
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2018

Image Segmentation and Classification of Marine Organisms Image Segmentation and Classification of Marine Organisms

Krishna Teja Vojjila
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Vojjila, Krishna Teja, "Image Segmentation and Classification of Marine Organisms" (2018). Master's
Projects. 605.
DOI: https://doi.org/10.31979/etd.d4ga-mamb
https://scholarworks.sjsu.edu/etd_projects/605

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/605?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

Image Segmentation and Classification of

Marine Organisms

A project report presented to

The Department of Computer Science

San Jose State University

In partial fulfillment of the requirements for the class

CS 298

By Krishna Teja Vojjila

May 2018

2

Abstract

To automate the arduous task of identifying and classifying images through their domain
expertise, pioneers in the field of machine learning and computer vision invented many
algorithms and pre-processing techniques. The process of classification is flexible with
many user and domain specific alterations. These techniques are now being used to classify
marine organisms to study and monitor their populations. Despite advancements in the
field of programming languages and machine learning, image segmentation and
classification for unlabeled data still needs improvement. The purpose of this project is to
explore the various pre-processing techniques and classification algorithms that help
cluster and classify images and hence choose the best parameters for identifying the
various marine species present in an image.

3

Table of Contents

1. Introduction 4

2. Background 6
2.1 Supervised and Unsupervised learning 6
2.2 K-means algorithm 8
2.3 Fuzzy c-means 10
2.4 Convolutional neural networks 12

3. Method 16
3.1 Data description 16
3.2 Pre-processing 17

3.2.1 Rescale data 17
3.2.2 Histogram equalization 17
3.2.3 Reshape data 18

3.3 K-means clustering 19
3.4 Fuzzy c-means clustering 20
3.5 CNN training 22

4. Results 25
4.1 Pre-processing 25
4.2 K-means 26
4.3 Fuzzy c-means 29
4.4 CNN output 31

5. Discussion 34

6. Conclusion 36

7. References 37

4

1. Introduction

Throughout millennia, humans have developed an amazing aptitude for pattern

recognition. Once taught, identifying objects becomes easy, especially through vision. Even

a child can differentiate a burger from a hotdog. But when it comes to processing millions

of images with intricate details, all at the same time, computers make a lot more sense to

use. They are not only faster than manual labor, but cheaper too thanks to some novel

algorithms that have been developed to mimic the functioning of the human brain [5].

In the era of big data and the internet, identifying an image(classification) and what’s in an

image (detection and segmentation) is a routine task. From searching images of items, food

or clothing to looking for places to visit, computer vision is being used every day by

smartphones and computers.

One such application of computer vision is classifying the species of marine organisms

present in an image. The Moss Landing Marine Laboratories in Moss Landing, California

works towards the identification of marine invertebrate fauna. They study and collect

organisms by submerging stacks of flat settlement plates called ARMS (Autonomous Reef

Monitoring Structures)

5

Figure 1. ARMS being placed on a coral reef.

These structures are strategically placed in areas having sunshine and shelter. There is

enough gap left between them to facilitate the natural growth of flora and fauna. These

plates are left for a period of 6 months up to a year and then retrieved.

Figure 2. Photograph of a retrieved plate.

Analysis typically includes photography of each plate followed by visual identification of

megafauna by expert taxonomists and DNA extraction for molecular identification.

6

Although ARMS plates have proven effective collection devices [20], current identification

techniques have significant expense. Moreover, expert taxonomists are not always

available, while molecular identification is time consuming. The photographs are generally

archived without analysis. There is thus an opportunity to enhance current analysis

practices by software analysis of ARMS photos.

This project proposes and implements a solution to automate the above task. It aims to

identify the different species present on a plate by segmenting and classifying the different

regions of the image into their respective classes. The exact classes would have to be later

renamed according to their scientific names by domain experts. The process flow is

outlined in the following diagram.

 Figure 3. Process flow of the project.

2. Background

2.1 Supervised and Unsupervised learning

Before determining the available methods that should be used to solve the problem at

hand, there is a greater need to understand the challenges and the reasoning behind

choosing any methods. The presence of multiple overlapping organisms in an image

combined with the fact that there are no labels for the images make it a difficult

proposition. Any machine learning model with a predictive capability works better if it has

labelled data to train the model on. Hence the first step is to generate labels for the images.

