
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2017

Multi Language Browser Support Multi Language Browser Support

Swapnil Mohan Patil
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Patil, Swapnil Mohan, "Multi Language Browser Support" (2017). Master's Projects. 575.
DOI: https://doi.org/10.31979/etd.r4cs-5heg
https://scholarworks.sjsu.edu/etd_projects/575

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/575?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Multi Language Browser Support

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Swapnil Mohan Patil

May 2017

© 2017

Swapnil Mohan Patil

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Multi Language Browser Support

by

Swapnil Mohan Patil

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2017

Dr. Thomas Austin Department of Computer Science

Dr. Katerina Potika Department of Computer Science

Dr. Robert Chun Department of Computer Science

ABSTRACT

Multi Language Browser Support

by Swapnil Mohan Patil

Web browsers have become an increasingly appealing platform for application

developers. Browsers make it relatively easy to deliver cross-platform applications.

Web browsers have become a de facto universal operating system, and JavaScript

its instruction set. Unfortunately, executing any other language than JavaScript in

web browser is not usually possible. Previous approaches are either non-portable or

demand extensive modifications for programs to work in the browser. Translation to

JavaScript (JS) is one option but that can be challenging if the language is sufficiently

different from JS. Also, debugging translated applications can be difficult.

This paper presents how languages like Scheme and Lua can be implemented

in the web browser and shows how the web browsers can be extended to support

multiple languages that can run in the browser simultaneously, interacting with each

other seamlessly. In so doing, we hope to offer developers greater choice in languages

for client-side programming.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Thomas Austin,

who expertly guided me through my graduate education and my masters project.

His constant mentorship, advice and support helped me to move in a right direction

towards completion of the project. I would like to thank him for his time, help and

efforts towards me and this project.

My deep gratitude also goes to Dr. Katerina Potika and Dr. Robert Chun for

being on my defense committee. I would like to thank them for their time and efforts.

Lastly, I would like to thank my friends and family. They supported and helped me

to survive this stress and not letting me give up.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Multi-language Browser Environment 2

1.1.1 Scheme Overview . 3

1.1.2 Lua Overview . 5

1.2 Goal . 6

1.3 Approach . 6

1.3.1 Browser Plugin . 6

1.4 Challenges . 8

1.4.1 Different APIs for DOM 8

1.4.2 Interaction between different languages 8

1.5 Results . 9

2 Related Work . 10

2.1 JVM/CLR Language Inter Operations 10

2.1.1 CLR . 10

2.1.2 JVM . 12

2.2 Java Scripting APIs . 12

3 Embedding Scheme in a browser 16

3.1 Interpreter . 16

3.1.1 Parser . 18

3.1.2 Interpreter . 19

vi

vii

3.2 Scheme for Browser . 19

3.3 Approach . 22

3.3.1 Browser Plugin . 22

4 Lua Environment . 24

4.1 The Lua VM . 24

4.1.1 Examples . 24

4.2 Approach . 26

4.2.1 JS Library . 27

5 Interaction between Languages . 28

5.1 Calling JS from Scheme . 28

5.2 Calling Scheme from JS . 30

5.3 Calling JS from Lua . 31

5.4 Calling Lua from JS . 33

6 Multi Language App . 36

7 Conclusion and Future Work . 42

LIST OF REFERENCES . 43

BIBLIOGRAPHY . 46

LIST OF FIGURES

1 Lua factorial example . 5

2 Browser Plugin Approach: Architecture 7

3 JS Library Approach: Architecture 8

4 Common Language Runtime : Architecture [1] 10

5 Evaluating a statement: Nashorn 14

6 Evaluating a JavaScript file: Nashorn 14

7 Exposing a object from Java as a JavaScript’s global variable:
Nashorn . 15

8 Scheme Environment using JavaScript: Architecture 16

9 Scheme script example . 17

10 Scheme PEG.js parser . 18

11 Scheme browser plugin example 22

12 Scheme without browser plugin example 23

13 Lua script example . 24

14 Showing alert on the web page using Lua 25

15 Showing alert on the web page using Lua: Output 25

16 Executing a Lua function in the browser 26

17 Executing Lua function in the browser: Output 26

18 Lua alert with browser plugin . 27

19 Calling JS from Scheme example 29

20 Calling JS from Scheme example: Output 29

viii

ix

21 Calling Scheme from JS . 30

22 Calling Scheme from JS: Output 31

23 Calling JS from Lua . 32

24 Executing JS from Lua Script: Output 33

25 Alert from Lua : Output . 33

26 Accessing DOM from Lua: Output 33

27 Calling Lua from JS . 34

28 Calling Lua from JS: Output . 35

29 Hotel Search: Multi-language Application 37

30 JavaScript code . 38

31 Scheme Contribution: Hotel Search Application 38

32 Scheme Code: Hotel Search Application 39

33 Lua Code: Hotel Search Application 41

CHAPTER 1

Introduction

The world wide web (WWW) got its popularity from its support for documents,

images, videos, 3D graphics, and so on. The web is also excellent source of information

that is made available through browsers.

A drawback of a basic web page is its limited behavior for dynamic content.

This can be addressed by two types of programming extensions - One is server-side

programming languages and other is client-side programming languages [2].

Server-side programming languages work on the server, which is situated across

the network, and the browser must keep sending information to the server to process

the input. There are lots of language choices available when it comes to programming

on the server, such as Java, Python, JavaScript, and so on [2].

Client-side programming languages run in the browser, which helps to generate

more dynamic content than simple web page can render [3]. But, there are very

limited alternatives available when it comes to programming web pages in the browser

such as JavaScript or Java.

As processing power in client-side machines is increasing, client-side programming

is getting more popular among the software developer community. With that, feature

list to be included in the specific preferences of client-side languages is growing.

But, currently JavaScript is the ubiquitous language that runs in all browsers.

JavaScript is used to enhance user interactivity within web pages and can change the

way a web page looks and acts at any time, based on user input.

In this paper we are going to address building multi-language support for browsers,

where more than one language can work in the browser at the same time and all these

languages will interact together to render the web page.

This paper is structured as follows :

1

Chapter 2 discusses the background research done in the field of multi-language

environment; Chapter 3 discusses the Scheme environment and how it is implemented;

Chapter 4 discusses the same details for Lua environment; Chapter 5 explains about

how different environment interact with each other; Chapter 6 describes a sample

how application can be built using Scheme, Lua and JavaScript working together;

finally, chapter 7 concludes and presents opportunities for future work.

1.1 Multi-language Browser Environment

Every programming language is different; some are more concise than others, while

some are better in execution speed, or are closely related to underlying system and

hardware. A multi-language environment can support interaction between software

modules written in different programming languages.

Nowadays, most of non-trivial systems are not written in only one language.

