
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

A Secured Cloud System based on Log Analysis A Secured Cloud System based on Log Analysis

Sindhusha Doddapaneni
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Doddapaneni, Sindhusha, "A Secured Cloud System based on Log Analysis" (2015). Master's Projects.
560.
DOI: https://doi.org/10.31979/etd.qgq2-2cpa
https://scholarworks.sjsu.edu/etd_projects/560

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/560?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A Secured Cloud System based on Log Analysis

A Writing Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Sindhusha Doddapaneni

DECEMBER 2015

© 2015

 Sindhusha Doddapaneni

 ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

A Secured Cloud System based on Log Analysis

 By

Sindhusha Doddapaneni

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

 DECEMBER 2015

Dr. Melody Moh (Department of Computer Science)

 Dr. Teng Moh (Department of Computer Science)

 Mr. John Cribbs (Senior Director @ FICO)

ABSTRACT

Now-a-days, enterprises’ acceptance over the Cloud is increasing but businesses

are now finding issues related to security. Everyday, users store a large amount of

data in the Cloud and user input may be malicious. Therefore, security has become

the critical feature in the applications stored in the Cloud. Though there are many

existing systems which provide us different encryption algorithms and security

methods, there is still a possibility of attacks to applications and increasing data

modifications. The idea behind this project is to find attacks and protect the

applications stored in the Cloud using log analysis. The proposed solution detects

the SQL injection attack, which is supposed to be the most critical security risk of

vulnerable applications. The goal of this research is to detect the SQL injection

attacks for an application stored in the Cloud by analyzing the logs. To achieve this,

the proposed system automates the intrusion detection process for an application by

performing log analysis. Log Analysis is performed by combining the

implementation of two different methodologies called learn and detect

methodology and pattern recognition system. The accuracy of SQL injections

detected on log data is dependent on the order in which these two methodologies

are applied. The outcome after applying these two methodologies results in

information which helps a security analyst to understand and know the root cause

of every attack that is detected on an application.

ACKNOWLEDGEMENTS

I would like to express sincere gratitude to my advisor Dr. Melody Moh for her

guidance and support throughout the research process. I am very thankful to her for

giving me an opportunity to work on the project in a field of my personal interest.

A very special thanks to my committee member Dr. Teng Moh for his suggestions

and valuable time to monitor the progress of the project very closely. I would also

like to thank my other committee member Mr. John Cribbs for his time and support.

Furthermore, thanks to my family and friends for the encouragement given in every

step of the way throughout my master’s project.

TABLE OF CONTENTS

1. Introduction………………………………………………………………………..1

1.1 Introduction to Cloud Security………………………………………………...1

1.2 Problem Description…………………………………………………………...2

2. Background………………………………………………………………………..4

2.1 Research Work………………………………………………………………...4

2.2 Used technologies……………………………………………………………..6

3. Design……………………………………………………………………………14

3.1 Proposed Solution……………………………………………………………14

3.2 System Architecture………………………………………………………….15

4. Implementation…………………………………………………………………..17

4.1 System Implementation summary……………………………………………17

4.2 Client side implementation…………………………………………………...17

4.2.1 Web UI Implementation……………………………………………...17

4.2.2 Log4j configuration…………………………………………………..18

4.2.3 Amazon EC2 deployment……………………………………………20

4.3 Database implementation…………………………………………………….21

4.4 Log analysis using BayesNet Classifier………………………………………22

4.4.1 Data Collection……………………………………………………….22

4.4.2 Data Pre-Processing………………………………………………….23

4.4.3 Cross Validation……………………………………………………..25

4.4.4 Data Classification…………………………………………………...25

4.5 Log analysis using Pattern Recognition System……………………………...26

4.5.1 Logstash, Elasticsearch, Kibana setup………………………………..26

4.5.2 Data Analysis and Data Visualization………………………………..27

5. Experiment and Results…………………………………………………………..30

5.1 The experiment data………………………………………………………….30

5.2 BayesNet Classifier using Weka……………………………………………..30

5.2.1 Execution steps……………………………………………………….30

5.2.2 Results………………………………………………………………..32

5.3 Pattern Matching System……………………………………………………..33

5.3.1 Execution steps……………………………………………………….33

5.3.2 Results………………………………………………………………..34

5.4 BayesNet Classifier to Pattern Matching System…………………………….34

5.4.1 Execution steps……………………………………………………….34

5.4.2 Results………………………………………………………………..35

5.5 Pattern matching System to BayesNet Classifier…………………………….37

5.5.1 Execution steps……………………………………………………….37

5.5.2 Results………………………………………………………………..38

6. Evaluation………………………………………………………………………..39

7. Conclusion and Future Work……………………………………………………..41

LIST OF FIGURES

Figure 1: Steps for Supervised Learning Technique

Figure 2: Architecture of a Secured Cloud System

Figure 3: Path specified for log files on the Linux instance

Figure 4: Sample list of stop words

Figure 5: Logstash Configuration File

Figure 6: Sample log file in ARFF format

Figure 7: Results of Test set

Figure 8: Elasticsearch web user interface

Figure 9: A tile map showing the locations of all IP address who performed activity on

cloud application

Figure 10: BayesNet to Pattern Matching System Result

Figure 11: A dashboard demonstrating the count of dataset and visualizations of top URLs

and IP addresses of all the web application users.

Figure 12: Pie chart illustrating the top IP address of SQL injection attack with top most

used URL’s and a pie chart showing the log level of the instances

Figure 13: A tile map showing the locations of all IP addresses performed SQL injection

attack on cloud application

Figure 14: Zoomed version of IP address locations which performed SQL injection attacks

Figure 15: Pattern Matching System to BayesNet Result

LIST OF ACRONYMS

IaaS: Infrastructure as a Service

PaaS: Platform as a Service

SaaS: Software as a Service

API: Application Programming Interface

SQL: Structured Query Language

IPLoM: Iterative Partitioning Log Mining

Amazon EC2: Amazon Elastic Cloud Compute

Amazon S3: Amazon Simple Storage Service

Amazon RDS: Amazon Relational Database Service

Amazon SQS: Amazon Simple Queue Service

Weka: Waikato Environment for Knowledge Analysis

ARFF: Attribute Relation File Format

1

CHAPTER 1

 INTRODUCTION

1.1 Introduction to Cloud Security

In recent years, the Cloud has become a buzzword in enterprises because of availability,

scalability, and economic business objectives. A primary issue with the Cloud is

security. Cloud service providers don’t uniformly guarantee security. There are security

concerns which are divided into two categories, namely security issues faced by Cloud

service providers (provides Cloud services such as Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), Software as a Service (SaaS)) and security issues faced

by customers (individuals or any organizations may deploy their applications and store

data on the Cloud [10]).

