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Abstract 
 

To automate the arduous task of identifying and classifying images through their domain 
expertise, pioneers in the field of machine learning and computer vision invented many 
algorithms and pre-processing techniques. The process of classification is flexible with 
many user and domain specific alterations. These techniques are now being used to classify 
marine organisms to study and monitor their populations. Despite advancements in the 
field of programming languages and machine learning, image segmentation and 
classification for unlabeled data still needs improvement. The purpose of this project is to 
explore the various pre-processing techniques and classification algorithms that help 
cluster and classify images and hence choose the best parameters for identifying the 
various marine species present in an image. 
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1. Introduction 

Throughout millennia, humans have developed an amazing aptitude for pattern 

recognition. Once taught, identifying objects becomes easy, especially through vision. Even 

a child can differentiate a burger from a hotdog. But when it comes to processing millions 

of images with intricate details, all at the same time, computers make a lot more sense to 

use. They are not only faster than manual labor, but cheaper too thanks to some novel 

algorithms that have been developed to mimic the functioning of the human brain [5]. 

In the era of big data and the internet, identifying an image(classification) and what’s in an 

image (detection and segmentation) is a routine task. From searching images of items, food 

or clothing to looking for places to visit, computer vision is being used every day by 

smartphones and computers. 

One such application of computer vision is classifying the species of marine organisms 

present in an image. The Moss Landing Marine Laboratories in Moss Landing, California 

works towards the identification of marine invertebrate fauna. They study and collect 

organisms by submerging stacks of flat settlement plates called ARMS (Autonomous Reef 

Monitoring Structures) 
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Figure 1. ARMS being placed on a coral reef. 

These structures are strategically placed in areas having sunshine and shelter. There is 

enough gap left between them to facilitate the natural growth of flora and fauna. These 

plates are left for a period of 6 months up to a year and then retrieved. 

 

Figure 2. Photograph of a retrieved plate. 

 

Analysis typically includes photography of each plate followed by visual identification of 

megafauna by expert taxonomists and DNA extraction for molecular identification. 
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Although ARMS plates have proven effective collection devices [20], current identification 

techniques have significant expense. Moreover, expert taxonomists are not always 

available, while molecular identification is time consuming. The photographs are generally 

archived without analysis. There is thus an opportunity to enhance current analysis 

practices by software analysis of ARMS photos.  

This project proposes and implements a solution to automate the above task.  It aims to 

identify the different species present on a plate by segmenting and classifying the different 

regions of the image into their respective classes. The exact classes would have to be later 

renamed according to their scientific names by domain experts. The process flow is 

outlined in the following diagram. 

 

 Figure 3. Process flow of the project. 

2. Background 

2.1 Supervised and Unsupervised learning 

Before determining the available methods that should be used to solve the problem at 

hand, there is a greater need to understand the challenges and the reasoning behind 

choosing any methods. The presence of multiple overlapping organisms in an image 

combined with the fact that there are no labels for the images make it a difficult 

proposition. Any machine learning model with a predictive capability works better if it has 

labelled data to train the model on. Hence the first step is to generate labels for the images. 
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There are 2 broad types of learning techniques in the machine learning context - 

Supervised and Unsupervised Learning [13]. In supervised learning, the model is given 

data and explicitly told which class that data belongs to. In unsupervised learning, the 

model has no idea about the class information of the data. It tries to come up with its own 

classes based on some features of the data.  

 

As the data provided is unlabeled, supervised learning is not feasible. Hence, the labels 

must be generated from the images themselves [10]. Not only that, there are multiple 

classes present in the image. Hence, the different classes need not be just identified, but 

also marked with some arbitrary feature (e.g. color) to differentiate them from one 

another. Such a task in machine learning is called as Image segmentation and is critical to 

this project.  

