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Abstract 

Earthquakes are a major cause of life and property destruction. It is known that earthquakes radiate 

energy in the form of surface and body seismic waves. P-wave and S-waves are types of body 

waves. Both waves can be detected and recorded at an earthquake station. These waves can be 

analyzed to detect earthquakes. Most of the earthquake prediction techniques today are a 

combination of geophysics and signal processing, which are relatively complex. Machine learning 

can be used to learn the behavior of seismic waves and help in early detection. Machine learning 

can also be employed to process massive amounts of raw seismic data. The goal of this project is 

to distinguish between earthquakes and noise. Recordings of seismic waves from earthquake 

stations contain significant noise, for example from mining explosions or surface vibrations caused 

by vehicle traffic. It is necessary to distinguish between noise and actual earthquake signals. In 

this project machine learning classification techniques will be used for this purpose. 

Keywords: Earthquake, Phase classification, Seismic waveform, Machine learning, Fast 

Fourier Transform, Support Vector Machine algorithm, Random Forest algorithm 
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1. Background 

Earthquakes have been a major cause of destruction all around the world. These natural 

calamities come with little or no warning at all. There was a total of 10,341 earthquakes all over 

the world in 2017 [9]. The United States Geological Survey (USGS) collects all the earthquake 

data. Machine learning can be used to identify earthquake events and extract hidden information. 

An early warning framework for detecting events like an earthquake can be built using machine 

learning 

An earthquake is characterized by shaking of the ground because of the sudden release of 

energy from the earth’s lithosphere. These ground motion waves can be recorded and be studied 

later. If we are able to predict earthquakes a few minutes in advance and send out alerts it could 

save many lives and mitigate the damage by the earthquakes. A few minutes of warning could 

enable people to take precautions such as get to a safe place, take cover or switch off electricity.  

Earthquake early warning systems use earthquake science and sensor monitoring 

technology to warn people when an earthquake is going to hit their location. Since 2006, The 

United States Geological Survey has been working to develop such an early warning system, called 

ShakeAlert for United States [22]. ShakeAlert is due to start sending out earthquake warning 

messages to the public in 2018. ShakeAlert detects the P-wave and estimates the magnitude and 

location of the incoming earthquake [21]. 

Earthquake waves or seismic waves are recorded by an instrument known as a 

seismograph. A Seismograph consists of a heavy mass attached to a fixed base. When the seismic 

waves reach the Seismograph the fixed base moves, but the heavy mass remains stationary because 

of inertia. This motion of the base with respect to the heavy mass can be translated to ground 



motion and recorded as seismic waves. Now the Seismographs are much more modern but the 

basic idea behind them remains the same [9]. 

A seismogram is a record of ground motion as a function of time. A seismogram records 

motion in three directions (BHZ, BHN, and BHE). Channel BHZ indicates that the signal was 

recorded perpendicular to the Earth’s surface, BHN is along the Y-axis and BHE is along the X-

axis. The motion recorded in a seismogram may result from an earthquake or an explosion. 

Seismograms records the tiniest of motions. These motions could be a heavy vehicle on the road, 

waves hitting a shore or explosions near a mine [17]. Our focus is to classify signals into 

earthquake and seismic noise [11]. 

Earthquake stations record continuously. A twenty-four hour long recording may consist of 

multiple earthquakes and seismic noise or just seismic noise. This project can also be useful while 

clipping seismic data. Machine learning classification algorithms will be used to distinguish 

between earthquakes and seismic noise. Machine-learning analysis of seismic data involves data 

preprocessing, training feature identification, and algorithm selection. 

1.1 Types of seismic waves 

There are two types of seismic waves: body waves and surface waves. Body waves move 

through the earth’s crust whereas surface waves only move near the earth’s surface like ripples in 

water. There are two kinds of body waves – P waves and S waves. P wave is also known as the 

compressional wave or the primary wave. It travels faster than the S wave. Hence the P wave is 

recorded first at the seismograph [4]. The motion of the P wave is similar to sound waves. It pushes 

and pulls the rocks it is traveling through, in the direction of travel. The P waves can travel through 

solids as well as liquids. The S wave is the secondary wave or the transversal wave. The S wave 



travels slower than the P wave. The S wave only travels through solids. As the S wave only pass 

through solids, seismologists concluded that the earth’s outer core is actually liquid [4]. The S 

wave moves the particles of the earth in an up and down motion. The S wave is more destructive 

than the P wave. As the seismic waves travel through the earth’s volume away from the epicenter 

of the earthquake, the distance between the P wave and S wave increases. This time difference 

between the P and S wave will be the warning time that can be given to citizens [22].  

