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ABSTRACT 

CACHE MANAGEMENT AND LOAD BALANCING FOR 5G CLOUD 

RADIO ACCESS NETWORKS 

 

by Chin Tsai 

Cloud radio access network (CRAN) has been proposed for 5G mobile networks. The 

benefit of a CRAN includes better scalability, flexibility, and performance. The paper 

introduces a cache management algorithm for a baseband unit of CRAN and load 

balancing algorithms for virtual machines load within the CRAN. The proposed scheme, 

exponential decay (EXD) with analytical hierarchy process (AHP), increases hit rate and 

reduces network traffic. The scheme also provides preferential services for users with a 

higher service level agreement (SLA). Finally, the experiment shows the proposed load 

balancing algorithm can reduce the virtual machines’ (VM) queue size and wait time.  
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1. Introduction 

1.1 Background 

The emergence of new video encoding technologies, content-centric communication, 

and Internet of Things (IoT) has rapidly increased the demand on higher capacity cellular 

network. 5th Generation (5G) addresses the challenge by introducing new technologies. 

Cloud Radio Access Network (CRAN) is one of those technologies that provides 

centralized computation, scalability, and resource management to support many devices 

all at once [1].  

A Radio Access Network (RAN), which provides a connection between user devices 

and core mobile networks, consists of evolved Node B (eNodeB) and user equipment 

(UE). A Traditional eNodeB consists of a remote radio head (RRH) and a baseband unit 

(BBU) with a RRH on each eNodeB as shown on the left side of Figure 1. The RRH’s 

job is to transmit and receive wireless signal as well as to amplify signal for transmission. 

A BBU is responsible for transforming IP packets into digital baseband signal and 

processing baseband signal from the RRH [2]. In a CRAN, baseband units of eNodeBs 

are pooled together as shown on the right size of Figure 1. The pool is made up of virtual 

machines (VM) to process user requests; this reduces power consumption, increases 

scalability, and reduces delay [1]. An example of these benefits would be a LTE 

handover. A LTE handover occurs when a user moves from one eNodeB to another. Its 

purpose is to transfer a user equipment context (UEC), which holds subscription 
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information of the user, to the current eNodeB where the user is located. In a traditional 

LTE network, UECs are stored in a local baseband unit of a eNodeB; thus, it takes time 

to transfer UECs between eNodeB. In a CRAN many handover steps are now internal 

processes of the BBU pool [3]; this significantly reduces handover latency. Furthermore, 

having an active user’s UEC in a cache is very important to maintain acceptable user 

experience as the UEC is required for many LTE procedures. 

 

Figure 1. RAN (left) and CRAN (right) [1] 

 

1.2 Project Overview 

 

Since the memory size of a BBU pool is limited, it is important to provide a memory 

management scheme to improve the mobile users’ experience.  This paper provides a 

cache management algorithm for a cache memory in a CRAN baseband unit pool. The 

characteristics of this cache algorithm include preferential eviction and a reduced cache 

miss penalty. Three scoring functions are implemented and are used for cache eviction; 

they are least frequently used (LFU), exponential decay (EXD) [5], and exponential 

decay with analytical hierarchical process (EXD-AHP) [6]. To spread the load of VMs 
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while processing requests, some load balancing algorithms are introduced to reduce 

queue size and total service time of VMs.   

The overview of the project is shown in Figure 2. 

 

Figure 2. Project Overview 

 

In this figure, the requests are coming from layer 2 control applications and are sent to a 

BBU pool to be processed by VMs. Each request needs to go through a load balancer to 

be assigned to an optimal VM. The VM would process the user request and store the 

user’s UEC in its cache. If all caches are filled, the UEC is stored to a secondary cloud 

storage.  

 



 

4 

 

1.3 Related Work 

 

There are many works on dealing with cache performance. Floratou et al. [5]   

introduced a cache algorithm for database applications. In this algorithm, all files in a 

cache were sorted according to their scores in descending order, and the first few lowest 

score files were evicted to make room for more important files. Each file’s score was 

determined by scoring functions such as exponential decay or the least recently used 

method. Finally, the paper also introduced an adapter algorithm which monitored the hit 

rate of the cache. The algorithm adjusted the parameters of the scoring functions based on 

the observations to increase the hit performance.  

