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ABSTRACT 

Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid 

performance growth of general purpose processors naturally raise the interest in resource 

multiplexing. The concept of resource sharing and management between virtualized instances is 

not new and extensively used in data centers. We adopt some of the resource management 

techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior 

of the system in order to identify features which are particularly relevant to mobile environment. 

Subsequently, we introduce our own resource management algorithm specifically targeted to 

address some of the peculiarities identified by experimental results. 
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I. INTRODUCTION 

 The general trend in mobile devices usage shows persistent growth as the range of products 

that can make use of a cellular connectivity also increasing – phones, tablets, laptops, and 

vehicles. And now, the devices labeled as Internet of Things (IoT) are also getting introduced to 

the pool. This growing demand for connectivity requires service providers to react accordingly in 

order to accommodate not only coverage requirements, but also maintain a satisfactory Quality 

of Service (QoS); and for a service provider to stay competitive it has to invest into more sites. 

At the same time, various costs associated with deployment and operation of base stations (BS) 

are increasing each year; and the analysis of actual expenditures associated with a cellular site 

shows great spending not only in hardware, but also from utility and rental bills [16]. Another 

issue with a traditional cellular architecture worth noting is its rigidity which is due to hardware 

usually being vendor-locked. To some extent this constraint exacerbates any attempt to mix-and-

match the hardware and to upgrade or migrate to new standards and protocols [1]. 

 When we talk about increasing number of mobile devices and the architecture that provides 

connectivity we also have to consider the “mobility” aspect. There is a notion of a “tidal effect” 

which can be inferred if we look at one’s average weekday routine and then apply it to a 

population of any town or city [16]. An average person sleeps at night, gets up in the morning, 

commutes to the place of business, and then, towards the evening, goes back home. The 

researchers identified common trends for the residential, business, and entertainment areas 

drawing attention to the periods of prolonged time with the major energy waste when the cellular 

infrastructure is fully operational while having little demand. It should be stressed, a site 

providing connectivity must be operational 24/7, and the same requirement stands when a service 

provider increases the number of sites in the area in order to accommodate the growing number 

of users. There are various research papers which address the energy problem for areas with 

densely populated cellular sites during “off-peak” hours. The major potential challenge applying 

those algorithms is to deploy them in a heavily vendor-locked infrastructure. 

 Increasing cost associated with deploying, operating, maintaining and scaling cellular 

networks led the researchers to investigate and propose a new architecture shifting away from a 

traditional distributed paradigm and embrace centralization [16]. The main concept is to move as 

much processing from remote sites as possible leaving just key functionality required for radio 
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signal acquisition and broadcast. The proposed separation of functionality was applied on an 

evolved base station known as eNodeB from the Long-Term Evolution (LTE) communication 

standard, within which two main processing blocks were identified – Remote Radio Head (RRH) 

and Base Band Unit (BBU). 

 

Fig. 1. Modularization and separation of eNodeB functionality. 

 RRH is responsible for functions required to transmit and receive radio signal, and BBU 

performs baseband processing along with other functionalities associated with L1, L2, and L3 – 

layers from LTE protocol stack [1]. With the presence of a high-bandwidth low-latency link, 

such as fiber-optics communication, RRH and BBU can be distanced from each other by tens of 

kilometers without breaking stringent constraints specified by the LTE standard. Placing BBUs 

from multiple remote sites at a central location by itself reduces various costs and also enables 

migration from vendor-locked packages towards general purpose platforms (GPP) by 

implementing and running BBU in software. An ongoing research, implementation and 

evaluation of BBU realization in software shows that it is feasible to have BBU functionality 

hosted on GPP. Bhaumik et al. designed, implemented and tested their own framework based on 
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OpenAirInterface project which allowed them to run multiple BBU instances on GPP [15]. The 

investigation by Nikaein on performance outlined some of the processing requirements for GPP 

to host BBU within various non- and virtualized host environments such as Virtual Machine 

(KVM) and containers (Docker, LXC) [10]. Since running a BBU instance is very 

computationally demanding, to reduce performance hit on a host’s CPU, a split BBU architecture 

can be applied, which originally was designed to alleviate inter-BBU communication load for 

cooperative scheme based scenarios [5]. Furthermore, this split allows mixing and matching 

various hosting platforms optimized for various performance tasks, e.g. memory intensive, CPU 

intensive, etc., and consequently taking advantage of heterogeneity of platforms which might 

occur due to the progress in computing architectures. 

 Virtualizing a BBU and running its instance on a GPP at a centralized location allows for 

hardware resource multiplexing and additionally gives researchers the opportunity to investigate 

whether power saving techniques applicable in cloud data centers can be adopted to manage 

BBU pool resources in a more energy efficient manner. 

 In this paper we are adapting some energy-efficient resource management algorithms from 

data centers and apply them on a BBU pool. Along with them, we designed and implemented our 

own packing algorithms specifically targeted to be applied on a centralized mobile wireless 

architecture. Also, similar to the work done by Zou et al. and Lee et al., a few clustering 

algorithms are considered for the experiments in order to apply the same concepts for energy 

conservation in an RRH pool [13][14]. In our case, we will be looking at both – BBU and RRH 

pools – since in a centralized architecture they are separated but still interdependent. We 

developed a high-level behavioral simulator which allowed us to simulate and investigate the 

behavior of BBUs, RRHs and mobile users in a centralized architecture when we apply various 

clustering and packing techniques. From these simulations we attempt to draw some guidelines 

for a resource manager to follow in order to run an energy-efficient, yet performance-conscious 

system. 

 This paper format is: Section II covers the background, followed by Section III, where we 

discuss clustering and packing algorithms used in the experiments. The simulator 

implementation is discussed in Section IV. Section V and Section VI cover the input details and 
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simulation results respectively. And Section VII is a discussion and conclusion on acquired 

experimental results. 