7

There are 2 broad types of learning techniques in the machine learning context -

Supervised and Unsupervised Learning [13]. In supervised learning, the model is given

data and explicitly told which class that data belongs to. In unsupervised learning, the

model has no idea about the class information of the data. It tries to come up with its own

classes based on some features of the data.

As the data provided is unlabeled, supervised learning is not feasible. Hence, the labels

must be generated from the images themselves [10]. Not only that, there are multiple

classes present in the image. Hence, the different classes need not be just identified, but

also marked with some arbitrary feature (e.g. color) to differentiate them from one

another. Such a task in machine learning is called as Image segmentation and is critical to

this project.

There are many algorithms that perform unsupervised learning. One of them is clustering -

the task of grouping similar set of objects in a given feature space. In the context of image

classification, it has been traditionally used in segmenting medical [6] and satellite images

[14]. Hence it makes sense to extend them to this project as well. The objects in this case

are the intensity values of the different pixels in the image. Pixel clusters that represent an

organism(class) should be like the other pixels of the same organism in shape, size, color or

texture. Hence applying clustering analysis to the image would yield us different clusters

for each organism. The beauty of this approach is that as each cluster would be intrinsically

different from one another, the output would in fact be the different classes present in the

image.

8

Clustering can be further distinguished into hard and soft methods [15]. Hard clustering

treats an object such that it belongs to only one cluster or class. In soft or fuzzy clustering,

each object is given a percentage or likelihood that it belongs to a cluster, hence it can

belong to multiple clusters. Hard clustering is useful when the boundaries of different

classes are fixed and linear whereas soft clustering is better in describing more complex

decision boundaries. In this project, one algorithm of both the types is implemented - K-

means of hard clustering and fuzzy c-means of soft clustering.

2.2 K-means algorithm

A computer does not view images the same way as humans do, it has no contextual

information other than the labels the image has. For it, images are nothing but an array of

RGB colored pixels with various intensity values.

K-means algorithm aims to partition n points into k clusters so as to minimize the inter

cluster sum-of-squares(variance) [19]. The data points in this case are the pixel values of

the image. The parameter ‘k’ must be passed beforehand and is integral to the performance

of the algorithm. It starts with a ‘k’ randomly selected centroids and iterates between the

two following steps: -

1. Assignment step

Each data point is assigned to the nearest centroid and its distance to the centroid is

minimized. The metric used can differ, the most common one is the squared Euclidean

distance.

9

where ci is the collection of centroids in the set C and x is the data point

2. Update step

In this step, each of the centroids are recomputed by taking the mean of all the data points

in that centroids cluster.

Where Si is the set of data point assignments for each ith cluster

One of the advantages of this algorithm is it will always converge. The result may be a local

optimum, but multiple runs with randomized starting centroids can produce better results.

The performance of the algorithm depends upon the value of k. Now, there is no set method

to determine ‘k’, the user needs to run the program for a range of k values and see the

results to determine the number of clusters. One of the metrics that is used to compare the

results between different values of k is the mean distance calculated from the data points to

their cluster centroid [7]. As we go on increasing k, the number of centroids increases and

hence the mean distance will always decrease, up to the point of 0 when k equals the

number of data points itself. Hence, this alone cannot be used. The mean distance is plotted

alongside k and the point where the graph sharply falls, also known as the ‘elbow point’,

can be used to determine the best value of k. It indicates that the value of k for which there

is a sharp fall in distortion, i.e., mean distance from data points to their cluster centroid has

decreased more than ever before, will not occur again that drastically. Hence there is no

use of increasing k for more computations if the tradeoff is only going to be minute

10

improvements to distortion levels. Hence that value of k can be used as an optimum value

as it explains the data with as little distortion as possible compared to the previous values

of k.

2.3 Fuzzy c-means

Fuzzy c-means clustering is yet another algorithm for clustering. It assigns a membership

to each data point depending on its distance to each cluster center. The nearer it is to the

cluster center, the more its membership towards the same. The total sum of all

memberships of a data point is one. The algorithm proceeds as follows [2]: -

1. Randomly select ‘c’ cluster centers.

2. Calculate the fuzzy membership uij of each point using

 3. Calculate the fuzzy centers vj by

 4. Repeat step 2 and 3 till until J is minimized or ||Uk+1 - Uk|| < β

 Where β is a value between [0,1], a termination criterion

 K is the iteration step

J is the objective function

U = (uij)n*c is the fuzzy membership matrix

11

However, having a lower value of β we can get better results, but there will be more

iterations on the data. Also, the choice of distance metric can disregard underlying factors

in the data and give unequal importance to them. E.g. Euclidean distance.