 

There are many algorithms that perform unsupervised learning. One of them is clustering - 

the task of grouping similar set of objects in a given feature space. In the context of image 

classification, it has been traditionally used in segmenting medical [6] and satellite images 

[14]. Hence it makes sense to extend them to this project as well. The objects in this case 

are the intensity values of the different pixels in the image. Pixel clusters that represent an 

organism(class) should be like the other pixels of the same organism in shape, size, color or 

texture. Hence applying clustering analysis to the image would yield us different clusters 

for each organism. The beauty of this approach is that as each cluster would be intrinsically 

different from one another, the output would in fact be the different classes present in the 

image.  
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Clustering can be further distinguished into hard and soft methods [15]. Hard clustering 

treats an object such that it belongs to only one cluster or class. In soft or fuzzy clustering, 

each object is given a percentage or likelihood that it belongs to a cluster, hence it can 

belong to multiple clusters. Hard clustering is useful when the boundaries of different 

classes are fixed and linear whereas soft clustering is better in describing more complex 

decision boundaries. In this project, one algorithm of both the types is implemented - K-

means of hard clustering and fuzzy c-means of soft clustering. 

 

2.2 K-means algorithm 

A computer does not view images the same way as humans do, it has no contextual 

information other than the labels the image has. For it, images are nothing but an array of 

RGB colored pixels with various intensity values. 

K-means algorithm aims to partition n points into k clusters so as to minimize the inter 

cluster sum-of-squares(variance) [19]. The data points in this case are the pixel values of 

the image. The parameter ‘k’ must be passed beforehand and is integral to the performance 

of the algorithm. It starts with a ‘k’ randomly selected centroids and iterates between the 

two following steps: - 

1. Assignment step 

Each data point is assigned to the nearest centroid and its distance to the centroid is 

minimized. The metric used can differ, the most common one is the squared Euclidean 

distance. 
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where ci is the collection of centroids in the set C and x is the data point  

 

2.  Update step 

In this step, each of the centroids are recomputed by taking the mean of all the data points 

in that centroids cluster. 

 

Where Si is the set of data point assignments for each ith cluster 

 

One of the advantages of this algorithm is it will always converge. The result may be a local 

optimum, but multiple runs with randomized starting centroids can produce better results. 

The performance of the algorithm depends upon the value of k. Now, there is no set method 

to determine ‘k’, the user needs to run the program for a range of k values and see the 

results to determine the number of clusters. One of the metrics that is used to compare the 

results between different values of k is the mean distance calculated from the data points to 

their cluster centroid [7]. As we go on increasing k, the number of centroids increases and 

hence the mean distance will always decrease, up to the point of 0 when k equals the 

number of data points itself. Hence, this alone cannot be used. The mean distance is plotted 

alongside k and the point where the graph sharply falls, also known as the ‘elbow point’, 

can be used to determine the best value of k. It indicates that the value of k for which there 

is a sharp fall in distortion, i.e., mean distance from data points to their cluster centroid has 

decreased more than ever before, will not occur again that drastically. Hence there is no 

use of increasing k for more computations if the tradeoff is only going to be minute 
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improvements to distortion levels. Hence that value of k can be used as an optimum value 

as it explains the data with as little distortion as possible compared to the previous values 

of k. 

 

2.3 Fuzzy c-means 

Fuzzy c-means clustering is yet another algorithm for clustering. It assigns a membership 

to each data point depending on its distance to each cluster center. The nearer it is to the 

cluster center, the more its membership towards the same. The total sum of all 

memberships of a data point is one. The algorithm proceeds as follows [2]: - 

1. Randomly select ‘c’ cluster centers. 

2. Calculate the fuzzy membership uij of each point using 

 

       3. Calculate the fuzzy centers vj by 

 

 

       4. Repeat step 2 and 3 till until J is minimized or ||Uk+1 - Uk|| < β 

 Where β is a value between [0,1], a termination criterion 

 K is the iteration step 

J is the objective function 

U = (uij)n*c is the fuzzy membership matrix 
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However, having a lower value of β we can get better results, but there will be more 

iterations on the data. Also, the choice of distance metric can disregard underlying factors 

in the data and give unequal importance to them. E.g. Euclidean distance. 

 

Fuzzy c-means clustering works particularly well with overlapped data set because the 

data points in the boundary can have common memberships between the overlapped 

classes hence better represent the data [12].  The two graphs below show the difference 

much clearer. 

 

Figure 4. Comparison of hard and soft cluster memberships.          

                               

In the first graph of Figure 2, there are 2 clusters A and B, with members of A having 

membership 1 and B having 0. Thus, there is a clear delineation between the two clusters. 

In the second graph, the point in A marked by the dotted line is in between clusters A and B 

with a value of 0.3. Thus, that is the data points membership coefficient for class A [2]. 

