can	handle	concurrent	requests	more	

efficiently.	Figure	15	compares	the	observations	for	medium	and	high	load	runs	and	

increasing	window	lengths,	for	the	cluster	with	three	workers.	

	

Fig.	15.	Medium	vs	High	Load	Performance	for	3	Worker	Cluster	

	

We	observe	that	initially,	as	we	increase	the	window	length,	the	time	taken	to	process	a	

batch	increases.	As	we	increase	the	window	length,	more	records	are	collected	for	every	

batch,	increasing	the	input	batch	size.	The	results	indicate	that	the	increase	in	processing	

time	is	not	directly	proportional	to	the	increase	of	input	batch	size.	A	rising	throughput	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

37	

	

	

	

suggests	that	with	an	increase	in	input	batch	size,	the	time	taken	to	process	a	single	record	

decreases	i.e.	the	system	performs	more	efficiently.	After	a	point,	the	processing	time	

roughly	evens	out	with	an	increasing	window	length.	We	observe	the	highest	throughput	

scores	in	this	range.	Running	the	experiment	again	on	a	larger	cluster	allows	us	to	verify	

our	observations	as	well	as	observe	the	effects	of	additional	execution	cores	on	

performance.	Figure	16	compares	the	observations	for	medium	and	high	loads	and	

increasing	window	lengths	for	the	cluster	with	nine	workers.	Like	the	smaller	cluster,	we	

observe	that	increasing	the	window	size	for	each	micro-batch	boosts	the	number	of	records	

processed	per	second.	We	infer	from	the	two	sets	of	observations	that	the	performance	of	

our	application	varies	depending	on	the	size	of	each	input	batch.	Creating	larger	batches	by	

increasing	the	window	length	is	observed	to	increase	throughput.	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

38	

	

	

	

	

Fig.	16.	Medium	vs	High	Load	Performance	for	9	Worker	Cluster	

	

From	a	practical	perspective,	however,	it	may	not	be	feasible	to	increase	the	window	length	

beyond	a	point.	In	the	case	of	our	middleware	implementation,	for	example,	increasing	the	

window	length	also	increases	the	response	time	as	every	request	in	a	batch	must	wait	

longer	for	the	batch	to	be	filled.	Desired	response	times	will	depend	on	the	use	case.	Owing	

to	the	nature	of	the	chatbot	middleware	application,	we	want	to	minimize	response	time	

and	maximize	throughput.	To	achieve	this,	we	would	want	an	input	batch	size	that	gives	us	

a	high	enough	throughput	for	the	smallest	window	length	to	ensure	as	short	a	response	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

39	

	

	

	

time	as	possible.	Figure	17	shows	the	rise	in	throughput	per	the	increase	in	input	batch	

size.	

	

Fig.	17.	Effect	of	Input	Size	on	Throughput	

	

We	observe	a	similar	trend	in	the	observations	for	the	two	clusters.	A	local	maximum	is	

observed	for	an	input	size	range	between	5795	to	5910	records	per	batch	at	medium	loads	

and	a	window	length	of	120	seconds.	This	duration	is	an	acceptable	length	for	our	example	

use	case.	We	can,	therefore,	tune	our	application	for	these	optimal	parameters.	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

40	

	

	

	

	

VIII. CONCLUSION	

Named	Entity	Recognition	and	Classification	(NERC)	is	a	field	in	which	much	research	has	

been	done	and	yet,	it	is	still	a	challenging	problem.	Many	factors	affect	the	performance	of	

NERC	classifiers	such	as	the	type	of	classifier	implemented,	quality,	quantity	and	domain	of	

datasets	as	well	as	the	scale	of	the	use	case.	By	means	of	this	project,	we	explored	recent	

research	done	in	the	field	of	NERC	and	built	a	supervised	learning	classifier	based	on	the	

maximum	entropy	model.	Implementing	the	classifier	in	a	chatbot	application	allowed	us	

to	demonstrate	a	real-world	use	case,	as	well	as	load	test	the	implementation	for	

concurrent	input	requests.	We	observed	that	the	performance	for	a	higher	number	of	

concurrent	requests	is	slow	and	limited	by	the	resources	of	a	single	machine.	Implementing	

the	classifier	as	part	of	a	distributed	computing	framework,	prototyping	and	deploying	it	

on	two	clusters	of	different	sizes	allowed	us	to	handle	very	high-velocity	simultaneous	

inputs	at	scale.	We	tested	our	solution	with	various	loads	using	our	example	use	case	for	

context.	We	compared	the	observations	for	all	runs	and	found	an	optimal	configuration	

that	is	acceptable	for	our	use	case.	

