
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2017

Cache Management and Load Balancing for 5G Cloud Radio Cache Management and Load Balancing for 5G Cloud Radio

Access Networks Access Networks

Chin Tsai
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tsai, Chin, "Cache Management and Load Balancing for 5G Cloud Radio Access Networks" (2017).
Master's Projects. 562.
DOI: https://doi.org/10.31979/etd.sgq8-ctcm
https://scholarworks.sjsu.edu/etd_projects/562

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/562?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Cache Management and Load Balancing for 5G Cloud Radio Access

Networks

Chin Tsai

San Jose State University

Fall 2017

i

CACHE MANAGEMENT AND LOAD BALANCING FOR 5G CLOUD

RADIO ACCESS NETWORKS

A writing project

Presented to

The Faculty of Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Chin Tsai

December 2017

ii

© 2017

Chin Tsai

ALL RIGHTS RESERVED

iii

The Designated Thesis Committee Approves the Thesis Titled

CACHE MANAGEMENT AND LOAD BALANCING FOR 5G CLOUD

RADIO ACCESS NETWORKS

by

Chin Tsai

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2017

 Dr. Melody Moh Department of Compute Science

 Dr. Teng Moh Department of Compute Science

 Dr. Thomas Austin Department of Compute Science

iv

ABSTRACT

CACHE MANAGEMENT AND LOAD BALANCING FOR 5G CLOUD

RADIO ACCESS NETWORKS

by Chin Tsai

Cloud radio access network (CRAN) has been proposed for 5G mobile networks. The

benefit of a CRAN includes better scalability, flexibility, and performance. The paper

introduces a cache management algorithm for a baseband unit of CRAN and load

balancing algorithms for virtual machines load within the CRAN. The proposed scheme,

exponential decay (EXD) with analytical hierarchy process (AHP), increases hit rate and

reduces network traffic. The scheme also provides preferential services for users with a

higher service level agreement (SLA). Finally, the experiment shows the proposed load

balancing algorithm can reduce the virtual machines’ (VM) queue size and wait time.

v

TABLE OF CONTENTS

LIST OF ACRONYMS ... vi

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. Introduction ... 1

1.1 Background ... 1

1.2 Project Overview ... 2

1.3 Related Work... 4

2. Cache Management ... 5

2.1 General Cache Management Algorithm .. 6

2.2 EXD Scoring Function .. 8

2.3 EXD Scoring Function with AHP ... 9

2.4 Experiment Setup for the Cache Management Algorithm 11

2.5 Result - Cloud Writes and Network Traffic .. 12

2.6 Result – Cache Hit Rates for Various Service Levels ... 15

3. Load Balancing ... 18

3.1 Load Balancing Algorithms .. 19

3.2 Experiment Setup for the Load Balancing Algorithms ... 20

3.3 Result ... 21

4. Conclusion .. 26

5. References ... 27

vi

LIST OF ACRONYMS

5G - 5th Generation

ACS - Ant Colony System

BBU - Baseband Unit

CRAN - Cloud Radio Access Network

EXD - Exponential Decay

EXD-AHP - Exponential Decay with Analytical Hierarchical Process

FLC - Fuzzy Logic Controller

FRLS - Fuzzy Rule-based Reinforced Learning System

GOL - Generic Online Learning

IoT - Internet of Things

LFU - Least Frequently Used

RAN - Radio Access Network

RL - Reinforcement Learning

RRH - Remote Radio Head

SDN - Software-Defined Networking

SLA - Service Level Agreement

UE - User Equipment

UEC - User Equipment Context

VM - Virtual Machine

vii

LIST OF TABLES

Table 1. AHP Matrix... 10

Table 2. Experiment Parameter Values .. 11

Table 3: Simulated Algorithms ... 12

Table 4. 5G UE events break down .. 19

Table 5. Eight LB Algorithms for CRAN ... 19

Table 6. Experiment Parameter Values .. 20

Table 7. Average and standard deviation of queue size for each UEC 23

Table 8. Average and standard deviation of total service time ... 23

viii

LIST OF FIGURES

Figure 1. RAN (left) and CRAN (right) [1] .. 2

Figure 2. Project Overview ... 3

Figure 3. Cache Management Algorithm.. 6

Figure 4: Total writes & network traffic, cache size 1250 MB .. 13

Figure 5: Total writes and network traffic, cache size of 2500 MB 14

Figure 6: Total writes and network traffic, cache size of 3750 MB 14

Figure 7: Total writes & network traffic, cache size 5000 MB .. 15

Figure 8: Hit rates of different service levels with cache size of 1250 MB 16

Figure 9: Hit rates of different service levels with cache size of 2500 MB 17

Figure 10: Hit rates of different service levels with cache size of 3750 MB.................... 17