Podlipnig et al. [7] compiled a list of common cache replacement strategies. LFU 

with aging factor replacement algorithm was used as a base line comparison for the 

scoring functions presented in this paper. 

Many load balancing schemes have been introduced for 5G and LTE networks. 

Gomes et al. [8] discussed a content migration technique between edge caches located in 

eNodeBs. In their scheme, a specified controller predicted mobile users’ movements and 

made decisions on migrating content to a new node. If a decision was made, analytic 

hierarchy process (AHP) was used to determine the best edge node for content migration. 

Finally, the authors pre-determined what content to migrate using content popularity. The 

authors successfully demonstrated the technique can reduce download latency and can 

increase hit rate at edge caches. Munoz et al. [9] used a fuzzy logic controller (FLC) 
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combined with a fuzzy rule-based reinforced learning system (FRLS) to solve the 

congestion problem for a femtocell, a small low-power cellular base station, in an office 

environment. Hisham et al. [10] provided a load balancing algorithm for micro and small 

cells; the algorithm increased the throughput for user equipment (UE) and reduced the 

up-link signal to noise ratio. Shahriari and Moh [11] applied generic online learning 

(GOL) based on reinforcement learning (RL) to a CRAN; the experiment demonstrated 

that the algorithm reduced cache misses and reduced communication load. 

Many studies on load balancing for software-defined networking (SDN) were also 

introduced. Koushika and Selvi [12] combined their heuristic algorithm with a SDN 

controller to provide path and server load balancing within a network. Taking advantage 

of the OpenFlow controller, Zhang and Guo [13] used a dynamic load balancing 

algorithm for server clustering which distributed load to an optimal server. Using 

OpenDayLight, Sathyanarayana and Moh [14] adopted Ant Colony System (ACS) as 

their load balancing algorithm to achieve better network performance and resource 

utilization. 

2. Cache Management 

 

The proposed cache management algorithm would address 2 concerns: how to keep 

most requested UECs in a cache and how to keep UECs with a high SLA level in the 

cache. To address the first concern, the algorithm assigns a score to each UEC by using a 

scoring function. The second concern is addressed by using a weight calculated from 
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AHP. This section introduces the general cache management algorithm that utilizes the 

scoring function.   

 

2.1 General Cache Management Algorithm  

 

Four cache management algorithms are tested; however, the difference is only on 

their cache scoring function used. Figure 3 below is the flow chart of the general cache 

management algorithm which uses a scoring function to update UEC score. 

 

 

Figure 3. Cache Management Algorithm 
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The detailed algorithm is also shown below. Note that even if a newly arrived UECi 

has a score that is lower than the lowest score of a UEC in a cache, the UEC in the cache 

is still evicted to make room for the requested UEC. This is because the newly arrived 

UECi belongs to an active user, and keeping an active user’s UEC in a cache is very 

important to maintain an acceptable user experience. 

 

Cache Management Algorithm 

1. For each request from user device with UECi 

2.  Calculate new score of UECi using Equation (2); 

3.  Update the score of every entry in the cache using   Equation (1); 

4.  if cache hit on one of the VMs then 

5 update both content and score of the in-cache UECi with those of this newly arrived UECi; 

6      return; 

7.  else cache miss 

8.     write UECi to the cloud storage; 

9.      select a VM using Round-Robin algorithm; 

10.      if the VM has cache space then 

11.   insert UECi in VM’s cache; 

12.   return; 

13.     else no cache space, compare UEC scores 

14.  if score of UECi greater than the min. score 

15. evict from the cache the first lowest E   entries whose sum of scores is just lower than 

score of UECi; 

16. write the evicted E UEC’s to cloud storage; 

17.   else UECi score lower than the min. score 

18.        evict minimum-scored UEC from cache; 

19. write the evicted UEC to cloud storage; 

20.   insert UECi in VM’s cache; 

21.   return; 
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2.2 EXD Scoring Function 

 

 

The core of the cache management algorithm is the EXD scoring function. The 

function is used to keep most requested UECs in a cache and to keep less frequently 

requested UECs out of the cache. The EXD scoring function pair is listed below. 