	

Big	data	is	characterized	by	high	velocity,	volume	and	variety.	We	have	so	far	focused	on	

high	velocity	data.	We	can	work	towards	making	the	application	scale	for	very	large	size	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

41	

	

	

	

inputs.	For	our	ChatBot	application,	certain	actions	can	be	mapped	to	specific	named	

entities	recognized	from	text.	For	example,	on	recognizing	that	a	word	represents	a	

person’s	name,	our	bot	can	look	up	a	database	to	check	if	it	is	a	CS	department	faculty	and	

provide	the	relevant	contact	information	to	the	student	asking	the	question.	

	

	

	

	

	

	

	

	

	

	

	

	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

42	

	

	

	

	

IX. REFERENCES	

[1] S.	Bird,	"NLTK:	the	natural	language	toolkit,"	in	Proceedings	of	the	COLING/ACL	on	

Interactive	presentation	sessions,	Association	for	Computational	Linguistics,	2006.	

[Online].	Available:	http://delivery.acm.org/10.1145/1230000/1225421/p69-

bird.pdf?ip=24.130.50.198&id=1225421&acc=OPEN&key=4D4702B0C3E38B35%2E4

D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D218144511F3437&CFID=878818

112&CFTOKEN=42448333&__acm__=1482284911_829169a1dc503d852d433f8e411b

64ff]	

[2] L.	Ratinov	and	D.	Roth,	“Design	challenges	and	misconceptions	in	named	entity	

recognition,”	in	Proceedings	of	the	Thirteenth	Conference	on	Computational	Natural	

Language	Learning	-	CoNLL	'09,	2009.	[Online].	Available:	

http://dl.acm.org/citation.cfm?id=1596399	

[3] R.	Jiang,	R.	E.	Banchs,	and	H.	Li,	“Evaluating	and	combining	Name	Entity	Recognition	

Systems,”	in	Proceedings	of	the	Sixth	Named	Entity	Workshop,	2016.	[Online].	Available:	

http://www.aclweb.org/anthology/W/W16/W16-27.pdf#page=31	

[4] T.	K.	Sang	and	F.	Meulder,	“Introduction	to	the	CoNLL-2003	shared	task,”	in	Proceedings	

of	the	seventh	conference	on	Natural	language	learning	at	HLT-NAACL,	2003.	[Online].	

Available:	http://dl.acm.org/citation.cfm?id=1119195	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

43	

	

	

	

[5] D.	Nadeau	and	S.	Sekine,	“A	survey	of	named	entity	recognition	and	classification,”	in	

Current	Topics	Named	Entities	Recognition:	Classification	and	Use,	2009,	pp.	3–28.	

[Online].	Available:	

http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/	

[6] R.	Grishman,	B.	Sundheim,	“Message	Understanding	Conference	-	6:	A	Brief	History,”	in	

Proceedings	of	the	International	Conference	on	Computational	Linguistics,	1996.	[Online].	

Available:	

http://www.alta.asn.au/events/altss_w2003_proc/altss/courses/molla/C96-1079.pdf	

[7] Coates-Stephens,	“The	Analysis	and	Acquisition	of	Proper	Names	for	the	Understanding	

of	Free	Text,”	in	Computers	and	the	Humanities	vol.	26,	Morgan	Kaufmann	Publishers,	

San	Francisco,	CA,	1992,	pp.441-456.	

[8] T.	Poibeau,	L.	Kosseim,	“Proper	Name	Extraction	from	Non-Journalistic	Texts,”	in	

Proceedings	Computational	Linguistics,	Netherlands,	2001,	vol.	37,	pp.	144-157.	