Instead, many different languages are used; out of these are some general purpose

programming languages like Ruby, Java, or JavaScript, and also some domain specific

language (DSLs). A recent survey about open-source projects confirms that the use of

multi-language environment is rather universal. So, multi-language environment is

common among open source groups [4].

There are several benefits of having multi-language support in a browser, such

as increase in productivity, benefit from multi-disciplinary client-side web pages

development, and so on. Multi-language environment also supports different languages

to work together, so that we can get best out of both worlds [5].

Currently, browser does not support multi-language environment. In this project,

we built a multi-language environment in the browser for languages like Scheme [6],

Lua [7], and JavaScript. We enable support for these languages in the browser, by

building our own parser and interpreter for a small subset of languages like Scheme,

2

and Lua using JavaScript. These languages will interact with each other to render

web page. We will see syntax and interaction of these languages in the upcoming

sections.

1.1.1 Scheme Overview

Scheme [6] is a general purpose, simple, but powerful programming language.

Scheme is widely used in computation research and education, it also is used in

industrial applications like user interface designs, web navigators to virtual reality

engines [8]. Scheme is formally standardized by IEEE [9].

Scheme program is block scoped. Variables and keywords in the Scheme program

are lexically scoped. Occurence of the same identifier outside the block of code, refer

to different identifier, otherwise reference is invalid. Blocks can also be nested in each

other.

Scheme procedures are call-by-value. Procedures are also first object just like

numbers, strings, and variable. Just like any other language, procedures can also be

nested, and recursive. The same procedure can call itself.

Let’s take a look into small overview of Scheme, which will give us an idea of

getting started with writing Scheme programs.

1.1.1.1 Scheme Syntax

This section gives a small overview of Scheme as a language, to help us get some

idea about Scheme.

Just like Lisp, Scheme programs are written as prefix expressions within paren-

theses for grouping. In Scheme, name of the operation comes before its operand

[10].

Scheme program is combination of variables, objects, keywords, structured forms,

comments, white spaces, and constant strings (numbers, vectors, strings, etc.) [11].

3

In C or most other languages, a procedure call to ‘foo’ with arguments ‘baz’ and

‘bar’ looks like:

foo (baz , bar) ;

But, in Scheme it is written as:

(foo baz bar)

Variable can be defined using ‘define’:

(d e f i n e myvariable 5)

This will tell the Scheme to allocate variable ‘myvariable’ and assign value 5 to

it. In the Scheme, variable value has to be defined always.

Procedure can also be created using ‘define’ as shown:

(d e f i n e (two−t imes x)

(∗ x x))

Above code creates a procedure with name ‘two-times’ with one argument.

Just like any other languages, if-else in Scheme can be implemented as follows:

(d e f i n e (min a b)

(i f (< a b)

a

b)

)

It will create a procedure called ‘min’ with two arguments ‘a’ and ‘b’. It will

return minimum of both variables by comparing variables in if statements. If ‘a’ is

less than ‘b’ then return ‘a’, otherwise return ‘b’.

Scheme provides special procedure called lambda. Lambda does not give name

to the procedure, it just returns the pointer to it.

4

We can use lambda in define statement, to assign it to variable as shown below:

(d e f i n e double (lambda (x)

(+ x x)))

Here, we are creating a procedure with one argument, and returning the pointer

to it and we are storing that pointer into double variable using define.

1.1.2 Lua Overview

This section gives an overview of Lua programming language [7] and introduces

the basic Lua concepts.

Lua is designed to be a small, simple, fast, and portable language, which can

be easily embedded into other applications [12]. Lua is now popular among various

types of application development such as robotics, web development, image processing,

distributed systems, extensible text editors, and more [13]. Lua is one of the most

popular scripting language for game development.

It is a procedural language with syntax like Pascal. It has control structures like

(if , while, etc.). Procedure can have parameters, and local variables. Figure 1 below

shows, implementation of factorial program in Lua.

func t i on f a c t o r i a l (n)
l o c a l i = 1
l o c a l r = 1

whi le i <−n do
r = r ∗ i
i = i + 1

end
return r

end

Figure 1: Lua factorial example

5

1.2 Goal

Main goal of this project is to provide richer variety of languages for the client,

by creating multi-language support for browser. It can be enabled by integrating

client-side implementation of Scheme, Lua, with existing JavaScript. We will also

dive deeper into questions like ‘‘How applications can benefit from it?” and ‘‘How

can we make multi-language environment easy to use?” by actually creating a demo

application using multi-language environment in browser.

Another goal is to create browser plugin and client-side libraries for parsing and

interpreting, Scheme and Lua using JavaScript. Also, implement language subset of

these languages to interact with the document object model (DOM).

This project does not try to achieve most efficient solution to multi-language

browser support. but we think that our solution will definitely help the software

community by showing a way of how languages can interact.

1.3 Approach

There are variety of possible approaches to built multi-language support for the

browser. In this project, we are going to focus on approach of using the browser plugin

(Mozilla and Chrome) for providing multi-language support for the browser.

1.3.1 Browser Plugin

Multi-language support will be integrated into the web browsers (Mozilla, Chrome)

[14] using Mozilla and Chrome Plugin. The plugin will parse and then interpret any

Scheme and Lua script on the page and will inject necessary events into the page

again, as shown in Figure 2.

Whenever the new web page is loaded into the browser, plugin will scan the web

page for any Scheme or Lua scripts on that page. Matching scripts will be parsed by

the parser. Interpreter will interpret the parsed input into necessary DOM events.

6

Figure 2: Browser Plugin Approach: Architecture

These events will be sent to the web page.

All the interaction between languages is managed by browser plugin. Advantage

of this approach is, programmer does not have to worry about adding all the multi-

language supporting libraries into the web page. Disadvantage of this approach is,

plugin needs to be installed in the browser and some browsers are not yet supported

by the plugin. Also, plugin needs a permission to read scripts from the web page. We

overcome this disadvantage, by exposing Scheme and libraries, which can be included

in the web page directly.

1.3.1.1 JS Library

If plugin is not available in the browser, multi-language support can be achieved

by including supported libraries in the web page itself. Developer can include multi-

language supporting libraries in the web page. After all libraries are loaded, browser

will interpret different languages on the web page and help to achieve necessary

interaction between these different languages. Libraries can be included in browser as

shown in Figure 3.

7

Figure 3: JS Library Approach: Architecture

1.4 Challenges

There are many challenges while building the multi-language support for any

application. For building multi-language support for browser, these are some of the

challenges that we came across.

1.4.1 Different APIs for DOM

To render web pages on the browser, language has to work with browser’s DOM

APIs. Every language has its own syntax for interacting with DOM APIs.