Fuzzy c-means clustering works particularly well with overlapped data set because the

data points in the boundary can have common memberships between the overlapped

classes hence better represent the data [12]. The two graphs below show the difference

much clearer.

Figure 4. Comparison of hard and soft cluster memberships.

In the first graph of Figure 2, there are 2 clusters A and B, with members of A having

membership 1 and B having 0. Thus, there is a clear delineation between the two clusters.

In the second graph, the point in A marked by the dotted line is in between clusters A and B

with a value of 0.3. Thus, that is the data points membership coefficient for class A [2].

The hardest part of any clustering algorithm is determining the number of clusters

beforehand. The fuzzy partition coefficient or FPC is a metric used to determine the

optimum number of clusters for a given data set. The FPC measure the amount of

12

‘fuzziness’ present in a solution, how close the solution is to the corresponding hard

solution. This hard solution is formed by classifying each data point into the cluster which

has the largest membership score. The formula is given below [2]

Where mik is the membership of the ith data point in the kth cluster.

The value of FPC ranges from 0 to 1 hence the higher the value, the better the data is

represented in the clusters. Thus, it will be used as a metric to determine the optimal

number of clusters in fuzzy c-means clustering algorithm.

2.4 Convolutional neural networks

Once the images have been clustered and segmented into their various classes, the

different labels for the images have been procured. Now, a supervised algorithm can learn

the different labels and predict the same for new images. Artificial neural networks

(hereafter abbreviated as ANN) are supervised learning models that are inspired from the

human brain. The neurons in the human brain receive an input, fire up if the input signal is

strong enough and pass its output to the next neuron. The brain learns by creating and

destroying such connections and adjusting the strength of the signal.

ANNs operate similarly. In their case the input is a numerical array or matrix, be it images,

text or plain numbers. It passes this input through multiple layers, where each layer

comprises of neurons. Each neuron multiplies the input given to it with a weight associated

with that neuron and then adds a bias to it, and then passes it to the next layer. The weights

13

and biases are present to ensure a similar input is received by the neuron across a range of

acceptable values. Eventually, the last layer has an activation function that produces the

final output. The activation function can be as simple as sigmoid function (f(x) = (1 + e−x)−1)

for binary classification(to classify 2 different labels) or as complex as ReLU(f(x) = max(0,

x)) to classifying ‘n’ different labels. When the model is trained, the output for each

iteration is compared to the true label. If it is incorrect, the weights and biases are updated

accordingly, such that next time the same or similar input is received, the correct output is

produced. A single neuron may look like the following [5]:-

Figure 5. A sample neuron in an artificial neural network model.

Convolutional neural networks (hereafter abbreviated as CNN) are a type of artificial

neural networks. Instead of taking a single input, a smaller array of numbers called the

kernel filter is passed across the entire image multiple times. The values in the input image

matrix are multiplied with the overlapping values in the kernel filter matrix and these

14

results are stored in a new array. This process is called convolution. Convolving images in

such a manner produces many interesting effects. It can be used to detect edges, sharpen or

blur the image, change the hue and saturation, etc. It is like applying filters to images in

Photoshop.

Thus, for each layer, the model will learn a different feature. For the present project, it can

learn the edges and lines in the first layer, different textures in the second layer, etc. till

more complex organism shapes are learned in the final layers.

Another important concept of CNNs is pooling. Pooling is a down sampling technique which

reduces the size of the input given to it while maintaining the relative information of the

input data. One of the most common techniques is max pooling, which consists of

outputting only the max value for every N X N grid of the input matrix. The intuition behind

it is that the relative positioning of the pixels is more important than the absolute locations.

Pooling layers are inserted in between the convolutional layers to reduce the number of

parameters going through the layers. This decreases the amount of computational work

and thus speeds up training time. It also controls overfitting.

 A sample CNN neuron may look like this [5]:-

15

Figure 6. A sample neuron in a convolutional neural network model.

CNNs are very adept at identifying features in an image [1]. Unlike an ANN, where every

single input or pixel is mapped to a single neuron, an area of the input image equal to the

kernel filter size is mapped to each neuron. Thus, it operates on a set of pixels at once

rather than a single pixel. It can learn more complex features by looking at the image at

bigger scale when compared to an ANN, identifying textures, edges and lines.