[Online].	Available:	http://www.ingentaconnect.com/content/rodopi/lang/2001	

[9] S.	Sekine,	C.	Nobata,	“Definition,	Dictionaries	and	Tagger	for	Extended	Named	Entity	

Hierarchy,”	in	Proceedings	of	the	Conference	on	Language	Resources	and	Evaluation,	

2004.	

[10] L.	Chiticariu,	R.	Krishnamurthy,	Y.	Li,	F.	Reiss,	S.	Vijayanathan,	“Domain	Adaptation	

of	Rule-Based	Annotators	for	Named-Entity	Recognition	Tasks”	in	Proceedings	of	the	

2010	Conference	on	Empirical	Methods	in	Natural	Language	Processing,	2010,	pp.	1002-

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

44	

	

	

	

1012.	[Online].	Available:	

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.697&rep=rep1&type=

pdf	

[11] E.	Riloff,	R.	Jones,	“Learning	Dictionaries	for	Information	Extraction	using	Multi-

Level	Bootstrapping,”	in	Proceedings	of	the	National	Conference	on	Artificial	Intelligence,	

1999,	pp.	474-479.	[Online].	Available:	

http://www.aaai.org/Papers/AAAI/1999/AAAI99-068.pdf	

[12] R.	Giuseppe,	R.	Troncy,	"Nerd:	evaluating	named	entity	recognition	tools	in	the	web	

of	data,"	in	Workshop	on	Web	Scale	Knowledge	Extraction	Bonn,	Germany,	2011,	pp.	1-

16.	[Online].	Available:	http://porto.polito.it/2440793/1/wekex2011_submission_6.pdf	

[13] E.	Alfonseca,	S.	Manandhar,	“An	Unsupervised	Method	for	General	Named	Entity	

Recognition	and	Automated	Concept	Discovery,”	in	Proceedings	of	the	International	

Conference	on	General	WordNet,	2002,	pp.	34-43.	[Online].	Available:	

http://www4.ncsu.edu/~mbcusick/papers/alfonseca2002unsupervised.pdf	

[14] Y.	Shinyama,	S.	Sekine,	“Named	Entity	Discovery	Using	Comparable	News	Articles,”	

in	Proceedings	of	the	International	Conference	on	Computational	Linguistics,	2004,	

pp.848.	[Online].	Available:	http://dl.acm.org/citation.cfm?id=1220477	

[15] I.	Ahmed,	R.	Sathyaraj,	"Named	Entity	Recognition	by	Using	Maximum	Entropy,"	in	

International	Journal	of	Database	Theory	and	Application	8.2,	2015,	pp.	43-50.	[Online].	

NERC	FOR	NATURAL	LANGUAGE	INPUTS	AT	SCALE	

45	

	

	

	

Available:	

https://pdfs.semanticscholar.org/317a/5c881c940c9b5beb706bdac1bec52fc528f3.pdf	

[16] D.	Klein,	C.	Manning,	"Maxent	Models,	Conditional	Estimation,	and	Optimization	

without	Magic,"	in	The	41st	Annual	Meeting	of	ACL,	2003.	[Online].	Available:	

http://dl.acm.org/citation.cfm?id=1075176	

[17] J.	Mount,	"The	equivalence	of	logistic	regression	and	maximum	entropy	models,"	

2011.	[Online].	Available:	http://www.	win-

vector.com/dfiles/LogisticRegressionMaxEnt.	pdf	

[18] S.	Dabholkar,	“Named	Entity	Classifier,”	GitHub	Page.	[Online].	Available:	

https://github.com/Shreeraj1746/Named_Entity_Classifier/blob/master/MaxEnt_NEC.

ipynb	

[19] Amazon	Kinesis	Streams	Key	Concepts,	Developer	Documentation.	[Online].	

Available:	http://docs.aws.amazon.com/streams/latest/dev/key-concepts.html	

[20] Spark	Streaming	Programming	Guide	Documentation.	[Online].	Available:	

http://spark.apache.org/docs/latest/streaming-programming-guide.html	

	

	NAMED ENTITY RECOGNITION AND CLASSIFICATION FOR NATURAL LANGUAGE INPUTS AT SCALE
	Recommended Citation

	Microsoft Word - CS298 Final Report [Shreeraj].docx