Currently, there is no implementation of Scheme, and Lua in the browser. For

this project, we created our own subset of Scheme and Lua, which works with browser’s

DOM APIs, and JavaScript. We created our own parser and interpreter for these

languages in browser, as discussed in Section 3 and Section 4

1.4.2 Interaction between different languages

Every developer uses different tools and technologies, each of which might have

different types, features, and purpose. Each language has different way of representing

types, data, object, and etc. So, it is historically very difficult to ensure language

interoperability. For this project, we created basic utilities for language interaction to

8

happen smoothly, as discussed in Section 5..

1.5 Results

The contributions of this project;

1) Parser and Interpreter libraries for Scheme and Lua with support for DOM

and interaction with JavaScript.

2) Browser plugin for Chrome and Firefox, which can execute Scheme and Lua

scripts from any page opened in the browser.

3) A proof of concept Application, built using JavaScript, Scheme, and Lua

working together.

9

CHAPTER 2

Related Work

In this section, we will have a look at what are the existing approaches and what

efforts have been taken by others to allow languages to interact.

2.1 JVM/CLR Language Inter Operations

We first look into the Microsoft .NET’s Common Language Runtime (CLR)

and the Java Virtual Machine (JVM). Both these systems allow users to program in

different languages allowing multi-language support.

2.1.1 CLR

Figure 4: Common Language Runtime : Architecture [1]

10

The Common Language Runtime (CLR) is a virtual component of Microsoft’s

.NET framework. It provides runtime environment, which runs the code from various

languages and also provides environment, which makes software development process

very easy [15]. Figure 4 shows the architecture of CLR.

Tools and compilers expose the CLR’s functionality, so that you can take advan-

tage of this common language runtime’s managed execution environment. The code

written to target the common language runtime is known as managed code. This code

can be benefited from features such as a cross-language integration, cross-language

exception handling, versioning, and security by providing simplified way for component

interactions [16].

The compiler converts the source code into the Intermediate Language Code (IL

code). IL code is CPU independent instructions that can be converted into the native

code. At the runtime, The CLR’s Just In Time (JIT) compiler converts this IL code

into native code.

Compilers and tools able to produce the output consumed by the CLR, because,

format of metadata, type systems are defined by the public standard called the ECMA

Common Language Infrastructure [17].

The Compiler emits metadata describing members, types, and references in your

managed code to insure common language runtime provides services to managed code.

This metadata is used to load and locate classes, load instances in memory, generate

native code, enforce security [17].

Achieving even slight levels of language interoperability is pretty difficult because

of the wide variation in programming language features, and implementations. The

CLR makes it easy to build components, and application whose objects can interact

with each other across the languages. Code written in different languages can be

integrated, their behavior is tightly integrated. For example, the class written in one

11

language can be derived from the class written in other language and can call method

of the class it is derived from. We can also pass instance of the class (Object) from

one language to another. This is possible because language compilers, and tools uses

common type system provided by CLR and they follow the CLRs standard rule for

defining, creating, and pertaining types [15].

CLR provides following benefits:

1) Language inter-operation ability.

2) Performance enhancements.

3) Garbage Collection.

4) Support for exception handling.

2.1.2 JVM

The Java programming language [18] implementation compiles to Java virtual

machine language (JVML) [19], also, known as Java-byte code. JVML is stored as

java class files. It is either interpreted or compiled Just-In-Time (JIT) to native

code by Java Virtual Machine (JVM). JIT allows efficient code as it is tailored as

per the processor. Using such intermediate language provides many benefits [20].

Languages supported by JVM compiles to common byte-code, which helps in language

interoperability.

Singer, discusses about difference between JVM and CLR [21].

2.2 Java Scripting APIs

After Java 6, Java supports incorporating code written in scripting languages

directly in the Java. It enables developers to access their code written in scripting

language directly in the Java applications. It began new generation of multi-language

application called as polyglot applications (where the Java language can work together

with other scripting languages). [22]

12

Developers were able to construct Java applications containing scripts developed

in languages like JavaScript and Python. It uses JavaScript engine called Rhino [23]

in Java 6, which is replaced by Nashorn [24] from Java 7. It is an implementation

of the JavaScript engine, built entirely in the Java. It contains full support for the

JavaScript [22].

This scripting functionality is provided by the javax.script package. The package

contains very simple and small APIs for accessing JavaScripts. Scripting APIs are

accessible through scriptEngineManager class. scriptEngineManager objects can search

for script engines by means of jar file service detection mechanism.

According to the Java documentation [25] Way to access nashorn engine in the

Java application:

1. Import the javax.script package.

2. Instantiate a ScriptEngineManager object.

JavaScripting APIs can be accessed through the ScriptEngineManager class. A

ScriptEngineManager object instantiates ScriptEngine objects. It also maintains a

global variable values shared by API.

3. Obtain instance of ScriptEngine from the manager with getEngineByName()

method.

getEngineByName() method takes one string parameter with name of the script

engine. To obtain instance of the nashorn engine pass nashorn. We can also use one

of the following arguments ”ecmascript”, ”ECMAScript”, ”Nashorn”, ”JavaScript”,

”javascript”, ”js”, ”JS”.

After, we have the Nashorn engine instance, we can use to embed scripts in our

Java application. Let’s see some of the examples, which show the use of Nashorn:

Example 1 - Evaluating a statement

Figure 5 shows the example, which can evaluate ”Hello world !” using Nashorn.

13

import javax . s c r i p t . ∗ ;

pub l i c c l a s s Eva luateScr ip t {
pub l i c s t a t i c void main (S t r ing [] arguments) throws Exception {

ScriptEngineManager engineManager = new ScriptEngineManager () ;
Scr iptEng ine eng = engineManager . getEngineByName (‘ ‘ nashorn ’ ’) ;

// eva luate JavaScr ipt code
eng . eva l (‘ ‘ p r i n t (‘ Hel lo , World ’) ’ ’) ;

}
}

Figure 5: Evaluating a statement: Nashorn

In the example shown in Figure 5, the script engine calls the eval() method and

executes JavaScript string passed as an argument to eval() function.

Example 2 - Evaluating a JavaScript file

import javax . s c r i p t . ∗ ;

pub l i c c l a s s Eva lF i l e {
pub l i c s t a t i c void main (S t r ing [] arguments) throws Exception {

ScriptEngineManager engineManager = new ScriptEngineManager () ;
Scr iptEng ine eng = engineManager . getEngineByName (‘ ‘ nashorn ’ ’) ;

eng . eva l (new java . i o . Fi leReader (‘ ‘ s c r i p t . j s ’ ’)) ;
}

}

Figure 6: Evaluating a JavaScript file: Nashorn

In the example shown in Figure 6, eval() method uses fileReader that reads

JavaScript file and evaluates it.