II. RELATED WORK 

In a centralized cellular architecture there are two areas we are interested in for energy 

conservation – remote sites and BBU Pool. One of the ideas considered for manipulating energy 

consumption on remote sites is to monitor run-time load and change operational power state of 

individual towers provided sufficient density of sites serving the area. And for BBU Pool, 

various multiplexing and consolidation techniques on BBU instances can be applied assuming 

BBU implementation allows for virtualization. 

The concept of manipulating power state of running towers is applicable for both – 

centralized and traditional (decentralized) – cellular architectures, and some proposed schemes 

specifically target the latter in order to improve the energy efficiency within the existing 

infrastructure. Zou et al. propose a clustering algorithm to partition the area and monitor runtime 

load requirements in order to bring towers up or down, effectively keeping just enough 

operational towers to meet the demand [13]. The algorithm requires a full state view for all the 

sites involved and is specifically tailored for areas with a high volume of cellular sites which are 

underutilized during “off-peak” hours. A decentralized scheme is proposed by Lee et al. in their 

research where a message-passing algorithm is applied to solve the problem of identifying 

towers which can be switched to a dormant state [14]. Mobile devices are clustered around 

particular towers using a form of an affinity propagation algorithm, and then the towers that were 

found underutilized can be brought down. The results from experiments in a simulated 

environment allowed to draw an important conclusion that the aggregate power consumption for 

a multi-site area can be reduced when the activation of towers is demand-based. Along with the 

techniques which target underutilized sites, a concept to reduce the aggregate power 

consumption of densely placed towers during “peak” hours can be considered [5]. It requires a 

fine-grained tuning of a tower power output in order to provide just enough signal strength to 

cover smaller area of responsibility, this approach not only reduces inter-site interference, but 

potentially also improves energy efficiency. 

To optimize a BBU pool’s power consumption, consolidation techniques can be applied on 

virtualized BBUs to reduce the number of active hosts. We can borrow some insight on various 
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techniques and algorithms used in cloud data centers where resource managers (RM) pack virtual 

machines on hosts using criteria such as computational, storage, bandwidth and other 

requirements. It should be noted that the timing requirements for data centers and BBU Pool are 

very different and while the former can allow to have an interruption of service for a few 

seconds , time required to migrate a VM, the latter has more real-time characteristics and 

whatever operations required to consolidate virtualized BBUs are subject to a strict timing. 

When resource managers perform VM packing on hosts, they limit available resources which 

in turn can impair the performance of an individual VM if at some point it requires more 

resources due to some external stimulus. To accommodate fluctuations in resource demand, RM 

can take advantage of history- and pattern-based prediction methods and provision required 

resources more efficiently [7]. In conjunction with known bin-packing algorithms RM can 

consolidate VMs with fewer migrations and proactively meet the resource demand. Pompili et al. 

in their work also address packing within BBU Pool using history of data traffic and mobility 

where RM can make some assumptions about day-to-day usage patterns, perform location-based 

clustering, identify correlation between several areas and associated clusters, and pack them so 

cumulative resource usage would not exceed host’s resource cap, e.g. packing together clusters 

which exhibit opposite utilization trends [5]. VMs can also be clustered together based on inter-

VM traffic and subsequently consolidated on hosts using a bin-packing algorithm [8]. The main 

advantage of this approach is that it reduces inter-host bandwidth requirement and improves 

inter-VM bandwidth since VMs with an active cross-talk are more likely to be placed on the 

same host effectively reducing the hop count to zero. When BBU implementation is non-atomic, 

that is, there is a mechanism to initiate, preempt and control the input into a BBU instance, RM 

can map BBUs to hosts on-demand whenever the input or resources are available. Bhaumik et al. 

developed a framework that allows for resource pooling where BBU instances are mapped for 

processing using a cyclic scheduling algorithm whenever the input data frames become available 

[15]. This approach allows RM to enforce real-time characteristic of BBU instances by dropping 

any data frame that does not fit allotted time and prevent a schedule violation for consecutive 

time-slots in the queue. 
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III. CLUSTERING AND PACKING ALGORITHMS 

In this paper we are considering various power saving techniques and approaches adopted 

from data centers and derived from relevant research on centralized and decentralized cellular 

architectures. We use clustering algorithms to group closely related BBU instances, collect usage 

and mobility information for history- and pattern-based provisioning, and use several packing 

algorithms to consolidate virtual BBU instances on hosts in order to reduce active host count and 

improve energy efficiency within a BBU pool. 

A. Clustering 

Before we apply clustering on virtual BBUs (VBBU), we associate each RRH with a VBBU 

instance in a one-to-one mapping to form a virtual base station (VBS). Then we can cluster 

VBSs using different criteria, for example, based on RRH’s location [5]. The main advantage of 

such clustering is that it can facilitate inter-VBS management such as handover handling or 

coordinated multipoint (CoMP) operations [1][4][9]. Once the clusters are formed, we can treat 

them as VMs and map them on hosts. Another clustering criterion we consider is the mobility 

information where we take into account traffic intensity between RRHs. Also, during clustering, 

the bandwidth cap on host can be considered to avoid grouping VBS instances which during 

“peak” hours might cause bandwidth starvation, although, for the purpose of this discussion, we 

assume a host is capable to handle the aggregate bandwidth from all its VBS instances. 

Our default clustering algorithm is a variant of a greedy hierarchical clustering with a 

bounding condition being the inter-VBS distance restriction for all elements within the forming 

clusters. With some assumptions, such as the check at line 14, where the implementation can be 

optimized by employing some geometry, the complexity of this algorithm is O(n
2
), where n is 

the number of VBSs. We also make use of a grid structure which fetches neighboring VBSs 

much quicker instead of being forced to iterate through all VBS instances in order to check for 

proximity [13]. This grid structure is created during RRHs initialization and calculated only once. 