These days, applications hosted on a Cloud are prone to attacks and some of the security

issues are due to unauthorized access, server hacking, etc.

The main security issues are [10]:

Data Breaches: This means some other person has gained access to the data of the

authorized user. Unauthorized logins are possible in the applications hosted on the

Cloud.

Data Loss: Third-party servers store data in the Cloud and give access to the customers.

Therefore, the data can be lost due to damage or server hacking.

Account Hijacking: The Cloud provides online accounts to users where data can be

accessed. In such cases, some of the accounts are compromised by any hacker and the

confidential data will be at risk.

Insecure API’s: Application Programming Interface (API) is used to call and manage

Cloud data. Malicious data transfer is possible in this type of issue.

Denial of Service: In this attack, the authorized user is blocked from getting services

like data access, etc.

2

1.2 Problem Description

Enterprises now-a-days generate a huge amount of data each day. The automatic

increase in data is possible when enterprises start recruiting people every day when

new software is built and during software deployment on the Cloud. Such kind of data

contains confidential and interesting information in high volumes, which must be

secured. Day-by-day major security attacks make news every day, so we need to take

steps to address the main cause of the attacks. In existing systems, there are different

encryption algorithms and security methods to protect data retrieved from applications,

but there is still a chance of attacks to applications and incremental data modifications.

Since there is an easy access to applications stored in the Cloud, they are easily prone

to vulnerabilities. The attackers can easily perform illegal activities in a web

application, which leads to data loss and data modifications.

The most commonly seen attack that performs illegal activities on Cloud applications

is an SQL injection attack.

SQL injection attack is seen in most web applications where the attacker fills in the

Structured Query language code as an input in order to gain access or make changes to

a database [12]. Based on the main agenda of the attack, attackers can inject a variety

of methods of SQL injections to web application input forms. An example of SQL

injection attack is unauthorized access to applications. Unauthorized access can be

achieved by using the tautology class in SQL injection. The SQL statement is modified

in a way that whatever password is given, login is possible for the attackers. Here is

the SQL query to retrieve data from a database:

select * from table where username=’user’ and password=’pass’

If the input of the user is ‘OR 1=1’—‘malicious statement, then it is injected into the

above non-malicious SQL statement. After the injection, where the clause statement

each time is true because of the tautology 1=1 is used, the attacker can login to the

application.

3

To protect data from such attacks, there are many log analysis mechanisms which are

used to find the main cause of an attack, but no one used live detection solution for

protecting an application from such attacks. Manual log analysis is not possible because

the amount of data generated is huge and this also involves more cost and time. A

secured system is required to perform real-time log analysis, which helps security

analyst for further investigation.

This paper is explained as follows: Chapter 2 gives a review of related research work;

Chapter 3 gives the system design; Chapter 4 explains the implementation details and

also the discussion about the comparisons of Kibana and BayesNet classifier methods;

Chapter 5 explains the relevant work done for experiment and results of the

experiments done using the proposed system; Chapter 6 compares the two detection

models and also gives reasons for results obtained using the combination of two

detection models; Chapter 7 gives the conclusion and the future work related to the

project.

4

CHAPTER 2

BACKGROUND

2.1 Research Work

This research work is on issues related to the security of data present in the Cloud.

As the sensitive information and data are shared with the third-party providers,

Cloud users try to avoid an untrusted Cloud provider. Protecting sensitive and

confidential information from attackers is of major importance. To supplement this,

my research work is focused on how to detect security attacks for the applications

stored in a Cloud system. One of the attacks that is difficult to detect and easy to

inject is an SQL injection attack. Currently, there are many systems built for

detecting and preventing SQL injection attacks. The most common approaches

available for detecting SQL injection attacks are parsing techniques, machine

learning techniques, and pattern matching techniques.

Everyone spends most of their time on understanding and parsing the logs. This

research paper provides a concept of computing the similarity score between the

logged events and a collection of important events [9]. This paper explains how to

calculate the similarity values in order to reduce the count of the log. It will also

describe the stated log modeling and preprocessing, the evaluation of event

similarity approaches and log filtering, and various caching algorithms. As a future

work, we are considering implementing feature reduction techniques to improve

performance and enhance the results, as well as the improvement of clustering or

pattern matching techniques, which take inter-event relationships into

consideration.

To understand the log data formats I have gone through, this research paper

outlines different types of data, different approches to converting log data into

5

semantic format, log formats used for different operating systems, and log

conversion tools [17]. Authors referenced in this paper suggested some semantic

technologies which perform meaningful log analysis.

The existing systems should be able to handle large volumes of data for intrusion

detection. In this research paper, the proposed design handles large volumes of data

and also processes high-volume data using Hadoop, Map-reduce and Cloud

computing concepts [11]. Once data is collected, it’s then analysed to determine if

any malicious attacks are present. The main focus of this paper is to improve

intrusion detection system scalability and throughput in order to perform log

analysis.

Additionally, if there is a high volume of log data, then the system demands new

frameworks and techniques of computing. A research paper that captured my

attention proposes a lightweight distributed log analysis framework that allows

organizations to analyze a high number of logs [15]. This framework makes use of

dynamic task scheduling to stream log data. Moreover, the distributed log analysis

framework used Amazon web services to develop analysis applications which help

in calculating security event occurrences.

Most organizations face challenges in correlating different sources of data and

extracting meaningful information from that data. One research paper proposes a

system with multi-core SAL architecture and also addresses the challenges by using

various K-means-based correlation algorithms, clustering algorithms such as

ROCK and QROCK algorithms and integrated into multicore SAL architecture [4].

To understand the content on log data, another research paper proposes an

algorithm called IPLoM Iterative Partitioning Log Mining, which performs

message-type extraction from log files [13]. Message types are a semantic grouping

of system log messages. This paper states that IPLoM is a three-step hierarchical

6

process which partitions logs into groups of event log messages, and discovers the

message-type description for each partition. Once message types are determined,

these not only provide groupings for categorizing and summarizing log data, but

also provide help in visualization. This methodology is useful for log analysis even

though the log consists of other fields.

This research paper describes the different web application vulnerabilities which

are very easy to take advantage of and difficult to detect in Cloud applications [8].

This paper proposes a system where an algorithm called Boyer Moore String

Matching algorithm is used on user inputs, which in turn helps to detect the security

attacks and produces a report regarding detection of attacks.