 

The hardest part of any clustering algorithm is determining the number of clusters 

beforehand. The fuzzy partition coefficient or FPC is a metric used to determine the 

optimum number of clusters for a given data set. The FPC measure the amount of 
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‘fuzziness’ present in a solution, how close the solution is to the corresponding hard 

solution. This hard solution is formed by classifying each data point into the cluster which 

has the largest membership score. The formula is given below [2] 

 

Where mik is the membership of the ith data point in the kth cluster. 

The value of FPC ranges from 0 to 1 hence the higher the value, the better the data is 

represented in the clusters. Thus, it will be used as a metric to determine the optimal 

number of clusters in fuzzy c-means clustering algorithm. 

 

2.4 Convolutional neural networks 

Once the images have been clustered and segmented into their various classes, the 

different labels for the images have been procured. Now, a supervised algorithm can learn 

the different labels and predict the same for new images. Artificial neural networks 

(hereafter abbreviated as ANN) are supervised learning models that are inspired from the 

human brain. The neurons in the human brain receive an input, fire up if the input signal is 

strong enough and pass its output to the next neuron. The brain learns by creating and 

destroying such connections and adjusting the strength of the signal. 

ANNs operate similarly. In their case the input is a numerical array or matrix, be it images, 

text or plain numbers. It passes this input through multiple layers, where each layer 

comprises of neurons. Each neuron multiplies the input given to it with a weight associated 

with that neuron and then adds a bias to it, and then passes it to the next layer. The weights 
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and biases are present to ensure a similar input is received by the neuron across a range of 

acceptable values. Eventually, the last layer has an activation function that produces the 

final output. The activation function can be as simple as sigmoid function (f(x) = (1 + e−x)−1) 

for binary classification(to classify 2 different labels) or as complex as ReLU( f(x) = max(0, 

x)) to classifying ‘n’ different labels. When the model is trained, the output for each 

iteration is compared to the true label. If it is incorrect, the weights and biases are updated 

accordingly, such that next time the same or similar input is received, the correct output is 

produced. A single neuron may look like the following [5]:- 

 

Figure 5. A sample neuron in an artificial neural network model. 

 

Convolutional neural networks (hereafter abbreviated as CNN) are a type of artificial 

neural networks. Instead of taking a single input, a smaller array of numbers called the 

kernel filter is passed across the entire image multiple times. The values in the input image 

matrix are multiplied with the overlapping values in the kernel filter matrix and these 
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results are stored in a new array. This process is called convolution. Convolving images in 

such a manner produces many interesting effects. It can be used to detect edges, sharpen or 

blur the image, change the hue and saturation, etc. It is like applying filters to images in 

Photoshop. 

Thus, for each layer, the model will learn a different feature. For the present project, it can 

learn the edges and lines in the first layer, different textures in the second layer, etc. till 

more complex organism shapes are learned in the final layers. 

Another important concept of CNNs is pooling. Pooling is a down sampling technique which 

reduces the size of the input given to it while maintaining the relative information of the 

input data. One of the most common techniques is max pooling, which consists of 

outputting only the max value for every N X N grid of the input matrix. The intuition behind 

it is that the relative positioning of the pixels is more important than the absolute locations. 

Pooling layers are inserted in between the convolutional layers to reduce the number of 

parameters going through the layers. This decreases the amount of computational work 

and thus speeds up training time. It also controls overfitting. 

 A sample CNN neuron may look like this [5]:- 
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Figure 6. A sample neuron in a convolutional neural network model. 

 

CNNs are very adept at identifying features in an image [1]. Unlike an ANN, where every 

single input or pixel is mapped to a single neuron, an area of the input image equal to the 

kernel filter size is mapped to each neuron. Thus, it operates on a set of pixels at once 

rather than a single pixel. It can learn more complex features by looking at the image at 

bigger scale when compared to an ANN, identifying textures, edges and lines. 

CNNs enforce local connectivity patterns between adjacent neurons in a layer. This ensures 

that the learnt filters have a strong response to a local input pattern. Stacking layer after 

layer of such local patterns leads to formation of non-linear filters that become global, i.e., 

respond effectively to a larger pixel region.  