The grid breaks 2D area into cells to which we map enclosed RRHs. For a position of interest, 

we can acquire a corresponding cell and neighbors around it in a linear time and subsequently all 

of the associated RRHs. 
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Fig. 2. Hierarchical clustering algorithm 

Note: at line 4, we are getting all the neighbors around the position of curr_vbs, and that includes 

curr_vbs itself. 

We also added another clustering algorithm – affinity propagation (AP) [6]. There are a few 

advantages to this algorithm over our default clustering scheme: a) it’s a formal algorithm in 

contrast to our ad hoc default algorithm b) in a default AP implementation, the clusters are 

formed around actual points which we can safely designate as master nodes; c) to some extent 

we can modify clustering conditions in order to form clusters with specific properties, for 

example, we use the inter-RRH mobility information to gauge the intensity of users’ movements 

1. For each curr_vbs in VBSList 

2. |   If curr_vbs is clustered 

3. |   |   goto 1 

4. |   Get all VBS near curr_vbs’s position into NeighborVBSList 

5. |   Sort NeighborVBSList into NeighborVBSListSorted 

6. |   curr_cluster = null 

7. |   For each other_vbs in NeighborVBSListSorted 

8. |   |   If other_vbs is clustered 

9. |   |   |   If curr_cluster is null 

10. |   |   |   |   If curr_vbs fits criteria of other_vbs’s cluster 

11. |   |   |   |   |   Assign curr_vbs to other_vbs’s cluster 

12. |   |   |   |   |   curr_cluster = other_vbs’s cluster 

13. |   |   |   Else If other_vbs’s cluster NOT curr_cluster 

14. |   |   |   |   |   If two clusters can be merged 

15. |   |   |   |   |   |   Merge other_vbs’s cluster INTO curr_cluster 

16. |   |   Else 

17. |   |   |   If curr_cluster is null 

18. |   |   |   |   curr_cluster = new cluster 

19. |   |   |   If other_vbs fits criteria of curr_cluster 

20. |   |   |   |   Assign other_vbs to curr_cluster 

21. |   If curr_cluster is null 

22. |   |   curr_cluster = new cluster 

23. |   |   Assign curr_vbs to curr_cluster 

24. |   Mark all in curr_cluster as clustered 
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from site to site and use it as a weight during AP cluster formulation which potentially can 

maximize handovers within cluster. 

In order for our logical entities to have dynamic resource requirements we are grouping VBSs 

into cluster. We are making the same assumption regarding RRHs and assume that some RRHs 

can be put to sleep, while other RRHs in vicinity can be dynamically reconfigured to compensate 

the coverage in the affected areas [5][13][14],. So, when a particular tower is deactivated, in a 

centralized architecture, we can subsequently deactivate or otherwise reduce processing footprint 

inside BBU Pool, and if we have all VBSs clustered, the corresponding cluster’s resource 

requirements decrease correspondingly. We are also using history-based prediction to 

proactively allocate or release resources used by VBS clusters [5][7]. To resize a VBS cluster we 

check each VBS instance for the immediate resource demand along with its historical data, and 

when some predetermined threshold is passed, the algorithm activates or deactivates VBS, 

effectively changing the amount of resources required. 

B. Packing 

Once clusters are established we can pack them based on runtime conditions to target 

particular performance goals such as throughput and energy conservation. We evaluate five 

packing algorithms: 

1) Best Fit Host (BFH) algorithm which with the use of regression analysis packs VBS 

clusters on hosts and reduces the number of redundant migrations [7]. 

2) First-Fit (FF) packing algorithm which requires less steps than BFH [8]. And we also 

make use of regression analysis which improves packing and prevents overutilization on hosts. 

3) Mobility pattern (MP) based algorithm adopted from a packing concept discussed by 

Pompili et al. where the pattern is derived from usage history to identify pairs of clusters 

exhibiting reverse trends [5]. For example, a cluster for a residential area can be paired up with 

a cluster for a business area and if their usage pattern are reverse of each other they can be 

potentially packed on the same host effectively sharing resources and reducing further 

unnecessary migration. 

4) Location-aware (LA) packing algorithm is the one we introduce in this paper. By default 

we form clusters using location-based principle which has a positive impact on any inter-VBS 
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intensive task such as handovers. For the same reason, packing clusters together on the same 

host can improve the performance of VBSs’ operations. 

5) This is a modification of the location-aware packing, where we add into consideration the 

mobility factor between sites (LAM). We monitor and keep track of User Equipment (UE) 

movement and use history to measure the expected traffic intensity between cellular sites which 

translates into inter-cluster UE mobility, and we use it as a criterion (weights) to perform 

location-aware packing.   

6) This is a modification of the location-aware packing algorithms above where we also 

consider the history of inter-RRH handovers (LAMH). 
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Fig. 3. Location-aware packing algorithm (with mobility) 

Sorting on lines 7, 9, 16, and 18 can be done only once using available history. On lines 1 

through 13, we are attempting to fit clusters on any host that has enough resources and an 

instance of any neighboring cluster. The condition statements on lines 6 and 15 enable the 

algorithm to pick the most promising neighbor based on mobility information. If there are 

clusters that were not associated with any host due to neighbors’ hosts being packed or because 

1. Sort clusters by resources needed into ClustersSorted 

2. Reverse sort hosts by utilization into HostSortedReversed 

3. For curr_cluster in ClustersSorted 

4. |   If curr_cluster’s host overultilized 

5. |   |   Disassociate curr_cluster with its host 

6. |   If use mobility info 

7. |   |   Reverse sort neighbors’ hosts by mobility weights 

8. |   Else 

9. |   |   Reverse sort neighbors’ hosts by utilization 

10. |   For each neighbors’ host 

11. |   |   If current host is a fit 

12. |   |   |   Disassociate curr_cluster with its host 

13. |   |   |   Associate curr_cluster with current host 

14. For curr_cluster in DisassociatedClusters 

15. |   If use mobility info 

16. |   |   Reverse sort neighbors’ hosts by mobility weights 

17. |   Else 

18. |   |   Reverse sort neighbors hosts by utilization 

19. |   For each neighbors host 

20. |   |   If current host is a fit 

21. |   |   |   Associate curr_cluster with current host 

/*  Handle host overutilization */ 

22. If DisassociatedClusters not empty 

23. |   Do bin-packing on DisassociatedClusters 

/*  Attempt to free up underutilized hosts /* 

24. Sort hosts by utilization with new mapping into NewHostsSorted 

25. For curr_host in NewHostsSorted 

26. |   Sort clusters on curr_host by utilization 

27. |   For each cluster on host 

28. |   |   Do best fit packing 
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originally it belonged to an overutilized host, the algorithm tries to pack them again with the 

same location-based and/or mobility criteria. After that, if there are still clusters left without a 

host, we apply a bin-packing algorithm which also activates new hosts on demand (lines 22-23). 