CNNs enforce local connectivity patterns between adjacent neurons in a layer. This ensures

that the learnt filters have a strong response to a local input pattern. Stacking layer after

layer of such local patterns leads to formation of non-linear filters that become global, i.e.,

respond effectively to a larger pixel region.

CNNs feature different filters for each convolutional layer. However, each filter has shared

weights and biases across that layer and thus form a feature map. Every neuron in that

16

layer shares these same weights and biases. This means that given a convolutional layer, all

the neurons in that layer respond equally to the same feature. Hence no matter where the

feature is present in the entire image, the layer would be able to catch it and output

accordingly. This property is known as translational invariance. These two properties of

CNN are what make them so adept at computer vision problems.

3. Method

3.1 Data description

6125 ARMS images from Monterey Bay, Hawaii and Guam were graciously provided by

Prof. Jon Geller of Moss Landing Marine Laboratories. 200 images were used to train

different models and a 100 were analyzed by testing on the resulting model.

All the images are of JPEG format and are divided into folders based on the geographical

area they were taken from. They are further subdivided into collection sites A, B and C.

Each image has an average size of 3 Megabytes with a resolution of 2848 X 4288, which is

very high. Some of the images have the plate centered on it while some are out of focus,

with different lighting as well. So, there is a need to standardize all the images before

training the model.

All the programming was done in Python version 3.5 as it has extensive support for

machine learning libraries and is the most popular and easy to learn language for the same.

17

All programs were run on a local machine having 16 Gigabytes of RAM, Intel core i7

processor and a 2 Gigabyte NVIDIA GeForce 940 MX graphics card. Hence there is no costly

equipment or server cost associated with this project.

3.2 Pre-processing

A basic principle in machine learning is that the data needs to be prepared in such a way

that it exposes the problem to the algorithms you intend to use. All algorithms make

assumptions about the data; hence the data needs to be prepared and standardized keeping

that in mind. Any flaw or irregularity in the data gets carried forward into the final results,

called training error; and pre-processing is an essential step in avoiding training error.

3.2.1 Rescale data

Firstly, all the images were cropped and resized to a standard size of 2474 X 2455, having 1

Megabyte of size. This eliminates the unnecessary white background along with any

shadows present in the image. All that information is not required by the model to predict

the classes in the image. Moreover, due to the reduced size and resolution, the model will

run faster as fewer calculations must be performed.

3.2.2 Histogram equalization

Consider an image that has its pixel values confined to higher ranges only. For e.g., brighter

images will have their pixels confined to higher values than the darker ones. But a good

image will have pixels that are from different parts of the image. Hence if a histogram of

18

pixel values is plotted, the “bad” image will have a compacted area with just the high value

pixels on it. To make it a better image, the histogram needs to be stretched across its ends

to accommodate all the different intensities present. Histogram equalization achieves

better global contrast by spreading out the most common intensity values effectively [9]. It

helps to better differentiate the foreground from the background if both are equally light or

dark. In this case, histogram equalization is mainly used to separate the organisms that are

spread out across the grey plate background and better reflect their true colors.

The key advantage of histogram equalization is its computational inexpensiveness. It is

straightforward and is an invertible operator meaning the process can be reversed to get

the original image back if needed. The only disadvantage is that it applies the histogram

function equally to both the signal and the noise, i.e., it is indiscriminate. Thus, in some

cases it can decrease the actual signal and increase the background noise.

Figure 7. Histogram equalization.

3.2.3 Reshape data

When an image is read by the computer, it is converted into a 3-dimensional array of RGB

values. But when it comes to giving this image as an input to the different models (k-means,

19

fuzzy c-means and neural network), the input is required in the form of a 1-dimensional

array. The reason is that distance calculation and information representation is much

easier and faster in 1D than 3D. There are far less parameters to worry about in 1

dimension and as all the values are relative, there is no loss of useful information as well.

Once the processing is done, the 1-dimensional array is converted back into a 3-

dimensional RGB array to display the colored image.