Example 3 - Exposing a object from Java as a JavaScript’s global

variable

In the example shown in Figure 7, a file object in Java is passed to the Nashorn

14

import javax . s c r i p t . ∗ ;
import java . i o . ∗ ;

pub l i c c l a s s Scr iptVars {
pub l i c s t a t i c void main (S t r ing [] arguments) throws Exception {

ScriptEngineManager engineManager = new ScriptEngineManager () ;
Scr iptEng ine eng = engineManager . getEngineByName (‘ ‘ nashorn ’ ’) ;

// c r e a t e F i l e ob j e c t
F i l e f = new F i l e (‘ ‘ t e s t . txt ’ ’) ;

// expose F i l e ob j e c t as a g l o b a l v a r i a b l e to the eng ine
eng . put (‘ ‘ f i l e ’ ’ , f) ;

// eva luate JavaScr ipt code and ac c e s s the v a r i a b l e
eng . eva l (‘ ‘ p r i n t (f i l e . getAbsolutePath ()) ’ ’) ;

}
}

Figure 7: Exposing a object from Java as a JavaScript’s global variable: Nashorn

engine as a JavaScript’s global variable. The put() method adds this file to global

variable as the name file. Eval() function then calls Javascript code, which accesses

this file variable as a JavaScript’s global variable and executes the getAbsolutePath()

method.

15

CHAPTER 3

Embedding Scheme in a browser

The Scheme development environment is the foundation for a number of fascinat-

ing applications in education and research. But executing Scheme program directly

into the browser is not possible yet, since Scheme is not readily available in the

browser. In such cases, JavaScript being de-facto of browser based applications, a

JavaScript based and browser native implementation Scheme is desirable.

For this project we created Scheme in browser using JavaScript [14]. It provides

supports for some of the core language features with additional feature of interacting

with DOM to enable scheme to interact with the browser. The core of our environment

is inspired by the scripting API [25] by taking the same approach to interact with

other languages.

Figure 8: Scheme Environment using JavaScript: Architecture

As shown in Figure 8, Our Scheme library takes web page’s embedded Scheme

scripts as input. Our plugin will parse and then interpret the input scripts using

JavaScript. This interpreted Scheme code then interacts with the browser, to help

render web pages with more dynamic behaviour.

3.1 Interpreter

As discussed in previous chapters, browsers do not have a readily available

support for the Scheme. To help enable the browser to understand code written in the

16

Scheme, we built a Scheme interpreter written in the JavaScript. Using our Scheme

interpreter, browser will understand program written in the Scheme.

The Scheme code will be embedded into the web page using script tag as shown

in the code Example 9,

<s c r i p t type=”text /scheme”>
(

(d e f i n e square
(lambda (n)

(conso le−l og (∗ n n)
)

)
)

(square 6)
)
</s c r i p t >

Figure 9: Scheme script example

As shown in the code snippet in Figure 9, Scheme code can be added inside the

webpage using ”<script type=”text/scheme” > </script>” script tag. Our interpreter

supports multiple number of Scheme script tags.

In order for the browser to understand the Scheme, code snippet written inside

Scheme script tags is parsed and interpreted by our browser plugin. In case, the

browser plugin is unavailable then we need to include library reference of interpreter

on the page, as shown in the example below,

<s c r i p t s r c=”simple−scheme−i n t e r p r e t e r . j s ”>

If the browser plugin is available, then this script file is added by the browser

plugin, so we don’t have to worry about adding it in the web page.

The interpreter consists of two parts:

17

3.1.1 Parser

After code snippets from script tags is read, first thing our library does is to

parse the input code using PEG.JS and get the Abstract Syntax Tree (AST). The

interpreter then uses this AST to interpret the code.

3.1.1.1 PEG.js

We used a PEG.js library to create a parser for the Scheme [26]. PEG.js is simply

a parser written in the JavaScript. We can use it to create parsers for complex data

and computer languages. A sample PEG.js grammar used to parse the Scheme code

is shown in the code example 10,

var par s e r = PEG. bu i ldPar s e r (
s t a r t = mu l t i exp r e s s i on ;∖
va l i d cha r = [a−zA−Z ?!+∖∖−=@#$%ˆ&∗/.] ;∖
spaces = ∖ ‘ ‘ ∖ ’ ’∗ ;∖
newl ine = [∖∖n] ∗ ; ∖
d i g i t = [0 −9] ;∖
atom = spaces newl ine chars : va l i d cha r+ spaces

newl ine { r e turn chars . j o i n (∖ ‘ ‘ ∖ ’ ’) ; }∖
/ spaces newl ine numbers : d i g i t+ spaces newl ine

{ r e turn par s e In t (numbers . j o i n (∖ ‘ ‘ ∖ ’ ’)) ; } ;∖

l i s t = spaces newl ine ∖ ‘ ‘ (∖ ’ ’ spaces newl ine
e x p r e s s i o n s s : mu l t i exp r e s s i on+ newl ine spaces ∖ ‘ ‘)∖ ’ ’
spaces newl ine { r e turn e x p r e s s i o n s s ; } ;∖
e x p r e s s i o n s = spaces newl ine
l i s t s : l i s t+ newl ine spaces { r e turn l i s t s } ;∖
mul t i exp r e s s i on = atom / e x p r e s s i o n s ; ’) ;

Figure 10: Scheme PEG.js parser

Using the grammar shown in Figure 10, Scheme code is parsed into AST using a

following statement.

var PegAST= par s e r . parse (s) ;

18

3.1.2 Interpreter

AST generated by the parser is interpreted by our interpreter written in the

JavaScript, as shown in the code example below,

var pegRet = schemeInte rpre t e r . i n t e r p r e t (PegAST) ;

The interpreted output is either DOM event or JavaScript code which the browser

understands.

3.2 Scheme for Browser

Following the R5RS standard [27], variables are blocked scoped in the program.

Blocks can be created with let, or define expressions, like:

(l e t ((x 10)

(y 20))

(foo x y))

In the example shown above, variable x and y are blocked scoped. Both x and y

are available to function foo.

Like the universal Scheme, our implementation of the Scheme supports following

features:

• Basic Types

– Integer

– Real

– Number

– String

– List

– Char

• Control structure

19

– Conditional

∗ if then else cond case

– Loop

∗ do let(named let) dotimes

– Assignment

– eval

It also provides special language syntax to interact with the browser’s DOM. We

chose to include basic, most used browser functions for our Scheme DOM API. This

is only available for browser.

First.

Second.

• Browser Functions

– Dialog

∗ (alert msg)

Similar to, ‘‘window.alert” function.

∗ (confirm msg)

Similar to, ‘‘window.confirm” function. It returns a boolean value.

– Event

∗ (add-handler! selector event proc)

Attaches an event handler to the specified selector. It returns the

handler function, which handles the event.

∗ (remove-handler! selector event js-handler)

Removes the attached event handler from the specified selector.

· eg (define h (add-handler! ”button1” ”click” (lambda (ev) ...)))

· eg (remove-handler! ”button1” ”click” h)

20

– Element

∗ (element-visible? elem)

Returns the visibility of the specified element.