This effectively allows to address detected overutilization. Lines 24-28 are there to pick any 

slack and attempt to free up any underutilized hosts by re-associating their clusters to other more 

heavily packed hosts that fit. Complexity breakdown of this algorithm with M representing the 

cluster count, and N – the host count,  is: 

• lines 3-13: O(MN) 

• lines 14-21: O(MN) 

• lines 22-23: O(M
2
) 

• lines 24-28: O(MN) 

The lines 22-23 of the algorithm are operating on a very small number of clusters, and the 

associated complexity has a very little effect on overall performance, so, for our proposed 

packing algorithm, we can assume the complexity to be of O(MN). 

C. Metrics 

Power 

In centralized cellular architecture we have eNodeB broken into two components – RRH and 

BBU.  An RRH has a smaller form factor than an eNodeB, requires less computational capacity, 

and, in some situations, can take advantage of a passive cooling altogether generating much 

smaller operational power footprint. A BBU, when moved to a centralized location such as a 

BBU pool, is most likely integrated into a centralized power and cooling infrastructure and we 

can only roughly estimate the impact it has on a BBU pool’s power consumption. The power 

budget in a data center involves interdependent power components and runtime power takes a 

non-linear form [12]. In this paper we are only looking at computational components of a data 

center, and since we are assuming that our BBU pool takes form of a data center with VBBUs 

being hosted on GPPs, we borrow a power model elaborated by data centers researchers [7][17]: 

Etotal = Ecomp + Emigr + Eswit                        (1) 

����� = ∑ 	�		�
��

)) 	�

�
���                      (2) 



12 

 

���� = 4 ∗	∑ 	�
�
���

��

���
                             (3) 

, where the total energy (1) is the sum of the computational energy (2), the energy required to 

migrate VBBU instances between hosts (3), and the energy required to bring up hosts from a 

dormant state. For (2), N stands for the number of servers in consideration and 		�
��

)) is the 

power consumption by i
th

 server with a utilization ui(t). In (3), Pm stands for unit migration power 

consumption, Cj – migrated/transferred data size, and BWj is the bandwidth used while migrating 

the j
th

 VM. Also, to simplify the power model, we are going to look at CPU utilization only and 

exclude any memory or storage power consumption from consideration. Ecomp is a sum of all 

individual hosts’ power consumption which we compute as functions of their corresponding 

CPU utilization. Emigr is the power consumed to perform all the migrations which involves 

accounting for the size of data transmitted and the bandwidth. Eswit can be considered to be a sum 

of constants, especially in the case when the computing systems used in the pool are 

homogeneous. 

Migrations 

To analyze packing algorithms’ performances we also look into the overall number of 

migrations. To move a VBBU instance time and resources are consumed, and, depending on the 

size of VBBUs and frequency they have to be migrated with, more load is added to the intra-

BBU pool network which can potentially introduce congestion and affect the quality of service. 

Handovers 

When mobile devices move between different areas of coverage within the cellular network, 

they have to undergo the process of transfer of their state from the tower they leave to the tower 

found in range. This process involves passing the corresponding UE context between towers, and 

in a centralized cellular architecture it can be facilitated if VBSs performing handovers are on the 

same host. On Figure 4, UE1 physically moves from the RRH1’s coverage area into the RRH2’s 

which causes the UE1’s context to be transferred between corresponding VBBUs, and since they 

are sharing the same host it is less costly time- and resource-wise compared to the handover 

shown for UE2. 
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Fig. 4. Intra-BBU pool UE context transfer in a handover process. 

IV. SIMULATION AND EXPERIMENTS SETUP 

To run the simulation several input files have to be provided some of which are mandatory. A 

configuration file allows to specify several runtime constants describing host resources, 

algorithms to use, logging flags, etc. We also have to provide the placement of towers in the area 

and UEs’ event file. In our simulator we have a functionality to generate a randomized set of 

UEs along with their bandwidth requirements and movement trajectories. This allows us to 

generate various UE sets following similar day-to-day pattern when we need to generate 

historical data for the prediction component. And to compare the algorithms in use, we generated 

and used the same set of UE events across multiple simulations. 

Before the simulation, we place RRHs matching actual major tower positions for Bay Area 

available on the FCC website and then we arrange them into groups using three clustering 

algorithms which allow us to investigate how clustering affects resource management. 
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TABLE I. Clustering algorithms used. 

 

TABLE II. Packing algorithms used. 

 

TABLE I and II list the clustering and packing algorithms used in the experiments with 

associated codes used in the graphs and the time complexity. For TABLE I, r stands for the 

number of towers we are clustering, and for TABLE II M and N represent the number of clusters 

and hosts respectively. 

