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ABSTRACT

A Completely Covert Audio Channel in Android

by Sukanya Thakur

Exfilteration of private data is a potential security threat against mobile devices.

Previous research concerning such threats has generally focused on techniques that

are only valid over short distances (NFC, Bluetooth, electromagnetic emanations,

and so on). In this research, we develop and analyze an exfilteration attack that has

no distance limitation. Specifically, we take advantage of vulnerabilities in Android

that enable us to covertly record and exfilterate a voice call. This paper presents

a successful implementation of our attack, which records a call (both uplink and

downlink voice streams), and inaudibly transmits the recorded voice over a subsequent

inaudible call, without any visual or audio indication given to the victim. We provide

a detailed analysis of our attack, and we suggest possible counter measures to thwart

similar attacks.
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CHAPTER 1

Introduction

Exfiltration of private data is a threat on mobile devices. Published attacks to

exfiltrate data from mobile devices use various communication channels such as NFC,

Bluetooth, Wi-Fi and FM radio receivers found in those devices [4, 8]. Availability

of these media on mobile devices also provide opportunities for using them as re-

ceivers for data exfilteration from other non-mobile devices such as a computer using

electromagnetic emanations [11]. While these media are commonly found in mobile

devices, relying on such media results in attacks for which distance from the target is

a limiting factor. This limitation, however, is absent when the cellular network itself

is used for exfiltration. The cellular network can be vulnerable to attacks due to the

fact that in most mobile phones the cellular interface (also known as baseband) is

controlled by the main processor of the mobile device, a feature that leaves cellular

media vulnerable to attack [10, 14]. Some published work explores the possibility of

using a text channel provided by the cellular network as a medium for exfiltration [5].

While the texting over a cellular network does provide a viable option for removing

any distance limitation, it suffers from the limitation that a data plan must be pur-

chased for the mobile device, and text usage appears in the phone bill, which likely

makes such an attack transient, at best.

In this project we have demonstrated that the audio media during a voice call

can become a medium for exfiltration. There are several potential advantages in using

audio during a voice call for exfiltration. As discussed above, voice does not have any

distance limitation, and such usage is less likely to be observed on a bill. The main

problem in using the audio media is that the voice calls are visually indicated and
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the audio transaction is audible.

We demonstrate that a voice call can be made completely covert—soundless

and with no visual cue to the phone user. We demonstrate our implementation of

covertly recording a call, and soundless replay of audio data to an incoming call

and automatically connecting the exfiltration call without any visual indication. The

implementation also demonstrates that incoming calls can be independently selected

for either covert call recording or covert replay of audio data that includes recorded

calls and other audio files, such as music. Soundlessness and the absence of visual

cues together render a completely covert channel for exfiltration of a voice call.

In this paper we demonstrate covert exfiltration of two types of audio data—a

recorded call conversation and a music file. There is published work [1, 8, 5] showing

an ongoing trend of modulating data and video for exfiltration. Based on this trend,

we believe that our work can easily be extended to exfiltrate data and video.

Our implementation of covert audio media during a voice call makes use of known

vulnerabilities in Android, such as device rooting, easily exportable hidden APIs,

installation of modules as shared libraries, and allowing an application to run inside

the process of another application. Our purpose is to demonstrate the exploitation

of these vulnerabilities so as to encourage the development of countermeasures to

mitigate these potential security threats.

This paper is organized as follows. Chapter 2 provides the essential background

information needed to understand our implementation. In Chapter 2, we give an

overview of related work published in this field, and we discuss how our work contrasts

with or builds upon the key ideas presented in previous work. Chapter 3 discusses our

implementation in detail. Chapter 4 describes experiments that we have conducted

2



to verify the claimed covertness of the implementation. Countermeasures to thwart

the risk of attacks shown in our work are discussed in Chapter 5. In Chapter 6 we

summarize our work and discuss a set of enhancements that could expose a much

greater level of threat using the covertness of audio media during a voice call.
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CHAPTER 2

Background

This chapter discusses necessary background of Android in order to understand

the implementation approach and the outcome of this project. We will also discuss

here briefly the prior work done in this area and how our work contrasts with or

builds on the key ideas presented in those works. Android has a reference architec-

ture simplified and illustrated by Table 1. The reference architecture is a layered

architecture—the lower layers providing services to the upper layers. Android ap-

plications use the Java Application Programming Interfaces (API) exported from

the Java/Framework layer. Framework layer API realize their functionality by using

the services provided by the Hardware Abstraction Layer (HAL) components im-

plemented in C/C++. Java API use Java Native Interface (JNI) to transact with

the HAL API. Android Open Source Project (AOSP) provides the source code and

build tools for Framework/Java API, JNI and HAL API for any published version of

Android [2]. The HAL API interact with the linux kernel through software drivers

provided mostly by device vendors. The lowest layer consists of various hardware

such as audio devices, Baseband, and GPS. Baseband device interfaces with the Cel-

lular network and naturally is one of the main hardware components in the mobile

devices. Android functional modules such as Telephony and Audio modules conform

to the Android reference architecture. Refer to the published Android Reference [13]

for a detailed understanding of the Telephony stack. Refer to Android Audio Imple-

mentation site [3] for a detailed understanding of the Audio stack. Section 2.1 and

Section 2.2 present the essential elements of the Telephony and the Audio stacks re-

spectively. The material presented in these sections provide the necessary background
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for our implementation presented in Chapter 3.