∗ (element-toggle! elem)

Toggles the visibility of the specified element.

∗ (element-hide! elem)

Hides the specified element.

∗ (element-show! elem)

Shows the specified element.

∗ (element-remove! elem)

Removes the specified element.

∗ (element-update! elem html)

Updates the specified element with the provided html.

∗ (element-replace! elem x)

Replaces the specified element with provided value x.

∗ (element-insert! elem x)

Appends the specified element with provided value x.

∗ (element-select elem)

Returns the specified element.

Apart from providing DOM APIs for the browser, our Scheme interpreter supports

interface to some of the basic JavaScript functions as shown:

• JavaScript language interface

– (js-eval str)

Evaluate str as JavaScript code

– Console

21

∗ (console-log obj1 ...)

Similar to, JavaScript’s ‘‘console.log”, it logs events to the console.

∗ (console-debug obj1 ...)

Alias for ‘‘console-log’’

∗ (console-error obj1 ...)

Logs the error message.

3.3 Approach

Our Scheme interpreter uses the browser plugin approach to help the browser to

understand the Scheme code on the web page.

3.3.1 Browser Plugin

For this approach, the browser plugin (supported by Firefox, and Chrome) [14]

will push the instance of PEG.js parser and our Scheme interpreter into every newly

opened browser tab. In this way, user doesn’t have to worry about adding the library

script on the page. Our library will then parse and interpret all the code enclosed

within Scheme script.

<s c r i p t type = ‘ ‘ t ex t /scheme ’ ’>
(a l e r t ‘ ‘ He l l o World ’ ’)
(conso le−l og ‘ ‘ He l lo World ’ ’)
</s c r i p t >

Figure 11: Scheme browser plugin example

As shown in Figure 11, we don’t need to add any external libraries into our web

page. Browser plugin will take care of interpreting the Scheme scripts. After executing

the code in Figure 11 in the browser with our plugin installed, will alert user with

‘‘Hello World” as text.

22

3.3.1.1 JS Library

When the plugin is unavailable in the browser, the Scheme support is achieved

in the web page by including Scheme interpreter and parser libraries in the web page

itself. When the web page is loaded in the browser, libraries will read code snippet

inside Scheme script and will interpret it, as shown in the Figure 12.

<s c r i p t s r c = ‘ ‘ ./ s imple−scheme−i n t e r p r e t e r . j s ’ ’/>
<s c r i p t type = ‘ ‘ t ex t /scheme ’ ’>
(a l e r t ‘ ‘ He l l o World ’ ’)
(conso le−l og ‘ ‘ He l lo World ’ ’)
</s c r i p t >

Figure 12: Scheme without browser plugin example

As shown in code snippet in the Figure 12, instance of PEG.js and Scheme

interpreter is embedded directly in the web page. Interpreter will interpret ‘‘(alert

”Hello World”) and it will show an alert on the screen with ‘‘Hello World” as text.

23

CHAPTER 4

Lua Environment

Currently, the web browser cannot execute the Lua code, as the Lua environment

is not readily available in the browser. In this project, we will use the Lua VM

provided by Mozilla [28] to provide Lua support for the browser. The Lua VM will

create Lua environment where we will be able to execute our program written in Lua.

4.1 The Lua VM

The Lua VM runs in the browser by porting the entire ANSI C implementation

of the Lua virtual machine to JavaScript using Emscripten [29] including garbage

collection.

The Lua VM can be added in the web page by referencing ‘‘lua.vm.js’’ script on

the browser, as shown below.

<s c r i p t s r c = ‘ ‘ lua .vm. j s ’’></ s c r i p t >

Once the instance of the Lua VM is added on the web page, we can start writing

our Lua code in the web page by including all the Lua code in the text/lua script as

shown Figure 13.

<s c r i p t type = ‘ ‘ t ex t / lua ’ ’>
. . . your lua code
</s c r i p t >

Figure 13: Lua script example

The Lua VM interpretes the code written in ‘‘<script type=”text/lua” >

</script>” tags, and it executes it as Lua code.

4.1.1 Examples

In this section, we will see some of the examples using the Lua VM in the browser.

1. Showing alert on the web page using Lua

24

Example shown in Figure 14 renders alert method of JavaScript global object

using Lua.

<s c r i p t s r c = ‘ ‘ lua .vm. j s ’’></ s c r i p t >

<s c r i p t type = ‘ ‘ t ex t / lua ’ ’>
j s . g l o b a l : a l e r t (‘ h e l l o from Lua s c r i p t tag in HTML! ’)

</s c r i p t >

Figure 14: Showing alert on the web page using Lua

Executing the code from Figure 14 in the browser generates output similar to

calling alert function from DOM, as shown in Figure 15.

Figure 15: Showing alert on the web page using Lua: Output

2. Executing a Lua function in the browser

We can also define and call a Lua function in the web page, as shown in Figure

16.

Executing the code from Figure 16 in the browser creates a function called

‘‘printName” and assigns anonymous function to the local variable named ‘‘sayHello”.

After calling both functions, we see the desired output on the console, as shown in

Figure 17.

25

<s c r i p t s r c = ‘ ‘ lua .vm. j s ’’></ s c r i p t >
<s c r i p t type = ‘ ‘ t ex t / lua ’ ’>
−− f unc t i on
func t i on printName (r e c i p i e n t)
p r i n t (‘ Hel lo , ’ . . r e c i p i e n t)
end
−− Anonymus func t i on
l o c a l sayHe l lo = func t i on (r e c i p i e n t)
p r i n t (‘ Hel lo , ’ . . r e c i p i e n t)
end
sayHe l lo (‘ Swapnil ’)
printName (‘ CS298 Project ’)
</s c r i p t >

Figure 16: Executing a Lua function in the browser

Figure 17: Executing Lua function in the browser: Output

4.2 Approach

Similar to the Scheme environment, we implemented browser plugin [14] approach

to include Lua VM in the web page, to help browser understand Lua code on the web

page.

For this approach, browser plugin (supported by Firefox and Chrome) will push

the instance of Lua VM in every newly opened browser tab. In this way, user doesn’t

26

have to worry about adding the library script on the page. Lua VM library will then

interpret all the code enclosed within ‘‘type=text/lua” script.

In case of using a browser plugin, our example code to render alert in the browser

is shown in Figure 18.

<s c r i p t type = ‘ ‘ t ex t / lua ’ ’>
j s . g l o b a l : a l e r t (‘ h e l l o from Lua s c r i p t tag in HTML! ’)
</s c r i p t >

Figure 18: Lua alert with browser plugin

As shown in the code snippet from Figure 18, we don’t need to add any external

libraries in our webpage to interpret Lua script, browser plugin will take care of it.

Executing above code in the browser with our plugin installed will alert the user with

‘‘hello from Lua script tag in HTML!” as text.