  

Algorithm Name Code Complexity 

Best Fit Host [7] BFH O(MN) 

First Fit [8] FF O(M log M) 

Mobility Pattern [5] MP O(M log M) 

Location aware LA O(MN) 

Location aware with Mobility LAM O(MN) 

Location aware with mobility and handovers LAMH O(MN) 

 

Algorithm Name Code Complexity 

Hierarchical Clustering HIER O(r
2
) 

Affinity Propagation [6] AP O(r
2
) 

Affinity Propagation with Traffic APT O(r
2
) 
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V. SIMULATION RESULTS 

A. Clustering results 

Figure 5 shows the result of hierarchical clustering where the main criteria is the inter-RRH 

distance within clusters. The main purpose and advantage of this algorithm is the fact that all of 

the RRHs are equipotent and each can take up on a role of a master node, this, in turn, produces 

tighter clusters. 

 

Fig. 5. Hierarchical clustering applied on mapped out RRHs. 
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For the affinity propagation (AP) algorithm shown on Figure 6 we have a little bit lax distance 

constraint. In the default algorithm setup the clusters are formed around one of the points – 

exemplars, – and that resulted in a spatially bigger clusters, and consequently, fewer clusters 

overall. 

 

Fig. 6. Affinity propagation applied on mapped out RRHs. 
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Additionally, we customized the AP algorithm by introducing weights into cluster 

consideration which allowed us flexibly apply slack on point-to-point distance constraint and 

bias edges with higher UE mobility. On Figure 7 we can see how those features affect some of 

the clusters (marked by ovals on both figures for AP), where new edges were added because of 

the slack and/or weights. 

 

Fig. 7. Affinity propagation with traffic awareness applied on mapped out RRHs. 

Due to different grouping goals used in the hierarchical clustering and affinity propagation 

algorithms, the resulting RRH distribution over clusters shows a significant imbalance biasing 

towards small clusters in the former. From TABLE III we can see how drastically the 

distribution of RRHs varies when applying different algorithms. It should be noted that it is the 
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distance restriction in a hierarchical clustering and affinity propagation that contributes to this 

difference. We also see how the introduction of weights causes cluster count reduction in affinity 

propagation and reduces bias towards smaller clusters (1-RRH) even more. 

TABLE III. RRH count breakdown across clusters. 

 

All the simulations share the same set of UE events which provides a stimulus to RRH 

clusters. And since we are experimenting with three clustering algorithms we have three sets of 

clusters’ response. Every time a cluster resizes due to events from UEs, its resource utilization in 

the BBU-pool also gets affected subsequently inducing the resource manager to re-evaluate the 

resource requirements on corresponding host. The packing algorithms then re-arrange clusters on 

hosts to eliminate underprovisioning and to free the resources if re-packing allows for it. 

Figures 8-10 show clusters fluctuations due to a moderate stimulus from UE input. There are 

steep rise and drop near the beginning and the end of the simulation, but in general, local runtime 

maximums coming from UE events show mild variation causing flatter waveform. In TABLE III 

the hierarchical clustering algorithm shows bias towards smaller clusters compared to AP-type 

algorithms, and the corresponding waveform on Figure 8 shows a little bit more aggressive 

response to the input. 

These figures list “utilization” and “effective utilization” values which allow us to estimate 

the potential energy savings compared to a static use of RRH in the latter, and a static 

 Hierarchical 

clustering 

Affinity 

propagation 

Affinity propagation 

with traffic awareness 

Clusters 50 42 36 

1-RRH Clusters 17 13 5 

2-RRH Clusters 26 12 12 

3-RRH Clusters 7 15 15 

4-RRH Clusters 0 2 4 
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provisioning in the former, when the resource manager activates just enough RRHs to provide 

coverage for the predicted peak. The utilization percentages are based on area under the curve 

calculation. For example, the whole system has 90 RRHs installed, out of which approximately 

84% are used in general throughout the simulation when hierarchical clustering is applied 

(Figure.8). The simulation also showed at the peak only 79 RRHs are utilized, which is 

“effective” RRH count which the system needs to operate throughout the day, and “effective 

utilization” basically represents how much of those 79 RRHs were utilized during the simulation. 

So, “utilization” and “effective utilization” percentages shown on these figures are to represent 

the ratio of the area under the runtime curve to the areas under the maximum and runtime peak 

correspondingly. 

 

Fig. 8. Clusters fluctuation due to the hierarchical clustering. 
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Fig. 9. Clusters fluctuation due to the affinity propagation clustering. 

 

Fig. 10. Clusters fluctuation due to the affinity propagation with weights clustering. 



21 

 

From these figures we can draw a parallel with the experiments where the researches 

manipulate the clusters of cellular towers to conserve the energy [14][13]. Our experiments also 

show the promise to reduce power consumption if towers’ operating states can be manipulated 

without loss of coverage. For the given input we see about 80% of the RRH pool utilization 

which translates to roughly 20% of saving, and if we consider a scenario when the UE activity is 

extremely low, such as at night, this figure drops to the floor value corresponding to the number 

of clusters in the system. In this regard, the clustering method and consequently the size of the 

clusters can affect how much saving can be achieved during those quiescent hours. From 

TABLE III, assuming the worst case scenario when we can only have small clusters such as in 

the hierarchical clustering, the potential energy saving in the RRH pool is about 40%. Again, we 

want to emphasize that in this paper we are assuming some towers within a cluster are capable to 

compensate for those that were switched off. 

B. Experiment I 

One of the potential advantages discussed by proponents for a centralization of radio networks 

is the overall improvement in performance for the tasks involving inter-tower cooperation such 

as handovers, interference mitigation techniques, CoMP, etc. [1][4][16][5]. In this part of our 

experiment we investigate how packing can affect the number of handovers that happen between 

clusters packed on different hosts. A UE handover involves migration of UE context between 

towers, which takes time and bandwidth, and in a centralized architecture, where the BBU pool 

aggregates multiple virtual towers and the internal network assumed to be shared between all of 

them, suboptimal BBU instance placement can result in unnecessary bandwidth increase due to 

handovers being passed between physically neighboring BBUs which happened to be served by 

different hosts. 

