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ABSTRACT

Predictable, rapid, and data-driven feature rollout; lightning-fast; and automated 
fix deployment are some of the benefits most large software organizations worldwide 
are striving for. In the process, they are transitioning toward the use of continuous 
deployment practices. Continuous deployment enables companies to make hundreds 
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Continuous Deployment Transitions at Scale

INTRODUCTION

Continuous deployment is a software engineering process where incremental 
software changes are automatically tested and deployed to production environments 
without manual steps in the deployment pipeline (Rahman et al. 2015). Continuous 
deployment enables companies, such as Facebook (Savor et al. 2016), to make 
hundreds or thousands of software changes to live computing infrastructure every 
day, while maintaining service to millions of customers. Such ultra-fast changes 
create a new reality in software development.

Over the past four years, we have held the Continuous Deployment Summit, 
hosted at Facebook (Parnin et al. 2017) (2015), Netflix (2016), Google (2017), and 
Twitter (2018). For three years from 2015 to 2017, representatives from eleven 
companies, Cisco, Disney, Facebook, Google, IBM, LexisNexis, Microsoft, Netflix, 
SAS, Slack, and Twitter, have shared the triumphs and struggles of their transition 
to continuous deployment practices—each year the companies press on, getting 
ever faster. In this paper, we share the common strategies and practices used by 
continuous deployment pioneers and adopted by newcomers as they transition and 
use continuous deployment practices at scale. Every company is still making this 
journey toward continuous deployment.

PERSISTENT AND INCREMENTAL PRACTICE ADOPTION

As Einstein advises, “Persistence is the most powerful force on earth, it can move 
mountains.” The uniting factor among all the Summit companies was the persistent 
movement toward becoming more efficient, improving customer satisfaction and 

or thousands of software changes to live computing infrastructure every day while 
maintaining service to millions of customers. Such ultra-fast changes create a 
new reality in software development. Over the past four years, the Continuous 
Deployment Summit, hosted at Facebook, Netflix, Google, and Twitter has been held. 
Representatives from companies like Cisco, Facebook, Google, IBM, Microsoft, 
Netflix, and Twitter have shared the triumphs and struggles of their transition to 
continuous deployment practices—each year the companies press on, getting ever 
faster. In this chapter, the authors share the common strategies and practices used 
by continuous deployment pioneers and adopted by newcomers as they transition 
and use continuous deployment practices at scale.
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business results and increasing release frequency through the incremental adoption 
of continuous deployment practices. Each year, the Summit companies demonstrated 
measurable increases in the adoption of the practices.

Some of the Summit companies, such as Google, Facebook, and Netflix, were 
“born” using continuous deployment practices. Older companies, such as Microsoft, 
IBM, Cisco, and SAS, have large legacy products in their portfolio that were “born 
and raised” with a waterfall-type software development process. Disney supports 
a wide range of software products—from websites to safety-critical software that 
runs theme-park rides. These older companies could have decided continuous 
deployment was not appropriate for some of their products. Instead, these giants 
took demonstrable steps each year to “turn their ship around.”

Each company found its unique way to bring about continuous change. Disney 
attributes its success with the use of continuous deployment practices to their 
company’s values established by Walt Disney himself: Curiosity, Confidence, 
Courage, and Constancy. The developers are curious to see if the practices could help 
them with their business results; they are confident in their abilities, systems, and 
checks so they dare to make changes. Constancy helps them continue to incrementally 
adopt more practices. Microsoft has a range of product types from Yammer and Bing, 
which use continuous deployment practices similar to those of Google, Facebook, 
and Netflix; to its monolithic software, such as Microsoft Exchange and Windows 
operating system. Inspired by continuous deployment practices, Microsoft Exchange 
now deploys to beta customers using a ring deployment model, where a release is 
deployed to a new ring level every week, finally reaching beta customers in the sixth 
week—if no problems are detected. Finally, Facebook has applied this principle to 
changing their release process for all developers in the company.

MOBILE FIRST

Summit companies recognize that worldwide growth in the use of mobile 
applications exceeds that of web and other cloud-based applications. This growth 
trend motivated Facebook CEO, Zuckerberg, to announce a “Mobile First!” strategy 
in 2012, which directed new development to occur first for mobile applications 
before developing for the other platforms. Mobile First! strategy is followed by 
other Summit companies, such as Google. However, the frequency of updates of 
mobile software has traditionally lagged that of web applications for many reasons. 
Mobile versions can only be released through the Apple and Google app stores that 
control the frequency of releases and impose constraints on development. Users may 
not auto-install updates and can decide when and if to upgrade; conceivably every 
release of a mobile app that ever existed could be installed across their user base. 
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The need to support and test hundreds of Android hardware variants increases the 
computational cost complexity and speed of the verification process, thereby further 
slowing down deployment. Finally, quality requirements are higher for mobile apps 
as there are more limited options for taking remedial action through deploying a 
new version when a defect is detected, compared with web- and cloud-based apps.