Besides the conference papers, I have also performed some background work to

know more about the ways to detect security attacks. This research work explains

the steps on how to collect the data, and how to extract meaningful information

from the logs using Log parsing concepts. This research provides us a better

understanding of log analysis. Furthermore, I also went through some of the

websites which describe how to secure the Cloud using data analytics. This

provides a better understanding of the disadvantages of traditional analytics and

also compares the two different techniques: traditional analytics and big data

analytics.

My research work on security attack detection methods for the application stored

in the Cloud has given me an ample amount of information to move forward with

the research in a similar field. Based on the research, the proposed system detects

SQL injection attacks by performing real-time log analysis of streaming data, which

is discussed in the next sections.

2.2 Used Tools/Technologies

Apache Log4j

7

Log4j is a Java framework used for logging [6]. It demonstrates the logging process

in terms of log level priorities and offers methods to direct the log information to

different places like a database, file, console, UNIX sys log, etc. It supports multiple

log levels such as DEBUG, ERROR, INFO, WARN, and FATAL.

Log4j has three main components [6]:

a) Loggers: Loggers are responsible for capturing logging information.

b) Appenders: Appenders are responsible for forwarding logging information

to various places such as a console, file, and database, etc. There are

different types of Appenders based on the destination specified, such as

Console Appender, File Appender, and Flume Appender. File Appender is

the most commonly used appender in web applications to write the log

information to a file, and this is achieved by using

org.apache.log4j.FileAppender. Logging can be done in multiple files when

a file size reaches a particular size limit, then RollingFileAppender is used.

c) Layouts: Layouts are responsible for formatting the logging information

supported by Log4j. Various layout objects are provided by log4j which can

format logging information according to the layout subclass selected. There

are different types of subclasses for layouts such as Date Layout, Pattern

Layout, HTML layout, Simple Layout, and XML Layout.

Amazon Web Services

This is a set of services offered by Amazon called Web Services. Across the world,

these services are based on 11 geographical regions. Amazon Web Services provide

IT resources to people when on demand with pay-as-you-go service [20]. Amazon

Web Services offer a set of compute, storage, database, application, and

deployment services.

8

Amazon EC2: Within Amazon Web Services, computing services provides the set

of instances which can automatically scale up and down to meet the needs of an

application. One of the services is Amazon EC2. The Amazon EC2 web service

provides users with both growable computing capacity in the Cloud and also gives

users different tools to build fault-tolerant applications. The Amazon EC2 web

service allows users to create instances where there is a possibility of scalable

deployment of applications. With respect to payments for active servers, a user can

construct, launch, and stop the instances.

Benefits of Amazon EC2 [20]:

Scalable Computing: The Amazon EC2 web service has a web service API which

allows users to increase or decrease the capacity within minutes.

In Complete Control: Users have complete control over instances and can interact

with them. Users can stop an instance and can subsequently restart the same

instance using a web service API.

Flexible Service: This allows users to select the configuration of memory, choice

of operating system, CPU, and storage for instances and software packages.

Interaction with other web services: To have a mix of different services like

computing, query processing, and storage in an application, Amazon EC2 works

with Amazon S3, Amazon RDS, Amazon Simple DB, Amazon SQS services.

Inexpensive: Amazon allows you to pay a very low rate on usage capacity.

Additionally, it has a usage-based payment service where the user pays on demand

without any further committed payments.

Secure: Amazon EC2 service users can decide which instances should be on the

internet and which instances should remain private.

Weka

Weka is an open-source software implemented in Java programming language to

discover interesting information on large datasets [18]. It provides a set of machine

9

learning algorithms to apply on different datasets in order to perform data mining

tasks. Furthermore, these different algorithms can be implemented on the datasets

directly or by calling our own Java code. Weka only accepts datasets which have

ARFF and CSV file formats. Weka provides tools for pre-processing, classifying

data, association rules, regression, clustering data, and visualization.

ARFF: Attribute Relation File Format file was developed at the University of

Waikato for use with Weka software. ARFF [19] file is a text file which consists of

a list of instances sharing a list of attributes. ARFF file format consists of two

sections: header section and data section. The header section consists of relation

name and a set of attributes with their datatypes. Here, datatype can be of four types:

numeric, nominal-specification, string, and date formatted "yyyy-MM-

dd'T'HH:mm:ss”. The data section of ARFF file format consists of a data

declaration line and an instance line. Here, each instance is represented on a single

line. The delimiters for the attributes in instances are separated by commas and

should be in the order of the attributes declared in the header section.

ARFF file format example:

10

Supervised Learning

Supervised Learning is a type of machine learning task which takes the known input

dataset, aiming to build a predictor model which gives the prediction to the new

dataset [3].

Supervised learning is performed in two steps:

Learning: Learn a model using a training dataset.

Testing: Test the model using the new dataset in order to test the accuracy of a

model.

Accuracy = Number of correctly classified instances/Total number of test data

instances

There are many machine learning algorithms that are available, each with their

own strengths and weaknesses. In machine learning, there is no single algorithm

that works best for the supervised learning algorithms.

Figure 1: Steps for Supervised Learning Technique

11

BayesianNet Classifier

The problem arising in using a Naïve-Bayes classifier is its assumption of treating

all attributes as strongly independent (i.e. probabilistic independence) of each other

[2]. This assumption of being conditionally independent of each other seems

unrealistic, as it cannot be applied in situations where correlation exists between

these attributes and unwarranted data needs to be ignored to improve performance.

Therefore, in order to tackle this problem of efficiently and effectively representing

and manipulating the independence assertions, Bayesian Networks are supportive

and improves performance.

Bayesian Networks are directed acyclic graphs that represent joint probability

distribution over a set of random variables U={x1, x2,…….,xn}, where n>=1 in a

problem domain [5]. Each variable lies at every vertex in the graph and the edges

form the correlations between these random variables. The conditional

independence between these variables is stated in a way that every variable is

independent of its non-descendants, considering already the state of their parent

variables.

Assumptions:

The buildClassifier checks if the dataset, on which the BayesNet algorithms are

implemented in Weka, fulfills the following assumptions [1]:

1. Discrete and Random feature should be present in all the variables. If continuous

variables are present in the dataset, then to discretize them; Discretize filter is used.

2. None of the instances present in the dataset should have missing values. If

missing values are present, ReplaceMissingValues filter should be used to fill the

missing values.