3.3 K-means clustering

To train the k-means clustering model, a folder named ‘traindata’ was created with 558

images from the Samoa collection site. Only a subset of the entire image data set is taken, as

training and testing the entire dataset would take an enormous amount of time and

resources. The images were read in one by one and the aforementioned pre-processing

steps were performed on them, converting them from images into an array of pixels. The

standard python library Scikit-learn was used to implement the k-means algorithm. Each

image was fitted separately to the model having clusters ranging from 2 to 9 and the time

taken for each cluster was noted down. The distortion values were also stored in a list to be

analyzed later for finding the optimal value of ‘k’. Then, the array of pixels was once again

converted to an image by using the labels generated by k-means to color the pixel

according to the corresponding label.

The output consisted of 8 images for the range of clusters 2 to 9 for each individual image.

Each output image had a colored cluster that essentially segmented the image into different

labels, in this case organisms.

20

As k-means is an unsupervised algorithm, it will treat every image as a new instance. In

each image, it will cluster and the color the classes randomly. Hence, there is no continuity

in the classes moving from one image to another. But, it is essential to maintain a constant

class for each organism across the entire data set to train future models. Thus, a function

was developed that outputs the cluster centers for each iteration and their corresponding

pixel value. The steps performed in the function are listed below: -

1. Find the optimum number of clusters ‘k’ using the elbow method.

2. Output the average pixel values of all the ‘k’ cluster centers for all the images.

3. Create a list containing several colors in an order (light to dark).

4. Sort the pixel values in ascending order and assign a corresponding color for each

cluster center.

Essentially, the label colors are hard coded using the average pixel values of the optimal ‘k’

cluster centers to bring consistency to the output images.

3.4 Fuzzy c-means clustering

The same data set used for k-means clustering was used here to compare the results

effectively. The images went through similar pre-processing steps. The fuzzy c-means

model from Skfuzzy library was used to fit the image across centers ranging 2 to 9. To

calculate the optimum number of centers, the FPC value is outputted along with cluster

center to graph out later.

21

The same function to hardcode colors to average cluster centers was reused here before

segmenting and coloring the output images. The output image for each cluster center n was

stored in a separate folder ‘output’ to be examined later.

The clustered images were ready to be sent forward to the final step of the classification.

The k-means clustered images were chosen whose value of k was the best performing out

of all the rest. The number of centers n for fuzzy c-means clustering was similarly chosen.

Both the datasets were further sub-divided into their respective masks,i.e., 1 cluster per

class of the image. Thus, k different masks per image were generated with just one

particular cluster in each mask. It was achieved by writing the pixel values of each cluster

to a blank image, one cluster at a time. This is done so that the neural network model can

learn the different label independently and has clear labels for the same.

For e.g. consider the following image having 3 clusters. Thus k=3 or n=3 describes this data

the best. The input to the CNN for this image would be the original image along with the 3

masks containing each individual points of the cluster one by one. Thus, the CNN would

know these 3 labels are present in the input image and train to learn its features. The

masks have the same resolution and size as the original image.

Figure 8. Image alongside its cluster masks.

22

3.5 CNN training

The input to the CNN were 2 sets of 100 images. These images were the results of k-means

clustering and fuzzy c-means clustering respectively. Each image had multiple masks

associated with it, which were its labels. The number of masks depends on the value of ‘k’

in the case of k-means clustering and the value of ‘n’ or number of centers in fuzzy c-means

clustering. Each mask had the pixels of only one cluster. Each of the 2 sets of 100 images

was divided into training and validation sets in the ratio 80:20.

The environment that was used to run the neural network was Keras [3]. Keras is a python

library that is used to build and run neural network models. It provides an easy front end

that helps to avoid the messy details of building neural networks from scratch. U-net is a

neural network architecture that was originally created for segmenting bio-medical data

such as MRI scans and blood vessel images [4]. So instead of having to design the individual

layers of a CNN, a pre-built architecture like U-net can be used to train our model. U-net

was already proven to perform very well on image classification problems and in this

project, it is being extended to segment and identify marine organisms. This is known as

transfer learning, where a pre-built model is being used for different machine learning

tasks by training it on different data and labels.

The U-net model was imported directly to Keras. It had a total of 28 convolutional layers.

The reason for choosing this architecture was its high performance even with low amounts

of training data. As training neural networks takes a lot of time and resources, keeping the

training set low while getting higher accuracy scores is a boon. The architecture of U-net is

given below [4]: -

23

Figure 9. Architecture of U-net.