Chuck Rossi, the director of release engineering at Facebook, delivered the 
keynote at the 2017 Summit. At Facebook, mobile applications are used by over a 
billion people each day (Rossi et al. 2016). Rossi shared that over a period of four 
years, Facebook has decreased the deployment speed from 6 weeks to 4 weeks to 2 
weeks to 1 week. Mobile applications are deployed more frequently to its internal 
users during a one-week stabilization phase that occurs the week after development 
is complete to conduct “dogfood” testing. Summit companies also use tools, such as 
the Gatekeeper tool, and feature flags in the code to dynamically control from the 
cloud the features that users see in an app. Even though the customer installations 
of new versions of the app will occur periodically, the companies can still control 
the incremental rollout of new individual features across their user base and can 
disable problematic changes in the advent of unexpected behavior without requiring 
customers to update their apps.

DEVELOPER PRODUCTIVITY METRICS (LOOK WITHIN)

Companies are increasingly looking inward at their productivity, to evolve practices 
or improve tool infrastructure for developers. These opportunities offer a much richer 
source of information beyond simple metrics, such as lines of code produced, and 
are more deeply tied to customer behavior.

At Google, searching for internal libraries is a common task and deeply integrated 
into developer tooling and culture. Given that many possible library choices may 
exist, one determining factor may be signals (Trockman 2018), information cues that 
indicate attributes, such as quality, that may bias a developer towards one particular 
library. Google has recently integrated metrics that serve as signals into project 
dashboards. For example, the metrics include pre-submit speed (i.e. time to run tests 
before committing to a repository), release frequency (hypothesizing that projects 
with higher frequency are healthier), green builds/week (builds with fewer failures), 
and number of post-release patches (how error-prone is the code). A project with 
good project health metrics (called PH-levels) can be perceived as more reliable and 
thus might be more likely to be adopted. Developers are encouraged to strive for 
healthy PH-levels. However, some metrics are considered controversial for certain 
teams, who want to opt-in/opt-out of certain metrics. Despite these challenges, PH-
levels can help maintain a shared sense of productivity.
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Finally, participants cautioned about direct interpretations of developer 
productivity metrics. Some participants at the Summit argued that simply increasing 
release frequency (say, 8 weeks to 4 weeks) does not necessarily improve developer 
productivity. Instead, the increased frequency forces upgrades in tooling and 
automation, which in turn reduces errors and inefficiencies in the process. In 
another example, a common low-hanging fruit that an organization may target for 
optimization is increasing the speed of tooling. However, Microsoft provided several 
cases where tools were made faster, but observed no tangible benefit in productivity 
gains: Instead, developers simply changed when they ran the tool (from night-time 
to day-time). Ultimately, the participants recommended instead of simply striving 
to hit or game metrics, organizations should target desirable changes in developer 
behavior.

TOOLS EMBODY CULTURE

Creating a shared sense of culture and maintaining architectural integrity in a large 
organization can be difficult; especially when the number of developers can be counted 
in the thousands and with teams operating in small independent units. Traditionally, 
many software organizations have relied on centralized architecture teams to help 
manage standards (Parsons 2005). However, an alternative paradigm has emerged, 
where architectural principles can be enforced through strong investments in tooling.

At the Summit, companies shared various ways in which tooling played a 
central role in creating a shared engineering culture. Perhaps the most illustrative 
example is the introduction of chaos engineering at Netflix. At Netflix, developers 
mostly work in small teams that support a single feature or microservice. Given 
Netflix’s anti-process culture and lack of centralized architectural teams but high 
interdependence of microservices, there needed to be some way to communicate and 
enforce architectural principles across the whole organization. Chaos engineering 
(Basiri et al. 2016), is the practice of introducing small changes or unexpected events 
into production environments to analyze how these changes or events could impact 
the behavior of the system. For example, by introducing a chaos monkey, a tool 
that randomly turned off AWS instances during working hours, the tool could help 
enforce architectural principles of maintaining stateless and resilient microservices.