 

  𝑆i(ui1 +△ u) = 𝑆i(ui1) ∗ e−a△u                   (1) 

 

  𝑆i(ui1 +△ u) =  𝑆i(ui1) ∗ e−a△u + 1          (2) 

 

In EXD, each UEC’s score is determined by the time between requests. For both 

equations,  𝑆i(𝑢) represents the score of UECi at time u. Equation 1 is used to reduce the 

score of UECs currently in the cache that are not requested while Equation 2 is used to 

calculate the score of a requested UEC. Note that the amount of reduction from Equation 

1 is determined by e−a△u where △u is the time elapsed since a UECi is last requested at 

time ui1. The longer the △u, the higher the score reduction. The effectiveness of the △u is 

determined by the value ‘a’. A small ‘a’ mean the exponent term has little effect on 

𝑆i(ui1), and vice versa. Equation 2 shares the same term, but the additional constant 1 

term allows a UEC to have a higher score if it is frequently requested. The overall effect 

is the most requested UECs get higher scores while the least requested UECs get lower 

scores. 
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2.3 EXD Scoring Function with AHP 

The EXD scoring function is modified to take the user SLA level into account.  The 

motive behind this modification is to increase the hit rate of UECs with higher SLAs 

while preventing UECs with lower SLAs from getting higher scores.  There are 4 SLA 

levels in this project; they are L1, L2, L3, and L4 where L1 is the best SLA level. The 

first step of this process is to set up a matrix as shown in Table 1. Each row in the matrix 

represents importance of a certain SLA level compare to other levels. For example, L1 is 

5 times more important than L2, and L3 is 5 times less important than L1; the value 

chosen is arbitrary. Once the matrix is created, the weight vector can be calculated with 

the following steps: 

1. Convert fractions to decimals 

2. Square the result matrix 

3. Sum up the rows of the matrix and get a vector 

4. Normalize the result vector by dividing it with the sum of all elements in the 

matrix 

5. Repeat steps 2 to 4 until the result no longer changes from the previous iteration 

[7]  
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The result on step 5 is represented by the far-right column of Table 1. Each element of 

this vector represents the weight of the individual SLA level. These values are used to 

modify the existing EXD scoring function. The modification is shown in Equation 3 

where WAHP is the individual SLA level calculated by AHP and is appended to the end of 

Equation 1. We also come up with Equation 4 where the constant 1 in Equation 2 is 

replaced by WAHP. 

Table 1. AHP Matrix  

 L1 L2 L3 L4 Weight 

𝑊𝐴𝐻𝑃 

L1 1 5/1 5/1 5/1 0.579 

L2 1/5 1 5/1 5/1 0.281 

L3 1/5 1/5 1 5/1 0.102 

L4 1/5 1/5 1/5 1 0.043 

 

𝑆i(ui1 +△ u) = 𝑆i(ui1) ∗ e−a△u + 1 +  𝑊𝐴𝐻𝑃                 (3) 

 

𝑆i(ui1 +△ u) = 𝑆i(ui1) ∗ e−a△u +  𝑊𝐴𝐻𝑃                         (4) 
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2.4 Experiment Setup for the Cache Management Algorithm   

CloudSim [15] is used for the experiment. 1 host and 4 VMs are created to simulate a 

BBU pool in a CRAN. In the experiment, 84,000 requests are sent to the host. The 

percentage of the SLA level within those requests are 52 percent for L1, 26 percent for 

L2, 13 percent for L3, and the rest are L4. The time between the request is modeled by 

equation -ln(u)/λ where u is a value between 0 and 1 and λ is the number of requests per 

second. In our experiment, λ is set to 1,400 requests per second. The detailed experiment 

parameters are shown in Table 2. 

 

Table 2. Experiment Parameter Values 

Parameter Value 

No. of VM 4 

VM cache size 1,250MB, 2,500MB, 3,750MB, and 5,000MB 

λ, mean UEC arrival rate 1,400 UEC/second 

UEC record size 200 KB 

No. of distinct users 25,000 

QoS levels L1, L2, L3, and L4 

𝑊𝐴𝐻𝑃 L1: 0.58; L2: 0.28; L3: 0.10; L4: 0.04. 