1.2 ObsPy   

Obspy is an open source python framework for manipulating and deriving results from 

seismic data [6]. Obspy can be used for reading or writing seismic files in various formats. Obspy 

has predefined functions for algorithms used in seismology like STA/LTA, trigger picker 

algorithms, bandpass filter etc. In this project Obspy was used slicing, reading waveforms and 

extracting features from the seismic waves. Obspy is a python library [6]. It is a very handy tool 

for seismic analysis. The following Obspy functions were used in this project: 

 

Figure 1 OBSPY read function output 

1. Reading the header file – The header file has some very useful information that can be used as 

features. A typical SAC header file has 30-40 fields which has information regarding the 

climatic conditions near the station, the rock properties and how the signal was recorded. 

Following header values were used as features in the project [28]. 

a. NPTS – Number of sampling points 

b. DELTA – Increment between each sampling data point  



c. Starttime – Time corresponding to the first sample point in the file 

d. Endtime – Time corresponding to the last sample point in the file 

e. Data – It retrieves the waveform trace of the data  

f. Channel – It returns the channel name 

 

Figure 2 OBSPY header file 

 

2. Plot – The plot method of the Stream object will display the waveform. It also has the 

starttime and endtime parameters to specify the start and end time of the plot. By specifying 

a name and extension we can save the plot in the form of an image [29]. 



 

Figure 3 OBSPY plot function 

3. Slice – Slice returns a new stream object that is cut to the given start and end time [30]. 

 

Figure 4 OBSPY slice function 

4. Max – Max returns the absolute maximum amplitude in the trace [31] 

 

Figure 5 OBSPY max function 

 

 

 



 

 

1.3 Feature extraction and data pre-processing 

Seismic data is in the form of waveforms. The waveform can be used as it is or a number 

of features can be extracted from these waveforms to train machine learning algorithm. A number 

of feature selection techniques were discussed in the papers. 

 In the paper by J. Ramirez et al [8] multi-scale analysis and spherical feature manifold is 

used for feature extraction. Multiscale polarization technique is used to analyze the signal at 

different frequency ranges. Singular value decomposition (SVD) is then applied to these signals. 

In spherical feature manifold, the multi-scale polarization feature extraction technique is applied 

to each data matrix. In this way, the coefficients of each wavelet are decomposed. These 

decomposed coefficients and the seismic data matrix obtained from the SVD process are used as 

features [8]. O. Lindenbaum et al [9] uses Fourier Transforms for feature extraction. G. Zhao et al. 

extracted time domain features, wavelet features and features directly calculated from the 

waveform. Some of the time domain features used were standard deviation, mean, median etc. 

Wavelet features included the energy ratios, Shannon entropy etc. Other features that were used in 

the study were the amplitude of the P-wave arrival, the maximum amplitude of the S-wave group 

etc [10]. Takase et al. used the Electromagnetic Wave(EM) data and decided the frame period to 

be one hour and extracted 24 frames per day. They extracted the cepstrum of the EM wave and 

passed it to the ML algorithm [11]. Cepstrum is the inverse Fourier Transform of the logarithm of 

the estimated spectrum of a signal [32]. Urata et al [12] also analyzes the electromagnetic waves. 

The EM waves are averaged over 6 seconds and 150 seconds and fed to a data logger. The data 



logger provides the numerical and waveform data which is fed to the machine learning algorithm.  

Astuti et al [13] uses Singular Value Decomposition (SVD) for feature extraction. The signal is 

projected on the Eigen vectors of the Linear predictive coding (LPC) filter. The LPC coefficients 

are estimated using the Levinson–Durbin algorithm. The mathematical equation is then reduced to 

the SVD form and features are selected accordingly . 