Table 1: Android Telephony and Audio stacks

Android Ref

Stack

Telephony Audio

Apps Phone Media player
Java
API/Frame-
work

PhoneGlobal, Call-
Manager, Call Noti-
fier, GSMPhone, RIL,
ITelephony

AudioRecorder, Au-
dioTrack

JNI libmedia_runtime
HAL RIL daemon(rild) libmedia, tinyalsa,

AudioFlinger, Au-
dioMixer

Linux Kernel vendor RIL ALSA
Hardware Baseband Processor Mic, Speaker, Blue-

tooth, earphone

2.1 Telephony Stack

The Telephony stack implements the control path of a voice call whereas, the

voice path is implemented in the Audio stack. The purpose of the control path is to

process the signals from the underlying baseband device as well as from the phone user

and manage the life cycle of a voice call. The main components of our interest in this

stack are the Radio Interface Layer(RIL), BasePhone, CallManager, and CallNotifier.

Each of these components are class objects. RIL interfaces with the RIL daemon in

the HAL via a linux socket for receiving or sending call signals to the underlying soft-

ware device driver (aka vendor RIL) that controls the baseband device. Drake et al.

explains RIL and its related components details [6]. An internal PhoneApp applica-

tion configures the Telephony stack by interconnecting the components to each other

so that they form a layered hierarchy. The upper layer component registers with the
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lower layer to get notifications for certain events. The lower layer notifies its regis-

tered upper layer components when the event occurs. RIL, BasePhone, CallManager

and CallNotifier form a stack sequence, RIL being at the lowest. BasePhone holds the

reference to the underlying implementation of a phone object such as GSMPhone or

CDMAPhone. BasePhone in turn is referenced by the ProxyPhone object. BasePhone

registers itself with RIL object to receive and send the call control signals. CallMan-

ager registers with the BasePhone for almost all telephony events and gets notified

by the BasePhone. The CallNotifier implements the call indication User Interface

(UI) for incoming calls. CallNotifier shows the call indications when CallManager

notifies it on an incoming call. These components form a path sequence for upward

flow of a call signal. For example, an incoming call signal in the Java layer can travel

through a path—RIL ->BasePhone ->CallManager ->CallNotifier. Figure 1 il-

lustrates this arrangement and shows the register-notify hierarchy of the components

discussed above.

Figure 1: Main Modules of Telephony Stack
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2.2 Audio Stack

The Audio stack manages the audio hardware devices such as speaker, earpiece,

voice call device, bluetooth, headset, earphone and so on. The stack provides device

control such as discovery of a device, enabling a device, and muting a device. In

addition to controlling and managing the individual audio devices, one of the main

functionality of the Audio stack is to manage and control the audio paths. Figure 2

shows the main components of Audio stack during a voice call. An audio path from

any of the physical audio devices is called an audio channel. The digital audio data

flowing through a channel is referred to as an audio stream. The voice channel and

the voice stream refer to the audio channel and the audio stream during a voice call.

Figure 2: Main Modules of Audio Stack

In this discussion we are interested in the management of the voice streams and

the voice channels during a voice call. A voice stream during a call is coded in Pulse

Code Modulation (PCM) using 16 bits for each sample. The Voice Call device refers
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to a virtual device that provides and handles the voice channels and the voice streams

during a voice call all the way to the Baseband via the HAL interface. The Audio stack

uses tinyalsa as the HAL layer to control, read and write voice data during a call. The

tinyalsa HAL layer provides API to read and write PCM data streams. These PCM

streams are routed and mixed by AudioFlinger and AudioMixer to other devices. A

voice path during a voice call consists of two channels - uplink and downlink. The

uplink voice channel takes the voice stream from input devices such as microphone

or bluetooth to the baseband. The downlink channel carries the voice streams from

the baseband to the output devices such as speaker, earpiece, earphone or bluetooth.

One of the main functionality of the Audio stack, as mentioned above, is to

provide pathways to audio streams by switching them among multiple channels. In

addition to switch the streams among multiple channels, the stack provides also a

mixer for re-sampling and mixing the audio streams to improve the audio quality and

to feed the streams appropriately to channels. For example, both uplink and downlink

voice streams are mixed and fed to the speaker. The switching and mixing of audio

streams are controlled by a policy manager. The policy manager runs as a system

service and is implemented by AudioPolicyManagerBase.cpp module in the HAL. The

switch and the mixer are implemented by AudioFlinger and AudioMixer modules re-

spectively in the HAL. The policy manager defines and creates the pathways. The

policy manager uses an external configuration file, “audio_policy.conf”, located in the

/etc/ directory. The policy configuration file is a plain text file. It defines the input

and output audio devices and their profiles. A profile define the device characteristics

used by the mixer and flinger. For example, the profile for a voice call device defines

number of bits per sample, sampling rate, number of channels to be mixed and so

on. AudioPolicyManagerBase reads the configuration information at the boot time

8



and creates internal data structure for the AudioFlinger. If the external audio policy

configuration file is not present, the policy manager creates a default configuration

for each device. The audio policy manager creates a data structure that represents

the configuration information and used by the flinger and mixer modules. The flinger

switches the streams among the defined pathways based on the configuration infor-

mation. Prior to switching the streams to a channel, the flinger sends the stream to

the mixer with appropriate mixing parameters. The output of the mixer is fed to the

destination channel.

The Audio stack publishes AudioRecord and AudioTrack API to applications for

reading or writing the audio streams to user files. AudioRecord outputs a specified

stream for writing to an external file. AudioTrack takes a user stream and feeds it to

an audio output device via the flinger. AudioRecord and AudioTrack are discussed

in Section 2.3 and Section 2.4 respectively.

2.3 Audio Recording

AudioRecord is used for audio recording. The API returns audio stream from

a user requested audio input device. The API takes the audio input device as the

audio source parameter. AudioRecord.java implements the user interface of the API

and AudioRecord.cpp implements the main functionality. In the user interface layer,

the user provided parameters are validated and a call to JNI is made. The JNI part

creates the AudioRecord.cpp object, and invokes the set method of this object. The

set method in turn makes a call to the flinger to open an output channel that can

be used to provide an outlet for the stream requested by the user. The flinger reads

the device information and its profile from the configuration data created by the

policy manager to validate the user request. At this point the user request for the
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stream output can be declined depending on the policy defined by the configuration

information. Once the request is validated and accepted, the AudioRecord object sets

up buffers that are shared between the user thread and the flinger. So the flinger will

output the requested stream in the shared buffer. The user is expected to consume

the stream data from the buffer to prevent any overrun. AudioRecord provides a

read method to extract stream data from the buffer. After every read, the buffer is

released.