Now, the organisms present on the plate do not have a fixed size, shape or orientation. The

same organisms may be miniscule in one image whereas be a majority in another. Hence

the neural network model needed to be robust enough to identify it in all capacities

possible. Thus, the input images were modified in different ways to generate more data.

This is known as data augmentation. 3 functions were performed on the image.

1. Random rotation

2. Re-scaling/flipping

3. Hue/saturation change

24

If the original image was resized or flipped, the corresponding mask needed to be modified

the same way to preserve the labels. If the hue and saturation of the input image were

changed, the mask should not be changed, as the model is being built to identify only those

labels, and they need to be fixed. Changing the hue and saturation is a way of telling the

model that even though there might be slightly different shades of yellow in 2 different

images, they are in fact of the same species. But if the orientation or size of the image was

changed, the masks need to be changed as well as the model will insert the mask above the

image to learn the features. Hence, they always need to be of the same resolution and

orientation.

Next, the model was trained for both the training sets. The max number of epochs to train

was set to 100 and the model loss at which to stop training was set to 0.20. The parameters

were chosen thus to finish training in a reasonable amount of time. Ideally, when a test

image is fed into the model, it will segment all the different organisms and output a

separate image for each organism. Hence, when all the output images of the individual

organisms are combined, it should give back the test image. The metric used to determine

this is the dice coefficient [12]. It is defined as follows

Where X is the set of pixels that were predicted and Y is the ground truth. Basically, it

determines how the predicted pixels match over the input image. Its value is between 0 and

1.

25

Loss is the summation of errors that the model makes on the training set. Maximizing the

log likelihood (or minimizing the negative log-likelihood) means minimizing the distance

between two probability distributions. Hence it is a measure of how similar our output is to

the label. The lower the loss, the better the predictive capability of the model is with

respect to its input. Ideally, every iteration of training should decrease the loss of the model

till a certain threshold is reached.

Once the model was trained, the model loss and dice coefficient values are noted down. The

best weights of the model were chosen and loaded into it. The model then worked on the

validation or testing set of images. It generated an output for each of the identified labels in

the image. The dice coefficient is once again used to measure the performance of the model.

4. Results

4.1 Pre-processing

The figure on the left shows the raw input image and the figure on the right shows the

image after all the preprocessing techniques. The image on the right appeared

standardized with even lighting and dimensions.

26

Figure 10. Image before and after pre-processing

4.2 K-means

After performing k-means clustering on the images, 8 outputs per image were generated,

with one output for every cluster k ranging from 2 to 9. The outputs for an example image

look as follows: -

Figure 11. Input image for k-means clustering.

K=2 K=3 K=4

27

K = 5 K = 6 K = 7

K = 8 K = 9

Figure 12. Output images of k-means clustering for each k

As seen from the images, there is a gradual progress in how good the different organisms

were being represented in the final segmented output. Looking at the output, it is obvious

2 clusters were not enough to represent all the different labels in the image, but the images

with higher values of k look similar with not much difference. As the value of k increases,

the k-means model has more centers to work with hence it can minutely segment the

organisms in the image.

28

The graph below shows the average time take by the model to train k clustered images.

This is an important measure to evaluate the performance of the algorithm.

Figure 13. Average time taken to train k clusters.

Thus, when k=7 the model takes the highest amount of time to cluster the image.

Figure 14. Elbow method to find the optimal value of k.

29

There is a sharp decrease in distortion when k=7. Hence that is the elbow point and the

best approximate solution for finding k.

4.3 Fuzzy c-means

This model also outputted 8 images per image with the number of fuzzy centers ranging

from 2 to 9. The average time taken to cluster for different values of n is graphed below: -

Figure 15. Average time taken to train N centers

The FPC graph is shown below which is used to estimate the best count of centers that can

be used to segment the input image.

30

Figure 16. FPC for each N.

The value of FPC is observed to be highest at n = 7 where it is 0.85. Hence n=7 can be said

to be the best value to represent all the classes in the image. The corresponding output of

n=7 for the input image is as follows: -

31

Figure 17. Fuzzy c-means cluster output image for N=7.

All the similar organisms are of the same color whereas the background is nicely

differentiated with a black color thanks to the histogram equalization which was done in

pre-processing. The fuzzy c-means has taken advantage of the balanced-out intensity

values to effectively separate the foreground from the background.

