
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

2020

Continuous Deployment Transitions at Scale Continuous Deployment Transitions at Scale

Laurie Williams
North Carolina State University

Kent Beck
Facebook

Jeffrey Creasey
LexisNexis

Andrew Glover
Netflix

James Holman
SAS Institute Inc.

See next page for additional authors

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

 Part of the Data Science Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Laurie Williams, Kent Beck, Jeffrey Creasey, Andrew Glover, James Holman, Jez Humble, David
McLaughlin, John Thomas Micco, Brendan Murphy, Jason A. Cox, Vishnu Pendyala, Steven Place, Zachary
T. Pritchard, Chuck Rossi, Tony Savor, Michael Stumm, and Chris Parnin. "Continuous Deployment
Transitions at Scale" Tools and Techniques for Software Development in Large Organizations: Emerging
Research and Opportunities (2020): 168-181. https://doi.org/10.4018/978-1-7998-1863-2.ch006

This Contribution to a Book is brought to you for free and open access by SJSU ScholarWorks. It has been
accepted for inclusion in Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4018/978-1-7998-1863-2.ch006
mailto:scholarworks@sjsu.edu

Authors Authors
Laurie Williams, Kent Beck, Jeffrey Creasey, Andrew Glover, James Holman, Jez Humble, David
McLaughlin, John Thomas Micco, Brendan Murphy, Jason A. Cox, Vishnu Pendyala, Steven Place, Zachary
T. Pritchard, Chuck Rossi, Tony Savor, Michael Stumm, and Chris Parnin

This contribution to a book is available at SJSU ScholarWorks: https://scholarworks.sjsu.edu/faculty_rsca/559

https://scholarworks.sjsu.edu/faculty_rsca/559

168

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

DOI: 10.4018/978-1-7998-1863-2.ch006

ABSTRACT

Predictable, rapid, and data-driven feature rollout; lightning-fast; and automated
fix deployment are some of the benefits most large software organizations worldwide
are striving for. In the process, they are transitioning toward the use of continuous
deployment practices. Continuous deployment enables companies to make hundreds

Continuous Deployment
Transitions at Scale

Laurie Williams
North Carolina State University, USA

Kent Beck
Facebook, USA

Jeffrey Creasey
LexisNexis, USA

Andrew Glover
Netflix, USA

James Holman
SAS Institute Inc., USA

Jez Humble
DevOps Research and Assessment

LLC, USA

David McLaughlin
Twitter, USA

John Thomas Micco
VMWare, USA

Brendan Murphy
Microsoft, UK

Jason A. Cox
The Walt Disney Company, USA

Vishnu Pendyala
Cisco Systems Inc., USA

Steven Place
IBM, USA

Zachary T. Pritchard
Slack, USA

Chuck Rossi
Facebook, USA

Tony Savor
Facebook, USA

Michael Stumm
University of Toronto, Canada

Chris Parnin
North Carolina State University, USA

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 169

Continuous Deployment Transitions at Scale

INTRODUCTION

Continuous deployment is a software engineering process where incremental
software changes are automatically tested and deployed to production environments
without manual steps in the deployment pipeline (Rahman et al. 2015). Continuous
deployment enables companies, such as Facebook (Savor et al. 2016), to make
hundreds or thousands of software changes to live computing infrastructure every
day, while maintaining service to millions of customers. Such ultra-fast changes
create a new reality in software development.

Over the past four years, we have held the Continuous Deployment Summit,
hosted at Facebook (Parnin et al. 2017) (2015), Netflix (2016), Google (2017), and
Twitter (2018). For three years from 2015 to 2017, representatives from eleven
companies, Cisco, Disney, Facebook, Google, IBM, LexisNexis, Microsoft, Netflix,
SAS, Slack, and Twitter, have shared the triumphs and struggles of their transition
to continuous deployment practices—each year the companies press on, getting
ever faster. In this paper, we share the common strategies and practices used by
continuous deployment pioneers and adopted by newcomers as they transition and
use continuous deployment practices at scale. Every company is still making this
journey toward continuous deployment.