Figure 11: Hit rates of different service levels with cache size of 5000 MB.................... 18

Figure 12. PDF of queue size .. 21

Figure 13. PDF of Total Service Time.. 22

Figure 14. Queue size vs Occurrence in CDF... 24

Figure 15. Total Service Time vs Occurrence in CDF ... 24

Figure 16. Box plot of queue size ... 25

Figure 17. Box plot of total service time .. 26

1

1. Introduction

1.1 Background

The emergence of new video encoding technologies, content-centric communication,

and Internet of Things (IoT) has rapidly increased the demand on higher capacity cellular

network. 5th Generation (5G) addresses the challenge by introducing new technologies.

Cloud Radio Access Network (CRAN) is one of those technologies that provides

centralized computation, scalability, and resource management to support many devices

all at once [1].

A Radio Access Network (RAN), which provides a connection between user devices

and core mobile networks, consists of evolved Node B (eNodeB) and user equipment

(UE). A Traditional eNodeB consists of a remote radio head (RRH) and a baseband unit

(BBU) with a RRH on each eNodeB as shown on the left side of Figure 1. The RRH’s

job is to transmit and receive wireless signal as well as to amplify signal for transmission.

A BBU is responsible for transforming IP packets into digital baseband signal and

processing baseband signal from the RRH [2]. In a CRAN, baseband units of eNodeBs

are pooled together as shown on the right size of Figure 1. The pool is made up of virtual

machines (VM) to process user requests; this reduces power consumption, increases

scalability, and reduces delay [1]. An example of these benefits would be a LTE

handover. A LTE handover occurs when a user moves from one eNodeB to another. Its

purpose is to transfer a user equipment context (UEC), which holds subscription

2

information of the user, to the current eNodeB where the user is located. In a traditional

LTE network, UECs are stored in a local baseband unit of a eNodeB; thus, it takes time

to transfer UECs between eNodeB. In a CRAN many handover steps are now internal

processes of the BBU pool [3]; this significantly reduces handover latency. Furthermore,

having an active user’s UEC in a cache is very important to maintain acceptable user

experience as the UEC is required for many LTE procedures.

Figure 1. RAN (left) and CRAN (right) [1]

1.2 Project Overview

Since the memory size of a BBU pool is limited, it is important to provide a memory

management scheme to improve the mobile users’ experience. This paper provides a

cache management algorithm for a cache memory in a CRAN baseband unit pool. The

characteristics of this cache algorithm include preferential eviction and a reduced cache

miss penalty. Three scoring functions are implemented and are used for cache eviction;

they are least frequently used (LFU), exponential decay (EXD) [5], and exponential

decay with analytical hierarchical process (EXD-AHP) [6]. To spread the load of VMs

3

while processing requests, some load balancing algorithms are introduced to reduce

queue size and total service time of VMs.

The overview of the project is shown in Figure 2.

Figure 2. Project Overview

In this figure, the requests are coming from layer 2 control applications and are sent to a

BBU pool to be processed by VMs. Each request needs to go through a load balancer to

be assigned to an optimal VM. The VM would process the user request and store the

user’s UEC in its cache. If all caches are filled, the UEC is stored to a secondary cloud

storage.

4

1.3 Related Work

There are many works on dealing with cache performance. Floratou et al. [5]

introduced a cache algorithm for database applications. In this algorithm, all files in a

cache were sorted according to their scores in descending order, and the first few lowest

score files were evicted to make room for more important files. Each file’s score was

determined by scoring functions such as exponential decay or the least recently used

method. Finally, the paper also introduced an adapter algorithm which monitored the hit

rate of the cache. The algorithm adjusted the parameters of the scoring functions based on

the observations to increase the hit performance.

Podlipnig et al. [7] compiled a list of common cache replacement strategies. LFU

with aging factor replacement algorithm was used as a base line comparison for the

scoring functions presented in this paper.

Many load balancing schemes have been introduced for 5G and LTE networks.