 E. Ruano et al [14] uses the Power Spectrum Density (PSD) technique for feature 

extraction. They have also used band-pass filter and STA/LTA ratios for roughly detecting seismic 

events.  N. Orlic et al [15] used ML to distinguish between earthquakes and explosions using 

genetic algorithm-based boosting approach. They use a genetic algorithm to determine optimal 

discriminating features. After multiple re-runs and boosting the features are selected.  S. Gentili et 

al [16] also use filtering techniques to remove noisy signals at lower frequencies. They have 

designed P and S extractor modules for labeling P and S-wave arrival times. The extractor module 

outputs the onset time with an estimate of its accuracy. The rough picks for P and S waves are 

compared with the output of the neural network to determine the final P and S arrival times . 

 The papers have discussed many ways of feature extraction and data preprocessing. Both 

these steps are very important as we don’t have ready-made features. The data that we have is in 

SAC binary format. Each file has a header section which has more information about the 

waveform. We can use some of the techniques discussed above for feature extraction and data pre-

processing.  

1.4 Machine learning algorithms 

After the data is ready the next step is to identify a machine learning algorithm for 

classifying earthquakes and noise. Traditionally a combination of geophysics and statistical 



methods were used to analyze earthquakes. But given the huge dataset of historical data, it makes 

much more sense to use machine learning algorithms [26]. 

J. Ramirez et al [8] use kernel ridge regression for classifying seismic phases into Pn-phase 

and Lg-phase with an accuracy of 71% on an average using cross-validation.  O. Lindenbaum et 

al [9] use K-NN for classifying earthquakes and man-made explosions. They tested against 62 

man-made explosions and were able to detect 85% of the explosions correctly.  G. Zhao et al. [10] 

also classifies earthquakes and explosions. The paper compares three classification techniques 

Back-propagation neural networks, support vector machine and BP-AdaBoost classifier. They 

achieved very good results with BP- AdaBoost classifier, selecting BP-NN as a weak classifier. 

They discuss results by splitting their dataset into multiple variations. They also give their results 

in terms of precision, recall and accuracy.  

S. Urata et al. [12] use HMMs for detection of anomalous signals. Parameter estimation 

for the HMM model is calculated by the Baum-Welch algorithm. The average precision is 

calculated using the Viterbi algorithm. The output of a trained HMM is a high acceptance 

probability for a normal pattern and a low acceptance pattern for an anomalous pattern. W. Astuti 

et al [13] proposed a machine learning technique to predict the magnitude, location and time for 

the next earthquake. They combined Singular Value Decomposition and Support Vector Machine.  

A.E. Ruano et al.  [14] proposed support vector machines for detecting earthquakes. The 

SVM model was tested on 226 earthquakes and 309 explosions. The SVM classifier incorrectly 

classified 71 events. The detection time was 110 seconds. 

 N. Orlic et al. [15] formulated a novel genetic algorithm for discriminating between 

earthquake and explosions. The proposed genetic algorithm automatically searches for 

discriminating features from the seismogram. A boosting method was used to improve the model’s 



performance for searching the best features. After the feature set is decided from the training 

dataset, the same feature set can be used on unknown data. The performance of this model was 

tested on limited data of 80 seismograms and achieved an accuracy of 85%.  

S. Gentili et al. [16] propose an automatic P-wave and S-wave arrival time detection 

method based on neural networks. The network for both P-wave and S-wave were simple 

perceptrons, without children nodes. The classification results were interpreted as follows- the 

neuron which has the higher output of the network is called as the winning neuron. 

Machine learning models can very effectively learn the seismic patterns of earthquakes. 

Once a model is trained it can be used to distinguish between earthquake and noise. Machine 

learning algorithms can be used for predicting the P-wave and S-wave arrival times as well.  

1.5 Data Preprocessing: Noise Removal 

The seismic signals recorded at the earthquake stations are often mixed with noise. It is 

necessary to remove noise before the data is fed to the machine learning algorithm as the model 

needs to understand the earthquake pattern without noise. The noise can be introduced by 

instruments, external disturbances such as explosions, mining activities etc. These noises can be 

removed by either identifying patterns of noise or passing the signal through a filter. Many noise 

removal techniques are discussed in the literature.  