PERSISTENT AND INCREMENTAL PRACTICE ADOPTION

As Einstein advises, “Persistence is the most powerful force on earth, it can move
mountains.” The uniting factor among all the Summit companies was the persistent
movement toward becoming more efficient, improving customer satisfaction and

or thousands of software changes to live computing infrastructure every day while
maintaining service to millions of customers. Such ultra-fast changes create a
new reality in software development. Over the past four years, the Continuous
Deployment Summit, hosted at Facebook, Netflix, Google, and Twitter has been held.
Representatives from companies like Cisco, Facebook, Google, IBM, Microsoft,
Netflix, and Twitter have shared the triumphs and struggles of their transition to
continuous deployment practices—each year the companies press on, getting ever
faster. In this chapter, the authors share the common strategies and practices used
by continuous deployment pioneers and adopted by newcomers as they transition
and use continuous deployment practices at scale.

170

Continuous Deployment Transitions at Scale

business results and increasing release frequency through the incremental adoption
of continuous deployment practices. Each year, the Summit companies demonstrated
measurable increases in the adoption of the practices.

Some of the Summit companies, such as Google, Facebook, and Netflix, were
“born” using continuous deployment practices. Older companies, such as Microsoft,
IBM, Cisco, and SAS, have large legacy products in their portfolio that were “born
and raised” with a waterfall-type software development process. Disney supports
a wide range of software products—from websites to safety-critical software that
runs theme-park rides. These older companies could have decided continuous
deployment was not appropriate for some of their products. Instead, these giants
took demonstrable steps each year to “turn their ship around.”

Each company found its unique way to bring about continuous change. Disney
attributes its success with the use of continuous deployment practices to their
company’s values established by Walt Disney himself: Curiosity, Confidence,
Courage, and Constancy. The developers are curious to see if the practices could help
them with their business results; they are confident in their abilities, systems, and
checks so they dare to make changes. Constancy helps them continue to incrementally
adopt more practices. Microsoft has a range of product types from Yammer and Bing,
which use continuous deployment practices similar to those of Google, Facebook,
and Netflix; to its monolithic software, such as Microsoft Exchange and Windows
operating system. Inspired by continuous deployment practices, Microsoft Exchange
now deploys to beta customers using a ring deployment model, where a release is
deployed to a new ring level every week, finally reaching beta customers in the sixth
week—if no problems are detected. Finally, Facebook has applied this principle to
changing their release process for all developers in the company.

MOBILE FIRST

Summit companies recognize that worldwide growth in the use of mobile
applications exceeds that of web and other cloud-based applications. This growth
trend motivated Facebook CEO, Zuckerberg, to announce a “Mobile First!” strategy
in 2012, which directed new development to occur first for mobile applications
before developing for the other platforms. Mobile First! strategy is followed by
other Summit companies, such as Google. However, the frequency of updates of
mobile software has traditionally lagged that of web applications for many reasons.
Mobile versions can only be released through the Apple and Google app stores that
control the frequency of releases and impose constraints on development. Users may
not auto-install updates and can decide when and if to upgrade; conceivably every
release of a mobile app that ever existed could be installed across their user base.

171

Continuous Deployment Transitions at Scale

The need to support and test hundreds of Android hardware variants increases the
computational cost complexity and speed of the verification process, thereby further
slowing down deployment. Finally, quality requirements are higher for mobile apps
as there are more limited options for taking remedial action through deploying a
new version when a defect is detected, compared with web- and cloud-based apps.

Chuck Rossi, the director of release engineering at Facebook, delivered the
keynote at the 2017 Summit. At Facebook, mobile applications are used by over a
billion people each day (Rossi et al. 2016). Rossi shared that over a period of four
years, Facebook has decreased the deployment speed from 6 weeks to 4 weeks to 2
weeks to 1 week. Mobile applications are deployed more frequently to its internal
users during a one-week stabilization phase that occurs the week after development
is complete to conduct “dogfood” testing. Summit companies also use tools, such as
the Gatekeeper tool, and feature flags in the code to dynamically control from the
cloud the features that users see in an app. Even though the customer installations
of new versions of the app will occur periodically, the companies can still control
the incremental rollout of new individual features across their user base and can
disable problematic changes in the advent of unexpected behavior without requiring
customers to update their apps.

DEVELOPER PRODUCTIVITY METRICS (LOOK WITHIN)

Companies are increasingly looking inward at their productivity, to evolve practices
or improve tool infrastructure for developers. These opportunities offer a much richer
source of information beyond simple metrics, such as lines of code produced, and
are more deeply tied to customer behavior.