QoS traffic distribution L1: 52%; L2: 26%; L3: 13%; L4:9% 

EXD Parameter a 10-3 

Total simulation time 5 minutes 

 
 

Four types of weight functions are used during the experiment. The LFU scoring function 

is used as a baseline comparison for the proposed scoring functions. 
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Table 3: Simulated Algorithms 

Acronyms Cache Management 

Algorithms 

UEC Scoring 

LFU Least Frequently Used UEC request frequency 

EXD [5] Based on Exponential Delay Equations (2) and (1) 

EXD-AHP+1  

(newly proposed) 

Enhancing EXD with AHP Equations (3) and (1) 

EXD-AHP 

(newly proposed) 

Enhancing EXD with AHP Equations (4) and (1) 

 

 

2.5 Result - Cloud Writes and Network Traffic 

This section evaluates the 4 scoring functions with respect to the number of cloud 

writes and the amount of network traffic where the network traffic is calculated using 

Equation 5 (Note that 200 kilobytes is converted to bits first). Figure 4 to Figure 7 show 

the results with cache sizes of 1,250 MB, 2,500 MB, 3,750MB, and 5,000 MB. 

 

  

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 =
𝑇𝑜𝑡𝑎𝑙 𝑊𝑟𝑖𝑡𝑒𝑠 ∗ 200 ∗ 8 ∗ 1000

𝑆𝑖𝑚𝑢𝑙a𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
              (5) 

 

Each figure shows that of the proposed scoring functions, EXD-AHP, can achieve the 

smallest number of cloud writes and network traffic. In Figure 4, the network traffic for 
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EXD-AHP is about 250 Mbps less than that of LFU. In Figure 5, the saving for the same 

comparison is about 70 Mbps. The saving for the subsequent figures are 20 Mbps and 10 

Mbps respectively.  From this result, it is clear as cache size increases, the amount of 

network traffic reduced by EXD-AHP becomes less significant. This is because the larger 

the cache size, more UECs can be kept in the cache. The result is a higher hit rate and 

less network traffic. 

 
 

 

Figure 4: Total writes & network traffic, cache size 1250 MB 
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Figure 5: Total writes and network traffic, cache size of 2500 MB 

 

 

             Figure 6: Total writes and network traffic, cache size of 3750 MB 
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Figure 7: Total writes & network traffic, cache size 5000 MB 

 

 

2.6 Result – Cache Hit Rates for Various Service Levels 

This section shows how well the 4 scoring functions provide different levels of support 

for different service levels (L1, L2, L3, and L4) in terms of cache hit rates. The cache hit 

rate for each level is defined in Equation 6. 

 

𝐿𝑖   𝐶𝑎𝑐ℎ𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝐿𝑖 𝑈𝐸𝐶 𝑐𝑎𝑐ℎ𝑒 ℎ𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝐿𝑖 𝑈𝐸𝐶 𝑎𝑟r𝑖𝑣𝑎𝑙𝑠
         (6)     
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Figures 8 to 11 show the hit rates for cache sizes of 1,250 MB, 2,500 MB, 3,750 MB and 

5,000 MB respectively. When the cache size is very small only L1 receives a good hit rate 

as shown in Figure 8. This is due to the small cache size. Once the cache size starts to 

increase, the hit rates of the various service levels start to show up. 

 

While Figure 10 and Figure 11 show clear distinction between the L1 and L2 hit rates 

for each scoring function, there is no clear distinction for the L3 and L4 hit rates except for 

EXD-AHP. In some cases, the hit rate for L4 is higher than that of L3. However, EXD-

AHP shows the clear distinction between the 2 service levels  

 

 

Figure 8: Hit rates of different service levels with cache size of 1250 MB 
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Figure 9: Hit rates of different service levels with cache size of 2500 MB 

 

 

Figure 10: Hit rates of different service levels with cache size of 3750 MB 
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Figure 11: Hit rates of different service levels with cache size of 5000 MB 
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being processed plus the UEC processing time. There are many different UE events in 5G 
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Table 4. 5G UE events break down 

UE Events Event arrival rate 

Events/eNB/second 

Relative CPU 

Load 

UE state transitions  750 1.00 

Handovers  100 0.82 

Tracking area updates 

(TAU) 

30 1.24 

Paging 500 0.26 

Attach/detach 25 2.31 

Actual Event Total  1400  

 

 

3.1 Load Balancing Algorithms  

Eight load balancing algorithms are tested. Table 5 shows the description of each load 

balancing algorithm. The algorithms are listed in ascending order of the computation 

complexity. 

 

Table 5. Eight LB Algorithms for CRAN 

Acronym Algorithm Description 

Five Basic LB Algorithms 

 (listed in ascending order of complexity) 

RR Round-robin Round-robin of VM assignment. 