Gomes et al. [8] discussed a content migration technique between edge caches located in

eNodeBs. In their scheme, a specified controller predicted mobile users’ movements and

made decisions on migrating content to a new node. If a decision was made, analytic

hierarchy process (AHP) was used to determine the best edge node for content migration.

Finally, the authors pre-determined what content to migrate using content popularity. The

authors successfully demonstrated the technique can reduce download latency and can

increase hit rate at edge caches. Munoz et al. [9] used a fuzzy logic controller (FLC)

5

combined with a fuzzy rule-based reinforced learning system (FRLS) to solve the

congestion problem for a femtocell, a small low-power cellular base station, in an office

environment. Hisham et al. [10] provided a load balancing algorithm for micro and small

cells; the algorithm increased the throughput for user equipment (UE) and reduced the

up-link signal to noise ratio. Shahriari and Moh [11] applied generic online learning

(GOL) based on reinforcement learning (RL) to a CRAN; the experiment demonstrated

that the algorithm reduced cache misses and reduced communication load.

Many studies on load balancing for software-defined networking (SDN) were also

introduced. Koushika and Selvi [12] combined their heuristic algorithm with a SDN

controller to provide path and server load balancing within a network. Taking advantage

of the OpenFlow controller, Zhang and Guo [13] used a dynamic load balancing

algorithm for server clustering which distributed load to an optimal server. Using

OpenDayLight, Sathyanarayana and Moh [14] adopted Ant Colony System (ACS) as

their load balancing algorithm to achieve better network performance and resource

utilization.

2. Cache Management

The proposed cache management algorithm would address 2 concerns: how to keep

most requested UECs in a cache and how to keep UECs with a high SLA level in the

cache. To address the first concern, the algorithm assigns a score to each UEC by using a

scoring function. The second concern is addressed by using a weight calculated from

6

AHP. This section introduces the general cache management algorithm that utilizes the

scoring function.

2.1 General Cache Management Algorithm

Four cache management algorithms are tested; however, the difference is only on

their cache scoring function used. Figure 3 below is the flow chart of the general cache

management algorithm which uses a scoring function to update UEC score.

Figure 3. Cache Management Algorithm

7

The detailed algorithm is also shown below. Note that even if a newly arrived UECi

has a score that is lower than the lowest score of a UEC in a cache, the UEC in the cache

is still evicted to make room for the requested UEC. This is because the newly arrived

UECi belongs to an active user, and keeping an active user’s UEC in a cache is very

important to maintain an acceptable user experience.

Cache Management Algorithm

1. For each request from user device with UECi

2. Calculate new score of UECi using Equation (2);

3. Update the score of every entry in the cache using Equation (1);

4. if cache hit on one of the VMs then

5 update both content and score of the in-cache UECi with those of this newly arrived UECi;

6 return;

7. else cache miss

8. write UECi to the cloud storage;

9. select a VM using Round-Robin algorithm;

10. if the VM has cache space then

11. insert UECi in VM’s cache;

12. return;

13. else no cache space, compare UEC scores

14. if score of UECi greater than the min. score

15. evict from the cache the first lowest E entries whose sum of scores is just lower than

score of UECi;

16. write the evicted E UEC’s to cloud storage;

17. else UECi score lower than the min. score

18. evict minimum-scored UEC from cache;

19. write the evicted UEC to cloud storage;

20. insert UECi in VM’s cache;

21. return;

8

2.2 EXD Scoring Function

The core of the cache management algorithm is the EXD scoring function. The

function is used to keep most requested UECs in a cache and to keep less frequently

requested UECs out of the cache. The EXD scoring function pair is listed below.

 𝑆i(ui1 +△ u) = 𝑆i(ui1) ∗ e−a△u (1)

 𝑆i(ui1 +△ u) = 𝑆i(ui1) ∗ e−a△u + 1 (2)

In EXD, each UEC’s score is determined by the time between requests. For both

equations, 𝑆i(𝑢) represents the score of UECi at time u. Equation 1 is used to reduce the

score of UECs currently in the cache that are not requested while Equation 2 is used to

calculate the score of a requested UEC. Note that the amount of reduction from Equation

1 is determined by e−a△u where △u is the time elapsed since a UECi is last requested at

time ui1. The longer the △u, the higher the score reduction. The effectiveness of the △u is

determined by the value ‘a’. A small ‘a’ mean the exponent term has little effect on

𝑆i(ui1), and vice versa. Equation 2 shares the same term, but the additional constant 1

term allows a UEC to have a higher score if it is frequently requested. The overall effect

is the most requested UECs get higher scores while the least requested UECs get lower

scores.