4.4 CNN output

For training the set of 80 images of k-means clustered images, the total time taken was 6

hours. For fuzzy c-means clustered images, the total time taken was 13 hours. The average

dice coefficient and model loss on the validation set for both the dataset is graphed below: -

Figure 18. Comparing Dice coefficient per epoch for Fuzzy and k-means dataset on CNN.

32

Figure 19. Comparing loss per epoch for Fuzzy and k-means dataset on CNN.

Below is the output generated by the CNN for a test image by the better performing fuzzy c-

means clustered image model is as follows: -

Figure 20. Test image for CNN trained model.

33

Figure 21. Objects detected in cluster 1.

Figure 22. Objects detected in cluster 2.

34

Figure 23. Objects detected in cluster 3.

Hence, it is clearly observed that the model has identified the white pods in the right side of

the image in the first cluster, the yellow organisms in the second cluster and the red

colored organism covering the top left part of the plate. The scientific names of the

different species need to be decided by domain experts. Judging by the output, the model

was able to differentiate the different organisms quite well.

5. Discussion

Upon analyzing the various results, we observe a similar pattern for the 2 clustering

algorithms. The time taken for clustering an image is directly proportional to the number of

clusters chosen. Both the algorithms reach a certain threshold of number of clusters where

35

it is able to represent all the classes in the image to the maximum extent. In this

experiment, the number turned out to be 7 in both cases.

It is also safe to conclude that Fuzzy c-means clustering performed better than the k-means

clustering algorithm. It was able to better differentiate the different organisms and

represented them on the clustered output images effectively. It is the reason the dice

coefficient (0.90) was better on the fuzzy dataset rather than the k-means dataset (0.82).

However, it is not without its tradeoffs. While the average clustering time for 8 clusters in

k-means was 5 minutes, the same for fuzzy c-means was an enormous 87.5 minutes. The

same could be said for training the CNN models where the fuzzy dataset took twice as long

as the k-means dataset. The reason for this is the higher complexity of the fuzzy c-means

algorithm. Instead of just one label per pixel like k-means, it has to calculate memberships

of every pixel to all the cluster centers, and then take a mean. Thus, there are quite a lot of

calculations per pixel [11].

But it is the same reason it is able to perform better than k-means. Whether a pixel belongs

to a particular cluster is never crisply defined, hence there is more information available to

the model to better judge the image. In k-means, because it is a hard-clustering technique,

much of the information is lost due to hard coding the pixel labels to one cluster only.

Another observation made from running all the above experiments was that a lot of time

and resources are required to cluster and train a model, especially when run on a local

machine. In the future, an online server can be rented that contains state of the art Intel

CPUs and NVIDIA GPUs to speed up the calculations and train even faster. GPUs have been

shown to increase the performance of machine learning algorithms by up to 100 times

because they are highly efficient at parallel processing. All the matrix multiplications, which

36

are integral to neural network models, can be performed simultaneously to gain drastic

speedup in performance. More number of images can be clustered and trained resulting in

additional accuracy and quality of segmented images. However, the budget of the project

should also make it feasible to rent such servers.

6. Conclusion

Thus, a novel solution in the python programming language was implemented to classify

the different marine organisms present in an image. The project showcased the importance

of pre-processing techniques to prepare the data for an algorithm to properly work on it. It

also demonstrated the effectiveness of clustering algorithms to perform unsupervised

learning to create labels from an unlabeled image dataset. It compared k-means clustering

and fuzzy c-means clustering techniques and found the latter to be more accurate than the

former, but requiring more than 15X the time to perform the same task. Convolutional

neural networks were also shown to be particularly adept at identifying different image

features. The U-net CNN model, trained on fuzzy c-means clustered images, was able to

predict and segment the various organisms with a dice coefficient of 0.90 which is

impressive for a dataset as small as 100 images. The various output images containing the

individual organisms from the original image will help researchers and scientists automate

the identification process and move away from manual testing, thereby saving a lot of time,

money and energy.