At Google, searching for internal libraries is a common task and deeply integrated
into developer tooling and culture. Given that many possible library choices may
exist, one determining factor may be signals (Trockman 2018), information cues that
indicate attributes, such as quality, that may bias a developer towards one particular
library. Google has recently integrated metrics that serve as signals into project
dashboards. For example, the metrics include pre-submit speed (i.e. time to run tests
before committing to a repository), release frequency (hypothesizing that projects
with higher frequency are healthier), green builds/week (builds with fewer failures),
and number of post-release patches (how error-prone is the code). A project with
good project health metrics (called PH-levels) can be perceived as more reliable and
thus might be more likely to be adopted. Developers are encouraged to strive for
healthy PH-levels. However, some metrics are considered controversial for certain
teams, who want to opt-in/opt-out of certain metrics. Despite these challenges, PH-
levels can help maintain a shared sense of productivity.

172

Continuous Deployment Transitions at Scale

Finally, participants cautioned about direct interpretations of developer
productivity metrics. Some participants at the Summit argued that simply increasing
release frequency (say, 8 weeks to 4 weeks) does not necessarily improve developer
productivity. Instead, the increased frequency forces upgrades in tooling and
automation, which in turn reduces errors and inefficiencies in the process. In
another example, a common low-hanging fruit that an organization may target for
optimization is increasing the speed of tooling. However, Microsoft provided several
cases where tools were made faster, but observed no tangible benefit in productivity
gains: Instead, developers simply changed when they ran the tool (from night-time
to day-time). Ultimately, the participants recommended instead of simply striving
to hit or game metrics, organizations should target desirable changes in developer
behavior.

TOOLS EMBODY CULTURE

Creating a shared sense of culture and maintaining architectural integrity in a large
organization can be difficult; especially when the number of developers can be counted
in the thousands and with teams operating in small independent units. Traditionally,
many software organizations have relied on centralized architecture teams to help
manage standards (Parsons 2005). However, an alternative paradigm has emerged,
where architectural principles can be enforced through strong investments in tooling.

At the Summit, companies shared various ways in which tooling played a
central role in creating a shared engineering culture. Perhaps the most illustrative
example is the introduction of chaos engineering at Netflix. At Netflix, developers
mostly work in small teams that support a single feature or microservice. Given
Netflix’s anti-process culture and lack of centralized architectural teams but high
interdependence of microservices, there needed to be some way to communicate and
enforce architectural principles across the whole organization. Chaos engineering
(Basiri et al. 2016), is the practice of introducing small changes or unexpected events
into production environments to analyze how these changes or events could impact
the behavior of the system. For example, by introducing a chaos monkey, a tool
that randomly turned off AWS instances during working hours, the tool could help
enforce architectural principles of maintaining stateless and resilient microservices.

Enforcing cultural changes through tools can result in adoption barriers. For
example, Microsoft wanted to introduce stronger coding practices that could reduce
potential security problems. In one instance, trying to turn-on compiler errors for
uninitialized variables (a potential security concern) as a general policy resulted in
a large pushback from many development teams. While understanding the security
implications, many developers often viewed these compiler findings as false positives

173

Continuous Deployment Transitions at Scale

and did not want them turned on as errors for their projects. To combat a similar
problem at Google, the static analysis tool, Tricorder (Sadowski et al. 2015), allows
developers to give feedback on any finding (e.g., “Does not work in IE8”). Further
teams can opt-out of specific types of findings or even opt-in specialized findings. If
a finding is found not to be useful 10% of the time, the tool findings may eventually
be disabled across the company.

Tooling allows developers to share common workflows across the company
and even between companies. Some companies, such as Google and Facebook,
invest in their web-based IDE. By having all developers share the same interfaces
for developing code, the companies can ensure that all developers share the same
workflow for processes such as code review, code search, and reviewing findings
from static analysis tools. At the Summit, the participants noted the increasing
importance of partnership and investment of tooling across multiple companies and
open source communities. Open-source tools, such as Spinnaker (which supports
specifying and customizing deployment workflows), have been developed in
partnership between Netflix and companies such as Microsoft, Google, and Pivotal.
Some parameters and decisions can be highly variable between teams and products:
How long is a canary experiment; at what step do you sign-off on a deploy; how
does your particular service handle state? Scale differences between companies
and communities introduce a complication. For example, at Twitter, upstream open
source patches often end up breaking Twitter’s production environment because the
open source community operates at a much lower scale. Despite these challenges,
companies cite numerous benefits, such as attracting talent and improving tool
value. As one participant stated: “It makes sense to work together when you’re the
only two companies in the world that face the same issue.”