4.2.1 JS Library

Whenever plugin is unavailable the Lua VM support is achieved in the web page

by including the Lua VM library in the web page itself. When the web page is loaded

in the browser, our library will read code snippet inside ‘‘type=text/lua” script and

will interpret it, as shown in Figure 14.

27

CHAPTER 5

Interaction between Languages

After providing the Scheme and Lua support in the browser, we needed a way

for these languages to interact with each other.

Every language is different and achieving even slight levels of language interop-

erability is pretty difficult because of the wide variation in programming language

features and implementations. After going through all the challenges and possible

solutions for this project, we decided to take an approach similar to the Java Scripting

API [22] - code from other languages can be called by using the helper evaluate

function provided by that language.

All languages will provide evaluate function, which will evaluate code native to

that language and will return the results.

We will see the interaction between different languages with examples in the

following sections.

5.1 Calling JS from Scheme

Our implementation of the Scheme provides and evaluate function called ‘‘js-eval”,

which takes an argument of JavaScript code as string and it executes that JavaScript

code from the Scheme environment, as shown in Figure 19.

28

<input type = ‘ ‘ button ’ ’ id = ‘ ‘ c a l l ’ ’
va lue = ‘ ‘ C l i ck to c a l l Java S c r i p t from Scheme ’ ’ />

<s c r i p t type = ‘ ‘ t ex t /scheme ’ ’>
(

(add−handler ! ‘ ‘# c a l l ’ ’ ‘ ‘ c l i c k ’ ’ (lambda (ev)
(j s−eva l ‘ ‘ var sayHe l lo = func t i on (tmp) {

r e turn ’ He l l o ’ + tmp
} ; ’ ’

)
(j s−eva l ‘ ‘ a l e r t (’ Java S c r i p t Ale r t from Scheme − ‘
+ sayHe l lo (’ Swapnil ’)) ’ ’)))

)
)
</s c r i p t >

Figure 19: Calling JS from Scheme example

The code from Figure 19 adds a click handler to the input button with id

‘‘call’’. After clicking a button, it executes a js-eval function of Scheme, which creates

JavaScript function called ‘‘sayHello’’. Next lines execute that JavaScript function

by passing argument to it. Output generated by the code shown in the Figure 19, is

shown in Figure 20.

Figure 20: Calling JS from Scheme example: Output

29

5.2 Calling Scheme from JS

Similar to calling JavaScript code from the Scheme, we can also execute the

Scheme code from JavaScript. The web page gets the instance of our Scheme interpreter

by calling evaluate method on that instance. JavaScript can execute Scheme code as

shown in Figure 22.

<input type = ‘ ‘ button ’ ’ o n c l i c k = ‘ ‘ ca l lScheme () ’ ’
id = ‘ ‘ c a l l ’ ’ va lue = ‘ ‘ Execute Scheme Code
from Java Scr ipt ’ ’ />

<s c r i p t >
f unc t i on cal lScheme ()
{

var sayHe l lo = scheme . eva luate (‘ ‘ (lambda (msg)
(a l e r t msg)) ’ ’) ;
sayHe l lo (‘ ‘ Ca l l i ng Scheme method from JavaScr ipt ! ! ! ! ! ’ ’) ;

}
</s c r i p t >
</html>

Figure 21: Calling Scheme from JS

In the code shown in Figure 22, we are evaluating function written in the Scheme

and calling it from JavaScript. ‘‘scheme.evaluate” function executes the Scheme code.

In this case, we are storing Scheme lambda function in variable called ‘‘sayHello’’ and

calling it with parameters from JavaScript, as shown in Figure 22

30

Figure 22: Calling Scheme from JS: Output

5.3 Calling JS from Lua

Lua interacts with the JavaScript using eval function on the JavaScript global

object. Code snippet in Figure 23 shows how to write the Lua code in the Lua script

and shows how to access JavaScript code from Lua script.

31

<s c r i p t s r c = ‘ ‘ lua .vm. j s ’’></ s c r i p t >
<s c r i p t type = ‘ ‘ t ex t / lua ’ ’>
−− g l o b a l ob j e c t in JS i s the window
l o c a l window = j s . g l o b a l

−− Lua execut ing Java S c r i p t code
window : eva l (‘ f unc t i on sayHe l lo (message) ’ . .

‘{ a l e r t (message) ; } ’ . .
‘ s ayHe l lo (‘ ‘ He l l o from Java S c r i p t c a l l i n g from Lua ’ ’) ; ’

)

−− Aler t from Lua
window : a l e r t (‘ ‘ h e l l o from lua ! ’ ’)

−− Access ing DOM APIS from Lua
l o c a l document = j s . g l o b a l . document
p r i n t (‘ ‘ This window has t i t l e ‘ ’ ’ . . document . t i t l e . . ‘ ‘ ’ ’ ’)

−− f unc t i on
func t i on printWindowSize ()

l o c a l s c r e en = j s . g l o b a l . s c r e en
p r i n t (‘ ‘ you haz ’ ’ . . (s c r e en . width∗ s c r e en . he ight) . .
‘ ‘ p i x e l s ’ ’)

end

printWindowSize ()
</s c r i p t >

Figure 23: Calling JS from Lua

In the code snippet shown in Figure 23 the Lua environment is creating JavaScript

function called ‘‘sayHello’’ and it is calling it using eval function on the JavaScript

global object. Output of the code snippet is shown in Figures 24 - 26.

32

Figure 24: Executing JS from Lua Script: Output

Figure 25: Alert from Lua : Output

Figure 26: Accessing DOM from Lua: Output

5.4 Calling Lua from JS

The JavaScript interacts with the Lua using the ‘‘L.execute’’ function provided

by the Lua VM. It accepts any Lua code as a string and executes it in JavaScript

environment by calling the function, as shown in Figure 27.

33

<s c r i p t s r c = ‘ ‘ lua .vm. j s ’’></ s c r i p t >
<s c r i p t >

f unc t i on sayHe l lo (message) {
conso l e . l og (message) ;

}

L . execute (// Lua Function Dec la ra t i on
‘ ‘ f unc t i on printName (r e c i p i e n t) ’ ’ +
‘ ‘ p r i n t (‘ Hel lo , ’ . . r e c i p i e n t) ’ ’ +
‘ ‘ end ’ ’ +

// Cal l to Lua Function
‘ ‘ printName (‘ CS298 Project ’) ’ ’ +

// Ca l l i ng Java S c r i p t func t i on from Lua
‘ ‘ j s . g l o b a l : sayHe l lo (‘ He l lo to JS funct ion ’) ’ ’ +

// Aler t from Lua
‘ ‘ j s . g l o b a l : a l e r t (‘ He l l o from Lua ’) ’ ’

) ;

</s c r i p t >

Figure 27: Calling Lua from JS

The code snippet shown in Figure 27 calls the Lua code from JavaScript envi-

ronment. It creates Lua function called ‘‘printName’’, which prints the message on

the console. This function is called with a parameter ‘‘CS 298 Project”. It also calls

JavaScript function called ‘‘sayHello’’ from the Lua code. And similarly, it alerts

‘‘Hello from Lua” message using Scheme alert function. Output of the above code

snippet is shown in Figure 28.