 J. Ramirez et al. [8] rely on their windowing algorithm to eliminate maximum noise. On 

the other hand, O. Lindenbaum et al. [19] rely on bandpass filter to remove amplitudes which are 

above a certain threshold. Windowing techniques can be used to clip data which has an amplitude 

above a certain threshold and then pattern recognition can be used to identify the noise.  Detrend 

filter can be used to remove a trend from the trace. Overall trends that are not similar to the data 



can be removed with the help of the detrend filter. It is typically used to remove noise introduced 

by recording instruments. The bandpass filter can be used to filter out noise that is above or below 

a certain threshold. The filtering techniques are not a full proof way to remove noise, but they can 

be combined with other machine learning techniques to remove noise.  

 

The literature discusses many ways of feature extraction, training a model and noise 

removal. Machine learning for earthquake prediction is a novel technique. Earthquakes are very 

unpredictable natural calamities. It is very difficult to predict an earthquake even a few minutes 

before it actually happens. If we are able to predict earthquakes much in advance it will avoid a 

lot of destruction. Machine learning seems to be a step in the right direction.  

Predicting earthquakes will require historical data and a tailored machine learning 

approach. As seen in the literature a number of machine learning techniques can be applied to 

predict earthquakes, but the main question is whether it will perform well. The performance of any 

machine learning algorithm depends on the quality of training data, feature extraction methods and 

the machine learning algorithm. Traditionally statistical methods in geophysics were applied to 

seismic data to study earthquakes. In the age of artificial intelligence, it makes sense to process 

these large number of seismic signals using machine learning. I think the future of earthquake 

physics will rely heavily on machine learning to process massive amounts of raw seismic data. 

1.6 Challenges associated with distinguishing earthquakes and non-earthquakes  

There have been many studies in exploring earthquakes, their causes and why they occur. 

Traditionally a combination of geophysics and signal processing has been used for studying 

earthquakes. Using machine learning to identify earthquake patterns is relatively new and has not 



been explored much. Dr. Daniel McNamara, a seismologist, said that seismology is a very 

complicated science and is still not well developed [24]. For example, Japan experiences 11% of 

the worlds earthquakes and it has invested considerably to develop an early warning system for 

earthquake, in spite of all these efforts the 2011 Japan earthquake could not be predicted in advance 

[25]. 

  Earthquakes and explosions both release energy, their signal pattern looks very similar 

[23]. Machine learning algorithms can be used to identify patterns of P-wave and S-wave 

[8][9][10][12][13][14]. Once trained the machine learning algorithm can be used to predict the P-

wave and S-wave arrival time. One of the major problems is that the data all around the world for 

earthquakes is not in a single format. Moreover, the seismograms recorded on a particular station 

is dependent on the geographical conditions around it [41]. Such variations in data will not be 

helpful for training the algorithms. Also, there is a problem of false alarms which are events that 

are predicted as earthquakes but are due to some other reasons such as noise or explosions. A major 

problem that would need attention is distinguishing an earthquake from seismic noise.  

An earthquake monitoring tool should be able to distinguish between noise and earthquake 

in real time. The tool should be able to identify the source of the signal. Such a distinction cannot 

be made manually. Machine learning algorithms can mine hidden information and distinguish an 

earthquake from noise. Machine learning can be used to build fully automatic tools [23]. The 

model can be improved by continuous training. Earthquake stations generate massive amounts of 

data. The data is too large for comprehensive analysis. Machine learning is ideal for such a scenario 

[26]. 

 

 



 

2. Data  

2.1 Data Collection 

The earthquake signals were collected from the Incorporated Research Institutions for 

Seismology(IRIS) [33]. One hundred and twenty US universities contribute and operate IRIS [34]. 

IRIS facilitates data acquisition, data management and distribution of seismological data. 

Generally, when you get the raw data it has both earthquakes and just plain recordings with some 

noise. It is imperative to extract the earthquake from the recording. There could be multiple 

earthquakes or aftershocks within 24 hrs. All these earthquakes have to be identified separately.  