TESTING AND RELEASE IN PRACTICE

Operating continuous deployment pipelines at scale requires numerous shifts in
technology and practices. Traditional problems are amplified, while new problems
and pain points emerge. At Google, the demand for continuous integration (CI)
services double each year, with over 4.5 million tests being run daily—if not properly
optimized, this demand would require more servers to run than Google’s primary
product itself: search.

At the Summit, companies discussed numerous pain points related to testing and
shared various strategies that could help address them. One of the most common
pain points expressed was flaky tests, that is, tests that intermittently fail due to
random factors, such as resource availability (Luo et al. 2014). At Google, an internal
analysis of failing tests found that 84% of the time a failure is due to a flaky test.

174

Continuous Deployment Transitions at Scale

Several strategies were discussed to combat flaky tests. Companies have started
calculating the flakiness of tests or try to tag flaky tests based on historical data. At
Google, tests are kept below 1–5% flakiness or are quarantined. At Facebook, the
current practice is to simply delete flaky tests without mitigation. Several companies
reported reliability issues of running tests in Jenkins due to resource exhaustion or
inconsistent state of the workspace. To improve the reliability of running tests in
Jenkins, IBM and Netflix are moving towards running tests in containers. Finally,
participants at the Summit discussed the goal of moving toward predicting failing
builds and the presence of flaky tests. For example, if the dependency chain between
a changed source file and a failing unit test is more than ten hops away, it is likely
to be a flaky test.

Companies also discussed various issues and strategies for deploying releases
into production. At LexisNexis, releases occur every three weeks during off-hours.
Each release requires manual coordination and blessing of released features—a
customized Gantt chart is used to coordinate the order of flips for new versions
of shared services. Once everything is in place, manual testers verify the release;
meanwhile, developers of each service/module are on standby to patch any problems.
At Disney, release management was more frequent, with three release windows per
week. However, developers did not have full autonomy for making release decisions;
a highly centralized process is used and overseen by executives for no/go decisions
on each release. Meanwhile, Netflix remained at the head of the pack with 4000
deployments a day.

HOLDING ONTO SCHEMAS

For some companies, the biggest barrier to full continuous deployment adoption is
a lack of an effective strategy for deploying schema changes to relational databases
(or their usage at all). For example, in many database engines, a simple operation
such as renaming a column in a table would require locking all rows and thus
prevent any new data from being stored, while the rename operation took place.
Major schema changes could effectively shutdown an application for many hours
(de Jong et al. 2017).

This challenge was especially apparent in companies that supported legacy
applications. For example, IBM used to take a month to migrate a system to a
new version at a customer’s site. The primary challenge was coordinating code
and database changes with on-premises instances. Eventually, IBM shortened
the process to one hour. For LexisNexis, a 200-year-old company with software
components that are over 15 years old, deploying database changes remains one of
the most challenging aspects of continuous deployment. For every deployment to

175

Continuous Deployment Transitions at Scale

production, the deployment process is often on hold for several hours as they wait
for the DBA to clear the release. In addition to schema changes, other issues can
make deployment with databases problematic.

For SAS, dumping and restoring databases to accommodate schema changes
can take hours. At Microsoft, database rollbacks are avoided at all costs, especially
if the failure rate is low. Companies that have built continuous deployment-ready
architectures often discard relational databases entirely or develop new storage
technologies that can handle schema changes. For example, Netflix uses a key-value
based store, Cassandra, and microservice architecture. Any changes to a database are
handled by managing access to versioned calls at the service layer. Graph databases,
such as Facebook’s social graph, avoid these locking issues entirely by being able to
add new nodes and edges, then removing old edges and nodes when done without any
downtime. Still, even the most advanced architectures cannot escape issues related
to schema changes. At Facebook, changes to the schema for storing messages and
photos required a year-long migration to a more efficient schema.