Android official site mentions the voice call device as one of the possible input

devices that can be accepted by the API. However, starting Android 4.0, the voice

call device implies only the uplink voice channel from the microphone. The downlink

voice channel is simply ignored by the API. This prevents recording of a two-way call

conversation.

2.4 Audio Replay

AudioTrack is used by applications for writing user audio stream into an audio

output device such as speaker and bluetooth. AudioTrack.java implements the user

interface and AudioTrack.cpp implements the main functionality. A JNI interface

provides the transition and data transfer between the two modules. Figure 3 shows

how this API interfaces with the HAL layer. The user interface transfers control to

JNI after a preliminary validation of user arguments. The JNI creates the Audio-

Track.cpp object and calls its set method. The set method in turn makes a call to

the flinger for opening an input channel that can provide the user stream a path to

the requested device for output. The flinger validates the user request using the con-

figuration information created by the policy manager. An input channel is opened or

declined depending on the configuration information. The implementation does not
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support a user stream to feed a voice call directly as there is no standalone voice call

device configuration available for direct output. In addition to this, the flinger and

mixer are configured in such a way that the user audio stream is never routed to a

voice call. The configuration allows the downstream voice channel to be connected

to only audible devices such as speaker, headphone, earpiece or bluetooth. The up-

stream voice channel is fed from only microphone or bluetooth. Any alteration to

this scheme would require a major code change in flinger. The above implementation

of AudioTrack API makes it considerably difficult to make a voice call inaudible.

Figure 3: AudioTrack implementation at the lower layer

2.5 Prior Work on Covert Channel using Audio Media

Multiple works have been published demonstrating proof of concepts on imple-

menting covert audio channels in Android for data exfilteration. These works fall

under two main categories—a) Modulating the data and transmitting it in the in-

audible frequency range through an audio media; and b) Modulating the data and
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transmitting it in the audible range using voice path. While transmitting data in

inaudible range requires the adversary mobile device to be located in close proximity

to the compromised device, data transmitted in the audible range is essentially not

covert.

The work of Do et al. [5] presents use of SMS and audio media for covertly

exfiltrating data from a mobile device. Do et al. argue that SMS and audio media

are commonly available media on mobile devices and exfiltration over these media

is difficult to be controlled. The authors propose the SMS medium for long range,

large data exfiltration; and the audio medium for short range, small data exfiltration.

Base64 is used to convert data to text prior to sending it via SMS. The entire base64

encoded data is split into a series of SMS messages prior to transmission. As messages

via SMS are not guaranteed to be delivered in sequence, the receiver uses message

index inserted by the sender to reassemble the messages in order. The messages are

deleted immediately after sending in order to avoid detection at the victim phone.

Scheme proposed by Do et al. for using audio medium for exfiltration relies on the

fact that speakers and microphones on mobile devices can generate and received audio

frequencies outside the human audible range. The work shows inaudible broadcast of

user key-press sequences from the victim phone speaker and subsequent reception of

the inaudible broadcast by the adversary microphone. The key press on the victim

phone is tapped and the sequence of 1 and 0 of the key code is converted to inaudible

frequency range to be broadcast from the speaker. 20 kHz, 22 kHz and 21 kHz are used

respectively to represent 0, 1 and space between any two data bits. The sequence

101 is sent without any spacer frequency to indicate completion of the binary bit

pattern for a key-press. Both the schemes presented by Do et al. suffer from serious

limitations inherent in the chosen media of exfiltration. Use of SMS can face limited

12



availability of media and can run into risk of detection. Availability of SMS depends

on the service plan of the mobile phone, and can be detected by the usage record

in the phone bill. The user can be visibly warned and/or further transmission can

be blocked when the size of exfiltration exceeds the permissible data capacity of the

phone by the service plan. These incidences can expose the attack. The audio scheme

proposed by the authors suffers from distance limitation and data transmission errors

due to noise present in the medium. The authors found that the reception accuracy

was 100% only up to 1.7 m and the reception dropped entirely by 3.7 m. No data has

been presented by the authors to clearly show the impact of noise on transmission

errors, however they observed that in the cafe environment, reception dropped entirely

at 2.9 m.

Work by Guri et al. [8] presents covert data exfitration from a computer with

the help of a mobile phone using audio media. The data (text or binary) from

the computer is first modulated to audio tones using either Audio Frequency Shift

Keying (A-FSK) or Dual Tone Multiple-Frequency (DTMF). The audio signal is then

frequency modulated using a carrier frequency in the FM radio range. The carrier

frequency in FM radio range is generated by the video display unit by constructing

an image of alternating sequence of black and white pixels. Once emanated from the

video display unit, the signal is like a FM radio broadcast that is received by FM

Radio in mobile phone. This FM audio is recorded by the mobile phone by modifying

the MediaRecorder class, to extract and demodulate the data. In order to avoid

potential detection by reception of changing tones in the FM radio in the mobile

phone, the FM reception band is changed. Guri et al. work by using audio media

for covert exfiltration suffers from distance limitation. Their results show that data

could be transmitted with 97.73% accuracy up to a maximum distance of only 7 m.
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Audio/FM modulated data transmission is slow, the results showing approximately

11 hours to transfer a raw data of size 0.5MB.