IRIS Wilber 3 is web interface to look up seismic events and request data. It allows the user to 

select the type of event, its intensity and the neighboring earthquake stations. IRIS Wilber 3 is 

interactive and easy to use as its GUI is self-explanatory. Events can be selected in the following 

manner [33] – 

1. Find seismic events using IRIS Wilber 3  

2. Enter dates of the event you are interested in 

3. Enter a range of magnitudes 

4. Select location from the map 

5. For requesting the data, you can specify the networks, channels, distance range, 

Azimuth Range, start time and end time with respect to S arrival time and P arrival time 

For this project events with magnitude greater than 4 were selected. Data was collected from 

stations within a distance range of 8. If an earthquake station is closer to epicenter it will record 



the maximum magnitude and intensity of the earthquake [35]. For the seismic noise training data, 

signals from earthquakes stations was collected from those days when there was no earthquake..  

2.2 Clipping the data 

Aftershocks occur within a few minutes of the actual earthquake. Clipping can be used to 

separate and identify different earthquakes. Clipping can also be used for separating earthquake 

from noise [36]. In the figure below, we can see the main shock, aftershock and foreshock in the 

same seismogram. 

 

Figure 6 Main shock, aftershock and foreshock in the same seismogram [36] 

 There are many ways to sperate out different earthquakes. Windowing and clipping are one 

of the popular methods. Recursive STA/LTA is a popular algorithm for windowing tasks. The 

short time average/long time average (STA/LTA) is a triggering algorithm which is used to 

identify changes in the seismic amplitude. It is like an amplitude threshold algorithm but much 

better. Tuning and specifying the parameters of the STA/LTA algorithm is the difficult part [5]. 

The results of STA/LTA are not always perfect as seen in the experiment below. 



An earthquake of magnitude 6.1 was recorded in Northern California on 08/24/2014, IRIS 

Wilber3 gives the P-wave and S-wave arrival time as seen in the figure below. 

 

 

Figure 7 P-wave and S-wave arrival time for Northen California earthquake 

 



 

Figure 8 Recursive STA/LTA plot from OBSPY 

 

But when Recursive STA/LTA from Obspy is used to calculate the P-wave and S-wave arrival 

times with default parameters it misses them completely. The problem here is not necessarily in 

the Recursive STA/LTA function but it could be faulty parameter tuning. 

 Another way to distinguishing earthquakes and non-earthquakes is training a machine 

learning algorithm to do this. This method is quicker and gives very good results provided the 

training dataset is good. In this project we will be implementing the latter approach. For the non-

earthquake data, I have simply clipped data by randomly picking an earthquake file measuring its 

size and clipping non-earthquake data of the same size. This ensures that earthquake and non-

earthquake files are of similar size. 

 

 

 



2.3 Data visualization  

The data used in this project is in SAC format. The SAC data can be plotted so that its contents 

can be inspected. Some examples of earthquake signals are plotted below. 

 

 

Figure 9 Earthquake plot a 

 

Figure 10 Earthquake plot b 



 

Figure 11 Earthquake plot c 

 

Figure 12 Earthquake plot d 

 

Some examples of seismic noise is plotted below –  

 

Figure 13 Noise plot a 



 

Figure 14 Noise plot b 

 

Figure 15 Noise plot c 

 

Figure 16 Noise plot d 

In the last experiment of this project, we have also used sound signals to check the robustness of 

the model. The sound waves were used from the GTZAN Genre Collection dataset. Some 



additional beatboxing sounds were also added to the dataset. A sound signal looks similar to 

earthquake signals. I plotted some of the sound signals from the dataset.  

 

Figure 17 Sound Signal plot a 

 

Figure 18 Sound signal plot b 

 

Figure 19 Sound signal plot c 



 

Figure 20 Sound signal plot d 

 

In this project the amplitudes of all the sampling points is used as a feature for classifying 

earthquakes. If we use all the amplitudes we are essentially passing the entire signal pattern to the 

machine learning algorithm. A plot of a signal and its corresponding scatter plot of all its sampling 



points amplitudes can be seen below. The signal plot and its amplitudes scatter plot are clearly 

similar. 

 

Figure 21 Scatter plot of amplitudes of all sampling points a 

 

A
m

plitude 
No of sampling points 



 

Figure 22 Scatter plot of amplitues of all sampling points b 

The array of amplitudes which was actually passed to the machine learning algorithm was in 

numerical format. The array ran up to approximately 80 pages 

 

Figure 23 Amplitudes of all sampling points 
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Combining all these data sources a number of experiments were performed which are described in 

detail in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Methods  

3.1 Experiment 1 

In the first experiment, 100 earthquake and 100 non-earthquake files or noise files were picked. 