CNNs feature different filters for each convolutional layer. However, each filter has shared 

weights and biases across that layer and thus form a feature map. Every neuron in that 
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layer shares these same weights and biases. This means that given a convolutional layer, all 

the neurons in that layer respond equally to the same feature. Hence no matter where the 

feature is present in the entire image, the layer would be able to catch it and output 

accordingly. This property is known as translational invariance. These two properties of 

CNN are what make them so adept at computer vision problems. 

 

3. Method 

3.1 Data description 

 

6125 ARMS images from Monterey Bay, Hawaii and Guam were graciously provided by 

Prof. Jon Geller of Moss Landing Marine Laboratories. 200 images were used to train 

different models and a 100 were analyzed by testing on the resulting model. 

All the images are of JPEG format and are divided into folders based on the geographical 

area they were taken from. They are further subdivided into collection sites A, B and C. 

Each image has an average size of 3 Megabytes with a resolution of 2848 X 4288, which is 

very high. Some of the images have the plate centered on it while some are out of focus, 

with different lighting as well. So, there is a need to standardize all the images before 

training the model.  

 

All the programming was done in Python version 3.5 as it has extensive support for 

machine learning libraries and is the most popular and easy to learn language for the same. 
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All programs were run on a local machine having 16 Gigabytes of RAM, Intel core i7 

processor and a 2 Gigabyte NVIDIA GeForce 940 MX graphics card. Hence there is no costly 

equipment or server cost associated with this project. 

 

 

3.2 Pre-processing  

A basic principle in machine learning is that the data needs to be prepared in such a way 

that it exposes the problem to the algorithms you intend to use. All algorithms make 

assumptions about the data; hence the data needs to be prepared and standardized keeping 

that in mind. Any flaw or irregularity in the data gets carried forward into the final results, 

called training error; and pre-processing is an essential step in avoiding training error. 

 

3.2.1 Rescale data 

Firstly, all the images were cropped and resized to a standard size of 2474 X 2455, having 1 

Megabyte of size. This eliminates the unnecessary white background along with any 

shadows present in the image. All that information is not required by the model to predict 

the classes in the image. Moreover, due to the reduced size and resolution, the model will 

run faster as fewer calculations must be performed. 

 

3.2.2 Histogram equalization 

Consider an image that has its pixel values confined to higher ranges only. For e.g., brighter 

images will have their pixels confined to higher values than the darker ones. But a good 

image will have pixels that are from different parts of the image. Hence if a histogram of 
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pixel values is plotted, the “bad” image will have a compacted area with just the high value 

pixels on it. To make it a better image, the histogram needs to be stretched across its ends 

to accommodate all the different intensities present. Histogram equalization achieves 

better global contrast by spreading out the most common intensity values effectively [9]. It 

helps to better differentiate the foreground from the background if both are equally light or 

dark. In this case, histogram equalization is mainly used to separate the organisms that are 

spread out across the grey plate background and better reflect their true colors. 

The key advantage of histogram equalization is its computational inexpensiveness. It is 

straightforward and is an invertible operator meaning the process can be reversed to get 

the original image back if needed. The only disadvantage is that it applies the histogram 

function equally to both the signal and the noise, i.e., it is indiscriminate. Thus, in some 

cases it can decrease the actual signal and increase the background noise. 

 

Figure 7. Histogram equalization. 

 

3.2.3 Reshape data 

When an image is read by the computer, it is converted into a 3-dimensional array of RGB 

values. But when it comes to giving this image as an input to the different models (k-means, 
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fuzzy c-means and neural network), the input is required in the form of a 1-dimensional 

array. The reason is that distance calculation and information representation is much 

easier and faster in 1D than 3D. There are far less parameters to worry about in 1 

dimension and as all the values are relative, there is no loss of useful information as well. 

Once the processing is done, the 1-dimensional array is converted back into a 3-

dimensional RGB array to display the colored image. 

 

3.3 K-means clustering 

To train the k-means clustering model, a folder named ‘traindata’ was created with 558 

images from the Samoa collection site. Only a subset of the entire image data set is taken, as 

training and testing the entire dataset would take an enormous amount of time and 

resources. The images were read in one by one and the aforementioned pre-processing 

steps were performed on them, converting them from images into an array of pixels. The 

standard python library Scikit-learn was used to implement the k-means algorithm. Each 

image was fitted separately to the model having clusters ranging from 2 to 9 and the time 

taken for each cluster was noted down. The distortion values were also stored in a list to be 

analyzed later for finding the optimal value of ‘k’. Then, the array of pixels was once again 

converted to an image by using the labels generated by k-means to color the pixel 

according to the corresponding label. 