The work of Aloraini [1] attempts to use voice call as a covert media for trans-

mitting audio modulated text data. In this work, a call monitor is inserted within the

telephony stack to watch for an incoming call from a predetermined number. Upon

receiving a call from that number, the call is connected without any visual indication.

The text data is converted to audio using FSK modulation prior to transmission.

The transmission of data however, remains audible. Moreover, the phone user cannot

make any call during the exfiltration. The work justifies the covertness by arguing

that the modulated signal sound is not human intelligible. The audibility and the user

call blocking scheme however, makes the attack detectable, and the overall scheme of

exfiltration fails to remain covert. In addition, the work is not suitable for large data

exfiltration as the phone will remain blocked during the entire duration of exfiltration.

The scheme is also not suitable for exfiltration of voice data, for example, a recorded

call or music as it will become intelligibly audible.

Our work demonstrates a completely covert voice path that is inaudible with no

visual indication. We have also provided a way to record any call conversation by

breaking the limitation of AudioRecord to record only uplink voice. We also handle

the call states within the call monitor to avoid blocking of user initiated calls during

the exfiltration. In this project we have implemented and shown only audio data

exfiltration. This is only a superficial limitation and can be removed by deploying

the published work to convert non-audio data to audio data.

14



2.6 Infection Mechanism

With all its attempts to providing security to application and data, Android re-

mains vulnerable because of its architectural limitations and practices. As Drake and

Elenkov show in their respective [6, 7] A complete treatise on Android vulnerabilities

are available in the separately published works of Drake et al. and Elenkov [6, 7].

We highlight some of those here as examples. Android uses shared libraries to im-

plement API at the HAL layer and uses dex jar files for implementing API at the

application layer. By knowing the Android version of a phone (which can be easily

automated by yet another malicious software implanted in the device), it is easy to

build a shared library or the dex jar files for that version in the AOSP and transport

it to the device once the device is rooted. Rooting a device is routinely done by the

adversaries. Another vulnerability of Android lies in the fact that an application can

potentially run in the process of another application and can enjoy the privileges of

the host application. The only real prevention provided by Android here is that the

incumbent application should be signed with the same certificate as the host applica-

tion. There are multiple ways of overcoming this restriction including use of publicly

available signing tools. Another easily vulnerable security mechanism used by An-

droid is to hide an API by using @hide pragma of Java and creating a rule in the

ADT plugin used by SDK. This security arrangement is easily breakable with tools

like d2j_dex2jar that can easily extract the Java jar files from dex code and include

those in the SDK. A simple hack in ADT can easily be done, as shown in Appendix

A to work around the ADT rule. After including the extracted jar files from dex

jar files and removing the ADT rule, all the hidden API can be accessed using Java

reflection. Java reflection allows access to even private fields and methods. Finally,

it remains a fact that all security mechanisms implemented by Android ends at the
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Java layer. Access to the HAL layer when a device is rooted, bypasses all the Android

specific security layers. Once the device is rooted, the HAL layer opens up a wide

attack surface. Modifying the HAL layer open source or using the needed API from

this layer is easy. Our work demonstrates the exploitation of all the above Android

vulnerabilities.

16



CHAPTER 3

Implementation

This chapter describes the implementation of our project. There are essentially

three parts to our implementation. Section 3.2 discusses the first part of implementa-

tion for covertly watching for incoming phone numbers. This part of implementation

is also responsible for triggering the covert recording of a call, and automatically

connecting to an incoming call for covert audio exfiltration.

The second part implements a covert recording of an incoming call from a prede-

termined number. As discussed in the Section 2.3, Android does not allow recording

of a two-way call conversation during a voice call. Only the uplink voice stream can

be recorded. Section 3.4 discusses our implementation to remove this restriction.

The final part of our implementation deals with inaudible exfiltration or replay

of an audio stream directly into a voice call. As discussed in Section 2.4, this feature

is simply not available in Android. A major code change is required to overcome this

limitation. Section 3.3 discusses our much simplified implementation for injecting any

audio data covertly into a voice call.

Before delving into details, we would like to mention that learning Android pro-

gramming environment and methodology is an essential skill to be acquired for the

implementation. The Android programming concepts and examples illustrated in [12]

have been extremely useful during our implementation.
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3.1 The Development Environment

All Android applications and libraries are compiled and built on a host system

using the cross compilation and build tootkits for the target mobile device. Hence

a development environment is to be set up for cross-compiling and building the ap-

plication and the libraries. Our host system consists of Ubuntu 14.04LTS running

on Windows 7 based VMPlayer. We used Eclipse Luna with Android Development

Tool (ADT) plugin. Eclipse provides an Integrated Development Environment (IDE)

for developing Android applications. Both the Android SDK and the Android Open

Source Project (AOSP) source tree are installed on the host. SDK and ADT plugin

together provide the API, the toolkit and the build rules for Android application

development. AOSP comes with the required toolkit for building the shared libraries

and dex modules such as framework.jar. Refer to Android sites for downloading and

configuring AOSP, ADT and SDK [2, 9]. In addition to the standard tools mentioned

above, other tools are also needed to support our special needs of rooting the device,

signing the application and extracting dex files. Table 2 lists the tools and devices

used for the implementation.

Rooting of the target phone device is critical for our implementation. We could

use the rooting process fully explained in [4]. We chose to build and download the

Android on the target device in the debug mode, giving us automatic root access [6].