9

2.3 EXD Scoring Function with AHP

The EXD scoring function is modified to take the user SLA level into account. The

motive behind this modification is to increase the hit rate of UECs with higher SLAs

while preventing UECs with lower SLAs from getting higher scores. There are 4 SLA

levels in this project; they are L1, L2, L3, and L4 where L1 is the best SLA level. The

first step of this process is to set up a matrix as shown in Table 1. Each row in the matrix

represents importance of a certain SLA level compare to other levels. For example, L1 is

5 times more important than L2, and L3 is 5 times less important than L1; the value

chosen is arbitrary. Once the matrix is created, the weight vector can be calculated with

the following steps:

1. Convert fractions to decimals

2. Square the result matrix

3. Sum up the rows of the matrix and get a vector

4. Normalize the result vector by dividing it with the sum of all elements in the

matrix

5. Repeat steps 2 to 4 until the result no longer changes from the previous iteration

[7]

10

The result on step 5 is represented by the far-right column of Table 1. Each element of

this vector represents the weight of the individual SLA level. These values are used to

modify the existing EXD scoring function. The modification is shown in Equation 3

where WAHP is the individual SLA level calculated by AHP and is appended to the end of

Equation 1. We also come up with Equation 4 where the constant 1 in Equation 2 is

replaced by WAHP.

Table 1. AHP Matrix

 L1 L2 L3 L4 Weight

𝑊𝐴𝐻𝑃

L1 1 5/1 5/1 5/1 0.579

L2 1/5 1 5/1 5/1 0.281

L3 1/5 1/5 1 5/1 0.102

L4 1/5 1/5 1/5 1 0.043

𝑆i(ui1 +△ u) = 𝑆i(ui1) ∗ e−a△u + 1 + 𝑊𝐴𝐻𝑃 (3)

𝑆i(ui1 +△ u) = 𝑆i(ui1) ∗ e−a△u + 𝑊𝐴𝐻𝑃 (4)

11

2.4 Experiment Setup for the Cache Management Algorithm

CloudSim [15] is used for the experiment. 1 host and 4 VMs are created to simulate a

BBU pool in a CRAN. In the experiment, 84,000 requests are sent to the host. The

percentage of the SLA level within those requests are 52 percent for L1, 26 percent for

L2, 13 percent for L3, and the rest are L4. The time between the request is modeled by

equation -ln(u)/λ where u is a value between 0 and 1 and λ is the number of requests per

second. In our experiment, λ is set to 1,400 requests per second. The detailed experiment

parameters are shown in Table 2.

Table 2. Experiment Parameter Values

Parameter Value

No. of VM 4

VM cache size 1,250MB, 2,500MB, 3,750MB, and 5,000MB

λ, mean UEC arrival rate 1,400 UEC/second

UEC record size 200 KB

No. of distinct users 25,000

QoS levels L1, L2, L3, and L4

𝑊𝐴𝐻𝑃 L1: 0.58; L2: 0.28; L3: 0.10; L4: 0.04.

QoS traffic distribution L1: 52%; L2: 26%; L3: 13%; L4:9%

EXD Parameter a 10-3

Total simulation time 5 minutes

Four types of weight functions are used during the experiment. The LFU scoring function

is used as a baseline comparison for the proposed scoring functions.

12

Table 3: Simulated Algorithms

Acronyms Cache Management

Algorithms

UEC Scoring

LFU Least Frequently Used UEC request frequency

EXD [5] Based on Exponential Delay Equations (2) and (1)

EXD-AHP+1

(newly proposed)

Enhancing EXD with AHP Equations (3) and (1)

EXD-AHP

(newly proposed)

Enhancing EXD with AHP Equations (4) and (1)

2.5 Result - Cloud Writes and Network Traffic

This section evaluates the 4 scoring functions with respect to the number of cloud

writes and the amount of network traffic where the network traffic is calculated using

Equation 5 (Note that 200 kilobytes is converted to bits first). Figure 4 to Figure 7 show

the results with cache sizes of 1,250 MB, 2,500 MB, 3,750MB, and 5,000 MB.