Enforcing cultural changes through tools can result in adoption barriers. For 
example, Microsoft wanted to introduce stronger coding practices that could reduce 
potential security problems. In one instance, trying to turn-on compiler errors for 
uninitialized variables (a potential security concern) as a general policy resulted in 
a large pushback from many development teams. While understanding the security 
implications, many developers often viewed these compiler findings as false positives 
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and did not want them turned on as errors for their projects. To combat a similar 
problem at Google, the static analysis tool, Tricorder (Sadowski et al. 2015), allows 
developers to give feedback on any finding (e.g., “Does not work in IE8”). Further 
teams can opt-out of specific types of findings or even opt-in specialized findings. If 
a finding is found not to be useful 10% of the time, the tool findings may eventually 
be disabled across the company.

Tooling allows developers to share common workflows across the company 
and even between companies. Some companies, such as Google and Facebook, 
invest in their web-based IDE. By having all developers share the same interfaces 
for developing code, the companies can ensure that all developers share the same 
workflow for processes such as code review, code search, and reviewing findings 
from static analysis tools. At the Summit, the participants noted the increasing 
importance of partnership and investment of tooling across multiple companies and 
open source communities. Open-source tools, such as Spinnaker (which supports 
specifying and customizing deployment workflows), have been developed in 
partnership between Netflix and companies such as Microsoft, Google, and Pivotal. 
Some parameters and decisions can be highly variable between teams and products: 
How long is a canary experiment; at what step do you sign-off on a deploy; how 
does your particular service handle state? Scale differences between companies 
and communities introduce a complication. For example, at Twitter, upstream open 
source patches often end up breaking Twitter’s production environment because the 
open source community operates at a much lower scale. Despite these challenges, 
companies cite numerous benefits, such as attracting talent and improving tool 
value. As one participant stated: “It makes sense to work together when you’re the 
only two companies in the world that face the same issue.”

TESTING AND RELEASE IN PRACTICE

Operating continuous deployment pipelines at scale requires numerous shifts in 
technology and practices. Traditional problems are amplified, while new problems 
and pain points emerge. At Google, the demand for continuous integration (CI) 
services double each year, with over 4.5 million tests being run daily—if not properly 
optimized, this demand would require more servers to run than Google’s primary 
product itself: search.

At the Summit, companies discussed numerous pain points related to testing and 
shared various strategies that could help address them. One of the most common 
pain points expressed was flaky tests, that is, tests that intermittently fail due to 
random factors, such as resource availability (Luo et al. 2014). At Google, an internal 
analysis of failing tests found that 84% of the time a failure is due to a flaky test. 
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Several strategies were discussed to combat flaky tests. Companies have started 
calculating the flakiness of tests or try to tag flaky tests based on historical data. At 
Google, tests are kept below 1–5% flakiness or are quarantined. At Facebook, the 
current practice is to simply delete flaky tests without mitigation. Several companies 
reported reliability issues of running tests in Jenkins due to resource exhaustion or 
inconsistent state of the workspace. To improve the reliability of running tests in 
Jenkins, IBM and Netflix are moving towards running tests in containers. Finally, 
participants at the Summit discussed the goal of moving toward predicting failing 
builds and the presence of flaky tests. For example, if the dependency chain between 
a changed source file and a failing unit test is more than ten hops away, it is likely 
to be a flaky test.

Companies also discussed various issues and strategies for deploying releases 
into production. At LexisNexis, releases occur every three weeks during off-hours. 
Each release requires manual coordination and blessing of released features—a 
customized Gantt chart is used to coordinate the order of flips for new versions 
of shared services. Once everything is in place, manual testers verify the release; 
meanwhile, developers of each service/module are on standby to patch any problems. 
At Disney, release management was more frequent, with three release windows per 
week. However, developers did not have full autonomy for making release decisions; 
a highly centralized process is used and overseen by executives for no/go decisions 
on each release. Meanwhile, Netflix remained at the head of the pack with 4000 
deployments a day.

HOLDING ONTO SCHEMAS

For some companies, the biggest barrier to full continuous deployment adoption is 
a lack of an effective strategy for deploying schema changes to relational databases 
(or their usage at all). For example, in many database engines, a simple operation 
such as renaming a column in a table would require locking all rows and thus 
prevent any new data from being stored, while the rename operation took place. 
Major schema changes could effectively shutdown an application for many hours 
(de Jong et al. 2017).