In this experiment, we are using a hierarchical clustering algorithm to form the clusters (in-

figure abbr: HIER), and pack them using six different algorithms where only location-aware 

algorithms consider RRH physical position during packing calculation. We have three 

configurations for each packing experiment, where we vary the size of the host (4CPU and  

5CPU) and the initial packing  - location based (L.Init) and randomized (R.Init). For randomized 

placement we just force 1-to-1 host-cluster mapping during initialization and let the packing 

algorithms deal with it. 
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Figure 11 shows the percentage of how many handovers between clusters located on different 

hosts occur. We are not considering handovers within the cluster, since they are already on the 

same host, so, the percentage is relative to overall handovers between different clusters. 

 

 

Fig. 11. Inter-host handovers. 

We can see a general trend is that by adding a location-awareness to the packing algorithms 

the overall inter-host handovers improves. The graph shows several outliers of which “HIER 

BFH 5CPU L.Init.” stands out the most and is just a good example of the fact that an algorithm 

without a location-awareness incorporated, also can produce a good result, although it is not 

quite as consistent across different simulations. The investigation of this result showed that there 

was a combination of three major factors that benefited the BFH in this simulation. First, we 

used a location based cluster placement during initialization. Secondly, the BFH by itself avoids 

any unnecessary migrations and is quite static if the resource utilization fluctuations are mild. 
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Thirdly, Figure 9 confirms the fact that in this particular simulation, the input variation was 

probably not enough for the BFH algorithm to significantly affect the initial cluster packing. 

One thing to note regarding location-aware algorithms is that they do not force the packing 

using whatever criteria they are based on. During the resource usage evaluation, the algorithms 

merely look up any “good” neighbors and if the resources are available only then the neighbors 

are brought together. This approach aims to put neighbors together, but at the same time, might 

cause a less tight packing. 

C. Experiment II 

For the second experiment we are running all six packing algorithms against clusters formed 

during initialization by three clustering algorithms. The purpose of this experiment is to 

investigate the performance of the algorithms discussed in this paper, identify potential problems 

and establish some facts from the results. 

Since we are packing dynamic clusters of virtualized BBUs on hosts it has an effect on the 

host pool. Figure 12 depicts aggregated statistics for the pool collected during simulation, 

specifically – the global minimum of active hosts, the global average, and the global maximum. 

In this graph the most representative information is the average host count and its relation to the 

global maximum. Out of all experiments, for the current input, “HIER BFH” is the most well 

behaved with regard to the host utilization which is indicated by its average and maximum 

values being close. Nevertheless, as TABLE III indicates, all “HIER” type experiments deal with 

greater number of clusters, and we can see that it has been reflected with average host count 

being greater than in “AP*” types. 
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Fig. 12. Active host count runtime statistics. 

All the experiments in this part take advantage of location-based initialization, and all the 

algorithms make extensive use of regression analysis of history data for resource usage. Because 

of that, the resource manager resizes and packs clusters tightly more often than not. The outcome 

of this is that the average runtime values for the host count in these experiments are the most 

representative for the resource utilization, and on Figure 13 we can see the bars corresponding to 

the estimated processing power follow the trend. 
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Fig. 13. Estimated power in the BBU pool. 

Both – Figure 12 and Figure 13 – show the similar tendency to benefit clustering which 

results in a smaller set such as APT. The global minimum values in Figure 12 along with 

TABLE III allow us to extrapolate that during “off-peak” hours, the AP- and APT- based setups 

would have much better energy saving characteristics due to the single fact that they have fewer 

clusters. 
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On the figure below we can see some experiments report an extensive use of migrations, so 

we further investigated this and found out that in some scenarios, the packing algorithms that 

have multiple criteria to make the decision can have some sort of a jitter which can lead to an 

excessive number of migrations as it can be observed on Figure 14 for “HIER LAM”, “AP MP”, 

and “APT MP” experiments. 

 

Fig. 14. Cluster migrations due to re-packing. 
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All three experiments, upon deeper investigation, proved to be the extreme cases when the 

lack of priorities and restricting policies affects the decision making process resulting in 

suboptimal placement and jitter which can occur for example when there are multiple equipotent 

solutions to a packing problem. Compared to the BFH algorithm, our location-aware algorithms 

still have some room for improvement since a great number of migrations not only burdens the 

internal network, but also can affect the quality of service. 

As in Experiment I, here we also gathered and examined the handover statistics. Figure 15 

shows the handovers count during simulation for all packing and clustering algorithms. 

 

Fig. 15. Inter-cluster handovers. 

The trend shown by the stacked bars in the figure reflect the fact that the number of inter-

cluster handovers gets affected by the clustering algorithm. But also, we can see that having 

smaller clusters has it benefits since packing algorithms have better opportunity to arrange them 

in more handover-friendly manner. The evidence of this is more clearly shown in Figure 16 

where we isolate inter-host handovers. In this figure we can trace and extrapolate two interesting 
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features. 1) Having smaller clusters, even if their number increases as a result, positively affects 

inter-host handover count, especially when location-aware packing is used. 2) Enforcing 

specifics investigation during packing, beneficially impacts inter-host handovers as well – from 

the figure above we can see how using more location-specific properties to negotiate packing 

positively affects inter-host handover count. 

 

Fig. 16. Inter-host handovers. 

There is one more thing we want to discuss, which is the host pool utilization. Figure 17 

shows the effective host pool utilization, meaning, we have calculated here what the utilization 

advantage is compared to the runtime active host count maximum. The idea behind it is that we 

are comparing dynamic packing to the static packing when the resource manager estimates 

expected utilization peak, allocates the necessary resources and activates them for the full period. 

It has to be noted, that in this comparison we are looking at the most optimistic scenario for the 

static provisioning where the ceiling for utilization is based on a well-packed runtime maximum. 
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Fig. 17. Host pool utilization. 

The purpose of the figure above is not to compare the algorithms against each other, rather we 

want to see the improvement in the host utilization if the alternative solution for the resource 

management is based on a static provisioning when the global maximum is assumed to be from a 

dynamic provisioning and the clusters are initialized on hosts and never overutilize their hosts 

during the runtime. 