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 =
𝑇𝑜𝑡𝑎𝑙 𝑊𝑟𝑖𝑡𝑒𝑠 ∗ 200 ∗ 8 ∗ 1000

𝑆𝑖𝑚𝑢𝑙a𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
 (5)

Each figure shows that of the proposed scoring functions, EXD-AHP, can achieve the

smallest number of cloud writes and network traffic. In Figure 4, the network traffic for

13

EXD-AHP is about 250 Mbps less than that of LFU. In Figure 5, the saving for the same

comparison is about 70 Mbps. The saving for the subsequent figures are 20 Mbps and 10

Mbps respectively. From this result, it is clear as cache size increases, the amount of

network traffic reduced by EXD-AHP becomes less significant. This is because the larger

the cache size, more UECs can be kept in the cache. The result is a higher hit rate and

less network traffic.

Figure 4: Total writes & network traffic, cache size 1250 MB

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

320000

330000

340000

350000

360000

370000

380000

390000

400000

LFU EXD EXD-AHP+1 EXD-AHP

Tr
af

fi
c

(M
b

p
s)

W
ri

te
s

Total writes and network traffic

14

Figure 5: Total writes and network traffic, cache size of 2500 MB

 Figure 6: Total writes and network traffic, cache size of 3750 MB

850

860

870

880

890

900

910

920

930

940

950

160000

162000

164000

166000

168000

170000

172000

174000

176000

178000

LFU EXD EXD-AHP+1 EXD-AHP

Tr
af

fi
c

(M
b

p
s)

W
ri

te
s

Total writes and network traffic

520

530

540

550

560

570

580

590

98000

100000

102000

104000

106000

108000

110000

112000

LFU EXD EXD-AHP+1 EXD-AHP

Tr
af

fi
c

(M
b

p
s)

W
ri

te
s

Total writes and network traffic

15

Figure 7: Total writes & network traffic, cache size 5000 MB

2.6 Result – Cache Hit Rates for Various Service Levels

This section shows how well the 4 scoring functions provide different levels of support

for different service levels (L1, L2, L3, and L4) in terms of cache hit rates. The cache hit

rate for each level is defined in Equation 6.

𝐿𝑖 𝐶𝑎𝑐ℎ𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝐿𝑖 𝑈𝐸𝐶 𝑐𝑎𝑐ℎ𝑒 ℎ𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝐿𝑖 𝑈𝐸𝐶 𝑎𝑟r𝑖𝑣𝑎𝑙𝑠
 (6)

285

290

295

300

305

310

54000

54500

55000

55500

56000

56500

57000

57500

58000

58500

LFU EXD EXD-AHP+1 EXD-AHP

Tr
af

fi
c

(M
b

p
s)

W
ri

te
s

Total writes and network traffic

16

Figures 8 to 11 show the hit rates for cache sizes of 1,250 MB, 2,500 MB, 3,750 MB and

5,000 MB respectively. When the cache size is very small only L1 receives a good hit rate

as shown in Figure 8. This is due to the small cache size. Once the cache size starts to

increase, the hit rates of the various service levels start to show up.

While Figure 10 and Figure 11 show clear distinction between the L1 and L2 hit rates

for each scoring function, there is no clear distinction for the L3 and L4 hit rates except for

EXD-AHP. In some cases, the hit rate for L4 is higher than that of L3. However, EXD-

AHP shows the clear distinction between the 2 service levels

Figure 8: Hit rates of different service levels with cache size of 1250 MB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LFU EXD EXD-AHP+1 EXD-AHP

L1 L2 L3 L4

17

Figure 9: Hit rates of different service levels with cache size of 2500 MB

Figure 10: Hit rates of different service levels with cache size of 3750 MB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LFU EXD EXD-AHP+1 EXD-AHP

L1 L2 L3 L4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LFU EXD EXD-AHP+1 EXD-AHP

L1 L2 L3 L4

18

Figure 11: Hit rates of different service levels with cache size of 5000 MB

3. Load Balancing

Since user requests are processed by VMs in a BBU pool, a load balancing scheme is

required to reduce queue size and total service time. Total service time is defined as the

total time a UEC spent in a VM. This includes the time the UEC needs to wait before

being processed plus the UEC processing time. There are many different UE events in 5G

as shown in Table 4. Note that each event has its own relative CPU load and arrival rate.