The files were read using the OBSPY read API and stored in a stream object. The start and end 

time of the signal was extracted from the stream object. The signal was then converted to ASCII 

format using OBSPY, start time and end time were parameters to the function used to convert the 

signal to ASCII format. The extracted signal was then vectorized using term frequency-inverse 

document frequency (TFIDF). A support vector machine was then trained using this vectorized 

earthquake and non-earthquake signals. 

3.2 Experiment 2 

In the second experiment, around 1600 signals were used to train the model. The dataset consisted 

of 791 earthquake signals and 783 non-earthquake or noise signals. In this experiment, the SAC 

header file values were also used to train the model. Along with the signal, features such as the 

start time of the signal, the end time of the signal, the channel name and increment between 

samples (delta) was used. In this experiment instead of extracting the entire signal in ASCII format, 

only the amplitudes of all the sampling points were used. All these features were combined, and a 

dataset was formed. This dataset was used to train SVM. 

 

 

 

 



3.3 Experiment 3 

In experiment 3 the same experimental setup of experiment 2 was used. Instead of SVM, random 

forest machine learning algorithm was used to train the model. 

3.4 Experiment 4 

In this experiment, the model was challenged with a tougher dataset. The non-earthquake files 

were manually clipped and were of the same size whereas the earthquake files were not modified 

and used as it is. In this experiment, changes were made to the algorithm to ensure that both types 

of files are of similar size and have the similar number of data points. When a non-earthquake file 

was picked, an earthquake file was also randomly picked. The length of the randomly picked 

earthquake file was measured and the non-earthquake file was clipped accordingly.  

To make it more difficult for the model to distinguish between earthquakes and non-

earthquakes random high amplitude spikes were added to non-earthquake data. A non-earthquake 

signal would be essentially flat if no noise is present in it. Introducing random spikes in the signal 

would make it difficult for the model to identify as not an earthquake. The following steps were 

implemented to introduce the above changes. 

1. Randomly pick an earthquake file  

a. Extract the amplitudes of all the sampling points in an array ‘earthquake_array’ 

b. Measure the length of the array, let’s call it earthquake_length.  

c. Find the maximum amplitude from the earthquake_array. 

d. Extract a total of 3000 sampling points from the earthquake_array. 1500 sampling 

points before the maximum amplitude and 1500  sampling points after the 

maximum amplitude.  



e. Now we have a slice of data with very high amplitude spikes in it. 

2. Now proceed with the non-earthquake file 

a. Extract the amplitudes of all the sampling points in an array ‘noise_array’ 

b. Slice the array to earthquake_length 

c. Pick a random point in the earthquake array 

d. Append the high amplitude slice of data at this point.  

3. Use features from the header file such as the channel name, number of sampling points, 

delta, start time of the signal and end time of the signal 

3.5 Experiment 5 

In this experiment, an attempt is made to improve the results of experiment 4 by performing 

transformations on existing features. The experiment setup is same as experiment 4, an additional 

feature was added by performing Fast Fourier Transform on the amplitudes of both earthquake 

and non-earthquake signals. Following steps were performed in this experiment –  

1. Replicate step 1 to step 3 of experiment 4 

2. Perform Fast Fourier Transform (FFT) of the earthquake and non-earthquake signal  

3. Add the Fast Fourier transform as an additional feature along with all the extracted features 

in step 1.  

 

 

 

 

 



3.6 Experiment 6 

The aim of this experiment is to test of the model is able to distinguish between an earthquake and 

sound waves. Sound waves are very similar to earthquakes, some studies convert earthquake 

signals to sound for further processing and analysis [37]. In this experiment, I download 78 .wav 

sound files from the GTZAN Genre Collection dataset. As the sound waves do not have a header 

file with features similar to earthquakes, only the amplitudes of the sampling points will be 

considered as features. The amplitudes of both the sound waves, earthquake signals and non-

earthquake signals are extracted. The aim of this experiment is to test if the model classifies the 

sound wave as non-earthquakes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Results 

4.1 Experiment 1 

The model achieved a prediction accuracy of only 56%. The graph below shows the result of 5-

fold cross-validation.  