12

Logstash

Logstash is a data pipelining tool which connects to a variety of sources with the

help of plugins, and it streams data to an analytics system [24]. Logstash receives

different types of logs: system logs, web server logs, error logs, and application

logs. Today’s enterprises have crucial data which is distributed in different formats

among different systems. Logstash helps users parse data into one common format

before storing into an analytics data store. Additionally, Logstash provides a way

to parse custom format logs by providing custom logic to it.

Elasticsearch

Elasticsearch is an open-source search and data analysis software which gives users

a deep insight on stream data [24]. The tool provides a scalability feature by

allowing users to add new nodes which make the cluster easy to add new hardware.

By default, Elasticsearch clusters are resilient; they will detect both new and failed

nodes, and automatically reorganize data to ensure the data is safe. Once a cluster

is set up, Elasticsearch provides the search and analysis feature by building a

distributed environment on the top of Apache Lucene, which is used for full-text

searching. Moreover, Elasticsearch is a document-oriented software where all the

entities are structured JSON documents and all fields are indexed by default to

easily get complex results at high speed. When a JSON document is indexed,

Elasticsearch automatically detects the data types and makes the data search easy.

Finally, Elasticsearch provides data safety by logging the information whenever

there is a document change.

Apache Lucene

Apache Lucene is an open-source Java-based text search engine library [19].

Apache Lucene permits users to write their customized queries through its query

API, which helps users to search Geo IP locations, perform multilingual searches,

13

etc. Furthermore, Lucene provides different types of searches, like term and phrase

search, and allows users to group keywords for detailed text searching.

Kibana

Kibana is an open-source data visualization interface for a real-time summary and

charting of stream data [24]. This tool also provides users with different

visualizations which can be combined into custom dashboards. Kibana helps users

understand large volumes of datasets by providing different visualization tools like

bar charts, pie charts, line diagrams, and geographical maps. Additionally, this

increases the power of Elasticsearch to analyze data, to perform mathematical

calculations, and to break the data into pieces for further analysis. Visualizations

can be done from various sources that pushed data into Elasticsearch from

Logstash, Hadoop, Apache flume, and many others. Also, Kibana has sharing

options: an export feature to download interesting bits of raw data from custom

dashboards, and a link to share data online.

14

CHAPTER 3

DESIGN

This chapter describes the proposed solution and its architecture. Also, it explains

the modules of the system built.

3.1 Proposed Solution

The proposed system performs real-time log analysis for streaming data in order to

protect an application from SQL injection attacks. Log analysis is a security

mechanism which helps us find out the root cause of the attacks, how an intruder

attacked an application, and what steps that intruder performed in order to attack

an application. To achieve this, first, a Cloud application was created to get input

from users. Second, logs were collected from Cloud application activities using a

Java framework called Log4j framework. Finally, log analysis was performed using

two different models: learn and detect methodology and Pattern Matching system.

In Learn and detect methodology, BayesNet classifier is used to classify the logs as

Malicious or Non-Malicious logs. Based on the classification, the analyst can

further investigate the particular user activity. In a Pattern matching system, real-

time log analysis is performed for streaming data. Here, a dashboard is created for

the security analyst to know the root cause of security attack. The proposed model

considers two different methodologies in parallel for log analysis; it also considers

the order of two different methodologies applied on logs matters while considering

the SQL injection detection accuracy.

3.2 System Architecture

15

Figure 2: Proposed System Architecture

Below is the description for modules present in the proposed architecture:

Web User Interface module: The web application was created in Java and deployed

on Amazon EC2. This is the user interface where users can perform different

activities on the web application.

Log Generation module: This is a second module where logs were generated using

Log4j framework from the Cloud application and were stored on an Linux EC2

instance.

Analysis module: This is the third module in this project, where the log stash was

used to collect logs present in the log file and send it to Elasticsearch tool. The log

file was converted to the ARFF file format and sent to Weka tool for data analysis.

Results module: The final module has both individual results and combined results

to have a better understanding of SQL injection detection causes. In the individual

16

detection results, Elasticsearch and Logstash performed data parsing using filters

and sent logs to Kibana for visualization and dashboard creation. Machine learning

BayesNet results were displayed using BayesNet classifier. Apart from this, in

combined results, the results depended on the order of applying these

methodologies on log files.

17

CHAPTER 4

IMPLEMENTATION

This chapter describes the various modules across which this project was developed. It

explains the detailed steps about the implementation and development of a secured

Cloud system. This contains the overview of technology, a step-by-step procedure of

various installations, and a description of some important code.

4.1 System Implementation summary

This summary section will describe the in-depth details of various functionalities

implemented across the modules:

1. Client side implementation

 Web Client UI Implementation

 Log4j configuration

 Deployment on Amazon EC2

2. Database Implementation

3. Log analysis using Weka

4. Log analysis using Pattern Matching system

Each section of the implementation section explains the important functionality of

every module, its characteristics, and screenshots of the code in detail.

4.2 Client-side implementation

4.2.1 Web Client UI implementation

In this module implementation, a social networking website was created for

employees in a team. Information sharing is a key to success for effective

communication in a team and this information may be confidential. The users

of the web application were the admin and authorized employees. First, the

admin authorized the employees who should have access to the web

application. Second, only authorized employees could register into the web

18

application with the details given by the admin for authorization such as

employeeid, firstname, lastname. Third, once an employee logged in to the

website, they could create a post with the content related to the company,

comment on previous posts created, and delete posts created previously. I

used Java, Bootstrap, HTML, CSS, and JavaScript to build this web

application.

4.2.2 Log4j configuration

Log4j is a logging framework written in Java. Log4j comprises of three

components: Loggers, appenders, and Layouts, as discussed in Chapter 2. In

this project, log4j was used to log employee activities into the web

application. The workflow of logging for this project is to first initiate a

logger and send some text statements with the appropriate log levels to it.

Before proceeding further, logger first checks the configuration file and sees

if it has to print this log level or ignore it. Second, the logger checks which

appenders are associated with them and redirects this logging statement to

each appender. Last, when appenders receive logging statements, they check

the configuration file about the layout format, and based on the specified

format, the logging statement is printed in the specified appender.

Step1: Download and Add Log4j jar file in the project

In order to add the logging functionality to the project using Log4j, download

the Log4j jar file and unzip it in a folder. In Eclipse, right-click the project

and select Properties. In Properties, select Java Build Path > Libraries Tab >

Add Jars > browse jars > add log4j-1.2.17.jar

Step2: Add logging functionality in a Java class

For the simple Java class, first add a log4j import statement in the class

definition:

19

Second, create the variable for logger and initiate it with the reference to the

root-level logger. Add the below statement outside the main method, but in

class definition only:

Last, initiate the logging statements using a variable called logger variable.