This challenge was especially apparent in companies that supported legacy 
applications. For example, IBM used to take a month to migrate a system to a 
new version at a customer’s site. The primary challenge was coordinating code 
and database changes with on-premises instances. Eventually, IBM shortened 
the process to one hour. For LexisNexis, a 200-year-old company with software 
components that are over 15 years old, deploying database changes remains one of 
the most challenging aspects of continuous deployment. For every deployment to 
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production, the deployment process is often on hold for several hours as they wait 
for the DBA to clear the release. In addition to schema changes, other issues can 
make deployment with databases problematic.

For SAS, dumping and restoring databases to accommodate schema changes 
can take hours. At Microsoft, database rollbacks are avoided at all costs, especially 
if the failure rate is low. Companies that have built continuous deployment-ready 
architectures often discard relational databases entirely or develop new storage 
technologies that can handle schema changes. For example, Netflix uses a key-value 
based store, Cassandra, and microservice architecture. Any changes to a database are 
handled by managing access to versioned calls at the service layer. Graph databases, 
such as Facebook’s social graph, avoid these locking issues entirely by being able to 
add new nodes and edges, then removing old edges and nodes when done without any 
downtime. Still, even the most advanced architectures cannot escape issues related 
to schema changes. At Facebook, changes to the schema for storing messages and 
photos required a year-long migration to a more efficient schema.

INTENTIONAL FEATURE EXPERIMENTATION

Companies have, for decades, used telemetry to capture usage of their software to 
identify quality issues or to help improve deployed features. Since the inception of 
the Lean Startup (Ries 2011) practice, Internet-based and other companies have 
been using data obtained via feature experimentation instrumentation to make data-
driven decisions on whether a new feature or algorithm should “pivot or persevere” 
in the released product. Specifically, companies are removing features from their 
code if these features do not have a positive impact on their customers. Five of the 
Summit companies have evolved their continuous deployment processes to include 
feature experimentation.

To enable experimentation, feature toggles may be implemented in the software 
to create multiple experiences for different customers. Feature toggles are essentially 
conditional blocks – if/else statements that can be used to enable or disable a feature 
selectively (Schermann, Cito, & Leitner, 2018). For example, when Facebook released 
Live video, they realized an individual live video could receive up to 2500 comments 
per second. Facebook built experiments to evaluate multiple algorithms for filtering 
and ranking comments to choose the algorithm that performs best at elevating 
comments with high engagement. Data scientists work with the development team 
to design experiments, develop hypotheses, collect metrics, and analyze collected 
data. The paper documenting the 2015 Continuous Deployment Summit contained 
the adage, “Every feature is an experiment.” (Parnin et al. 2017) However in later 
summits, the reality of the experiment complexity and the sheer amount of data 
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needed to be collected has made Summit companies more intentional in their choice 
of when to run an

experiment. For example, Google is cautious of experiments that may have 
implications to ad revenue, so typically small, incremental experiments are run. 
Naively, companies with large user bases may initially believe they would obtain 
feedback on a new feature rapidly, such as in hours or a small number of days. 
However, users behave differently throughout the day, on different days of the week, 
and at different times of the month. Representative experiments on stable features 
take longer than expected. Microsoft has analyzed 21,220 experiments applied in 
Bing (Kevic et al. 2017). Their results indicate that an experiment runs an average of 
42 days before a “pivot or persevere” decision is made. As discussed above, feature 
rollout to mobile customers are delayed relative to online customers, making mobile 
experiments slower and more technically challenging. Summit companies did not use 
feature experimentation for bug fixes, infrastructure changes, or architecture changes.

SHAMELESS RETROSPECTIVES

Retrospectives are meetings in which a team inspects and adapts their methods and 
teamwork after completing a unit of work. Retrospectives enable learning, act as a 
catalyst for change, and generate action (Derby and Larsen 2006)—as long as the 
environment for retrospective discussion is safe. Allow shame and blame to enter 
the retrospective, and these benefits are obliterated. Shame crushes our tolerance 

Figure 1. Cycle of shame
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for vulnerability, thereby killing engagement, innovation, creativity, productivity, 
information flow, and trust (Brown 2012).