INTENTIONAL FEATURE EXPERIMENTATION

Companies have, for decades, used telemetry to capture usage of their software to
identify quality issues or to help improve deployed features. Since the inception of
the Lean Startup (Ries 2011) practice, Internet-based and other companies have
been using data obtained via feature experimentation instrumentation to make data-
driven decisions on whether a new feature or algorithm should “pivot or persevere”
in the released product. Specifically, companies are removing features from their
code if these features do not have a positive impact on their customers. Five of the
Summit companies have evolved their continuous deployment processes to include
feature experimentation.

To enable experimentation, feature toggles may be implemented in the software
to create multiple experiences for different customers. Feature toggles are essentially
conditional blocks – if/else statements that can be used to enable or disable a feature
selectively (Schermann, Cito, & Leitner, 2018). For example, when Facebook released
Live video, they realized an individual live video could receive up to 2500 comments
per second. Facebook built experiments to evaluate multiple algorithms for filtering
and ranking comments to choose the algorithm that performs best at elevating
comments with high engagement. Data scientists work with the development team
to design experiments, develop hypotheses, collect metrics, and analyze collected
data. The paper documenting the 2015 Continuous Deployment Summit contained
the adage, “Every feature is an experiment.” (Parnin et al. 2017) However in later
summits, the reality of the experiment complexity and the sheer amount of data

176

Continuous Deployment Transitions at Scale

needed to be collected has made Summit companies more intentional in their choice
of when to run an

experiment. For example, Google is cautious of experiments that may have
implications to ad revenue, so typically small, incremental experiments are run.
Naively, companies with large user bases may initially believe they would obtain
feedback on a new feature rapidly, such as in hours or a small number of days.
However, users behave differently throughout the day, on different days of the week,
and at different times of the month. Representative experiments on stable features
take longer than expected. Microsoft has analyzed 21,220 experiments applied in
Bing (Kevic et al. 2017). Their results indicate that an experiment runs an average of
42 days before a “pivot or persevere” decision is made. As discussed above, feature
rollout to mobile customers are delayed relative to online customers, making mobile
experiments slower and more technically challenging. Summit companies did not use
feature experimentation for bug fixes, infrastructure changes, or architecture changes.

SHAMELESS RETROSPECTIVES

Retrospectives are meetings in which a team inspects and adapts their methods and
teamwork after completing a unit of work. Retrospectives enable learning, act as a
catalyst for change, and generate action (Derby and Larsen 2006)—as long as the
environment for retrospective discussion is safe. Allow shame and blame to enter
the retrospective, and these benefits are obliterated. Shame crushes our tolerance

Figure 1. Cycle of shame

177

Continuous Deployment Transitions at Scale

for vulnerability, thereby killing engagement, innovation, creativity, productivity,
information flow, and trust (Brown 2012).

In the 2016 Summit, Kent Beck who was at Facebook at the time, delivered a
keynote about the role of shame in software development as depicted by the Cycle
of Shame (Figure 1). The Cycle of Shame uses the notation of influence diagrams
(Weinberg 1992). With influence diagrams, a regularly directed arrow indicates
that more of the source activity tends to create more of the destination activity
(i.e. an amplifier), such as more mistakes generate more shame. A directed arrow
with a circle over it indicates that more of a source activity tends to create less of
the destination activity (i.e. an inhibitor), such as more shame drives less learning.
Starting from the regular arrow into Shame in Figure 1, more shame drives less
learning which drives more mistakes which drives more shame. Conversely, starting
from the arrow with the circle, less shame drives more learning which drives fewer
mistakes which drives less shame.

Within the context of the Cycle of Shame, Beck remarked positively about how
little shame there was in the engineering culture at Facebook. An engineer can freely
share the details about a mistake that he or she has made, owning the mistake—and
most importantly not blaming anyone else for the mistake. The engineer shares the
consequences of the mistake, details the remedial action, and provides suggestions for
how that type of mistake could be avoided in the future. In sharing this information,
the engineer does not feel shame, benefiting his or her learning and that of the team
members. The practice of shameless retrospectives resonated with Summit companies
as an essential component of the continuous process improvement needed while
adopting continuous deployment practices, which are often disruptive changes to
the organization.