 

 

Figure 24 Experiment 1- 5 fold Cross Validation results 

4.2 Experiment 2 

The model achieved a prediction accuracy of only 56%. The graph below shows the result of 5-

fold cross-validation. 

 

Accuracy 



 

Figure 25 Experiment 2 cross validation results 

The precision-recall curve for this experiment is as follows – 

 

Figure 26 Experiment 2 precision-recall plot 

 

 

 



Table 1 Experiment 2 confusion matrix 

 Predicted No Predicted Yes 

Actual No 243 0 

Actual Yes 199 31 

 

GridSearchCV was used to apply an exhaustive search over specified SVM parameters. 

GridSearchCV returned the following results.  

 

Table 2 Experiment 2 GridSearchSV output 

 mean_test_score mean_train_score param_C param_kernel rank_test_score 

1 0.999365 0.999365 1 linear 1 

2 0.508895 0.81226 1 rbf 3 

3 0.999365 0.999365 10 linear 1 

4 0.507624 0.791613 10 rbf 4 

 

According to the results of GridSearchCV parameter C=1 with kernel= ‘linear’ and parameter 

C=10 with kernel=’linear’ should give good results. After training an SVM with these parameters 

I got the following results.  

 

 

 

 



I got the following tree after training on decision trees classifier  

 

Figure 27 Experiment 2 overfitted decision tree 

The tree is a perfect classifier, the separating factor being the end time. The same case applied to 

the start time as well. After removing the end time, the start time acted as the perfect separator.  

 

Figure 28 Experiment 2 overfitted decision tree 

 

After removing the start and end time the decision tree classifier returned a multilevel tree, which 

meant it took a lot of the features under consideration.  



 

Figure 29 Experiment 2 decision tree 

 

After dropping the start and end time from the features, I trained SVM with the parameters 

suggested by GridSearchCV. The new dataset with reduced features was again given the 

GridSearchCV to find the optimal parameters to train SVM. It returned the following results – 

 

 

 

 

 



Table 3 Experiment 2 GridSearchCV output 

 mean_test_score mean_train_score param_C param_kernel rank_test_score 

1 0.523507 1 1 linear 2 

2 0.550826 1 1 rbf 1 

3 0.523507 1 10 linear 2 

4 0.550826 1 10 rbf 1 

 

4.3 Experiment 3 

Random forest algorithm was used to train the model with the new dataset. The graph below shows 

the result of 5-fold cross-validation.  

 

 

Figure 30 Experiment 3 cross validation graph 

 

 

 



 

 

Table 4 Experiment 3 confusion matrix 

 Predicted No Predicted Yes 

Actual No 222 3 

Actual Yes 0 247 

 

4.4 Experiment 4 

In this experiment, the lengths of the non-earthquake signals were clipped to match the length of 

the earthquake signals. In the graph below the lengths of both the earthquakes and non-earthquakes 

are plotted. The blue dots are non-earthquakes whereas the red dots are earthquakes. As seen in 

the scatter plot below they are now a good mix. 

 

 

Figure 31 Earthquake and non-earthquake lengths scatter plot 



After appending spikes of high amplitudes in the non-earthquake signals at random locations it 

was expected that the random forests model will find it harder to distinguish between earthquakes 

and non-earthquakes. As we had anticipated the prediction accuracy went down to 89% on an 

average. The graph below shows the result of 5-fold cross-validation of the tough dataset.  

 

Figure 32 Experiment 4 cross validation results 

 

 

Figure 33 Experiment 4 precision-recall curve 



 

 

Table 5 Experiement 4 confusion matrix 

 Predicted No Predicted Yes 

Actual No 227 21 

Actual Yes 34 191 

 

4.5 Experiment 5 

Fast Fourier transforms are widely used in the world of Seismology. FFT gave really good results 

even with the tough dataset. The figure below shows how the signal transforms after applying Fast 

Fourier transform. 

 

  

Figure 34 FFT of seismic noise 



 

  

Figure 35 FFT of earthquake signals 

The prediction accuracy increased to a little more than 95% with a random forest model. The graph 

below shows the result of 5-fold cross-validation of the tough dataset with FFT. 