In the figure we see the improvement in the host pool utilization to be about 7% in average if 

we exclude two outliers – “HIER BFH” and “APT MP”. In conjunction with previous results, 

these two special cases allow us to extrapolate the following. 1) If the clustering and packing 

algorithms effectively “cushion” the input fluctuation as it happened in “HIER BFH”, the global 



30 

 

maximum can be misleading for a static provisioner to make any assumptions about the peak. 

The evidence of that can be seen if we look at other “HIER” based experiments, where the global 

maximum is a bit higher. 2) “APT MP” experiment shows that at some point during the runtime 

the packing algorithm had a suboptimal packing configuration resulting in the host utilization 

spike. We can extrapolate that in a real life situation, this spike value would be more appropriate 

for a static provisioner to assume, especially if we look back at the clusters fluctuation waveform 

and note that for this experiment the clusters are mostly at 80% utilization on average and there 

is no guarantee that at some point the input wouldn’t reach the ceiling. So we can expect the 

potential reasonable savings in the host pool utilization to be more notable than the average 

shown in the figure above. 

TABLE IV. Clustering algorithms features. 

 

Clustering 

algorithms 

Advantages Disadvantages 

Hierarchical 

Clustering 

Inherently can cluster towers that share 

common characteristics, e.g. intra-cluster 

distance restriction. 

Adding new criteria does not increase the 

runtime complexity. 

Not flexible if the clustering 

criteria includes 

approximations or 

assumptions. 

Node traversal order affects 

the resulting clusters. 

Affinity 

propagation 

Inherently forms clusters around existing 

nodes. 

Flexibility in adjusting clustering criteria: 

selecting candidate centroids, size of the 

cluster, applying custom cluster rules. 

Convergence time is not 

deterministic and runtime 

can fluctuate. 

Affinity 

propagation 

[6] with 

mobility 

Specialization by applying custom rules, in 

this case, using historical data of UE 

mobility. 

Increased convergence time 

compared to normal Affinity 

Propagation. 
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TABLE V. Packing algorithms features. 

 

VI. CONCLUSION 

Centralized radio access network architecture is an actively researched topic and there are 

multiple implementation aspects that has to be addressed before it becomes more widespread. In 

this paper we are making several assumptions about capabilities of this architecture which are in 

accordance with numerous publications on the subject: 

• a fronthaul can span a few dozen of kilometers, 

• general purpose platforms are capable to host multiple BBU instances, 

• migration of BBU instances between the hosts is feasible without the degradation of 

service, 

• RRH’s operating state can be remotely manipulated, 

• RRH’s zones of responsibility can be dynamically adjusted affecting its power and 

coverage area. 

 

Packing 

algorithms 

Advantages Disadvantages 

BFH [7] Tight packing. Without specialization can result 

in increased inter-host 

bandwidth utilization due to UE 

migrations. 

FF [8] Fastest out of all used algorithms used 

in this experiment. 

Same as in BFH. 

Sub-optimal packing. 

MP [5] Allows packing clusters that 

complement each other which, when 

grouped, exhibit the overall resource 

requirements to be near flat-line in the 

course of the selected period. 

Requires history analysis and 

pattern recognition. 

Can result in increased inter-

host bandwidth utilization due 

to UE migration if neglected. 

False positives can cause sub-

optimal packing. 

LA (and its 

variants – 

LAM, LAMH) 

Specialization. 

Targets the mobility characteristic 

which affects bandwidth utilization 

within BBU Pool. 

Requires history analysis and 

pattern recognition. 

Sub-optimal packing can be 

introduced to meet the 

specialization and target 

requirements. 
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In our experiments the main focus was on BBU instances, which we organized into clusters 

and placed them on hosts using three clustering and six packing algorithms. Our goals were to 

adapt the packing algorithms from data centers, investigate their behavior in the mobile 

environment and, based on the results, propose alternative solutions and recommendations. 

Dynamically manipulating clusters of BBU instances based on demand from UEs has a 

positive effect on RRH pool as well, given that there is a one-to-one RRH-BBU mapping and 

their operation states are synchronized, i.e. when a BBU is turned “off”, the corresponding RRH 

transitions to a dormant state as well. Our results also showed savings in power usage within the 

RRH pool, even for scenarios when variations in the UE usage pattern are not extensive during 

active hours [13][14]. 

Adapting packing algorithms from data centers to manage BBU instances within a BBU pool 

improved the overall energy efficiency and resource utilization [7][8]. For example the BFH 

algorithm showed the best result packing the clusters on fewer hosts with the lowest number of 

migrations. But, the lack of a mechanism to account for mobility information introduced the 

overhead caused by the increased inter-host traffic associated with UE handovers. Furthermore, 

during the “peak” hours, the performance of the mobile network (e.g. QoS) might be prioritized 

over energy conservation, thus a packing that reduces inter-host traffic associated with inter-

BBU cooperation would be more beneficial. In this paper we introduced a location-aware 

algorithm and two modifications that target more specific aspects of mobile environment which 

potentially can help to address the issue of increased inter-host traffic. 

Our experiments showed that packing algorithms adapted from data centers can be improved 

with the regard to inter-host traffic by simply applying location-aware initialization during initial 

packing, although, it does not guarantee the consistency across the runs. In this regard, location-

aware algorithms showed more promise to consistently reduce inter-host traffic by sacrificing the 

packing efficiency. From the experiments we can outline a few guidelines to address packing 

problem in the mobile environment. 

• Avoid generic solutions being applied across various regions – each area requires fine-

tuning to address its peculiarities. 
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• Avoid random initializations, rather make use of historical and locality information to 

perform the most optimal initial placement. 

• For different periods of the day, identify invariant base sets of clusters that can be and 

should be locked to their hosts in order to avoid the increase of inter-host traffic if they 

happened to be migrated to another host caused by suboptimal false-positive placement. 