In order to use certain hidden API, the SDK needed to be extended with the class

files of certain core classes in framework and telephony modules. This was achieved

by extracting the required jar files from the dex modules in the target device using the

d2j_dex2jar tool. Eclipse needed to be configured for setting up SDK path, building

system application and enabling access to hidden API. Android ADT plugin in Eclipse

needs some hacking for permitting use of hidden API. Appendix A gives the steps
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Table 2: Development Tools & Devices

Tools & Devices Development Usage
Ubuntu 14.04LTS Operating system on the host

VM
Eclipse Luna IDE for building application
ADT Android plugin for Eclipse
SDK Development kit
AOSP 4.3 Building shared library
WugFresh Nexus Root Toolkit
v1.8.2

Rooting the target device

d2j_dex2jar 2.0 Extract the java jar file from
dex files

signApk Signing the application
Android Phone firmware Maguro 4.3
JWR66Y

Experimental target phone de-
vice

for setting up Eclipse including the hack for working around the ADT plugin rules.

Appendix B gives the steps to carry out for building libraries in the AOSP, creating

the required entries in the application Manifest file and signing the application.

3.2 Implanting a Call Monitor

The call monitor application needs to share the process of PhoneApp so that it

can register for receiving call notifications. The call monitor is implemented as an

Android Service application and is inserted inside the PhoneApp process representing

a Man-in-Middle attack. The approach is similar to the work of Aloraini [1]. We,

however, handle the call states in the call monitor as opposed to simply blocking the

handlers. This makes the call tapping fully covert by avoiding any potential notice

taken by the phone user.

In order to share the PhoneApp process, the application has to have the same

user id and certificate as the PhoneApp. As the PhoneApp is installed as a system
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application, our application is installed under /system/app. Appendix A shows the

entries in the Manifest.xml file of the application and describes the steps to sign the

application.

In order to insert our call monitor between the BasePhone and the CallManager,

the references to the BasePhone, the CallManager and their corresponding call han-

dlers are obtained using Java reflection mechanism. CallManager has a single handler

that is used to handle all the call related notifications. The call monitor application

registers itself with the BasePhone and de-registers the CallManager handler from the

BasePhone. The application then registers the CallManager handler to itself. This

process inserts the application between the BasePhone and the CallManager making

it receive the call notifications prior to the CallManager.Figure 4 illustrates how the

call monitor is positioned within the Telephony stack.

Figure 4: Placing Call Monitor inside the telephony stack

Figure 5, Figure 6 and Figure 7 shows essential code snippets for placing the call
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Phone phone = nu l l ;
t ry {

phone = (Phone ) m. invoke ( c ) ;
Log . i ( "Sukanya" , "Phone␣Found" ) ;

} catch ( I l l ega lArgumentExcept ion e ) {
//TODO Auto−generated catch block
e . pr intStackTrace ( ) ;

} catch ( I l l e g a lAc c e s sExc ep t i on e ) {
//TODO Auto−generated catch block
e . pr intStackTrace ( ) ;

} catch ( Invocat ionTargetExcept ion e ) {
//TODO Auto−generated catch block
e . pr intStackTrace ( ) ;

}
Phone basePhone = phone . getForegroundCal l ( ) . getPhone ( ) ;

Figure 5: Get the reference to the Phone using Reflection

monitor between the BasePhone and the CallManager.

t ry {
myHandler = ( Handler )mCMHandler . get (mCM) ;
Log . i ( "Sukanya" , "CallManager␣Handler ␣ found" ) ;

} catch ( I l l ega lArgumentExcept ion e ) {
e . pr intStackTrace ( ) ;

} catch ( I l l e g a lAc c e s sExc ep t i on e ) {
e . pr intStackTrace ( ) ;

}
basePhone . unreg i sterForIncomingRing (myHandler ) ;
t h i s . r eg i s te rForIncomingRing (myHandler , EVENT_INCOMING_RING, nu l l ) ;

Figure 6: Unregister the CallManager from Phone

basePhone . reg isterForNewRingingConnect ion (mHandler ,
EVENT_NEW_RINGING_CONNECTION, nu l l ) ;

basePhone . reg i s te rForIncomingRing (mHandler , EVENT_INCOMING_RING, nu l l ) ;

Figure 7: Register the call monitor handler with the Phone

The call monitor is responsible for monitoring incoming calls and suppressing

any visual indication when an audio replay is to be done. In our implementation we

hard coded a phone number for secretly recording the call, and another number for

21



replaying the recorded call. When the call monitor detects the incoming call from the

recording number, it starts the recording by using the modified AudioRecord API.

The incoming call notifications are also passed to the CallManager so that the call

appears to be a normal call. Current implementation has a hard coded file name

to store the recording. When the incoming call from the replay number is detected,

the call monitor automatically connects the call and suppresses the incoming call

notification from sending it to the CallManager. Hence the CallNotifier is never

invoked to give any visual indication. The call monitor starts the replay by calling

the MyAudioTrack. The MyAudioTrack API uses tinyalsa API for sending the audio

stream directly into the voice call. Implementation of MyAudioTrack is explained in

Section 3.3.

3.3 Implementing Soundles Replay of Audio Data

The flinger replays all audio files by feeding the stream into output device such as

Speaker. A voice call streams are fed to the standard input and output devices. The

flinger is coded in such a way that it would require considerable re-design and coding

to disassociate the connections of a voice call streams from the channels of the audio

devices. However our research has identified a shortcut path to directly feed the audio

file stream into a voice call uplink stream. The mechanism uses the fact that with

root permission, it is possible to read/write the PCM streams by making direct calls

to tinyalsa API. This mechanism bypasses the flinger making the replay completely

soundless. We have implemented a user level API, MyAudioTrack that interfaces

with tinyalsa using the standard JNI and C++ object. This approach enables access

to tinyalsa from user application level. Figure 8 illustrates the mechanism explained

above.
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Figure 8: Modified AudioTrack uses direct call to tinyalsa

The user interface of MyAudioTrack is integrated with the framework.jar. The

JNI for this API is created and integrated in libandroid_runtime.so and MyAudio-

Track.cpp is created and integrated in the libmedia.so. MyAudioTrack provides a

play method to play the audio to the voice call. The play method implemented in

the C++ end of MyAudioTrack uses the tinyalsa APIs to write to baseband device

directly.