RND Random Random VM assignment. 

CPU Based on CPU 

load 

Assign to VM with min. cumulative CPU load. 

Squeue Based on shortest 

queue size 

Assign to VM with shortest queue length. 
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Swait Based on shortest 

waiting time  

Assign to VM with shortest waiting time. 

Three Additional LB Algorithms 

(listed in ascending order of complexity) 

Ded Dedicated 3 types of events with high occurrence (UE State 

transition, Handovers, Paging) each has own dedicated 

VM; all others share one VM. 

Access Based on min. 

number of UEC 

accesses 

Assign to VM with min. number of UEC accesses. 

QCPU Based on queued 

time at CPU 

Split all event types into 4 categories according their 

relative CPU load. The highest CPU load category will 

be assigned to VM with the shortest waiting time.  

 

3.2 Experiment Setup for the Load Balancing Algorithms  

 
CloudSim [15] is again used for the experiment. 1 host and 4 VMs are created to 

simulate a BBU pool in a CRAN. In the experiment, 84,000 requests are sent to the host. 

The events arrival rate is 1,400 events per second with type distribution according to 

Table 4. 

Table 6. Experiment Parameter Values 

Parameter Value 

No. of VM 4 

VM cache size 2,500MB 

UEC record size 200 KB 

UEC arrival process Poisson 

λ, mean UEC arrival rate 1,400 UEC/second 

Total no. of distinct users 25,000 

Total simulation time 5 minutes 
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3.3 Result  

Figure 12 and Figure 13 are probability density functions for the queue size and total 

service time for the VMs in the simulation. The figures demonstrate that the CPU, 

Access, Qcpu, and Ded load balancing algorithms have much higher occurrence for 

longer queue size and longer total service time. Squeue and Swait, on the other hand, seem to 

have much better results. 

 

 

Figure 12. Probability Density Function (PDF) of Queue Size 
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Figure 13. Probability Density Function (PDF) of Total Service Time 

 

Table 7 and 8 show the average and standard deviation of the queue size and the total 

service time for the simulated algorithms. We can tell that Squeue and Swait have good 

performance compared to other algorithms. While both have similar performance, Squeue 

is less expensive than Swait. Thus, Squeue is the preferable algorithm for VM load 

balancing. 
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Table 7. Average and standard deviation of queue size for each UEC 

 RR Rnd CPU Squeue Swait Ded Access Qcpu 

Avg 21.192 24.387 34.970 18.995 18.990 36.245 33.495 31.801 

StDev 1.007 1.119 3.022 0.5321 0.5545 0.888 2 . 12 2 1.9065 

 

Table 8. Average and standard deviation of total service time 

 RR Rnd CPU Squeue Swait Ded Access Qcpu 

Avg 1.163 1.366 1.913 0.920 0.894 2.103 1.862 1.759 

StDev 0.221 0.309 0.482 0.153 0.149 0.420 0.480 0.316 

 

Figure 14 and Figure 15 are cumulative density functions for the queue size and the total 

service times for the VMs in the simulation. It is clear Squeue and Swait have the best result 

since it has almost 0 chance that a VM will encounter a queue size of more than 100. 

Furthermore, the maximum wait time for both algorithms is much shorter compare to 

other algorithms  
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Figure 14. Cumulative Density Function (CDF) of Queue Size vs Occurrence 

 

Figure 15. Cumulative Density Function (CDF) of Total Service Time vs Occurrence  
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Finally, box plots of the queue length and total service time of these 5 load balancing 

algorithms are shown in Figure 16 and Figure 17. It is clear Squeue and Swait both have 

better performance as they have the smallest maximum queue size and total service time.  

 

 

Figure 16. Box plot of queue size 
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Figure 17. Box plot of total service time 

 

4. Conclusion 

The experiment concludes that EXD-AHP can achieve the lowest number of 

writebacks which translates to the higher hit rate. However, the number of reduced 

writebacks compared to the rest of the scoring functions is only significant if the cache 

size is small. Furthermore, EXD-AHP provides the capability of giving mobile users with 

a high SLA level better cache performance. For load balancing, Squeue and Swait load 

balancing algorithms can reduce request time. The is supported by the fact they have the 

lowest occurrence of high queue size and have the lowest minimum service time. 
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Furthermore, Squeue is the preferable algorithm due to it being less expensive compared to 

Swait. 
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