In the 2016 Summit, Kent Beck who was at Facebook at the time, delivered a 
keynote about the role of shame in software development as depicted by the Cycle 
of Shame (Figure 1). The Cycle of Shame uses the notation of influence diagrams 
(Weinberg 1992). With influence diagrams, a regularly directed arrow indicates 
that more of the source activity tends to create more of the destination activity 
(i.e. an amplifier), such as more mistakes generate more shame. A directed arrow 
with a circle over it indicates that more of a source activity tends to create less of 
the destination activity (i.e. an inhibitor), such as more shame drives less learning. 
Starting from the regular arrow into Shame in Figure 1, more shame drives less 
learning which drives more mistakes which drives more shame. Conversely, starting 
from the arrow with the circle, less shame drives more learning which drives fewer 
mistakes which drives less shame.

Within the context of the Cycle of Shame, Beck remarked positively about how 
little shame there was in the engineering culture at Facebook. An engineer can freely 
share the details about a mistake that he or she has made, owning the mistake—and 
most importantly not blaming anyone else for the mistake. The engineer shares the 
consequences of the mistake, details the remedial action, and provides suggestions for 
how that type of mistake could be avoided in the future. In sharing this information, 
the engineer does not feel shame, benefiting his or her learning and that of the team 
members. The practice of shameless retrospectives resonated with Summit companies 
as an essential component of the continuous process improvement needed while 
adopting continuous deployment practices, which are often disruptive changes to 
the organization.

LEVERAGING CULTURE AND PRACTICES 
TO ENHANCE SECURITY

Alongside continuous deployment practices, organizations are increasingly adopting 
software security practices. However, from a frequency of adoption perspectives, 
firms most often adopt software security practices for reasons, including responding 
to a security event, detecting vulnerabilities, and preventing vulnerabilities (Williams 
et al. 2018). Integrating software security practices in a continuous deployment 
environment is challenging because teams must integrate these practices at speed, 
perhaps in an environment that chooses speed over deliberate, methodical approaches 
to testing, security, and quality (McGraw 2017).

Many of the Summit companies have their software security group “silo’ed” 
into a separate organization, as is also common in most non-Summit companies. 
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Some of the smaller organizations, such as Twitter and Slack, have stronger 
partnerships between the developers and their software security group, moving 
towards a DevSecOps model, in which the security silo is broken down. At Slack, 
teams often use Trello for collaborative, team-based project management. Based 
upon the perceived risk of a new feature or product, their security team puts cards 
on the team’s Trello board to signify the software security practice or reviews that 
are needed to take place before the release. At both Slack and Twitter, the security 
group partners with the development team starting with the requirements and design 
phases. The philosophy of the security groups is that rather than taking the role of 
fishing for security vulnerabilities when development is complete, the role of the 
security team is to “teach the development team to fish” whereby the development 
team specifies, designs, and implements secure products. All Summit teams desire 
better automated security tools that could detect both architecture/design- and 
code-level vulnerabilities with fewer false positives, a call for security researchers 
and tool vendors.

Continuous deployment practices can enhance the security of a product. The 
use of feature toggles is prevalent by Summit companies to support dark launches 
and feature experiments. Dark launches release new features into production 
surreptitiously, without any real users noticing them (Schermann, Cito, & Leitner, 
2018). The system still duplicates the user requests to evaluate the new features in 
the clandestine releases. Summit companies, such as Twitter, use feature toggles to 
prevent features with security and/or privacy implications from being accessible to 
external users until the security team has conducted their checks. Using this procedure, 
developers can still continuously integrate code to these important features, but a 
separate security/privacy process can take place before the public launch. Teams 
instrument their code and constantly monitor the behavior of users to enable feature 
experimentation. This same instrumentation and monitoring can be used to detect 
anomalous behavior by attackers. Finally, organizations can use their normal process 
to rapidly deploy security fixes that will more likely be installed by customers. In the 
middle of 2016, security researchers found critical vulnerabilities in both Chrysler 
and Tesla automobiles. Tesla was able to deploy their fix over the air, while Chrysler 
sent USB sticks to its customers due to the lack of a better deployment process.

CONCLUSION

The eleven companies that participated in the annual summit, reveal their commitment 
toward adopting software development practices that move them closer to continuous 
deployment. All the companies at the Summit have experience applying continuous 
deployment practices and are aware of the challenges in applying these practices. At 
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one end of the spectrum, the adoption may be challenging yet feasible for deploying 
hundreds or thousands of times of day, supporting feature experiments that can drive 
data-driven decisions. On the other end of the spectrum, legacy products may be 
deployed multiple times per year rather than once per year with a corporate strategy 
shifting toward more cloud-based solutions that can be deployed more frequently. 
Regardless of where they are on the spectrum, the Summit companies share a bond 
of a commitment to continuous process improvement and sharing technical solutions, 
approaches, and use of tools.
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