Figure 9 gives a pseudo code used to insert the PCM data of a file directly into

the baseband device.

pcmdev = open_pcm( card , dev i c e )
f i l e = open_f i l e ( f i l ename )
do :

nbytes = f r ead ( f i l e , bu f f e r , BUFSIZE)
pcm_write (pcmdev , bu f f e r , nbytes )

whi l e nbytes > 0

Figure 9: Writing the data directly into the pcm stream
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3.4 Recording a voice call

The existing audio policy implemented by Android restricts the voice recording

stream only to be fed from the microphone input stream. This implies that only

uplink voice during a call can be recorded as it is sourced from the microphone.

Recording of both the uplink and the downlink streams of a voice call is prevented by

excluding the voice call device from the list of input devices in the audio configuration

file; and by dropping the channel entries for a voice call from the list of channels in

sInChannelsNameToEnumTable array.

First we need to make the necessary entries in the “audio_policy.conf”

file. To enable the recording of a voice call, the voice call device symbol,

AUDIO_DEVICE_IN_VOICE_CALL, and its profile data were added to the policy con-

figuration file. The required voice channels were entered in the sInChannelsName-

ToEnumTable array in the AudioPolicyManagerBase.cpp file. In addition, the hidden

audioParamCheck method of AudioRecord class was made aware of the uplink and

downlink voice channels. Figure 10 shows the entry for the voice call device. Fig-

ure 11 shows profile entry. Both entries are added to the audio policy configuration

file.

g l oba l_con f i gu ra t i on {
attached_output_devices AUDIO_DEVICE_OUT_EARPIECE |
AUDIO_DEVICE_OUT_SPEAKER

default_output_device AUDIO_DEVICE_OUT_SPEAKER
attached_input_devices AUDIO_DEVICE_IN_BUILTIN_MIC |
AUDIO_DEVICE_IN_BACK_MIC | AUDIO_DEVICE_IN_VOICE_CALL

}

Figure 10: Adding voice call device to the audio policy file

Next, we need to make changes in the AudioRecord and AudioPolicyManager-

Base.cpp files. Figure 12 gives the code snippet for adding the voice call channels to
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i nputs {
primary {

sampling_rates 8000 |11025 |16000 |22050 |24000 |32000 |44100 |48000
channel_masks AUDIO_CHANNEL_IN_MONO |AUDIO_CHANNEL_IN_STEREO |

AUDIO_CHANNEL_IN_FRONT_BACK | AUDIO_CHANNEL_IN_VOICE_CALL
formats AUDIO_FORMAT_PCM_16_BIT dev i c e s AUDIO_DEVICE_IN_BUILTIN_MIC
|AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET |

AUDIO_DEVICE_IN_WIRED_HEADSET | AUDIO_DEVICE_IN_BACK_MIC |
AUDIO_DEVICE_IN_VOICE_CALL

}
}

Figure 11: Adding voice call device profile to the audio policy file

the audioParamCheck method of the user interface part of AudioRecord API. This

modification is needed to make AudioRecord recognize these channels. Figure 13

shows insertion of the voice call channels in the sInChannelsNameToEnumTable list.

This addition is needed for the flinger to recognize these channels. Finally Figure 14

illustrates how the AudioRecord API can be called for recording a voice call.

case (AudioFormat .CHANNEL_IN_VOICE_UPLINK | AudioFormat .
CHANNEL_IN_VOICE_DNLINK) :

mChannelCount = 2 ;
mChannels = channelConf ig ;
break ;

case AudioFormat .CHANNEL_IN_VOICE_DNLINK:
mChannelCount = 1 ;
mChannels = channelConf ig ;
break ;

case AudioFormat .CHANNEL_IN_VOICE_UPLINK:
mChannelCount = 1 ;
mChannels = channelConf ig ;
break ;

Figure 12: Adding voice call channels as acceptable parameter value to AudioRecord
API

3.5 Installation

After making the code changes as described in the previous sections, the modules

are compiled, built and downloaded to the device. Refer to Appendix B for these
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#de f i n e AUDIO_CHANNEL_IN_VOICE_CALL
(AudioSystem : :CHANNEL_IN_VOICE_UPLINK)

const s t r u c t StringToEnum sInChannelsNameToEnumTable [ ] = {
STRING_TO_ENUM(AUDIO_CHANNEL_IN_MONO) ,
STRING_TO_ENUM(AUDIO_CHANNEL_IN_STEREO) ,
STRING_TO_ENUM(AUDIO_CHANNEL_IN_FRONT_BACK) ,
STRING_TO_ENUM(AUDIO_CHANNEL_IN_VOICE_CALL) ,

} ;

Figure 13: Adding voice call streams to flinger

record = new AudioRecord (MediaRecorder . AudioSource .VOICE_CALL,
SAMPLE_RATE,
AudioFormat .CHANNEL_IN_VOICE_UPLINK |
AudioFormat .CHANNEL_IN_VOICE_DNLINK,
// AudioFormat .CHANNEL_IN_STEREO,
AudioFormat .ENCODING_PCM_16BIT, bu fS i z e ) ;

Figure 14: Calling Audio Record for recording for recording voice call

steps. Table 3 shows the modules that are built and their destination locations in the

target phone device.

Table 3: Modules and their install destinations

New or Modified item Destination

MyAudioTrack framework/framework.jar
MyAudioTrack lib/libmedia.so
android_media_MyAudioTrack.cpp lib/libandroid_runtime.so
AudioPolicyManagerBase.cpp lib/hw/audio_policy.default.so
final.apk /system/app
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CHAPTER 4

Results

We conducted a series of experiments and results to verify the audio and vi-

sual covertness of the audio data exfiltration. The experiment to covertly recording a

two-way call coversation during a voice call is described in Section 4.1. Section 4.2 de-

scribes the exfiltration of a pre-recorded call, and Section 4.3 describes the exfiltration

of a music file.