The total events arrival rate is 1,400 events per second.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LFU EXD EXD-AHP+1 EXD-AHP

L1 L2 L3 L4

19

Table 4. 5G UE events break down

UE Events Event arrival rate

Events/eNB/second

Relative CPU

Load

UE state transitions 750 1.00

Handovers 100 0.82

Tracking area updates

(TAU)

30 1.24

Paging 500 0.26

Attach/detach 25 2.31

Actual Event Total 1400

3.1 Load Balancing Algorithms

Eight load balancing algorithms are tested. Table 5 shows the description of each load

balancing algorithm. The algorithms are listed in ascending order of the computation

complexity.

Table 5. Eight LB Algorithms for CRAN

Acronym Algorithm Description

Five Basic LB Algorithms

 (listed in ascending order of complexity)

RR Round-robin Round-robin of VM assignment.

RND Random Random VM assignment.

CPU Based on CPU

load

Assign to VM with min. cumulative CPU load.

Squeue Based on shortest

queue size

Assign to VM with shortest queue length.

20

Swait Based on shortest

waiting time

Assign to VM with shortest waiting time.

Three Additional LB Algorithms

(listed in ascending order of complexity)

Ded Dedicated 3 types of events with high occurrence (UE State

transition, Handovers, Paging) each has own dedicated

VM; all others share one VM.

Access Based on min.

number of UEC

accesses

Assign to VM with min. number of UEC accesses.

QCPU Based on queued

time at CPU

Split all event types into 4 categories according their

relative CPU load. The highest CPU load category will

be assigned to VM with the shortest waiting time.

3.2 Experiment Setup for the Load Balancing Algorithms

CloudSim [15] is again used for the experiment. 1 host and 4 VMs are created to

simulate a BBU pool in a CRAN. In the experiment, 84,000 requests are sent to the host.

The events arrival rate is 1,400 events per second with type distribution according to

Table 4.

Table 6. Experiment Parameter Values

Parameter Value

No. of VM 4

VM cache size 2,500MB

UEC record size 200 KB

UEC arrival process Poisson

λ, mean UEC arrival rate 1,400 UEC/second

Total no. of distinct users 25,000

Total simulation time 5 minutes

21

3.3 Result

Figure 12 and Figure 13 are probability density functions for the queue size and total

service time for the VMs in the simulation. The figures demonstrate that the CPU,

Access, Qcpu, and Ded load balancing algorithms have much higher occurrence for

longer queue size and longer total service time. Squeue and Swait, on the other hand, seem to

have much better results.

Figure 12. Probability Density Function (PDF) of Queue Size

22

Figure 13. Probability Density Function (PDF) of Total Service Time

Table 7 and 8 show the average and standard deviation of the queue size and the total

service time for the simulated algorithms. We can tell that Squeue and Swait have good

performance compared to other algorithms. While both have similar performance, Squeue

is less expensive than Swait. Thus, Squeue is the preferable algorithm for VM load

balancing.

23

Table 7. Average and standard deviation of queue size for each UEC

 RR Rnd CPU Squeue Swait Ded Access Qcpu

Avg 21.192 24.387 34.970 18.995 18.990 36.245 33.495 31.801

StDev 1.007 1.119 3.022 0.5321 0.5545 0.888 2 . 12 2 1.9065

Table 8. Average and standard deviation of total service time

 RR Rnd CPU Squeue Swait Ded Access Qcpu

Avg 1.163 1.366 1.913 0.920 0.894 2.103 1.862 1.759

StDev 0.221 0.309 0.482 0.153 0.149 0.420 0.480 0.316

Figure 14 and Figure 15 are cumulative density functions for the queue size and the total

service times for the VMs in the simulation. It is clear Squeue and Swait have the best result

since it has almost 0 chance that a VM will encounter a queue size of more than 100.

Furthermore, the maximum wait time for both algorithms is much shorter compare to

other algorithms

24

Figure 14. Cumulative Density Function (CDF) of Queue Size vs Occurrence

Figure 15. Cumulative Density Function (CDF) of Total Service Time vs Occurrence

25

Finally, box plots of the queue length and total service time of these 5 load balancing

algorithms are shown in Figure 16 and Figure 17. It is clear Squeue and Swait both have

better performance as they have the smallest maximum queue size and total service time.