37

7. References

[1]"Convolutional neural network", En.wikipedia.org, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Convolutional_neural_network#Distinguishing_features.
[2]"Fuzzy clustering", En.wikipedia.org, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Fuzzy_clustering.
[3]R. Relan, "A Non-Expert’s Guide to Image Segmentation Using Deep Neural Nets",
Medium, 2018. [Online]. Available: https://medium.com/@hanrelan/a-non-experts-guide-
to-image-segmentation-using-deep-neural-nets-dda5022f6282.
[4]O. Ronneberger, P. Fischer and T. Brox, "U-Net: Convolutional Networks for Biomedical
Image Segmentation", Lecture Notes in Computer Science, pp. 234-241, 2015.
[5]R. Campbell, "Demystifying Deep Neural Nets – Manchester Futurists – Medium",
Medium, 2018. [Online]. Available: https://medium.com/manchester-
futurists/demystifying-deep-neural-nets-efb726eae941.
[6]C. Kirbas and F. Quek, "A review of vessel extraction techniques and algorithms", ACM
Computing Surveys, vol. 36, no. 2, pp. 81-121, 2004.
[7]S. M.AqilBurney and H. Tariq, "K-Means Cluster Analysis for Image Segmentation",
International Journal of Computer Applications, vol. 96, no. 4, pp. 1-8, 2014.
[8]A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification with deep
convolutional neural networks", Communications of the ACM, vol. 60, no. 6, pp. 84-90,
2017.
[9]"Histogram equalization", En.wikipedia.org, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Histogram_equalization. [Accessed: 09- May- 2018].
[10]L. Dong, L. He, M. Mao, G. Kong, X. Wu, Q. Zhang, X. Cao and E. Izquierdo, "CUNet: A
Compact Unsupervised Network for Image Classification", IEEE Transactions on
Multimedia, pp. 1-1, 2018.
[11]Z. Cebeci and F. Yildiz, "Comparison of K-Means and Fuzzy C-Means Algorithms on
Different Cluster Structures", Journal of Agricultural Informatics, vol. 6, no. 3, 2015.
[12]M. Gupta, M. Shringirishi and D. Singh, "Implementation of Brain Tumor Segmentation
in brain MR Images using K-Means Clustering and Fuzzy C-Means Algorithm",
INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, vol. 5, no. 1, pp. 54-59, 2006.
[13]A. Ahmad and S. Quegan, "Comparative analysis of supervised and unsupervised
classification on multispectral data", Applied Mathematical Sciences, vol. 7, pp. 3681-3694,
2013.
[14]M. Nair and B. J.S., "Supervised Techniques and Approaches for Satellite Image
Classification", International Journal of Computer Applications, vol. 134, no. 16, pp. 1-6,
2016.
[15]M. Waseem Khan, "A Survey: Image Segmentation Techniques", International Journal of
Future Computer and Communication, pp. 89-93, 2014.

38

[16]R. Vieux, J. Benois-Pineau, J. Domenger and A. Braquelaire, "Segmentation-based multi-
class semantic object detection", Multimedia Tools and Applications, vol. 60, no. 2, pp. 305-
326, 2010.
[17]D. Marmanis, K. Schindler, J. Wegner, S. Galliani, M. Datcu and U. Stilla, "Classification
with an edge: Improving semantic image segmentation with boundary detection", ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 135, pp. 158-172, 2018.
[18]K. Zou, S. Warfield, A. Bharatha, C. Tempany, M. Kaus, S. Haker, W. Wells, F. Jolesz and R.
Kikinis, "Statistical validation of image segmentation quality based on a spatial overlap
index1", Academic Radiology, vol. 11, no. 2, pp. 178-189, 2004.
[19]D. ZHENG and Q. WANG, "Selection algorithm for K-means initial clustering center",
Journal of Computer Applications, vol. 32, no. 8, pp. 2186-2188, 2013.
[20]M. Williams, J. Ausubel, I. Poiner, S. Garcia, D. Baker, M. Clark, H. Mannix, K. Yarincik
and P. Halpin, "Making Marine Life Count: A New Baseline for Policy", PLoS Biology, vol. 8,
no. 10, p. e1000531, 2010.

	Image Segmentation and Classification of Marine Organisms
	Recommended Citation

	1. Introduction
	2. Background
	2.1 Supervised and Unsupervised learning
	2.2 K-means algorithm
	2.3 Fuzzy c-means
	2.4 Convolutional neural networks

	3. Method
	3.1 Data description
	3.2 Pre-processing
	3.2.1 Rescale data
	3.2.2 Histogram equalization
	3.2.3 Reshape data

	3.3 K-means clustering
	3.4 Fuzzy c-means clustering
	3.5 CNN training

	4. Results
	4.1 Pre-processing
	4.2 K-means
	4.3 Fuzzy c-means
	4.4 CNN output

	5. Discussion
	6. Conclusion
	7. References