Here, logging levels like WARN, INFO, ERROR, DEBUG and FATAL are

considered and used according to the logging statement:

Step3: Add Log4j Properties file

There are two ways to configure log4j: use the properties file of log4j or

configuration in XML format. For this project, the log4j properties file is

used for configuration. To initiate the configuration, first place the log4j

properties file in the src folder of the web application. The same properties

file can be used for any Java class which has the logging capabilities.

Here is the Log4j.properties file for this project:

20

In the above properties file, the first line describes the setup of the log level

of the logger to DEBUG and after the comma in the same line, it tells the

logger the name of the appender called LOGWEB, or whatever it’s named.

In the second line, this configures the specified appender name and sets it to

RollingFileAppender which is used to print log statements in a file. Also, the

path is specified to access the logging file used for logging statement. Besides

logging the statements, another important functionality is formatting and to

achieve this, the code adds the layout to the configuration file. Once all the

steps are followed, all employee activities are logged each time an event is

performed on the website.

4.2.3 Deployment on Amazon EC2

Steps to follow for deploying web application:

Step 1: Launch Amazon EC2 instance

A micro-single Amazon EC2 instance is created. While launching an

instance, there are two mandatory things: choosing a security group and a

key pair to enable a Linux instance through SSH. Before trying to connect to

an instance from any Linux instance, we also need to get the public DNS

name of the instance using the Amazon EC2 console.

Step 2: Export project from Eclipse IDE

To export an entire project as a war file by following these steps:

Select File > Export > War Export

Step 3: File transfer through WinSCP

Download WinSCP and create a new session to connect to the Amazon EC2

server. To create a session, we need to include the hostname, username, and

password, and in the advanced section of the session, add private key pair

file. Once a user logs in to the WinSCP, the exported war file is transferred

from a local system to remote server ‘/home/ec2-user’.

21

Step 4: Putty for Linux instance

Putty is used to connect to our Linux instance for deploying the project war

file. For the instance connection, the user needs to create a session by

inserting information in specified fields like hostname and port number, and

the user also needs to upload SSH authentication private .ppk file. Here, the

username for session login is ec2-user. Once the session login is successful,

download tomcat7 and configure it in the Linux instance. Finally, to deploy

the web application, copy the war file from ‘/home/ec2-user’ path, which has

been copied previously to the tomcat server path

‘/usr/share/tomcat7/webapps’.

Whenever employees perform some activity on the Cloud application, each

event is logged in a log file mentioned in the log4j properties file, and placed

on ‘/usr/share/tomcat7/logs’ path on the Linux instance

Figure 3: Path specified for log files on the Linux instance

To check whether the deployment is successful or not, go to

‘/usr/share/tomcat7/logs’ and check the log file with the logging statements.

4.3 Database Implementation

The database is implemented on MYSQL. MYSQL is an open-source

database system which runs on the server and used on web applications. The

data in this database is stored in the form of tables. In this project, the

22

database was used to store the personal details and activities of employees.

The detailed steps for connecting the database from the Cloud application are

given below:

Step 1: Download MYSQL workbench GUI for the users to create a database

and perform MYSQL queries on the top of a database.

Step 2: Open Linux instance and download MYSQL on the top of it.

Step 3: Create a MYSQL connection to connect to a remote server by

providing details such as SSH hostname, name of the SSH user to connect to

remote server, and SSH key file (i.e. .pem file); also, specify the MYSQL

local instance information such as hostname, port number (which is, by

default, 3306), and password for the MYSQL database. The database has five

tables: adminlogin, authorizedemp, empcomment, empinfo, and emppost.

4.4 Log analysis using Weka

4.4.1 Data Collection

In Classification, the user provides a set of data which is logged from the

Cloud application, and uses a part of it to train the classifier model and then

predict the result of the remaining data. The dataset used for learning is called

the trained dataset. Using the learning algorithm, a model is learned from the

training data, a set of test data used to evaluate and assess the model accuracy.

Supervised Learning is the task of learning a classification model using the

known dataset that can be used to classify new. In detail, to train the model,

each instance is provided with a labeled class which is helpful in predicting

the correct class for unclassified future datasets. In this project, we consider

classing a YES or NO. Here, YES is considered a malicious instance and NO

a regular instance.

Below is the sample data with the class labels as YES or NO:

23

As the log file is large, data cleaning should be done to the log file so that it

can be easily loadable in Weka for further processing.

4.4.2 Data Pre-processing

There are three steps for data pre-processing in Weka:

a. Converting a Text file to ARFF file format

Before loading the data into Weka, convert the log file format from txt file to

ARFF file format. ARFF file format consists of two sections: header section

and data section. The header section consists of relation name and a set of

attributes with their datatypes. In addition to ARFF data file format, WEKA

also has the capability of reading the .csv format.

Filter attributes and Feature Selection

We can choose the filters from a filter panel in Weka. In this project, String

to work vector filter is used. Once the filter is applied, the immediate results

can be stored as a separate data file and it treats each step as a separate

session. Each session can, in turn, save as an ARFF file using the Save button.

In data pre-processing, feature selection is very important in improving the

accuracy. To achieve better accuracy, select features which are meaningful

for classification and useful for further predictions on testing data.

b. Methods for improving accuracy

24

This section mainly focuses on selecting the features and also various

methods for improving accuracy.

Method1: Removing Unnecessary features

Removing unnecessary features reduces space and also improves the

classifier accuracy. To achieve this, we should select features which help

further classification. In this project, timestamp and session id feature are not

helpful and, therefore, are removed from the feature list.

Method2: Stop word list

Stop words are a set of most commonly-used single-words in a language.

General examples of stop words are: ‘the’, ‘a’, ‘an’, and ‘above’. Accuracy

can be improved by adding a custom stop word list. Comments in this file

are ignored.

Figure 4: Sample list of stop words

To set the custom stop word list, first choose the filter for filtering the

attributes and any filter that provides you with the option of a stop word list.

filters.unsupervised.attribute.StringToWordVector is the filter used in this

project to provide you with the custom stop word list option, and to load the

25

external stop word file. The custom stop word list file format is to have one

stop word per line. For this project, a custom stop word list is created with

words list like ‘and’, ‘or’, ‘from’ etc.