 

Figure 36 Experiment 5 cross-validation graph 

 



 

Figure 37 Experiment 5 precision-recall curve 

Table 6 Experiment 5 confusion matrix 

 Predicted No Predicted Yes 

Actual No 233 10 

Actual Yes 19 211 

 

4.6 Experiment 6  

Training the algorithm only using time series features without sound we get an accuracy 92% on 

an average. 



 

Figure 38 Experiment 6 cross-validation time series accuracy 

The model trained with a dataset containing earthquakes and non-earthquakes with no sound waves 

and tested it against sound waves it classified only one sound wave as a non-earthquake. 

 

Figure 39 Experiment 6 random forest output 

Next, the random forest model was trained with a mix of earthquake, non-earthquake and 55 sound 

files which were marked as non-earthquake. I then tested my model with 24 sound files. It 

classified 21 out of 24 sound waves correctly as non-earthquakes 

 

 

Figure 40 Experiment 6 random forest output 

 



5. Discussion  

  In experiment 1 the model gave a low prediction accuracy. It may be because only 200 

signals were used to train the model. Experiment 2 gave similar results to experiment 1. Additional 

data and features did not help in training the model. SVM is a very versatile model, tuning 

parameters is very important while training SVM. GridSearchCV was used for an exhaustive 

search of a combination of parameters that would work best for SVM. GridSearchCV returned 

parameter C=1 with kernel= ‘linear’ and parameter C=10 with kernel=’linear’ as the best 

parameters. SVM gave a prediction accuracy of almost 100% with these parameters. As SVM 

returned almost perfect results, it could mean SVM was overfitting. In order to understand this 

further, I used decision trees algorithm on the data. Decision tree algorithm is not a black box 

algorithm, it is easy to see what is exactly going on. The decision tree algorithm returned a perfect 

classifier. The model was overfitting on the start time of the signal. After removing start time, the 

model overfitted on end time of the signal. After removing both the features, decision tree classifier 

returned a general classifier. The new dataset was used to train SVM with parameters C=1 with 

kernel= ‘linear’ as suggested by GridSearchCV. The model returned a prediction accuracy of 

approximately 50%. The new dataset was again given to GridSearchCV to find optimized 

parameters for the new dataset. All the combinations returned by GridSearchCV gave low test data 

accuracies. The mean train score was 1 but test scores were poor. It still means that the SVM model 

was overfitting. As decision tree was not overfitting anymore, I decided to try a more randomized 

decision tree which is random forests algorithm. 

 The random forest model performed well and achieved a prediction accuracy of 99% on 

an average. After testing the model with the tougher dataset, the prediction accuracy dropped as 

expected. Fast Fourier transform worked really well as seen in experiment 5. Fast Fourier 



transform is widely used in seismology. The model performed better than the previous experiment. 

Thus, combining traditional analytical methods such as FFT with machine learning gave the best 

results so far.  

 

Figure 41 Random Forest model result comparison 

 

 

Figure 42 Confusion matrix experiment 4 vs experiment5 
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The random forest model which was trained on earthquakes and station noises was not able 

to classify sound waves as noise. When sound waves were included in training data, the model 

was able to classify sound waves as non-earthquakes. 

Machine learning algorithms can be used effectively for distinguishing earthquakes and 

noise as seen in the above experiments.  Support Vector Machine is known to work well with time 

series data [38]. However, the SVM model that was trained on earthquake data was weak. On the 

other hand, random forest model successfully classified approximately 95% of the signals. 

Random forest works well with overfitting [39] which was a problem with SVM.  Appending high 

amplitude spikes to noise would model scenarios such as a mining blast near an earthquake station 

or a heavy truck passing on top of it. The random forest model with Fast Fourier transform was 

able to classify and distinguish these scenarios with an accuracy of 96% .   

In this project, no distinction was made between different stations. The signals recorded at 

each station vary slightly. The noise in the signal depends on the rock composition, the instrument 

error and other external factors [41]. If a random forest model is trained separately for each station 

it may return better results. The next step in this project would be to predict the P wave arrival 

time and the S wave arrival time. We have already successfully distinguished the signals into 

earthquakes and non-earthquakes. The earthquake recordings can be further analyzed to predict P-

wave arrival time and the S-wave arrival time. Depending on the location of the epicenter the 

proposed early warning model will be able to give an earthquake warning up to a few minutes. 
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