A series of experiments need to be conducted to show the behavior of victim

phone in presence of the attack. For example the impact on battery life and the

timing delay experienced during a normal call are to be observed and recorded here.

Section 4.4 is currently a place holder for these experiments.

4.1 Experiment 1: Recording a Call conversation

This experiment verifies the recording of both uplink and downlink voice streams.

Figure 15(a) illustrates this experiment.

When a call comes from a pre-determined number, the recording starts and stored

under a file in the root directory. The file is then pulled to the host and replayed

using ’aplay’ available on Ubuntu 14.04LTS using the following command line:

aplay -t raw -c 2 -f S16_LE -r 44100 record.pcm

We found that the replay is clear for both streams. However the volume of

downlink voice is much lower compared to the uplink voice.

27



Figure 15: Experimental setup for showing covert call recording and replay

4.2 Experiment 2: Replaying covertly the recorded call to an incoming

number

The second part of the experiment illustrated by Figure 15(b) was done to verify

covert replay of the recorded audio file in the experiment in 4.1. The expectation was

that when a call comes from a predetermined number, the call would be connected

without showing any visual indication and the audio file will be replayed to the other

end of the call without being heard at the local device. We verified this expected

outcome.

The audibility of uplink voice was clear, but the downlink voice was a little

difficult to hear. This can be due to the fact that we used only default static mixer

when replaying the audio file to the voice call device.
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4.3 Experiment 3: Replaying a large music file to a pre-determined in-

coming number

This experiment is similar to the experiment in 4.2, but this time a large WAV

file was used for replay. The file played for around 4 minutes with clear audibility to

the other end.

4.4 Experiment 4: Impact on normal phone behavior

We experimented the behavior of the phone for the following use cases to verify

the covertness of the replay:

1. An incoming call to the victim phone during an exfiltration: The exfiltration

call is disconnected, the incoming call is also disconnected.

2. An exfiltration call during an established incoming call at the victim phone: The

exfiltration call is not allowed, and the foreground established call continues.

3. An exfiltration call during an established outgoing call from the victim phone:

The exfiltration call is not allowed, and the foreground established call contin-

ues.

4. An attempt to make an outgoing call from victim phone during an exfiltration:

The exfiltration is disconnected and the dialer pops up on the victim phone

screen allowing the user to make the outgoing call.

5. The phone goes to sleeping mode during exfiltration: The exfiltration continues.

6. An exfiltration call when the phone is in the sleeping mode: The phone remains

in the sleeping mode, and the exfiltration is allowed to proceed.
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7. An exfiltration call during a non-phone applications such as web browsing and

camera: The exfiltration proceeds without any call indication, the application

also continues.

8. Opening of a non-phone application during an ongoing exfiltration: The appli-

cation starts and the exfiltration continues.

4.5 Discussion on the results

The results for Section 4.1 is explained by the settings of sound volumes to

match the different input and output audio devices. the volume of downlink voice

is much lower compared to the volume of uplink voice. This results from the fact

that the downlink voice volume is kept much lower to match the safety level of the

earpiece. The uplink voice comes from the microphone and the volume is set to

match the microphone which is higher than the volume set for the earpiece. Results

of Section 4.2 shows that when the recorded call is replayed at the adversary end, the

downlink voice in the recorded call is barely audible. This results from two factors.

First, the replay is given to the earpiece of the adversary phone so the voice volume

for both uplink and downlink channels in the recorded call is attenuated making the

downlink voice volume significantly lower than the uplink voice volume. Another

factor affecting the poor audibility is the fact that we have bypassed the Android

optimized mixer at the victim end, and used a mixer that is not fully optimized.

Section 4.4 shows that we have managed the states of exfiltrating call to keep it

covert. Most of the usual phone behavior have been tested to verify the covertness of

the exfiltration. As there are numerous possible interactions, more testings need to

be done for the verification of covertness in presence of complex interactions.
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CHAPTER 5

Countermeasures

The main purpose of this project is to expose a few potential attacks on mobile

phones that exploit the existing vulnerabilities of Android. Our potential attacks take

advantage of the fact that shared libraries and dex jar files can be built and installed on

any rooted mobile device once the device Android version is known. Unlike infecting

the device by making changes in SMALI code of a dex file that can be easily thwarted

by obfuscating the code, we argue that our approach poses significant challenges to

countermeasures. Any such countermeasure has to be evaluated carefully as it may

impact Android policy of open source and may not be justifiable from business point

of view. In this chapter, we try to evaluate possible countermeasures to mitigate the

risk of the potential attacks.

We have presented an attack that covertly records a call conversation other-

wise not permitted by Android. The key vector to this attack is the plaintext “au-

dio_policy.conf” file. We are easily able to include the voice call input device and its

profile in this file. A possible mitigation will be to encrypt this file. It will then also be

required that the decryption code is kept separate from the open source code. Hence

a vendor supplied proprietary code must be used for decryption. However Android

audio policy manager implements a default configuration built into the code when the

external file is not available on the device. Hence the adversary will easily be tempted

to remove the encrypted external file and then tamper the default configuration that

is available in the open source tree. Removal of default code altogether is not effective

as it can be easily reinstated.