The output consisted of 8 images for the range of clusters 2 to 9 for each individual image. 

Each output image had a colored cluster that essentially segmented the image into different 

labels, in this case organisms.  
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As k-means is an unsupervised algorithm, it will treat every image as a new instance. In 

each image, it will cluster and the color the classes randomly. Hence, there is no continuity 

in the classes moving from one image to another. But, it is essential to maintain a constant 

class for each organism across the entire data set to train future models. Thus, a function 

was developed that outputs the cluster centers for each iteration and their corresponding 

pixel value. The steps performed in the function are listed below: - 

 

1. Find the optimum number of clusters ‘k’ using the elbow method. 

2. Output the average pixel values of all the ‘k’ cluster centers for all the images. 

3.  Create a list containing several colors in an order (light to dark). 

4. Sort the pixel values in ascending order and assign a corresponding color for each 

cluster center. 

 

Essentially, the label colors are hard coded using the average pixel values of the optimal ‘k’ 

cluster centers to bring consistency to the output images. 

 

3.4 Fuzzy c-means clustering 

The same data set used for k-means clustering was used here to compare the results 

effectively. The images went through similar pre-processing steps. The fuzzy c-means 

model from Skfuzzy library was used to fit the image across centers ranging 2 to 9. To 

calculate the optimum number of centers, the FPC value is outputted along with cluster 

center to graph out later. 
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The same function to hardcode colors to average cluster centers was reused here before 

segmenting and coloring the output images. The output image for each cluster center n was 

stored in a separate folder ‘output’ to be examined later. 

The clustered images were ready to be sent forward to the final step of the classification. 

The k-means clustered images were chosen whose value of k was the best performing out 

of all the rest. The number of centers n for fuzzy c-means clustering was similarly chosen. 

Both the datasets were further sub-divided into their respective masks,i.e., 1 cluster per 

class of the image. Thus, k different masks per image were generated with just one 

particular cluster in each mask. It was achieved by writing the pixel values of each cluster 

to a blank image, one cluster at a time. This is done so that the neural network model can 

learn the different label independently and has clear labels for the same. 

For e.g. consider the following image having 3 clusters. Thus k=3 or n=3 describes this data 

the best. The input to the CNN for this image would be the original image along with the 3 

masks containing each individual points of the cluster one by one. Thus, the CNN would 

know these 3 labels are present in the input image and train to learn its features. The 

masks have the same resolution and size as the original image. 

 

Figure 8. Image alongside its cluster masks. 
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3.5 CNN training 

The input to the CNN were 2 sets of 100 images. These images were the results of k-means 

clustering and fuzzy c-means clustering respectively. Each image had multiple masks 

associated with it, which were its labels. The number of masks depends on the value of ‘k’ 

in the case of k-means clustering and the value of ‘n’ or number of centers in fuzzy c-means 

clustering. Each mask had the pixels of only one cluster. Each of the 2 sets of 100 images 

was divided into training and validation sets in the ratio 80:20.  

 

The environment that was used to run the neural network was Keras [3]. Keras is a python 

library that is used to build and run neural network models. It provides an easy front end 

that helps to avoid the messy details of building neural networks from scratch. U-net is a 

neural network architecture that was originally created for segmenting bio-medical data 

such as MRI scans and blood vessel images [4]. So instead of having to design the individual 

layers of a CNN, a pre-built architecture like U-net can be used to train our model. U-net 

was already proven to perform very well on image classification problems and in this 

project, it is being extended to segment and identify marine organisms. This is known as 

transfer learning, where a pre-built model is being used for different machine learning 

tasks by training it on different data and labels.  

The U-net model was imported directly to Keras. It had a total of 28 convolutional layers. 

The reason for choosing this architecture was its high performance even with low amounts 

of training data. As training neural networks takes a lot of time and resources, keeping the 

training set low while getting higher accuracy scores is a boon. The architecture of U-net is 

given below [4]: - 
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Figure 9. Architecture of U-net.  

 

Now, the organisms present on the plate do not have a fixed size, shape or orientation. The 

same organisms may be miniscule in one image whereas be a majority in another. Hence 

the neural network model needed to be robust enough to identify it in all capacities 

possible. Thus, the input images were modified in different ways to generate more data. 