4.4.3 Cross Validation

Cross Validation is a technique used to evaluate an algorithm by performing

the different splits of the data; the results are averaged over the each split

result. A five-fold cross-validation was used for this project. With five-fold

cross validation, the entire dataset is divided to make four pieces for training

and one piece for testing. The different data segments are taken to perform

five-fold cross validation using the same method. Once cross validation is

finished, for the sixth time, Weka runs the algorithm on the entire dataset and

produces a classifier. Weka, by default, uses stratified cross validation (i.e.

when the initial division into five parts is performed on the dataset); each

class should have the correct amount of each of the class values.

4.4.4 Data Classification

Once the data pre-processing is performed, we select a classify tab where a

machine learning algorithm is selected. In this project, BayesNet algorithm

was used for data classification. A select dataset was used for training in

order to build a model in Weka. The result produces the time that was taken

to build the model, correctly classified and incorrectly classified instances,

and detailed accuracy by class and confusion matrix.

Here, the confusion matrix tells how good the model is working with regards

to correctly and incorrectly classified instances. Below is the description

about confusion matrix:

26

For future predictions, we save the build classification model. In order to

validate the classification model, we consider the test set, use the saved

model to run test set, and assess the accuracy. To perform this, we have to

load the test set that was not present in the training set we used to create a

model. Then, with the help of the created model, the test set is checked and

gives us the details about the performance of the model. Finally, we compare

the correctly classified instances in the test set with those in the training set,

to see the accuracy of the model. In regards to the gained accuracy, we can

decide that this model can be applied for future predictions on unknown or

future data.

4.5 Log analysis using Pattern matching system

4.5.4 Logstash, Elasticsearch and Kibana setup

To set up a pattern-matching system, the following steps are performed:

Step1: Installation

Download Logstash, Elasticsearch and Kibana from the appropriate website

links, and install on the Linux instance created in the previous section [22].

Step2: Configure Logstash and store logs in Elasticsearch

The below configuration file is placed in ‘/etc/logstash/config’ folder. This

file has three sections: input section, filter section, and output section. In the

first section of the file, the log file of the incoming path is specified. The

second section of the file is used for the configuration of the filter. Before

forwarding the logs to Elasticsearch for storing, Logstash performs parsing

of logs using a Grok filter. The below Grok filter takes the logs related to IP

address, URI, user, and information, and considers them as separate columns;

any remaining data is placed as a single column in Elasticsearch.

27

Figure 5: Logstash Configuration File

Logstash has a geoip file called GeoLiteCity.dat for detecting the locations

of client IP addresses. The third section of the file is for output

configuration, which defines the location where the filtered logs get stored

in Elasticsearch.

Step3: Configure Kibana

To use Kibana, configure at least one index pattern where we have to map

Logstash index. Select timestamp field and it will redirect to Kibana main

page.

4.5.5 Data Analysis and Visualization

Kibana is an analytics and visualization tool that builds on the top of

Elasticsearch to have a better insight of data. In this project, we used Kibana

4 to filter and visualize data. When we first connect to Kibana 4, a discover

tab is shown with the logs that we recently received. However, based on a

search query written in search tab, we can filter this stream logs and also

restrict this search for the specific time by using Time filters. In this project,

28

we used Lucene query language for pattern recognition. To achieve this, two

Lucene queries were written to detect the SQL injection logs and non-SQL

injection logs.

Here is the Lucene query for detecting SQL injection attacks:

The query syntax is self-evident and allows wildcards, boolean operators, and

other group and field filtering to match the patterns.

 Here is the Lucene query for filtering non-SQL injection attacks:

These two queries are saved for further use and can be opened at any time by

clicking the loaded save search. Also, the saved searches are used when

creating visualizations and dashboards.

Kibana Visualize page : The Kibana Visualize page allows users to create,

edit, and share visualizations. Below are the types of visualizations created for

this project:

i. A data table visualization provides a detailed breakdown of SQL

injection and non SQL injection logs.

ii. The pie charts display the top-most IP addresses that perform SQL

injection attack with its top most URLs.

iii. The title map visualizations detect the locations of malicious users of

the web applications. Furthermore, a zoomed version of locations is

implemented for further analysis.

29

iv. The vertical bar charts show the time frames of the log event

occurrences.

 Kibana Dashboard

With a dashboard, multiple visualizations created are combined onto a single

page, and these can be further filtered with the help of saved Lucene queries.

 To create a dashboard, follow these steps:

a. Add multiple saved visualizations on a blank dashboard.

b. Rearrange the visualizations based on SQL injection and non-

SQL injection categories.

c. Save the dashboard for new, incoming data.

 Kibana Export

To obtain the export option, a dashboard with visualizations is created to help

security analysts download raw data for doing further investigations.

30

CHAPTER 5

EXPERIMENT AND RESULTS

The experiment chapter describes the details of the dataset used in the project. It explains

the steps used to execute a secured Cloud system.

5.1 The experiment data

The dataset was made up of web application logs generated using the log4j

framework. The total number of logs used for the experiment is 10,000. The data

file is in both .txt and ARFF formats. The log files contain these fields: timestamp,

log level, IP address, session id, URL, username, and message. All of the data was

cleaned and filtered according to the requirements in the data pre-processing stage.

5.2 BayesNet Classifier using Weka

To experiment on the log analysis using BayesNet Classifier, an open-source tool

called Weka was used. This tool has in-built algorithms to train a model using a

training set, and it also predicts the accuracy of test data.

5.2.1 Execution steps

Step 1:

The Weka tool uses ARFF file format to process and analyze data. To achieve

this, convert the text file format into ARFF format, add @ symbol to header

section and data attribute section separately, and use a comma as the delimiter

for the data. The training set input file is formatted and converted .to arff format.

Training set details

31

Figure 6: Sample log file in ARFF format

Step 2:

The training set consists of 2,000 log instances. Once the training set is loaded,

in the feature selection, tasks in the pre-processing tab are applied to increase the

classification performance. To improve the classification accuracy, we remove

the features which are not considered important such as timestamp and session

id. Select StringtoWord vector filter to convert string attributes into a set of

attributes that represent the occurrences of words from text present in the strings.

Upload the stop world list file in Weka to improve accuracy.

Step 3:

Now it’s time to choose a machine learning algorithm and make predictions. In

this project, a BayesNet model is created using training set, fivefold cross

validation, string to word vector filter and custom stop word list. The trained

model is saved to the local system.