Figure 16. Box plot of queue size

26

Figure 17. Box plot of total service time

4. Conclusion

The experiment concludes that EXD-AHP can achieve the lowest number of

writebacks which translates to the higher hit rate. However, the number of reduced

writebacks compared to the rest of the scoring functions is only significant if the cache

size is small. Furthermore, EXD-AHP provides the capability of giving mobile users with

a high SLA level better cache performance. For load balancing, Squeue and Swait load

balancing algorithms can reduce request time. The is supported by the fact they have the

lowest occurrence of high queue size and have the lowest minimum service time.

27

Furthermore, Squeue is the preferable algorithm due to it being less expensive compared to

Swait.

5. References

[1] Checko, Aleksandra, Henrik L. Christiansen, Ying Yan, Lara Scolari, Georgios

Kardaras, Michael S. Berger, and Lars Dittmann. "Cloud RAN for mobile

networks—A technology overview." IEEE Communications surveys & tutorials

17.1 (2015): 405-426.

[2] Watanabe, Kimio, and Mamoru Machida. "Outdoor LTE Infrastructure

Equipment (eNodeB)." FUJITSU Sci. Tech. J 48.1 (2012): 27-32.

[3] Liu, Liang, Feng Yang, Richard Wang, Zhenning Shi, Alan Stidwell, and Daqing

Gu. "Analysis of handover performance improvement in cloud-RAN

architecture."

[4] Communications and Networking in China (CHINACOM), 2012 7th International

ICST Conference on. IEEE, 2012.

[5] Floratou, Avrilia, Nimrod Megiddo, Navneet Potti, Fatma Özcan, Uday Kale, and

Jan Schmitz-Hermes. "Adaptive Caching in Big SQL using the HDFS Cache."

Proceedings of the Seventh ACM Symposium on Cloud Computing. ACM, 2016.

[6] R. Saaty, “The analytic hierarchy process—what it is and how it is used,”

Mathematical Modelling, vol. 9, no. 3–5, pp. 161 – 176, 1987.

[7] Podlipnig, Stefan, and Laszlo Böszörmenyi. "A survey of web cache replacement

strategies." ACM Computing Surveys (CSUR) 35.4 (2003): 374-398.

[8] Gomes, Andre, Torsten Braun, and Edmundo Monteiro. "Enhanced caching

strategies at the edge of lte mobile networks." IFIP Networking Conference (IFIP

Networking) and Workshops, 2016. IEEE, 2016.

[9] Pablo Muñoz; Raquel Barco; José María Ruiz-Avilés; Isabel de la Bandera;

Alejandro Aguilar, “Fuzzy Rule-Based Reinforcement Learning for Load

Balancing Techniques in Enterprise LTE Femtocells”, IEEE Transactions on

Vehicular Technology, pp. 1962–1973, vol. 62, 2013.

[10] Hisham Elshaer; Federico Boccardi; Mischa Dohler; Ralf Irmer, “Load & Backhaul

Aware Decoupled Downlink/Uplink Access in 5G Systems”, IEEE International

Conference on Communications (ICC), pp. 5380–5385, 2015.

[11] B. Shahriari and M. Moh, “Generic Online Learning for Partial Visible Dynamic

Environment with Delayed Feedback - Online Learning for 5G C-RAN Load-

Balancer,” Proc. of the International Conference on High Performance Computing

and Simulation (HPCS), Genoa, Italy, July 2017.

28

[12] Koushika, A. M., and S. Thamarai Selvi. "Load Balancing Using Software Defined

Networking in cloud environment." 2014 International Conference on Recent

Trends in Information Technology (ICRTIT), IEEE, 2014.

[13] Zhang, Hailong, and Xiao Guo. "SDN-based load balancing strategy for server

cluster." 2014 IEEE 3rd International Conference on Cloud Computing and

Intelligence Systems (CCIS), 2014.

[14] S. Sathyanarayana and M. Moh, Joint Route-Server Load Balancing in Software

Defined Networks using Ant Colony Optimization, Proceedings of the

International Conference on High Performance Computing and Simulation

(HPCS), Innsbruck, Austria, July 2016.

[15] Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and

Rajkumar Buyya. "CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms."

Software: Practice and experience 41.1 (2011): 23-50.

	Cache Management and Load Balancing for 5G Cloud Radio Access Networks
	Recommended Citation

	tmp.1513724637.pdf.df451