This is known as data augmentation. 3 functions were performed on the image. 

  

1. Random rotation 

2. Re-scaling/flipping  

3. Hue/saturation change 
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If the original image was resized or flipped, the corresponding mask needed to be modified 

the same way to preserve the labels. If the hue and saturation of the input image were 

changed, the mask should not be changed, as the model is being built to identify only those 

labels, and they need to be fixed. Changing the hue and saturation is a way of telling the 

model that even though there might be slightly different shades of yellow in 2 different 

images, they are in fact of the same species. But if the orientation or size of the image was 

changed, the masks need to be changed as well as the model will insert the mask above the 

image to learn the features. Hence, they always need to be of the same resolution and 

orientation. 

Next, the model was trained for both the training sets. The max number of epochs to train 

was set to 100 and the model loss at which to stop training was set to 0.20. The parameters 

were chosen thus to finish training in a reasonable amount of time. Ideally, when a test 

image is fed into the model, it will segment all the different organisms and output a 

separate image for each organism. Hence, when all the output images of the individual 

organisms are combined, it should give back the test image. The metric used to determine 

this is the dice coefficient [12]. It is defined as follows 

 

Where X is the set of pixels that were predicted and Y is the ground truth. Basically, it 

determines how the predicted pixels match over the input image. Its value is between 0 and 

1. 
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Loss is the summation of errors that the model makes on the training set. Maximizing the 

log likelihood (or minimizing the negative log-likelihood) means minimizing the distance 

between two probability distributions. Hence it is a measure of how similar our output is to 

the label. The lower the loss, the better the predictive capability of the model is with 

respect to its input. Ideally, every iteration of training should decrease the loss of the model 

till a certain threshold is reached. 

Once the model was trained, the model loss and dice coefficient values are noted down. The 

best weights of the model were chosen and loaded into it. The model then worked on the 

validation or testing set of images. It generated an output for each of the identified labels in 

the image. The dice coefficient is once again used to measure the performance of the model. 

 

4. Results 

4.1 Pre-processing 

The figure on the left shows the raw input image and the figure on the right shows the 

image after all the preprocessing techniques. The image on the right appeared 

standardized with even lighting and dimensions.                       
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Figure 10. Image before and after pre-processing 

 

4.2 K-means 

After performing k-means clustering on the images, 8 outputs per image were generated, 

with one output for every cluster k ranging from 2 to 9. The outputs for an example image 

look as follows: - 

 

Figure 11. Input image for k-means clustering. 

 

 

 

 

K=2     K=3     K=4 
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K = 5                                                          K = 6                                                             K = 7              

                   

K = 8     K = 9                                                    

Figure 12. Output images of k-means clustering for each k 

 

As seen from the images, there is a gradual progress in how good the different organisms 

were being represented in the final segmented output.  Looking at the output, it is obvious 

2 clusters were not enough to represent all the different labels in the image, but the images 

with higher values of k look similar with not much difference. As the value of k increases, 

the k-means model has more centers to work with hence it can minutely segment the 

organisms in the image.  
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The graph below shows the average time take by the model to train k clustered images. 

This is an important measure to evaluate the performance of the algorithm. 

 

Figure 13. Average time taken to train k clusters. 

 

Thus, when k=7 the model takes the highest amount of time to cluster the image. 

 

Figure 14. Elbow method to find the optimal value of k. 
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There is a sharp decrease in distortion when k=7. Hence that is the elbow point and the 

best approximate solution for finding k. 

4.3 Fuzzy c-means 

This model also outputted 8 images per image with the number of fuzzy centers ranging 

from 2 to 9. The average time taken to cluster for different values of n is graphed below: - 

 

Figure 15. Average time taken to train N centers 

 

The FPC graph is shown below which is used to estimate the best count of centers that can 

be used to segment the input image. 
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Figure 16. FPC for each N. 

 

The value of FPC is observed to be highest at n = 7 where it is 0.85. Hence n=7 can be said 

to be the best value to represent all the classes in the image. The corresponding output of 

n=7 for the input image is as follows: - 
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Figure 17. Fuzzy c-means cluster output image for N=7. 