 1 2 3 4 5

Detection 78.4% 78.5% 79% 78.6% 79.5%

 Figure: BayesNet Cross Validation Result

32

Mean detection rate: 78.80% and Standard deviation: 0.91%

Step 4

Now, the saved trained model is used on the test data to give classification for

unclassified instances.

Test set details

5.2.2 Results

Test Set Result Obtained

Figure 7: Results of Test set

True

Positive(YES)

False

Positive(YES)

True

Negative(NO)

False

Negative(NO)

2251 561 7132 56

Accuracy obtained for BayesNet Classifier using Weka for the given data set

Percentage of correctly classified total instances = 93.83%

33

Percentage of correctly classified SQL instances = 80.05%

5.3 Pattern Matching System

To perform log analysis using pattern matching system for logs, we used three tools:

Logstash for data collection, Elasticsearch for search and analysis, and Kibana for

data visualization.

5.3.1 Execution steps

Step 1: Place the path of the log file in Logstash configuration file to get the stream

data from the Cloud. This Logstash configuration file provides data parsing on the

dataset before sending it to Elasticsearch.

Step 2: Check whether a log file is stored in Elasticsearch or not by opening the

Elasticsearch data store in the Elasticsearch web browser.

Figure 8: Elasticsearch web user interface

Step 3: Open the Kibana web browser by providing the URL of the server. Before

navigating to the main page of Kibana, select timestamp to create the index. After

selecting the index, the discover page in Kibana is displayed with the timestamp of

the most recent log file added.

Step 4: Open the visualize tab in Kibana, then create different visualizations by using

the loaded query written to detect SQL injection attacks.

34

Step 5: Count of the number of SQL injections shown using the data table

visualization filter, with the help of the SQL injection detection saved query search.

Step 6: Create a tile map visualization to detect the locations of malicious users and

authorized users. To achieve this, select the geo IP address field and geo hash

aggregation while creating a visualization.

Step 7: Create a pie chart type of visualization to detect the top-most malicious IP

address with most commonly used URLs.

Step 8: Create a dashboard with the saved visualizations and rearrange them

according to the requirements.

5.3.2 Results

Accuracy obtained for Pattern matching System for the given data set

Percentage of correctly classified instances: 85.3%

Figure 9: A tile map showing the locations of all IP address who performed

activity on cloud application

5.4 BayesNet Classifier to Pattern matching system

This methodology is demonstrated by using the BayesNet output and sending it to

the Pattern matching system as an input for further detection; this improves

accuracy better than with the individual detection results.

5.4.1 Execution steps

35

 Step 1: Download BayesNet result from Weka tool.

 Step 2: Use the following UNIX scripts to convert the BayesNet output file into

the format supported by Kibana:

UNIX script used to replace commas with tabs

UNIX script used to delete header part of a file

Step 3: As output files don’t have the timestamp feature, we infer timestamp as

current loading timestamp for loading the output file.

5.4.2 Results

Figure 10: BayesNet to Pattern Matching System Result

36

 Figure 11: A dashboard demonstrating the count of dataset and visualizations of top

URLs and IP addresses of all the web application users.

Figure 12: Pie chart illustrating the top IP address of SQL injection attack with top most

used URL’s and a pie chart showing the log level of the instances

Figure 13: A tile map showing the locations of all IP addresses which performed SQL

injection attack on a Cloud application

37

Figure 14: Zoomed version of IP address locations which performed SQL injection

attacks.

5.5 Pattern matching system to BayesNet Classifier

This methodology is demonstrated by using the Kibana non-detected logs and

sending it to the BayesNet as an input for further detection, which improves

accuracy better than with the individual detection results.

 5.5.1 Execution steps

Step 1: Create a visualization in Kibana which illustrates all the logs that are apart

from SQL injection attacks.

Step 2: Kibana provides the export option to share or download raw data from the

selected visualization. Here, we exported a CSV file from the created visualization.

Step 3: Use this UNIX script to add the class field to the CSV file.

Step 4: Use this UNIX script to convert CSV to ARFF file format.

Step 5: Pre-process the data by removing the extra fields.

38

5.52 Results

Figure 15: Pattern Matching System to BayesNet Result

39

CHAPTER 6

EVALUATION

This chapter describes comparisons between BayesNet (Machine Learning) and Kibana

detection methodology. Furthermore, it describes why the accuracy increases when the

analysis is performed with the combination of detection models.

Comparison between BayesNet (Machine Learning) and Kibana

BayesNet (Machine Learning) Kibana

1. BayesNet is a learn-and-detect

model.

1. This uses the Pattern Matching

technique.

2. Data loading is performed manually

by converting the txt or CSV file to

ARFF file format.

2. Accepts live data streams and

demonstrates live detection of SQL

injections.

3. Training the model is required for

future predictions on new data.

3. Training is not required for future

predictions.

4. Manual classification of logs is

performed for the training set. It takes

time to pre-process data.

4. Manual classification is not

performed on logs.

5. Queries are not required. 5. Lucene queries can be used to

analyze the data.

6. Uses BayesNet classifier only and

secured 80.05% (SQL injection logs)

accuracy.

6. Uses Kibana only and secured 86%

accuracy.

Reasons regarding SQL injections not detected in BayesNet and are detected by Kibana

40

i. There are some attributes such as log level and username used in SQL injection

instances that may also contain regular instances in the training set. Based on this

scenario, BayesNet classifier might not have detected SQL injection in some

cases because this classifier reviews relations regardless of individual attributes.

ii. BayesNet could not detect some log instances because of new SQL injection

patterns which are not contained in the training set. Also, these new SQL injection

attack logs also contain other attributes, and these attributes belong to the regular

logs in the training set. In this situation, Bayesnet classifier classifies this type of

log as regular logs.

Example: drop table tablename

In the above example, ‘drop’ and ‘table’ fare requently used words that can be

used in regular sentences, but the combination of these two regular words can be

used to detect the SQL injection attack using Kibana query.

iii. BayesNet classifier could not detect some logs with the content of a large number

of words belonging to the regular logs category. This is because BayesNet

classifies the logs based on the probability of all the words present in a given log.

Reasons regarding SQL injections not detected in Kibana and are detected by

BayesNet

i. Some of the logs not detected by Kibana contain special characters such as

#, <,>, <=, >= in the username field. But BayesNet classifier also uses other

attributes for classification and these logs are detected by BayesNet.

ii. In our logs, some of the SQL injection patterns only contain individual SQL

keywords rather than combination. Kibana cannot identify such patterns

because we used the grouping concept in the query to retrieve meaning

information.