34

Figure 28: Calling Lua from JS: Output

35

CHAPTER 6

Multi Language App

After building support for various languages and their interaction in previous

sections, this section demonstrates how to build a real world application using multiple

languages. For this project we created hotel search application, which takes advantages

of multi-language environment to render the app. This application helps the user to

search for hotels by specifying the city and country.

Apart from taking advantage of multi-language environment (Scheme, Lua, and

JavaScript), app also uses libraries like ‘‘Google maps APIs” [30], ‘‘Jquery” [31] etc.

Home screen of the application is shown in Figure 29.

36

Figure 29: Hotel Search: Multi-language Application

Application provides the following functionalities :

• Cities Auto Complete : It provides the interface to enter the city.

• Country Drop Down : It provides the drop down to select the countries from

a list of countries.

• Search Button : Button to search hotels in a selected city.

• Map : Provides a window to display google map on the screen.

• Result : Provides a content holder to show the search results.

JavaScript in the application handles rendering of the map and fetching search

result from google places API. JavaScript maintains the reference to maps, countries

37

selected, search text in its global scope. JavaScript also calls Scheme’s ‘‘getElem”

function to get the reference of particular element on the page, as shown in Figure 30,

// Gets the map element r e f e r e n c e .
var elem =scheme . eva luate (‘ (gete lem ”#map ”) ’) ;

// Gets the Result window r e f e r e n c e .
var i n f o c o n t e n t = scheme . eva luate (‘ (gete lem ‘ ‘# in fo−content ’ ’) ’) ;

// Gets the Search City text box r e f e r e n c e .
var autocomplet = scheme . eva luate (‘ (gete lem ’ ‘ ‘# autocomplete ’ ’) ’) ;

Figure 30: JavaScript code

Scheme code in the application is responsible for initializing the app and provide

on click functionality for the ‘‘Search Hotels” button, as shown in Figure 31.

Figure 31: Scheme Contribution: Hotel Search Application

38

Code in Figure 32 shows the Scheme code which enables the functionalities shown

in Figure 31.

<s c r i p t type=”text /scheme”>
(
; ; ; Logs welcome message
(conso le−l og ”Welcome ! ! ! ”)

; ; ; Dec lare I n i t i a l i s e A p p l i c a t i o n func t i on
; ; ; which i n i t i a l i s a t i o n the app
(d e f i n e i n i t i a l i s e A p p l i c a t i o n
(lambda ()

; ; ; Updates the Header t ext to s p e c i f i e d s t r i n g
(element−update ! ”#header ” ”Welcome to Hotel s earch
Appl i cat ion b u i l t us ing mul t ip l e langauges
(Java Scr ipt , Lua , and Scheme)”)

; ; ; Updates the Search Button text to s p e c i f i e d s t r i n g
(element−update ! ”#searchButton ” ” Search Hote l s ”)

; ; ; Updates the F i ld h o t e l s t ex t to s p e c i f i e d s t r i n g
(element−update ! ”#f i n d h o t e l s ” ”Find h o t e l s in : ”)
)
)

; ; ; Adds a c l i c k handler on ” Search Hote l s ” Button
(add−handler ! ”#searchButton ” ” c l i c k ” (lambda (ev)
(j s−eva l ” search () ”)
)))

; ; ; Ca l l s i n i t i a l i s e ” i n i t i a l i s e A p p l i c a t i o n ” func t i on
(i n i t i a l i s e A p p l i c a t i o n)
)

</s c r i p t >

Figure 32: Scheme Code: Hotel Search Application

Lua handles the drop down event on countries drop down. Lua gets the reference

39

to document object from JS global scope, it then sets the change event on drop down.

When the country’s drop down selection is changed, lua sets the focus of the map on

the selected country, sets the zoom level and also calls the ‘‘clearSearchResult” and

‘‘clearMarkers” from JavaScript, to clear any result from previous search and markers

on the map.

Lua code that handles these interactions is shown in Figure 33.

The complete code for this application is available in github [14].

40

<s c r i p t type=”text / lua”>
−−Gets the document r e f e r e n c e from j s g l o b a l
l o c a l document = j s . g l o b a l . document

−− Function
func t i on setAutocompleteCountry ()

−− Gets the country drop down value
l o c a l country = document : getElementById (’ country ’) . va lue

−− Gets auto complete r e f e n c e
l o c a l autocomplete = j s . g l o b a l . autocomplete

−− Gets r e f e r e n c e to map
l o c a l map = j s . g l o b a l .map

−− Gets r e f e n c e to c o u n t r i e s ob j e c t in j s g l o b a l ob j e c t
l o c a l c o u n t r i e s = j s . g l o b a l . c o u n t r i e s

−− Set the fo cus on the s e l e c t e d country
i f (country == ’ a l l ’) then
autocomplete : setComponentRestr ic t ions ()
map : se tCenter ()
map : setZoom (2)
e l s e
autocomplete : setComponentRestr ic t ions ()
map : se tCenter (c o u n t r i e s [country] . c en t e r)
map : setZoom (c o u n t r i e s [country] . zoom)
end

−− Ca l l s Java S c r i p t c l e a r R e s u l t func t i on
−− to c l e a r r e s u l t r e s u l t s
j s . g l o b a l : c l e a r R e s u l t s ()

−− Ca l l s c l earMarkers func t i on from JS ,
−− to c l e a r markers o in the s c r e en .
j s . g l o b a l : c l earMarkers ()
end

−− Adds the change event to country drop down .
document : getElementById (’ country ’) : addEventListener (
’ change ’ , setAutocompleteCountry) ;
</s c r i p t >

Figure 33: Lua Code: Hotel Search Application41

CHAPTER 7

Conclusion and Future Work

In this project, we implemented multi-language environment support for the

browser. It gives developers flexibility in programming web pages in various different

languages. An increased demand for computation in browser and availability of various

different languages in the market makes it critical to have support for multi-language

support for the browser. The libraries designed as a part of this project will help the

developer program in languages like Scheme and Lua.

Although, having multiple languages at the time has its own complexities, there

are various new research opportunities possible.

As a future work, we would like to expand these libraries to have complete

functionality to access DOM APIs. We would like to explore the approach similar to

CLR/JVM.

42

LIST OF REFERENCES

[1] ‘‘Architecture of .NET,’’ http://visualbasic-dotnet-hindi.blogspot.com/2012/07/
architecture-of-net.html, accessed: 2017-11-09.