31



Mitigation of the covert replay attack is also difficult and must be investigated

for viability. The key attack vector here is the open source of tinyalsa that is used

for baseband device access. Use of a proprietary API for baseband access can be a

possible countermeasure. However, this decision falls in the space of Android open

source policy and the countermeasure can pose certain business impact. Another

approach may be to deploy in the target device a tamper detection mechanism for

the shared libraries. Use of cryptographic hash seems to be a viable option. The

cryptographic hash has to be kept in the pre-boot modules (such as initrd) to avoid

tampering of those hashes themselves. Implementation of such tamper detection

mechanism, however, should not come in the way of genuine experimentation or

install of upgrades on the device. Coming out with an effective mitigation approach

to protect a tampered shared library in Android calls for a research on its own.
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CHAPTER 6

Conclusion and future work

Our project presents a proof of concept implementation for using a voice call as a

potential covert channel for data exfiltration. In order to achieve this, a call monitor is

inserted in the telephony stack for monitoring the incoming calls. When an incoming

call from a predetermined number is detected by the call monitor, it triggers either

the call recording or replay of an audio data depending on the incoming number.

The call recording is kept covert and the user does not get any clue of the ongoing

recording. The call monitor automatically connects the call for replay or exfiltration

of audio data. On the victim phone the replay is inaudible and there is no visual

indication of the call.

Our implementation breaks multiple security boundaries created by Android.

The recording of two-way call conversation during a voice call overcomes the recording

restriction of downlink voice stream posed by the Android audio policy manager. For

replaying an audio stream inaudibly over the voice call bypasses the restricted audio

path that prevents the flinger from sending the user audio stream directly to the

baseband device.

In our approach we have exploited Android dependency on shared libraries.

Shared libraries can be built easily in AOSP for any published Android version, and

can easily be inserted into a rooted mobile device. We have argued that our approach

presents difficult technical and business challenges to mitigate the proposed attacks.

Tampering detection in the shared library by using cryptographic hashes is not an

easily viable option as it will come in the way of doing genuine experimentation and
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upgrade on the device. Disassociating the vulnerable modules from AOSP and mak-

ing those modules as vendor proprietary may not be easily achievable due to business

reasons. Coming out with an effective mitigation of the potential attacks thus seeks

an independent research on its own.

Our current implementation is limited to only audio data exfiltration. The pub-

lished research [1, 8, 5] claim that a data can be audio modulated. Based on those

works, our work can be enhanced for application to a generic data exfiltration. The

data exfiltration built over voice call will break the distance limitations faced by the

published research.

Our implementation has paved the path for direct usage of tinyalsa for covert

replay of uplink voice streams over the voice call. We recommend to enhance this

mechanism to covertly capture the downlink incoming voice. It can be done by using

pcm_write call of tinyalsa. However, it requires additional research to keep the

downlink recording of voice call inaudible. Ability to covertly capture the downlink

voice stream will open up possibility of sending voice commands from a remote phone.

The captured voice commands then can be analysed to decipher the sent command

and action can be taken. This enhancement will offer a two-way covert links over

voice calls. A botnet like framework can evolve that can use covert links over voice

calls for sending and receiving voice and data commands. Attacks can be designed

over such framework that can spread faster and pervasively as the voice call has not

distance limitation and is available on all mobile devices without much censorship.

We conclude that the attack shown by our work has a far reaching influence on

design of future attacks that may have potentially much larger and disastrous impact

on mobile network. We seek out an immediate effective countermeasure to mitigate

the risk of such attacks.
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APPENDIX A

Eclipse Setup

A.1 Configuring SDK Path

To set SDK path, launch Eclipse and choose the following: Window -> Prefer-

ences -> Android -> SDK Location

Figure A.16: Setting SDK path in Eclipse

A.2 Enabling Build of System App

The Android plugin (ADT) in Eclipse enables Protected Permission in the Eclipse

Lint setting. This option has to be disabled by performing the following sequence:
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1. Select the project and right click on the project

2. Choose Build Path and then choose configure build path

3. A window opens as Figure A.17

4. Select Android Lint Preferences on the left menu

5. Scroll down to Protected Permissions on the right menu, select and disable this

option

Figure A.17: Enable System App build in Eclipse

A.3 ADT Hack: Allowing permission to use hidden API in Eclipse

1. Search for the ADT jar in the eclipse folder. Most likely this will be in

.eclipse/org.eclipse.platform_*_linux_gtk_x86_64/plugins folder The ADT
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jar file will be com.android.ide.eclipse.adt_*.jar

2. Save the original jar file and then extract this in some temporary folder

3. Locate AndroidClasspathContainerInitializer file under com/android/ide/e-

clipse/adt/internal/project folder

4. Edit and replace /com/android/internal/** to something like /com/android/in-

ternax/** that does not change the length of this string.

5. Create a jar file with the same name and copy it to the original ADT jar
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APPENDIX B

Building and Integrating Android Components

B.1 Build a shared library or jar file

From the root directory of AOSP:

1. . build/envsetup.sh

2. lunch

Pick up the required config from the above, hit Enter

3. make <modulename>

For example make "libmedia" will create libmedia.so

or

make "framework" will create framework.jar

Next, use adb to push the newly built files to their respective directory in the target

phone device. The following sequence shows how a libmedia.so file is pushed.

1. adb root

2. adb remount

3. adb push out/target/<pathname>/libmedia.so /system/lib/

4. adb reboot
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B.2 Manifest file to run the application inside Phone application

Figure B.18 illustrates the required entries in the Manifest.xml file for running

the application inside the internal Phone process.

Figure B.18: Entries in the in Manifest xml file to share the Phone process

B.3 How to sign using signApk

The application has to be exported from Eclipse using Unsigned Export. Prior

to executing the following steps, install signapk and zipalign.

1. right-click on project -> Android tools -> export Unsigned Application Package

2. choose a directory to store the unsigned apk

3. Use the following in sequence by suitably replacing the user supplied files shown

within <angular parenthesis>.

java -jar signapk.jar platform.x509.pem platform.pk8

<rSupport.apk> <rSupport_signed.apl>

zialign -fv 4 <rSupport_signed.apk> <final.apk>
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The Figure B.19 shows the screen capture of output.

Figure B.19: Signing the application
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