41

CHAPTER 7

CONCLUSION AND FUTURE WORK

The main objective to provide security from SQL Injection attacks has thus been

established. With numerous data flowing in everyday, it has become very important to

focus on detecting SQL injection attacks that cause severe security problems on any web

application hosted on the Cloud. The system was designed in such a way that it can expose

the possible SQL injection attacks that an application is prone to. The implementation

involves storing and maintenance of thousands of logs for every operation a user does on

the application. On critical analysis of all these logs, it has always been a point to ensure

that data security is provided to multiple users accessing a Cloud-based application.

For that purpose, two SQL injection detection methodologies were executed and their

results have been evaluated to determine the root causes of the attacks. This information

was forwarded to the Security Analyst to initiate proper actions against the attackers and

resolve the problems accordingly. The two detection models, BayesNet classifier and

Pattern Matching System, were implemented separately and also together on the stored log

data. Results were compared and we concluded that, by applying these methodologies

together as a combination, we detected a higher percentage of SQL injected log data when

compared to applying them individually.

The accuracy percentage that resulted in detecting the SQL injection attacks on a Cloud-

based application is 95.4 percent, if the order of applying models is from BayesNet to

Pattern Matching. But if the models are applied vice-versa (from Pattern Matching to

BayesNet), then the accuracy is 94.7 percent. Hence, the system successfully detected the

SQL injection attacks on a Cloud application, ensuring an efficient way to provide end-to-

end security.

42

Future Work

The goal to detect the SQL injection attacks on a Cloud-based application by analyzing the

log files has been achieved to keep it more secure. As an extension to the system designed,

further implementations will include analysis of large datasets and efficient evaluations of

their results. Additionally, the results can be enhanced by implementing other feature

extraction methodologies to achieve 100 percent accuracy in detecting the SQL injection

attacks. This will help in detecting the attacks and resolving them effectively.

43

LIST OF REFERENCES

[1] R.R. Bouckaert, (2004). “Bayesian network classifiers in weka,” Department of

Computer Science, University of Waikato.

[2] J. Cheng, & R. Greiner, (1999, July). “Comparing Bayesian network classifiers,” In

Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence (pp. 101-

108). Morgan Kaufmann Publishers Inc.

[3] G. Erik, (2014). “Introduction to Supervised Learning,” 1-2

[4] Feng Cheng, A. Azodi, D. Jaeger, C. Meinel, (2013). “Multi-Core Supported High

Performance Security Analytics,” Dependable, Autonomic and Secure Computing

(DASC), IEEE 11th International Conference.

[5] N.Friedman, D. Geiger, & M. Goldszmidt, (1997). “Bayesian network classifiers,”

Machine learning, 29(2-3), 131-163.

[6] C. Gülcü, & S. Stark, (2003). “The complete log4j manual,” QOS. ch.

[7] G. Holmes, A. Donkin, & I.H. Witten, (1994, December). “Weka: A machine learning

workbench,” In Intelligent Information Systems, 1994. Proceedings of the 1994 Second

Australian and New Zealand Conference on (pp. 357-361). IEEE.

[8] Hussein Alnabulsi, Md Rafiqul Islam, Quazi Mamun. (2014). “Detecting SQL Injection

Attacks Using SNORT IDS,” Computer Science and Engineering (APWC on CSE), Asia-

Pacific World Congress, IEEE.

[9] T. Kalamatianos, K. Kontogiannis, P. Matthews, (2012). “Domain Independent Event

Analysis for Log Data Reduction,” Computer Software and Applications Conference

(COMPSAC), IEEE.

[10] B.R. Kandukuri, V.R. Paturi, & A. Rakshit, (2009, September). “Cloud security

issues,” In Services Computing, 2009. SCC'09. IEEE International Conference on (pp. 517-

520). IEEE.

[11] M. Kumar, M. Hanumanthappa, (2013). “Scalable Intrusion Detection Systems Log

Analysis using Cloud Computing Infrastructure,” Computational Intelligence and

Computing Research (ICCIC), IEEE International Conference.

44

[12] P. Kumar, & R.K. Pateriya, (2012, July). “A Survey on SQL injection attacks,

detection and prevention techniques,” In Computing Communication & Networking

Technologies (ICCCNT), 2012 Third International Conference on (pp. 1-5). IEEE.

[13] A. Makanju, A. Zincir-Heywood, & E. Milios, (2012). “A Lightweight Algorithm for

Message Type Extraction in System Application Logs,” IEEE Transactions on Knowledge

and Data Engineering.

[14] S. Phaltane, A. Nahar, & N. Garge, “Scalable Logging Solutions on Cloud,”

[15] J. Smiy, Shu. Xiaokui , Yao.Danfeng , Heshan, Lin. (2013). “Massive distributed and

parallel log analysis for organizational security,” Globecom Workshops (GC Wkshps),

IEEE

[16] R. Vaarandi, & M. Pihelgas, (2014, October). “Using Security Logs for Collecting

and Reporting Technical Security Metrics,” In Military Communications Conference

(MILCOM), 2014 IEEE (pp. 294-299). IEEE.

[17] J.J. Wiley, F.P. Coyle, (2012). “Semantic Hedgehog for Log Analysis,” Internet

Technology And Secured Transactions, International Conference IEEE.

[18] I.H.Witten, & E. Frank, (2000). “Weka. Machine Learning Algorithms in Java,” 265-

320.

[19] “Apache Lucene Core,” Retrieved April 2, 2015.

[20] AWS “Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting,” Retrieved

March 5, 2015.

[21] “Data mining with weka, Part 2: Classification and Clustering,” Retrieved 24 March

2012, from http://www.ibm.com/developerworks/library/os-weka2/

[22] “How to Set Up the ELK Stack- Elasticsearch, Logstash and Kibana,” Retrieved 24

March 2015, from http://knowm.org/how-to-set-up-the-elk-stack-elasticsearch-logstash-

and-kibana/

[23] “Logstash grok,” Retrieved 2015, from http://logstash.net/docs/1.0.17/filters/grok

[24] “Powering Data Search, Log Analysis, Analytics Elastic,” Retrieved March 2, 2015.

http://www.ibm.com/developerworks/library/os-weka2/
http://knowm.org/how-to-set-up-the-elk-stack-elasticsearch-logstash-and-kibana/
http://knowm.org/how-to-set-up-the-elk-stack-elasticsearch-logstash-and-kibana/
http://logstash.net/docs/1.0.17/filters/grok

	A Secured Cloud System based on Log Analysis
	Recommended Citation

	tmp.1513725267.pdf.DQNjh