LEVERAGING CULTURE AND PRACTICES
TO ENHANCE SECURITY

Alongside continuous deployment practices, organizations are increasingly adopting
software security practices. However, from a frequency of adoption perspectives,
firms most often adopt software security practices for reasons, including responding
to a security event, detecting vulnerabilities, and preventing vulnerabilities (Williams
et al. 2018). Integrating software security practices in a continuous deployment
environment is challenging because teams must integrate these practices at speed,
perhaps in an environment that chooses speed over deliberate, methodical approaches
to testing, security, and quality (McGraw 2017).

Many of the Summit companies have their software security group “silo’ed”
into a separate organization, as is also common in most non-Summit companies.

178

Continuous Deployment Transitions at Scale

Some of the smaller organizations, such as Twitter and Slack, have stronger
partnerships between the developers and their software security group, moving
towards a DevSecOps model, in which the security silo is broken down. At Slack,
teams often use Trello for collaborative, team-based project management. Based
upon the perceived risk of a new feature or product, their security team puts cards
on the team’s Trello board to signify the software security practice or reviews that
are needed to take place before the release. At both Slack and Twitter, the security
group partners with the development team starting with the requirements and design
phases. The philosophy of the security groups is that rather than taking the role of
fishing for security vulnerabilities when development is complete, the role of the
security team is to “teach the development team to fish” whereby the development
team specifies, designs, and implements secure products. All Summit teams desire
better automated security tools that could detect both architecture/design- and
code-level vulnerabilities with fewer false positives, a call for security researchers
and tool vendors.

Continuous deployment practices can enhance the security of a product. The
use of feature toggles is prevalent by Summit companies to support dark launches
and feature experiments. Dark launches release new features into production
surreptitiously, without any real users noticing them (Schermann, Cito, & Leitner,
2018). The system still duplicates the user requests to evaluate the new features in
the clandestine releases. Summit companies, such as Twitter, use feature toggles to
prevent features with security and/or privacy implications from being accessible to
external users until the security team has conducted their checks. Using this procedure,
developers can still continuously integrate code to these important features, but a
separate security/privacy process can take place before the public launch. Teams
instrument their code and constantly monitor the behavior of users to enable feature
experimentation. This same instrumentation and monitoring can be used to detect
anomalous behavior by attackers. Finally, organizations can use their normal process
to rapidly deploy security fixes that will more likely be installed by customers. In the
middle of 2016, security researchers found critical vulnerabilities in both Chrysler
and Tesla automobiles. Tesla was able to deploy their fix over the air, while Chrysler
sent USB sticks to its customers due to the lack of a better deployment process.

CONCLUSION

The eleven companies that participated in the annual summit, reveal their commitment
toward adopting software development practices that move them closer to continuous
deployment. All the companies at the Summit have experience applying continuous
deployment practices and are aware of the challenges in applying these practices. At

179

Continuous Deployment Transitions at Scale

one end of the spectrum, the adoption may be challenging yet feasible for deploying
hundreds or thousands of times of day, supporting feature experiments that can drive
data-driven decisions. On the other end of the spectrum, legacy products may be
deployed multiple times per year rather than once per year with a corporate strategy
shifting toward more cloud-based solutions that can be deployed more frequently.
Regardless of where they are on the spectrum, the Summit companies share a bond
of a commitment to continuous process improvement and sharing technical solutions,
approaches, and use of tools.

ACKNOWLEDGMENT

One of the authors who now works at VMWare had worked at Google during the
time of the Summits. Google has reviewed and approved the contents of this paper.

REFERENCES

Basiri, A., Behnam, N., De Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J., &
Rosenthal, C. (2016). Chaos engineering. IEEE Software, 33(3), 35–41. doi:10.1109/
MS.2016.60

Brown, B. (2012). 3 Ways To Kill Your Company’s Idea-Stifling Shame Culture.
Fast Company.

de Jong, M., van Deursen, A., & Cleve, A. (2017, May). Zero-downtime SQL
database schema evolution for continuous deployment. In 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP) (pp. 143-152). IEEE. 10.1109/ICSE-SEIP.2017.5

Derby, E., Larsen, D., & Schwaber, K. (2006). Agile retrospectives: Making good
teams great. Pragmatic Bookshelf.