• Packing of clusters in a mobile environment requires the inspection of multiple runtime 

and historical parameters some of which might contradict each other. As a result, it is 

essential to incorporate enforcing policies that would allow for more intelligent decision 

making when the algorithm has to pick among equally potent solutions. 

• “Mix and match”. Having a centralized location with a vast processing power allows a 

resource manager to run several packing algorithms in parallel and pick the one that fits 

the runtime criteria. 

 

In this paper we picked handovers as a measuring stick for our algorithms to address a 

potentially critical problem when BBU instances are brought together under the same roof and 

share the networking infrastructure – if the dynamic packing algorithm does not account for the 

locality at least, they can be accidentally packed in the worst manner when all of the inter-BBU 

traffic goes thru the network. Resource management in a BBU pool has its own challenges which 

are not present in data centers, thus, it is essential to identify the key properties which should be 

addressed by any algorithm introduced into the system in order to avoid the degradation of 

service. 
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APPENDIX A: SIMULATOR IMPLEMENTATION 

To run the experiments we built a high-level behavioral event-driven application to simulate 

BBU pool, RRHs and mobile UEs. We looked at various simulation platforms before committing 

to develop our own and had to discard them with a single reason being their accuracy. It is 

inevitable for any simulation tool with the increased accuracy and adherence to the real-life 

implementation to have the runtime speed significantly reduced and consequently the turnaround 

time for the results increased. LTE targeted simulators such as SimuLTE or MatLab-based 

Vienna LTE-A Simulators  are tailored towards accurate simulation of LTE architecture’s 

underlying protocols from application layer down to physical layer of the stack which in turn has 

an adverse effect on a simulation time. We also looked at CloudSim platform, a modeling tool 

for data centers, and while we discarded it as our base platform, we borrowed some of the ideas 

used in its implementation [11]. 

The diagram on Figure 18 shows the essential components in our implementation along with 

their logical association with a BBU pool and open world. 

 

Fig. 18. CRANSim block diagram 
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In the BBU pool we maintain the array of Hosts which can be activated and deactivated on 

demand. Each Host can serve multiple VBS-cluster instances depending on available resources 

(specified by the configuration) and a VBS-cluster’s size which can be represented by CPU, 

memory, storage and bandwidth utilization. When we initialize a simulation, a clustering 

algorithm is applied on VBBU-RRH pairs (VBSs) which groups them and places them into 

VBS-clusters. Instances of RRHs and UEs are part of the outside world – coverage area, with 

RRHs being stationary at the designated coordinates, and UEs being the main source of the 

events during the runtime due to their randomized nature expressed through mobility and 

bandwidth requests. Main resource management (RM) tasks within the BBU pool are packing, 

clustering, prediction and logging, etc. Logging functionality encompasses monitoring and 

storing essential runtime system information which can be used for debugging, future runs as the 

input into the prediction component or to generate reports. 

“Link” block in Figure 18 represents an abstraction for communication channels between the 

components. Within the links we can enforce bandwidth allocation policy which is necessary to 

negotiate individual channel bandwidth. By default, the bandwidth is equally distributed among 

the downlinks unless some require less with the remainder being redistributed among those 

downlinks requesting more. The topology of components create a tree of chained links rooting at 

the BBU pool level, and when the bandwidth request is created at a particular node, it creates a 

‘rippling’ effect of requests up to the root and back down to all the nodes which get affected. We 

have implemented several optimizations that reduce the impact of the ‘ripple’ by detecting and 

skipping redundant recalculations. 

The event scheduler takes the form of a queue with the time granularity set to 1 millisecond. 

The events coming from various components are placed into individual queues (frames) 

associated with particular time slots. This setup improves the insertion, lookup and removal of 

events from the global queue by keeping it to a manageable size. Further, it simplifies processing 

of events that occur concurrently ( sharing the same time slot ) which also facilitated by the 

inherent hierarchical topology of the main simulated components (UEs, RRHs, VBBUs, etc.). 

Figure 19 shows an example how a frame for a selected time slot is processed. When the global 

queue selects a frame at the front, the frame is dequeued and the scheduler invokes the events in 

whatever order they were inserted into the frame (label 1). When the currently processed event 
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generates a new event that must be scheduled for an immediate execution, the scheduler inserts it 

right at the front of the global queue with the same timestamp (label 2). And if some event wants 

to register a new event with a delay, the scheduler performs a binary insertion at the requested 

time position (label 3). 

 

Fig. 19. Scheduler’s global queue processing. 

The main source of events for the simulation is UE. Each UE can request a certain bandwidth 

for a particular duration of time by creating a bandwidth request event for the uplink channel 

connected to the RRH in range. Also, some UEs move actively across the coverage area 

generating numerous movement events at which point the mobility functionality not only 

calculates the displacement, but also triggers connectivity and handover events. Handover also 

can be the source of bandwidth recalculation events - when a UE detaches from a RRH, it 

releases any bandwidth used, and then has to request for a bandwidth allocation when it attaches 

to another RRH. 
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The movement processing is one of the most expensive functions in this simulator. When UE 

moves, it has to maintain in- and out-of-range state with a neighboring RRH. In our 

implementation we tried two approaches to perform mobility tracking – a time sampling and a 

trajectory pre-calculation. For the sample-based method we used 500 millisecond intervals when 

the UE has to verify its proximity and either attach or detach to the closest RRH. This method 

proved to be extremely costly for the simulations spanning a 24 hour period with the UE pool 

measured in thousands. To address this performance issue we attempted to use a trajectory pre-

calculation technique based on collision detection techniques used in a video game development 

[3]. During initialization we parse UE’s trajectory and perform path segmentation at the key 

points when UE crosses the regions covered by RRHs, then, for each segment we create a list of 

the in-range RRHs which further improves the performance since the number of RRHs to check 

for proximity is greatly reduced. The downside of this approach is that it requires a lot more 

memory to run the simulation. 
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