[2] S. WaiLok and A. Davison, ‘‘Logicweb: Enhancing the web with logic program-
ming,’’ The Journal of Logic Programming, vol. 36, pp. 195–240, 1998.

[3] T. J. Hickey, ‘‘Scheme-based web programming as a basis for a cs0 curriculum,’’
SIGCSE Bull., vol. 36, no. 1, pp. 353–357, Mar. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1028174.971423

[4] P. Mayer, M. Kirsch, and M. A. Le, ‘‘On multi-language software
development, cross-language links and accompanying tools: a survey of
professional software developers,’’ Journal of Software Engineering Research
and Development, vol. 5, no. 1, p. 1, Apr 2017. [Online]. Available:
https://doi.org/10.1186/s40411-017-0035-z

[5] J. Matthews and R. B. Findler, ‘‘Operational semantics for multi-language
programs,’’ in Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’07.
New York, NY, USA: ACM, 2007, pp. 3–10. [Online]. Available:
http://doi.acm.org/10.1145/1190216.1190220

[6] R. K. Dybvig, The Scheme Programming Language, 4th Edition, 4th ed. The
MIT Press, 2009.

[7] R. Ierusalimschy, L. H. d. Figueiredo, and W. Celes, Lua 5.1 Reference Manual.
Lua.Org, 2006.

[8] R. K. Dybvig, The Scheme Programming Language: ANSI Scheme, 2nd ed.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1996.

[9] ‘‘IEEE Standard for the Scheme Programming Language,’’ IEEE Std 1178-1990,
1991.

[10] S. Krishnamurthi, ‘‘An introduction to scheme,’’ Crossroads, vol. 1, no. 2, pp.
19–27, Dec. 1994. [Online]. Available: http://doi.acm.org/10.1145/197149.197166

[11] ‘‘Scheme Programming Language description,’’ https://www.scheme.com/tspl3/
intro.html, accessed: 2017-11-28.

[12] W. C. Roberto Ierusalimschy, Luiz Henrique de Figueiredo, ‘‘Lua: an extensible
extension language,’’ Software: Practice Experience, 1996.

43

http://visualbasic-dotnet-hindi.blogspot.com/2012/07/architecture-of-net.html
http://visualbasic-dotnet-hindi.blogspot.com/2012/07/architecture-of-net.html
http://doi.acm.org/10.1145/1028174.971423
https://doi.org/10.1186/s40411-017-0035-z
http://doi.acm.org/10.1145/1190216.1190220
http://doi.acm.org/10.1145/197149.197166
https://www.scheme.com/tspl3/intro.html
https://www.scheme.com/tspl3/intro.html

[13] ‘‘Lua projects.’’ http://www.lua.org/uses.html, accessed: 2017-11-09.

[14] ‘‘Multi language browser support,’’ https://github.com/swapnilpatil427/
MultiLanguageBrowserSupport, accessed: 2017-11-21.

[15] A. Kennedy and D. Syme, ‘‘Design and implementation of generics for the .net
common language runtime,’’ SIGPLAN Not., vol. 36, no. 5, pp. 1–12, May 2001.
[Online]. Available: http://doi.acm.org/10.1145/381694.378797

[16] ‘‘Common Language Runtime (CLR),’’ https://docs.microsoft.com/en-us/dotnet/
standard/clr, accessed: 2017-11-29.

[17] J. J. Gough and K. J. Gough, Compiling for the .Net Common Language Runtime.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[18] J. Gosling, B. Joy, and G. L. Steele, The Java Language Specification, 1st ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1996.

[19] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual Machine
Specification, Java SE 8 Edition, 1st ed. Addison-Wesley Professional, 2014.

[20] E. Meijer and J. Miller., ‘‘Technical Overview of Common Language Runtime,’’
http://www.csc.lsu.edu/∼gb/csc7700/Reading/CLR.pdf, accessed: 2017-11-09.

[21] J. Singer, ‘‘JVM Versus CLR: A comparative study,’’ in Proceedings of the 2Nd
International Conference on Principles and Practice of Programming in Java,
ser. PPPJ ’03. New York, NY, USA: Computer Science Press, Inc., 2003, pp.
167–169. [Online]. Available: http://dl.acm.org/citation.cfm?id=957289.957341

[22] J. Juneau, Nashorn and Scripting. Berkeley, CA: Apress, 2017, pp. 529–551.
[Online]. Available: https://doi.org/10.1007/978-1-4842-1976-8 18

[23] ‘‘Rhino,’’ https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino, ac-
cessed: 2017-11-09.

[24] ‘‘Project Nashorn,’’ http://openjdk.java.net/projects/nashorn/, accessed: 2017-
11-09.

[25] ‘‘The Java Scripting API,’’ https://docs.oracle.com/javase/8/docs/technotes/
guides/scripting/prog guide/api.html, accessed: 2017-11-29.

[26] ‘‘PEG.js : Parser generator for JavaScript,’’ https://pegjs.org/, accessed: 2017-
11-09.

44

http://www.lua.org/uses.html
https://github.com/swapnilpatil427/MultiLanguageBrowserSupport
https://github.com/swapnilpatil427/MultiLanguageBrowserSupport
http://doi.acm.org/10.1145/381694.378797
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/standard/clr
http://www.csc.lsu.edu/~gb/csc7700/Reading/CLR.pdf
http://dl.acm.org/citation.cfm?id=957289.957341
https://doi.org/10.1007/978-1-4842-1976-8_18
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://openjdk.java.net/projects/nashorn/
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/api.html
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/api.html
https://pegjs.org/

[27] N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman,
R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M.
Pitman, G. J. Rozas, G. L. Steele, Jr., G. J. Sussman, M. Wand,
and H. Abelson, ‘‘Revised5 report on the algorithmic language scheme,’’
SIGPLAN Not., vol. 33, no. 9, pp. 26–76, Sept. 1998. [Online]. Available:
http://doi.acm.org/10.1145/290229.290234

[28] ‘‘The Lua VM on the Web,’’ https://daurnimator.github.io/lua.vm.js/lua.vm.js.
html, accessed: 2017-11-09.

[29] ‘‘Emscripten,’’ http://kripken.github.io/emscripten-site/, accessed: 2017-11-09.

[30] ‘‘Google Maps API,’’ https://developers.google.com/maps/, accessed: 2017-11-09.

[31] ‘‘Jqeury,’’ https://jquery.com/, accessed: 2017-11-09.

45

http://doi.acm.org/10.1145/290229.290234
https://daurnimator.github.io/lua.vm.js/lua.vm.js.html
https://daurnimator.github.io/lua.vm.js/lua.vm.js.html
http://kripken.github.io/emscripten-site/
https://developers.google.com/maps/
https://jquery.com/

	Multi Language Browser Support
	Recommended Citation

	tmp.1513897683.pdf.dyMas