Kevic, K., Murphy, B., Williams, L., & Beckmann, J. (2017, May). Characterizing
experimentation in continuous deployment: a case study on bing. In Proceedings of
the 39th International Conference on Software Engineering: Software Engineering
in Practice Track (pp. 123-132). IEEE Press. 10.1109/ICSE-SEIP.2017.19

Luo, Q., Hariri, F., Eloussi, L., & Marinov, D. (2014, November). An empirical
analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (pp. 643-653). ACM.

180

Continuous Deployment Transitions at Scale

McGraw, G. (2017). Six Tech Trends Impacting Software Security. Computer, 50(5),
100–102. doi:10.1109/MC.2017.143

Parnin, C., Helms, E., Atlee, C., Boughton, H., Ghattas, M., Glover, A., ... Stumm,
M. (2017). The top 10 adages in continuous deployment. IEEE Software, 34(3),
86–95. doi:10.1109/MS.2017.86

Parsons, R. I. (2005). Enterprise architects join the team. IEEE Software, 22(5),
16–17. doi:10.1109/MS.2005.119

Rahman, A. A. U., Helms, E., Williams, L., & Parnin, C. (2015, August). Synthesizing
continuous deployment practices used in software development. In 2015 Agile
Conference (pp. 1-10). IEEE. doi:10.1109/Agile.2015.12

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., & Stumm, M. (2016,
May). Continuous deployment at Facebook and OANDA. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C) (pp. 21-
30). IEEE. 10.1145/2889160.2889223

Schermann, G., Cito, J., & Leitner, P. (2018). Continuous experimentation: Challenges,
implementation techniques, and current research. IEEE Software, 35(2), 26–31.
doi:10.1109/MS.2018.111094748

Trockman, A., Zhou, S., Kästner, C., & Vasilescu, B. (2018, May). Adding sparkle
to social coding: an empirical study of repository badges in the npm ecosystem.
In Proceedings of the 40th International Conference on Software Engineering (pp.
511-522). ACM.

Weinberg, G. (1992). Systems Thinking, Quality Software Management (1st ed.).
New York: Dorset House.

Williams, L., McGraw, G., & Migues, S. (2018). Engineering Security Vulnerability
Prevention, Detection, and Response. IEEE Software, 35(5), 76–80. doi:10.1109/
MS.2018.290110854

ADDITIONAL READING

Arachchi, S. A. I. B. S., & Perera, I. (2018, May). Continuous Integration and
Continuous Delivery Pipeline Automation for Agile Software Project Management.
In 2018 Moratuwa Engineering Research Conference (MERCon) (pp. 156-161).
IEEE. doi:10.1109/MERCon.2018.8421965

181

Continuous Deployment Transitions at Scale

Laukkanen, E., Paasivaara, M., Itkonen, J., & Lassenius, C. (2018). Comparison of
release engineering practices in a large mature company and a startup. Empirical
Software Engineering, 23(6), 3535–3577. doi:10.100710664-018-9616-7

Mahdavi-Hezaveh, R., Dremann, J., & Williams, L. (2019). Feature Toggle Driven
Development: Practices usedby Practitioners. arXiv preprint arXiv:1907.06157.

Ravichandran, A., Taylor, K., & Waterhouse, P. (2016). DevOps for Digital Leaders.
doi:10.1007/978-1-4842-1842-6

Schermann, G., Cito, J., Leitner, P., & Gall, H. C. (2016, May). Towards quality gates
in continuous delivery and deployment. In 2016 IEEE 24th international conference
on program comprehension (ICPC) (pp. 1-4). IEEE. 10.1109/ICPC.2016.7503737

Schermann, G., Cito, J., Leitner, P., Zdun, U., & Gall, H. (2016). An empirical study
on principles and practices of continuous delivery and deployment (No. e1889v1).
PeerJ Preprints.

Shahin, M., Zahedi, M., Babar, M. A., & Zhu, L. (2019). An empirical study of
architecting for continuous delivery and deployment. Empirical Software Engineering,
24(3), 1061–1108. doi:10.100710664-018-9651-4

	Continuous Deployment Transitions at Scale
	Recommended Citation
	Authors

	tmp.1645727710.pdf.8BcLV