All the similar organisms are of the same color whereas the background is nicely 

differentiated with a black color thanks to the histogram equalization which was done in 

pre-processing. The fuzzy c-means has taken advantage of the balanced-out intensity 

values to effectively separate the foreground from the background. 

 

4.4 CNN output 

For training the set of 80 images of k-means clustered images, the total time taken was 6 

hours. For fuzzy c-means clustered images, the total time taken was 13 hours. The average 

dice coefficient and model loss on the validation set for both the dataset is graphed below: - 

 

Figure 18. Comparing Dice coefficient per epoch for Fuzzy and k-means dataset on CNN. 
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Figure 19. Comparing loss per epoch for Fuzzy and k-means dataset on CNN. 

 

 

Below is the output generated by the CNN for a test image by the better performing fuzzy c-

means clustered image model is as follows: - 

 

Figure 20. Test image for CNN trained model. 
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Figure 21. Objects detected in cluster 1. 

 

Figure 22. Objects detected in cluster 2. 
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Figure 23. Objects detected in cluster 3. 

Hence, it is clearly observed that the model has identified the white pods in the right side of 

the image in the first cluster, the yellow organisms in the second cluster and the red 

colored organism covering the top left part of the plate. The scientific names of the 

different species need to be decided by domain experts. Judging by the output, the model 

was able to differentiate the different organisms quite well. 

 

5. Discussion 

Upon analyzing the various results, we observe a similar pattern for the 2 clustering 

algorithms. The time taken for clustering an image is directly proportional to the number of 

clusters chosen. Both the algorithms reach a certain threshold of number of clusters where 
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it is able to represent all the classes in the image to the maximum extent. In this 

experiment, the number turned out to be 7 in both cases.   

It is also safe to conclude that Fuzzy c-means clustering performed better than the k-means 

clustering algorithm. It was able to better differentiate the different organisms and 

represented them on the clustered output images effectively. It is the reason the dice 

coefficient (0.90) was better on the fuzzy dataset rather than the k-means dataset (0.82).  

However, it is not without its tradeoffs. While the average clustering time for 8 clusters in 

k-means was 5 minutes, the same for fuzzy c-means was an enormous 87.5 minutes. The 

same could be said for training the CNN models where the fuzzy dataset took twice as long 

as the k-means dataset. The reason for this is the higher complexity of the fuzzy c-means 

algorithm. Instead of just one label per pixel like k-means, it has to calculate memberships 

of every pixel to all the cluster centers, and then take a mean. Thus, there are quite a lot of 

calculations per pixel [11].  

But it is the same reason it is able to perform better than k-means. Whether a pixel belongs 

to a particular cluster is never crisply defined, hence there is more information available to 

the model to better judge the image. In k-means, because it is a hard-clustering technique, 

much of the information is lost due to hard coding the pixel labels to one cluster only. 

Another observation made from running all the above experiments was that a lot of time 

and resources are required to cluster and train a model, especially when run on a local 

machine. In the future, an online server can be rented that contains state of the art Intel 

CPUs and NVIDIA GPUs to speed up the calculations and train even faster. GPUs have been 

shown to increase the performance of machine learning algorithms by up to 100 times 

because they are highly efficient at parallel processing. All the matrix multiplications, which 
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are integral to neural network models, can be performed simultaneously to gain drastic 

speedup in performance. More number of images can be clustered and trained resulting in 

additional accuracy and quality of segmented images. However, the budget of the project 

should also make it feasible to rent such servers. 

 

6. Conclusion 

Thus, a novel solution in the python programming language was implemented to classify 

the different marine organisms present in an image. The project showcased the importance 

of pre-processing techniques to prepare the data for an algorithm to properly work on it.  It 

also demonstrated the effectiveness of clustering algorithms to perform unsupervised 

learning to create labels from an unlabeled image dataset. It compared k-means clustering 

and fuzzy c-means clustering techniques and found the latter to be more accurate than the 

former, but requiring more than 15X the time to perform the same task. Convolutional 

neural networks were also shown to be particularly adept at identifying different image 

features. The U-net CNN model, trained on fuzzy c-means clustered images, was able to 

predict and segment the various organisms with a dice coefficient of 0.90 which is 

impressive for a dataset as small as 100 images. The various output images containing the 

individual organisms from the original image will help researchers and scientists automate 

the identification process and move away from manual testing, thereby saving a lot of time, 

money and energy. 
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